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Abstract
Non-Technical Summary. As cities like Beijing expand rapidly, green and blue spaces
(GBS)—essential for ecosystem services (ESs) such as clean air, flood control, and recreation—
are increasingly threatened. This 20-year study examines how urban expansion and policy
interventions have shaped Beijing’s GBS. While green initiatives have increased natural areas,
unchecked urban sprawl has fragmented these spaces, reducing their environmental benefits.
Satellite data andurbanplanning analyses underscore a key lesson:maintainingwell-connected
natural zones is critical for urban resilience. These findings are broadly applicable for rapidly
growing cities globally, urging urban planners to integrate ecological conservation with devel-
opment, and to safeguard healthy environments and vibrant communities.
Technical Summary. This study quantifies the spatiotemporal dynamics of urban GBS in
Beijing, evaluating their essential role in delivering ESs and strengthening urban resilience.
Although China has achieved substantial progress in urban greening, the ecological impacts
of rapid urbanization on GBS configuration and connectivity have not been comprehensively
quantified. Using an integrated analytical framework combining principal component anal-
ysis and multiple linear regression, we reveal how urban development strategies have shaped
GBS dynamics over two decades. A spatially explicit analysis, utilizing geographically weighted
regression, further elucidates the heterogeneous relationships among the normalized difference
vegetation index, human footprint index, and ESs delivery capacity. Notably, socioeconomic
incentives and green infrastructure governance—especially objective indicators such as forest,
garden, and greenspace area—have effectively driven GBS expansion. However, urban expan-
sion has led to pronounced fragmentation of peri-urbanGBS, suggesting potential degradation
of their ecosystem service support functions. These findings emphasize the need for adap-
tive GBS management strategies that balance ecological conservation with sustainable urban
growth in rapidly developing cities.
Social Media Summary. Urban growth fragments green and blue spaces, reducing vital
ecosystem services. Balancing conservationwith development is essential for sustainable cities.

1. Introduction

Urbanization, defined by the transformation of rural landscapes into urban environments, sig-
nificantly reshapes social, economic, demographic, and ecological systems (He et al., 2017;
Wang et al., 2022). Central to this transformation are green and blue spaces (GBS), which
encompass natural or seminatural ecosystems within urban boundaries, integrating vegetation,
surface waters, and interconnected natural elements (Taylor & Hochuli, 2017). These spaces
provide essential ecosystem services (ESs), including air purification, temperature regulation,
mental health benefits, and recreational opportunities, all crucial for human well-being and
urban sustainability (Liu et al., 2022; Meng et al., 2020; Wilson et al., 2024). Nevertheless, rapid
urbanization has led to widespread degradation and fragmentation of GBS, limiting their ability
to maintain ESs provision (Salvati et al., 2018; Yan et al., 2022).

From a landscape ecology perspective, the spatial configuration and connectivity of GBS –
measured by metrics such as patch density, edge complexity, and network centrality – are
critical determinants of ESs dynamics (Abdullah et al., 2022; Lamy et al., 2016). Research
indicates that enhancing GBS patterns through green infrastructure and spatial connectivity
strategies can improve ESs delivery (Feng et al., 2021; Li et al., 2005). However, integrating
this knowledge into planning frameworks remains challenging (Seto et al., 2012; Wu, J. 2019).
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Although nonspatial regression models (e.g., ordinary least
squares [OLS], logistic regression) and spatial techniques such as
geographically weighted regression (GWR) have been employed to
analyze GBS-ES relationships (Brunsdon et al., 1996; Zhang et al.,
2018), these methods often neglect temporal continuity and fail to
capture the complex interactions among GBS structure, socioeco-
nomic drivers, and policy interventions (Chen et al., 2022; Lourdes
et al., 2022). Moreover, existing research rarely integrates inter-
disciplinary perspectives to address the ES supply–demand–flow
triad, hindering the alignment of landscape governance
with urban sustainability goals (Felipe-Lucia et al., 2022;
Schröter et al., 2018).

China’s urbanization trajectory, underpinned by ecological civ-
ilization and low-carbon development policies, offers a unique
context for exploring these interactions. National strategies prior-
itize GBS conservation to address diverse demands from citizens
and policymakers (Assis et al., 2023; Pinto et al., 2022), yet the
effectiveness of policy implementation and the long-term impacts
of urbanization on GBS remain not well understood (Sun & Zhao,
2018; Xu et al., 2019; Zhang et al., 2021). While studies have inves-
tigated the socioeconomic drivers of landscape change (Li et al.,
2017; Wu, W. B., et al., 2021), few studies employ temporal frame-
works to evaluate how urbanization phases interact with policy
strategies to reshape GBS. Furthermore, the integration of smart
city innovations and population-driven factors into GBS plan-
ning remains insufficiently developed, limiting the optimization of
urban resilience strategies (Xia et al., 2023).

To address these gaps, this study explores the spatiotemporal
evolution of GBS and ESs in Beijing over the past two decades,
focusing on three key questions: (1) How have GBS patterns and
related ESs shifted over time and space? (2) How have different
stages of urbanization and development strategies influenced GBS
configurations? and (3) Which spatial metrics are most important
for connecting GBS dynamics with ESs provision?

2. Study area

Beijing, the capital of China, is located in the northwest corner of
the North China Plain, bordered by Tianjin and Hebei province
(N39°28′–N41°25′, E115°25′–E117°30′) (Figure 1). This expan-
sive metropolis covers an area of 16,410 km2, with mountains
accounting for approximately 62% of the total land area, and spans
16 administrative districts. Beijing uniquely blends a rich his-
torical legacy, dating back thousands of years, with its modern
role as a global center for national politics, culture, international
exchange, and scientific innovation. In 2020, Beijing was desig-
nated as an Alpha+ global city by the Globalization and World
Cities Research Network (The World From GaWC, 2020), high-
lighting its significant global economic and political influence.That
same year, the city’s gross domestic product (GDP) reached 3.61
trillion RMB (about 515.714 billion U.S. dollars), with an urban-
ization rate of 87.5%. With a population of 21.9 million, the city
allocated 243.9 billion RMB (about 3.48 billion U.S. dollars) to
research and development initiatives. However, rapid economic
growth andurbanization inBeijing have caused a significant reduc-
tion in GBS. In response, the Beijing government has introduced
policies to improve the quality of these critical areas, enhancing the
ecological network, and optimizing urban planning. These efforts
underscore the government’s commitment to sustainable urban
development and its recognition of the essential role that GBS plays
in strengthening the city’s ecological resilience and livability.

3. Materials and methods

3.1. Data sources

For this comprehensive study, we used a diverse range of data
sources, including land use, meteorological records, soil character-
istics, the normalized difference vegetation index (NDVI), human
footprint (HFP), road, and statistical data, as detailed in Table 1.
Land-use data were obtained from the Resource and Environment
Science and Data Center and classified into six categories: farm-
land, forest, grassland, open water, construction land, and barren
land. Climatic variables – such as average annual precipitation,
temperature, and potential evapotranspiration – were collected
from 438 weather stations. Additionally, our dataset included soil
properties such as soil depth, clay content, silt content, sand con-
tent, organic carbon content, and bulk density. All datasets were
resampled to a consistent 100 × 100 m resolution to ensure preci-
sion and consistency across the analysis. Statistical data, crucial to
our research, were drawn from 16 key factors, primarily sourced
from authoritative publications such as the Beijing Statistical
Yearbook, Beijing Economic Development Report, China City
Statistical Yearbook, the State InformationCenter, and theNational
Bureau of Statistics.

3.2. Methods

Initially, we analyzed changes in both the types and areas of GBS
components (Figure 2). Utilizing principal component analysis
(PCA) and multiple linear regression (MLR), we identified the
principal factors influencing GBS distribution. We then exam-
ined the spatiotemporal dynamics of four critical ESs: net primary
productivity (NPP), carbon storage, soil conservation, and habi-
tat quality. Concurrently, GWR was applied to assess the spatial
impacts of these ESs. By employing PCA, MLR, and landscape
pattern metrics over continuous time, this study seeks to advance
the theoretical understanding of GBS-ES interactions and offer
practical insights to help balance ecological protectionwith socioe-
conomic development in rapidly growing global cities.

3.2.1. Analyzing the composition of GBS
We examined changes in the types and areas of GBS in Beijing,
focusing on farmland, forest, grassland, and open water across
urban and suburban regions. Using the land use and land cover
transfer matrix (see S.1), we mapped transformations in Beijing’s
GBS from 2000 to 2020, highlighting shifts in these key landscape
components.

3.2.2. Influence of urban development on GBS area
(1) Index system of influencing factors

We identified 16 influencing factors based on previous research
and by considering aspects of urban development, economic
growth, and natural ecological conditions (Schirpke et al., 2023;
Sorge et al., 2022). These factors are grouped into five domains:
socioeconomic, technological innovation, nature, green infrastruc-
ture metrics, and environment.

(2) PCA and MLR analysis

We conducted PCA and MLR using SPSS 24.0 to assess the
impact of urbanization on theGBS area. First, we used theGBS area
as the dependent variable and 16 influencing factors as indepen-
dent variables. To evaluate factor suitability for PCA, we employed
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Figure 1. Topographical map of Beijing. Beijing includes 16 districts: the central city, which comprises Dongcheng, Xicheng, Fengtai, Chaoyang, Shijingshan, and Haidian
districts; the outer suburbs (in the plain), including Tongzhou, Shunyi, and Daxing districts; the outer suburbs (in semi-mountainous areas), including Pinggu, Changping, and
Fangshan districts; and the outer suburbs (in mountainous areas), including Huairou, Mentougou, Yanqing, and Miyun districts.

the Kaiser–Meyer–Olkin (KMO) test and Bartlett’s test of spheric-
ity to confirmwhether the data were appropriate for PCA (Mathur,
2014). Bartlett’s test yielded a significance of 0.00 and the KMO
measure yielded a value of 0.783 (>0.7) for the 16 impact fac-
tors. Both results indicate suitability for PCA, confirming these
principal components as acceptable substitutes for the 16 potential
influencing factors (Table S2.1).

Next, we calculated the correlation matrix and identified eigen-
values, retaining components with eigenvalues greater than one
that collectively accounted for over 75% of the variance. The
PCA identified two principal components with eigenvalues of
11.13 and 1.99, explaining 82.21% of the sample variance (Figure
S2.1). Based on the rotated component matrix and correspond-
ing eigenvalues (Table S2.2), we characterized the first principal
component F1 as urban development, comprising 12 key factors:
population density (X1), GDP (X3), primary industry (X4), sec-
ondary industry (X5), tertiary industry (X6), consumer price index
(CPI) (X7), research and experimental development (R&D) (X8),
forested area (X12), area of gardens and green spaces at year’s
end (X13), green space area (X14), average daily value of SO2
(X15), and average daily value of NO2 (X16). The second principal

component F2 represented the natural environment with two key
factors: precipitation (X9) and temperature (X10).

Finally, we performed a stepwise MLR using the principal com-
ponent scores (PCS) as independent variables and the GBS area as
the dependent variable (Figure 4). We computed the PCS using the
coefficient vector from PCA to normalize the original indicators.
This analysis enabled us to determine the impact of the principal
components on the GBS area from 2000 to 2020. Using the coef-
ficient vector matrix from the PCA, we normalized the original
indicators, which were then input into ZF1 and ZF2 to calculate the
correspondingPCS.We expressed the twoprincipal components as
Equation (3). We introduced the normalized values of PCS and the
GBS area (R2 = 0.952) into the stepwise MLR model, as outlined
in Equation (4).

(3) Obtaining key influencing factors

PCA is a dimensionality reduction technique that combines
the original variables into new orthogonal variables while retain-
ing as much information as possible. MLR of PCS assumes a
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Table 1. Description of main datasets used in the study

Layer Description Spatial scale Temporal scale Source

Land use Six types 30m; raster, tif Year, 2000, 2020 http://www.resdc.cn/

Meteorological data Annual average precipitation, tempera-
ture, potential evapotranspiration

Shp,1:1,000 Year, 2000, 2020 Annual average precipitation and temper-
ature were collected from http://cdc.cma.
gov.cn.
Potential evapotranspiration data was
downloaded from the Global Aridity and
PET Database from http://www.cgiar-csi.
org/data/global-aridity-and-pet-database.

Soil properties Soil depth, clay content, silt content,
sand content, organic carbon content,
and bulk density

Shp,1:1,000 Year, 2000, 2020 http://www.soilgrids.org

MODIS Moderate-resolution imaging spectro-
radiometer dataset

250m; raster, tif 16 days, 2000,
2020

http://ladsweb.nascom.nasa.gov

Normalized Difference
Vegetation Index (NDVI)

Annual maximum NDVI dataset 30m; raster, tif Year, 2020 https://www.escience.org.cn/

Human Footprint (HFP) The data serves as a quantitative met-
ric, specifically devised to evaluate the
extent of human influence on the Earth’
terrestrial surface

1 km, raster, tif Year, 2020 https://doi.org/10.6084/m9.figshare.
16571064

Road data Primary and secondary roads / Year, 2000, 2020 Openstreetmap

Statistics 16 factors / Four quar-
ters per year,
2000−2020

Beijing Statistical Yearbook, Beijing
Economic Development Report, China
City Statistical Yearbook, State Information
Center, and National Bureau of Statistics.
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Figure 2. Schematic of the study framework.

linear relationship between the dependent variable and the prin-
cipal components obtained from PCA (Guo et al., 2004; Tian et al.,
2021). This allows for assessing the importance of each influencing
factor. The formula for extracting the key influencing factors is
presented in Equation (5).

3.2.3. Ecosystem services
Beijing’s strategies proposed for GBS planning predominantly aim
to enhance the GBS quality, which involves improving biodiversity

and boosting ESs functionality. Moreover, there is a strong empha-
sis on green development, climate change mitigation, and the
implementation of Nature-based solutions (NbS). In line with
Beijing’s commitment to sustainable development and ecologi-
cal enhancement, our study focuses on key ESs, specifically NPP,
carbon storage, soil conservation, and habitat quality. These ESs
are critical for flood management, climate change mitigation, and
biodiversity conservation. For detailed calculationmethods, as ref-
erenced in Section S.3, we employed the Integrated Valuation of
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Ecosystem Services and Tradeoffs (InVEST) model to assess car-
bon storage, soil conservation, and habitat quality (Natural Capital
Project, 2023). NPP was calculated using surface meteorological
data, MODIS, and the Carnegie–Ames–Stanford Approach model
(Field et al., 1998; Potter et al., 1993).

3.2.4. Calculating the GBS patterns
We characterized the GBS patterns using eight complementary
landscape metrics, calculated in FRAGSTATS v4.2 (McGarigal
et al., 2024) at both the landscape and class levels. These metrics,
drawn from five functionally distinct categories (Table S4.1), offer
a multidimensional view of landscape structure (Li et al., 2023;
Šímová & Gdulová, 2012):

(1) Area dominance (largest patch index, LPI): Measures the
proportion of the landscape occupied by the largest contigu-
ous patch, highlighting dominant habitats and providing a base-
line for ecological prioritization. (2) Edge dynamics (total edge,
TE): Assesses the total length of all patch perimeters, captur-
ing boundary-mediated processes such as species interactions and
energy flow. (3) Fragment dispersion (number of patches, NP;
landscape division index, DIVISION): NP counts discrete habitat
fragments, whileDIVISIONquantifies degree of isolation. Both are
inversely related to ecological resilience, as increased fragmenta-
tion limits species dispersal. (4) Spatial aggregation (percentage of
like adjacencies, PLADJ; landscape shape index, LSI; patch cohe-
sion index, COHESION): PLADJmeasures clustering, LSI captures
standardized shape complexity, and COHESION indicates over-
all functional connectivity. (5) Habitat heterogeneity (Shannon’s
diversity index, SHDI): Integrates patch richness and evenness,
serving as an indicator of landscape-level biodiversity.

Although metric intercorrelations are recognized (Cushman
et al., 2008), our selection follows frameworks that emphasize
nonredundant functional assessment (Peng et al., 2021;Wu, 2004).
Area and edge metrics address habitat composition and bound-
ary dynamics; fragmentation indices quantify impacts of habitat
splitting; aggregation indices describe spatial arrangement; and
diversity metrics capture ecological heterogeneity.

3.2.5. Spatial factors influencing ESs
We employed GWR to analyze the spatial factors influencing ESs.
GWR is a localized modeling approach designed for spatial data
with heterogeneity and autocorrelation (Georganos et al., 2017).
It effectively addresses these spatial characteristics. Unlike ordi-
nary least squares (OLS), which estimates global coefficients, GWR
provides location-specific estimates, revealing spatial nonstation-
arity in relationships between variables. The GWR model can be
expressed as follows:

y (m) = 𝛽0 (m) +
p

∑
k=1

𝛽k (m) ⋅ xk (m) + 𝜀 (m) (6)

where y (m) is the response variable at location m; xk is the value
of the kth independent variable; 𝛽0 is the intercept; 𝛽k is the local
regression coefficient for xk; and 𝜀 (m) is the random error term at
location m (Fotheringham & Oshan, 2016).

4. Results

4.1. Spatiotemporal dynamics and drivers of GBS

4.1.1. Characteristics of the change in types and area of GBS
Beijing experienced a substantial reduction in GBS coverage dur-
ing rapid urban expansion from 2000 to 2020, with a net loss

of approximately 1,200 km2. This decline was driven mainly
by the large-scale conversion of farmland into urban devel-
opment zones. By 2020, forest accounted for the dominant
land-use category (46%), followed by farmland (22.5%), con-
struction land (20.8%), grassland (7.9%), open water (2.6%),
and barren land (0.2%). Temporal analysis revealed contrast-
ing trends: farmland and open water consistently decreased,
while forests, barren land, and construction land expanded.
Grasslands exhibited fluctuating patterns over time (Figure 3a).
Quantitative assessments demonstrated a 7.8% decline in farm-
land (4,975.64–3,697.58 km2), with 35% of this loss converted to
construction land. Construction land increased by 7.2%, increas-
ing from 2,232.49 to 3,412.32 km2. Spatial analyses identified
the peri-urban plains as major hotspots of land conversion
(Figure 3b, 3c).

4.1.2 Key influencers of changes in GBS area
Based on the findings from PCA-MLR (Figure 4), we observed that
urban development exerts a greater influence than natural environ-
mental factors. The key influencers include the CPI (X7), forested
area(X12), area of gardens and green spaces at the year’s end(X13),
green space area (X14), and average daily value of SO2 (X16). Thus,
both socioeconomic indicators and green infrastructure variables
emerged as critical determinants of GBS area changes. Moreover,
the average daily value of SO2 (X16) —amajor contributor to urban
air pollution (Shams et al., 2021)—negatively affects both the urban
ecosystem and GBS area.

4.1.3. Temporal variation in the impact on GBS area
Using PCA-MLR, we examined the temporal shifts in the influ-
ence of urbanization on the GBS area in Beijing from 2000 to
2020 (Figure 5). The year 2011 was identified as a pivotal inflection
point in Beijing’s urbanization process. From this point onward,
the effect of urbanization shifted from restricting GBS expansion
to actively promoting the enhancement and growth of these critical
ecological resources, even though the overall GBS area continued
to decline.

4.2. Spatial–temporal dynamics of ESs

4.2.1. Predominant increase in NPP in the northern mountains
NPP was significantly higher in the northwestern and north-
ern mountainous regions, while the central urban plains showed
substantially lower values (Figure 6a). From 2000 to 2020, NPP
increased markedly in the outer suburban mountainous and
semi-mountainous areas, particularly in Huairou, Miyun, and
Pinggu districts, where values rose from 201.51 to 605.6 gC
m–2. In contrast, NPP in the central urban area declined, from
−141.1 to 142.94 gC m–2, representing a reduction of nearly
300 gC m–2.

4.2.2. Elevated carbon storage in mountainous regions
The carbon storage pattern in the study area (Figure 6a) shows a
distinct spatial gradient, decreasing from the peripheralmountains
toward the urban core. Peripheral regions, particularly mountain-
ous, semi-mountainous, and certain plains areas, exhibit signifi-
cantly higher carbon storage (310.58–3543 gC m–2), due to dense
vegetation. In contrast, the urban center has considerably car-
bon storage (738–1540 gC m–2), primarily as a result of dense
infrastructure restricting carbon sequestration. The lowest carbon
values (20.48–310.57 gC m–2) are intermittently distributed across
the area, highlighting potential sites for ecological restoration.
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Figure 3. Changes in GBS types and areas in Beijing (2000–2020). (a) Chord diagrams depicting the shift in GBS types. (b) GBS types in 2000. (c) GBS types in 2020.

(1) To extract the two principal factors of urban development and the natural environment

Factors of Urban Development

1 Population density

3 Gross Domestic Product (GDP)

4 Primary Industry

5 Secondary Industry

6 Tertiary Industry

Factors of Natural environment

9 Precipitation

10Temperature 

13Area of gardens and green 

spaces at year's end

14 Green space area

15 Average daily value of SO2

16 Average daily value of NO2

7 Consumer Price Index(CPI)

8 Research and Experimental 

Development(R&D)

12 Forested area

(2) Effects of two principal factors on GBS Area 

Principal component scores (PCS)

= 0.285 ∗ 1 − 0.035 ∗ 2 + 0.293 ∗ 3 + 0.215 ∗ 4 + 0.291 ∗ 5 + 0.291 ∗ 6 + 0.298 ∗ 7 + 0.289 ∗ 8 + 0.018 ∗

9 + 0.054 ∗ 10 + 0.111 ∗ 11 + 0.297 ∗ 12 + 0.295 ∗ 13 + 0.295 ∗ 14 − 0.295 ∗ 15 − 0.279 ∗ 16 (1)

= −0.006 ∗ 1 + 0.213 ∗ 2 − 0.023 ∗ 3 + 0.298 ∗ 4 + 0.094 ∗ 5 + 0.074 ∗ 6 − 0.013 ∗ 7 − 0.006 ∗ 8 + 0.647 ∗

9 + 0.668 ∗ 10 − 0.021 ∗ 11 − 0.013 ∗ 12 − 0.013 ∗ 13 − 0.012 ∗ 14 + 0.016 ∗ 15 + 0.032 ∗ 16 (2)

According to the coefficients obtained from MLR, the relationship between the GBS area and the principal components can be expressed in

formulas (1), (2), and (3). Then, the PCSs and normalized values of these indicators were brought into stepwise MLR as shown in formula (4).

= 0.976 ∗ 1 − 0.014 ∗ 2 (6) (R
2
=0.952)                                                             (3)

= 0.278 ∗ 1 − 0.037 ∗ 2 + 0.286 ∗ 3 + 0.206 ∗ 4 + 0.282 ∗ 5 + 0.283 ∗ 6 + 0.291 ∗ 7 + 0.283 ∗ 8 + 0.008 ∗

9 + 0.043 ∗ 10 + 0.109 ∗ 11 + 0.290 ∗ 12 + 0.288 ∗ 13 + 0.288 ∗ 14 − 0.288 ∗ 15 − 0.272 ∗ 16 (4)

(3) Key factors influencing of GBS Area 

The formula for extracting the key influencing factors is defined as formula (5):

> (5)

Where is the absolute value of the explanatory power of indicator , is the average absolute value of the explanatory power of all

indicators. If > ， can be extracted as a key influencing factor; otherwise, it is excluded as a non-critical influencing factor.

Consumer Price Index

(CPI) 0.291

Forested area 0.290

Area of gardens and green 

spaces at year's end 0.288

Green space area 0.288

Socioeconomic Green infrastructure metrics

Average daily value of 

SO2 -0.288

Environment

Figure 4. Application of PCA-MLR to identify the influential indicators and key factors driving changes in the GBS area.
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Figure 5. The impact of urbanization on the GBS area in Beijing (2000–2020). (a) The GBS area exhibits a declining trend. (b) The influence of principal components F1 and
F2 is shown. (c) The influence of these principal components is illustrated, where negative values indicate adverse effects and positive values signify beneficial effects.
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Figure 6. Spatial–temporal dynamics of ecosystem services in Beijing (2000–2020).

From 2000 to 2020, carbon storage increased notably in regions
such as west Fangshan, the Mentougou–Changping junction,
Miyun, and along the Yongding River in Daxing (21.41–176.12
gC m–2), attributed to reforestation and green development initia-
tives. Conversely, carbon storage decreased in the central city and
adjacent regions—including northern Miyun, western Tongzhou,
and northern Daxing—with reductions ranging from −176.12 to
−25.56 gC m–2.

4.2.3. Subtle shifts in soil conservation
Soil conservation capacity in the study area has shown only
minor changes, primarily in the mountainous regions (Figure 6c).
Changes were sporadic and largely confined to the outer moun-
tainous and semi-mountainous suburbs. Soil conservation values
ranged from 53.95 to 809.09 t ha–1, reflecting strong conservation
practices and effective land management. However, the mountain-
ous regions remain vulnerable to localized landslides, presenting
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ongoing challenges for soil conservation. In contrast, lower values
(0–15.86 t ha–1) were mainly observed in the plains.

4.2.4. Habitat quality improved in plains and
semi-mountainous regions

The study area has generally experienced an overall improve-
ment in habitat quality, although localized areas of degradation
persist (Figure 6d). Significant gains in habitat quality have been
detected in the adjacent plains and semi-mountainous regions,
encompassingChangping, Shunyi, Tongzhou, Daxing, and Pinggu.
These improvements are likely linked to the integration of ecolog-
ical considerations in urban planning. Additionally, traditionally
recognized natural habitat strongholds, particularly in the moun-
tainous districts, have shown similar positive trends. Notably,
enhanced habitat quality in specific areas within Mentougou and
Yanqing districts aligns with the objectives of the Beijing Call for
Biodiversity Conservation and Climate Change. Conversely, some
transition zones between urban centers and suburban regions con-
tinue to experience habitat degradation, underscoring the impor-
tance of targeted restoration strategies to achieve comprehensive
habitat conservation across the region.

4.3 The influence of GBS on ESs

4.3.1. Impact factors of ESs
Our analysis indicates that NDVI andHFP exert amore significant
influence on ESs than GBS patterns or natural variables, such as
average precipitation (AP) and average temperature (AT) (Figure
7). Higher NDVI values are positively correlated with enhanced
ESs (r > 0, p < 0.05), reflecting healthier, more productive vege-
tation. In contrast, increasing HFP, which indicates human impact
and is often associated with habitat loss and degradation, shows a
negative correlation with ESs (r < 0, p< 0.05).

4.3.2. The impact of NDVI and HFP on ES
Our results underscore the importance of a dual strategy for
ecosystem management: promoting vegetation quality and reduc-
ing anthropogenic pressures through sustainable practices. The
GWR model, which generates adjusted R2 values, coefficients, and
residuals for each grid (Tables S5.1 and S5.2), provides a clear rep-
resentation of spatial heterogeneity in model performance. The
spatial patterns of NDVI and HFP impacts on ESs (Figure 8)
demonstrate substantial spatial variability. Specifically, NDVI has
the strongest influence on NPP, carbon storage, soil conservation,
and habitat quality in mountainous areas, while HFP exerts broad
impacts, particularly across urban and plain regions.

4.3.3. Impact of GBS patterns on ESs
Indices such as LPI, PLADJ, and COHESION generally show
decreasing trends, while TE, DIVISION, LSI, and SHDI tend to
increase. The NP shows a decrease followed by an increase across
the study area from 2000 to 2020 (Figure S4.1a). This pattern
suggests reduced patch dominance, aggregation, and connectiv-
ity, alongside gradual increases in patch number, density, total
edge length, edge density, fragmentation, shape complexity, and
landscape diversity. These changes indicate a trend toward greater
fragmentation of GBS patterns, which may impact ecosystem
resilience.

The fragmentation of GBS patterns appears to be increas-
ing, with greater landscape heterogeneity observed in areas con-
verted to constructed land (Figure 3). The most notable changes
were observed in NP (Figure S4.1b). Alterations in LPI, TE,

LSI, DIVISION, PLADJ, COHESION, and SHDI show consistent
trends across regions, with both increases and decreases appar-
ent. The evolving GBS pattern, particularly in areas experiencing
extensive construction, suggests a potential link between urban
expansion and the fragmentation and heterogeneity of natural
landscapes.

These patterns suggest that the GBS fragmentation may
influence the structural integrity and functional capacity of
ESs (Figure 7). Our findings indicate that increased fragmentation
of GBS patterns could have a negative effect on ESs, with TE, NP,
DIVISION, and SHDI showing negative correlations with carbon
storage and soil conservation. In contrast, COHESION appears
to be positively correlated with all four ESs. The fragmentation
of contiguous habitats into isolated patches may hinder ecologi-
cal functions such as soil conservation and carbon sequestration,
potentially leading to a heterogeneous spatial distribution of ESs,
with some regions showing enhanced or significantly diminished
NPP and habitat quality.

5. Discussion

5.1. Socioeconomic and green infrastructure metrics as key
influencers

This study emphasizes the pivotal role of socioeconomic and green
infrastructuremetrics in shapingGBS development in urban areas,
with particular focus on the CPI as a key indicator. As China’s
economic growth progresses, urban residents increasingly prior-
itize the quality of their living environments, thereby driving the
demand for improved GBS in cities such as Beijing. This shift
is reflected in changing consumption patterns that place greater
emphasis on environmental concerns. Research suggests that res-
idents are willing to financially support green space preservation
(Lo& Jim, 2010), although some argue that the government should
spearhead these efforts (Xu et al., 2020). Green infrastructure met-
rics, as objective indicators of the built environment, can indirectly
reflect the effectiveness of policy implementation. Therefore, we
posit that urban ecology policies and development strategies play
a critical role in advancing GBS, as evidenced by the impact of fac-
tors such as forest area and garden space on urban planning. These
findings underscore the interconnectedness of economic prosper-
ity, public policy, and environmental priorities in shaping urban
landscapes.

5.2. Spatiotemporal variability in the impact of urban
development strategies on GBS

Between 2000 and 2020, Beijing’s urban development strate-
gies underwent notable transformations, mirroring broader shifts
in China’s urbanization and landscape management paradigms
(Wang, 2018). This section analyses how the impacts of these
strategies varied across space and time,with particular emphasis on
the shift from rapid urban expansion to more ecologically oriented
planning.

From 2000 to 2010, Beijing experienced intensive urban
growth, which was largely detrimental to its GBS. Key
urbanization drivers—including land use transformation and
deindustrialization—facilitated the conversion of farmland to
urban, promoting exurban sprawl, axial expansion, and subur-
banization. For instance, the deindustrialization of the late 1990s
spurred the development of residential and commercial zones
along the urban fringe. This phase of uncoordinated urban growth
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AP

AT

Figure 7. Factors influencing ecosystem services in Beijing (2000–2020) ( p < 0.05).

Figure 8. Spatial distribution of coefficients and local R2 values for the relationships between NDVI, HFP, and ecosystem services in Beijing (2000–2020).

frequently compromised GBS, degrading ecological integrity.
Subsequent rapid urbanization, particularly following the 2008
Olympics, intensified these effects, with substantial expansion of
technology parks and real estate ventures in suburban districts.
As a result, GBS suffered marked reductions, underscoring the
negative correlation between urbanization and ecological space
during this period.

From 2011 to 2020, Beijing shifted its urban development
strategies to prioritize ecological sustainability, resulting in pos-
itive impacts on GBS. This period marked a recalibration of
urbanization efforts, aligned with China’s broader goal of fostering
an ecological civilization (NDRC, 2014; Zhu et al., 2020). Policies
were implemented to renovate parks, restore waterways, and sig-
nificantly expand urban tree cover. The Green Beijing Action Plan
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(2010–2012) epitomized this shift, promoting “Humanistic Beijing,
Science and Technology Beijing, and Green Beijing” as core develop-
ment philosophies. Key initiatives included the Plain Forestation
Project launched in 2012, which aimed to plant approximately 1
million mu (around 666.7 km2) of trees over 5 years. This project
resulted in green space coverage rising to 62%, forest cover reach-
ing 44%, and forest stock volume expanding to 25.2 million m3.
By 2021, Beijing’s overall greenery coverage reached 48.5%, and
per capita public green space reached 16.6 m2, meeting United
Nations standards. These efforts underscore the city’s commitment
to integrating and enhancing GBS within the context of ongoing
urbanization.

Despite these gains, Beijing still encounters obstacles in safe-
guarding and expanding its GBS. Issues such as the continued loss
of farmland, reduced landscape connectivity, and increasing spa-
tial heterogeneity underscore ongoing urban pressures. Addressing
these challenges will require long-term, adaptive strategies, includ-
ing comprehensive urban ecological restoration and policies that
reconcile urban growth with ecological integrity.

5.3. Developing rational GBS planning to safeguard the
balance between the supply and demand of ESs

The intricate network of landscape processes – spanning planning,
construction, and land use – significantly shapes the availabil-
ity, demand, and effectiveness of GBS in delivering essential ESs
(Li & Fan, 2022; Wang et al., 2021). Achieving balance between
the supply and demand for ESs requires a targeted optimization
of GBS composition and structure (Chen et al., 2023). Beijing
has implemented large-scale greening projects that have notably
improved ecological health, environmental quality, and overall liv-
ability. However, rapid population growth—from 9.043 million in
2000 to 21.893million in 2020, as reported in the Beijing Statistical
Yearbook 2000-2021 (2022)—has increased pressure on GBS and
the ESs they support. To ensure a sustainable balance between ESs
supply and demand, we propose the following recommendations:

5.3.1. Strategic integration with urban development priorities
Our analysis reveals that socioeconomic dynamics and green
infrastructure metrics profoundly shape GBS. We advocate inte-
grating sustainable spatial planning with adaptive urban growth to
synchronize ecological goals with urbanization patterns. Effective
ecological conservation and restoration depend on comprehen-
sive socioeconomic incentives and enabling policy frameworks
(Howell, 2022). This approach ensures that economic develop-
ment supports—rather than undermines—urban livability and
ecosystem integrity. Importantly, mainstreaming nature-positive
development strategies—including low-impact infrastructure and
biodiversity-informed land use—will reduce anthropogenic pres-
sures and foster mutually beneficial human–nature relationships.

5.3.2. Vegetation quality as a critical driver of ES
High-quality vegetation is indispensable for sustaining and
enhancing ESs (Qiu et al., 2023). Our analysis revealed that NDVI
exhibited significant correlations with key ecosystem functions:
including NPP (r = 0.47, p < 0.05), carbon sequestration (r =
0.42, p < 0.05), soil conservation (r = 0.21, p < 0.05), and
habitat quality (r = 0.37, p < 0.05). These results underscore
NDVI’s effectiveness in indicating ecosystem vitality, resilience to
degradation, and biodiversity maintenance, all of which are fun-
damental to ecosystem service provision. Given the complexity of
ecological dynamics, enhancing vegetation quality across Beijing’s

GBS will require an integrated approach that combines ecological
restoration with adaptivemanagement, moving beyond traditional
biomass-focused methods. Potential strategies include adopting
sustainable agroecological practices, reintroducing native species,
and utilizing precision resource management approaches such as
data-driven irrigation and nutrient optimization. Furthermore,
deploying real-time, multiscale monitoring systems will enable
early detection of emerging stressors, such as invasive species or
pathogens, thereby supporting timely interventions to mitigate
cascading ecological impacts.

5.3.3. Spatial optimization of GBS
Statistically significant correlations (p < 0.05) between land-
scape metrics and ESs identify strategic opportunities for targeted
interventions to address ecological trade-offs in urban planning.
First, prioritizing large, structurally connected habitat cores (high
LPI and COHESION) enhances carbon sequestration (LPI: r =
0.39; COHESION: r = 0.27) and habitat integrity (PLADJ: r =
0.24), while mitigating soil degradation caused by fragmentation
(DIVISION: r = −0.19). Second, managing edges by implement-
ing vegetated transition buffers at ecotones reduces soil erosion
vulnerability (TE: r = −0.21) without compromising land use
efficiency. Third, aggregating functionally complementary patches
(e.g., wetlands with riparian corridors) strengthens cross-service
synergies, as evidenced by habitat quality’s positive correlation
with PLADJ (r = 0.24). Landscape complexity requires context-
specific calibration: simplified configurations (low LSI) stabilize
erosion-prone areas, whereas moderate edge heterogeneity (LSI:
r = 0.17 for habitat quality) enhances biodiversity. Adaptive
zoning policies guided by metric thresholds (e.g., critical NP and
DIVISION values) enable dynamic optimization of GBS configu-
rations under urban expansion.This spatially informed framework
moves from rigid area-based targets toward functional landscape
design, advancing carbon neutrality, biodiversity conservation,
and soil resilience in an integrated manner.

5.4. Limitations

This study has three methodological limitations that warrant cau-
tious interpretation: (1) Policy implementation is assessed using
built-environment indictors, rather than through a comprehen-
sive analysis of policy texts. While this approach captures spatial
implementation patterns, it may overlook the semantic nuances
of policy discourse. Future research could integrate natural lan-
guage processing-based policy mining with geospatial metrics
to distinguish rhetorical intent from actual outcomes. (2) The
ESs scope excludes urban agriculture and cultural services, both
important for human well-being. Future studies should consider
tiered ESs assessment frameworks and participatory cultural map-
ping to expand ESs coverage while maintaining methodological
rigor. (3) Potential redundancy exists among the eight selected
landscape metrics, which may reduce analytical precision. Future
work should refine metric selection to enhance the specificity and
accuracy of the analysis.

6. Conclusions

In the context of rapid urbanization, the influence of GBS on
ESs in China merits careful consideration from both landscape
management and scientific perspectives, with potential implica-
tions at national and global scales. As the nation’s capital, Beijing
offers a valuable case study for exploring these dynamics. The
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results suggest that socioeconomic variables and green infrastruc-
ture indicators are key factors influencing the spatial and tempo-
ral variability of GBS. Using a multimethod approach, this study
provides quantitative evidence that changes in GBS patterns can
affect ESs, particularly highlighting possible differences in the spa-
tial roles of NDVI and HFP. Additionally, the research indicates
potential risks related to GBS fragmentation that could impact the
provision of ESs, highlighting the value of integrated spatial plan-
ning of GBS. While the focus is on Beijing, the methodologies and
findings may offer useful references for other rapidly urbanizing
regions, and contribute to the ongoing discourse on sustainable
GBS development.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/sus.2025.10009.
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