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Weak Riemannian Metrics with Applications
in Shape Analysis

In this chapter, we study in detail the (weak) L2-metric on spaces of smooth
mappings. Its importance stems from the fact that this metric and its siblings,
the Sobolev H s-metrics, are prevalent in shape analysis. It will be essential for
us that geodesics with respect to the L2-metric can be explicitly computed. Be-
fore we look into the specifics, let us clarify what we mean here by shape and
shape analysis. Shape analysis seeks to classify, compare and analyse shapes.
As a mathematical discipline, shape analysis goes back to the classical works
by D’Arcy Thompson (1942) (originally published in 1917). In recent years
there has been an explosion of applications in shape analysis to diverse areas
such as computer vision (Celledoni et al., 2016), medical imaging, registration
of radar images and many more (see Bauer et al., 2014, for an exposition).
There are different mathematical settings as to what is meant by a shape and
what kind of data describes it. Popular choices are, for example,

• points;

• curves (or surfaces) in Euclidean space of manifolds;

• level sets of functions; and

• images.

Another typical feature in (geometric) shape analysis is that one wants to
remove superfluous information from the data. For example, in the comparison
of shapes, rotations, translations, scalings and reflections are typically disre-
garded as being inessential differences. Conveniently, these inessential differ-
ences can mostly be described by actions of suitable Lie groups (such as the
rotation and the diffeomorphism groups). This hints at the general process of
constructing an (infinite-dimensional) manifold of shapes: One starts out with
an (infinite-dimensional) manifold of data (e.g. smooth curves) called the pre-
shape space. Then the undesirable information is removed by quotienting out
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suitable group actions (e.g. if reparametrisation invariance of the shapes is
desired, quotient out a suitable diffeomorphism group). The resulting quotient
is then called shape space and one seeks to construct suitable tools (such as
a Riemannian metric) to compare, classify and analyse the objects in shape
space.

In the present chapter we will restrict our attention to shapes which arise as
images of smooth curves which take their values in R2. The pre-shape space
will thus be the infinite-dimensional manifold of smooth immersions (from the
circle) with values in the two-dimensional space. As the objective is to com-
pare images of these curves, we need to remove the specific parametrisation
of the immersion. Hence we pass to shape space by quotienting out an action
of the diffeomorphism group on the immersions (modelling the reparametri-
sation). Our aim is then to construct a suitable Riemannian metric on shape
space which will allow us to compare shapes using the geodesic distance in-
duced by it.

5.1 The L2-metric and Its Cousins

Having now discussed ideas to remedy the problems in the (in general) ill-
behaved weak Riemannian setting, we now consider several weak Riemannian
metrics which admit metric derivatives, spray and so on. The metrics which
we will consider are on one hand the L2-metric. We will see that the L2-metric
admits a spray, a connector and a covariant derivative albeit being only a weak
Riemannian metric. This metric will play a decisive role in the investigation of
shape analysis in this chapter. The construction for the L2-metric follows the
argument first presented in Bruveris (2018). Finally, we will briefly describe a
Sobolev-type metric whose covariant derivative can explicitly be given and is
of independent interest. Before we begin, let us set some conventions concern-
ing the integration of functions on manifolds.

On Integration of Functions on S1 The unit circle S1 can be parametrised
(up to the double endpoint) by θ : [0,2π] → S1, t �→ (cos(t),sin(t)). We now
abuse notation and denote by θ both the parameter and the parametrisation.
If you have not seen integration theory on submanifolds of Rd (e.g. Lang,
1999, XVI), this implies that for a continuous f : S1 → Rd , the integral on S1

satisfies
∫

S1
f (θ)dθ =

∫ 2π

0
f (cos(t),sin(t))dt,

whence it can be computed as a usual one-dimensional integral. Further, for
differentiable maps c : S1 → R we write c′(θ) � Tθc(1), where 1 ∈ TθS1 � R
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108 Weak Riemannian Metrics with Applications in Shape Analysis

(the notation was previously reserved for curves and we justify it as Tθ (t )c(1) is
(up to the linear isomorphism Tt θ) given by the curve differential
(c ◦ θ)′).

5.1 Remark None of the techniques employed in this chapter depend on the
compact manifold S1, but we can thus skip a discussion of integration against a
volume form on a compact manifold. However, we remark that all of the results
in this section carry over if we replace S1 by an arbitrary compact manifold (we
invite the reader to check this for themselves).

As in Example 4.3 consider the space C∞(S1,M) for a strong Riemannian
manifold (M,g) with the L2-metric

gL
2

c ( f ,g) =
∫

S1
gc (θ) ( f (θ),g(θ))dθ, f ,g ∈ TcC∞(S1,M). (5.1)

We shall show that this weak Riemannian metric admits a metric spray and a
metric derivative. It will turn out that all the relevant objects can be lifted from
the target manifold to the manifold of mappings.

5.2 Let (M,g) be a strong Riemannian manifold with metric spray S, con-
nector K and metric derivative ∇. Since (M,g) is a strong Riemannian mani-
fold, it admits a local addition (Michor, 1980, Lemma 10.2), whence the man-
ifold structure on C∞(S1,M) is canonical and, in addition, TC∞(S1,M) �
C∞(S1,T M) and T2C∞(S1,M) � C∞(S1,T2 M) (see Appendix C). Then the
pushforward of the spray and the connector

K∗ : C∞(S1,T2 M) → C∞(S1,T M), q �→ K ◦ q,

S∗ : C∞(S1,T M) → C∞(S1,T2 M), v �→ S ◦ v

are smooth mappings by Corollary 2.19. Moreover, the identification of the
tangent bundles immediately shows that S∗ is a spray on C∞(S1,M) and that
K∗ is a connector.

5.3 Proposition In the situation of 5.2, the connector associated to S∗ is K∗.

Proof By definition, the connector of S∗ is uniquely determined by the asso-
ciated map BS∗ . If we can show that BS∗ coincides with the pushforward B∗ of
the map B associated to S, then the definition of the connectors yields that the
connector of S∗ is K∗. To compute BS∗ we need to compute d2

2 (S∗)O,2((x,0); ·),
where (S∗)O,2 is a local reprensentative of S∗ (see 4.17). Since the bundle triv-
ialisations are complicated for manifolds of mappings, we apply instead the
exponential law to see that we can just take partial derivatives of

(S∗)
∧ : C∞(S1,T M) × S1 → T2 M, (h, θ) �→ S(h(θ)).
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5.1 The L2-metric and Its Cousins 109

Observe that we only need to take partial derivatives with respect to the first
component; thus S1 is simply a parameter set and the formula holds since it
can be checked pointwise (see Exercise 5.1.1). �

We use the connector K of the covariant derivative on (M,g) to define a
covariant derivative for vector fields along smooth maps.

5.4 Definition Let N be a smooth manifold and F : N → M be a smooth
map to a Riemannian manifold (M,g). A mapping s ∈ C∞

F (N,T M) = {s ∈
C∞(N,T M) | πM ◦ s = F} is called a vector field along F. Assume that (M,g)
admits a metric spray with associated connector K . For X ∈ V (N ), we define

∇g
X s � K ◦ T s ◦ X : N → T M. (5.2)

Note that the construction in Definition 5.4 is a generalised version of Propo-
sition 4.36. If ∇ is the metric derivative of a Riemannian manifold which
admits a metric spray then the covariant derivative along F : N → M also
satisfies a version of 4.29 (see e.g. Klingenberg, 1995, Proposition 1.8.14):

X.g(Y, Z ) = g(∇XY, Z ) + g(Y,∇X Z ),

Y, Z vector field along F,X ∈ V (N ). (5.3)

We will exploit the exponential law for the canonical manifold C∞(S1,M).
To s ∈ C∞(N,C∞(S1,T M)) we associated the map s∧ ∈ C∞(N × S1,M).

5.5 Remark We face a problem as in Example 3.25: The exponential law
suggests working with vector fields on N × S1, while the covariant derivative
in (5.2) is only defined for vector fields on N . Luckily, vector fields on product
manifolds are products of vector fields on the parts. Hence we extend X ∈
V (N ) to a vector field on N × S1 by the zero vector field on S1 via X × 0S1 ∈
V (N × S1). This allows us to obtain vector fields on the correct manifold on
which we can now extend the covariant derivative of N .

5.6 (A covariant derivative on C∞(S1,M)) Choosing N = C∞(S1,M) we
define via (5.2) a map ∇g

X×0
S1

s∧ ∈ C∞(C∞(S1,M) × S1,T M) and set

∇X s � (∇g
X×0

S1
s∧)∨ ∈ C∞(C∞(S1,M),C∞(S1,T M)). (5.4)

Observe that the identification TC∞(S1,M) � C∞(S1,T M) allows us to iden-
tify s ∈ V (C∞(S1,M)) ⊆ C∞(C∞(S1,M),C∞(S1,T M)). Computing with the
help of Exercises 5.1.2 and 2.2.2,

πC∞ (S1,M ) ◦ ∇X s = (πM )∗(∇g
X×0

S1
s∧)∨ = (πM ◦ (∇g

X×0
S1

s∧)∨

= (πM ◦ K ◦ T (s∧) ◦ (X × 0S1 ))∨ = (πM ◦ K ◦ (T s ◦ X )∧)∨

= (πM ◦ K )∗(T s ◦ X ) = idC∞ (S1,M ) .
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110 Weak Riemannian Metrics with Applications in Shape Analysis

Hence (5.4) induces a bilinear map ∇ : V (C∞(S1,M))2 →V (C∞(S1,M)).

The construction 5.6 certainly looks quite messy; however, we remark that
it is indeed a very natural covariant derivative we obtain in this way. Namely,
for any smooth curve c : [a,b] → C∞(S1,M) and smooth lift α ∈ Lift(c) we
apply the exponential law to obtain smooth maps c∧ : [a,b] × S1 → M and
α∧ : [a,b] × S1 → T M . Now the covariant derivative ∇ from 5.6 is related to
the covariant derivative ∇g on M by the following formula:

∇ċα(·)(x) = ∇g

ċ∧ ( ·,x)α(·, x) for all x ∈ S1. (5.5)

We relegate the verification of (5.5) to Exercise 5.1.2. However, the point is
that, despite the technical difficulties in defining the covariant derivative, it can
be viewed just as a lifting of the covariant derivative of the target manifold M .

5.7 Proposition For the map ∇ : V (C∞(S1,M))2 → V (C∞(S1,M)) and
X,Y ∈ V (C∞(S1,M), the formula

∇XY = K∗ ◦ TY ◦ X (5.6)

holds. Since K∗ is a linear connector, ∇ is a covariant derivative (with associ-
ated connector K∗ : C∞(S1,T2 M) → C∞(S1,T M)). In particular, (5.4) is the
covariant derivative associated to the spray S∗.

Proof By Proposition 5.3 the connector K∗ is the associated connector to the
spray S∗. Hence it suffices thus to prove (5.6). We have essentially done this
already as the exponential law and Exercise 5.1.2 yield

(∇X s)∧ = ∇g
X×0

S1
s∧ = K ◦ T s∧ ◦ (X × 0S1 ) = K ◦ (T s ◦ X )∧

= (K∗ ◦ T s ◦ X )∧. �

5.8 Proposition Let (H,〈·, ·〉) be a Hilbert space with a strong Riemannian
metric g (not necessarily g = 〈·, ·〉). For the L2-metric (5.1) on C∞(S1,H), the
metric derivative is the covariant derivative ∇ from 5.6.

Proof Recall that T H ⊕T H = H ×H ×H and we can consider g as a smooth
map of three variables. Let’s agree that the first component represents the base
point in the bundle. Since S is the spray of the metric g, the associated bilinear
form B satisfies for all X,Y, Z ∈ H the relation

−2g(p, (B(p; X,Y ), Z ) = d1g(p,Y, Z; X ) + d1g(p, Z,X ;Y ) − d1g(p,X,Y ; Z );
(5.7)

see Lang (1999, §VIII.4 Theorem 4.2) or Klingenberg (1995, Theorem 1.8.11).
Hence if we can compute that an identity such as (5.7) holds for the bilinear
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form associated to S∗ (which is given as pushforward with B) with respect to
gL

2
, this implies that gL

2
admits an associated bilinear form (aka Christoffel

symbols). Thus if we know the Christoffel symbols, we can compute the con-
nector giving the metric derivative. In this case, 5.6 shows that the connector is
K∗, whence S∗ is the metric spray and ∇ the metric derivative of the L2-metric
(see also Theorem 4.30).

Let us now establish the desired analogue of (5.7) for the L2-metric. The
integral operator

∫
S1 : C∞(S1,R) → R is continuous linear. Up to the identifi-

cation C.13, the derivative of gL
2
=

∫
S1 ◦g∗ in a direction is thus given by the

pointwise derivative, that is,

d1g
L2

(c,h, k; ξ) =
∫

S1
d1g(c(θ),h(θ), k (θ); ξ (θ))dθ.

We apply this observation to the right-hand side of (5.7) and recall from Propo-
sition 5.3 that the associated bilinear form BS∗ of S∗ is given by the pushfor-
ward of the associated bilinear form B of S. Together this yields

d1g
L2

(c,Y, Z; X ) + d1g
L2

(c, Z,X ;Y ) − d1g
L2

(c,X,Y ; Z )

=

∫

S1
d1g(c,Y, Z; X ) + d1g(c, Z,X ;Y ) − d1g(c,X,Y ; Z )dθ

=

∫

S1
−2g(c(θ),B(c(θ); X (θ), y(θ), Z (θ))dθ=−2gL

2
(c,BS∗ (c; X,Y ), Z ). �

5.9 Remark (a) Using the point evaluations of TC∞(S1,M) � C∞(S1,T M),
it is possible to directly describe the metric derivative of the L2-metric by
looking at it pointwise evaluated. While this allows one to avoid the con-
struction in 5.6, one is then left with lots of localisation arguments to es-
tablish Proposition 5.8. We refer to Maeda et al. (2015, Lemma 2.1) for
more information.

(b) All of the above computations for spray, connector and covariant derivative
did not exploit that the source manifold was S1. Thus via the same proof
one can obtain a spray, connector and covariant derivative for the L2-metric
on C∞(K,M) for any compact manifold K .

(c) Since (5.7) can be formulated in any local chart, a more involved ar-
gument works for any strong Riemannian manifold M . However, using
the Nash embedding theorem, Proposition 5.8 generalises directly to all
finite-dimensional Riemannian manifolds as Bruveris (2018, Theorem 4.1)
shows.

We have identified the covariant derivative of the L2-metric, and thus we can
describe geodesics of the L2-metric: A geodesic between f ,g ∈ C∞(S1,H) is
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112 Weak Riemannian Metrics with Applications in Shape Analysis

a path of curves which is pointwise for every θ ∈ S1 a geodesic in H between
f (θ) and g(θ). Let us explicitly compute this in the case where the inner prod-
uct of the Hilbert space gives us the Riemannian metric.

5.10 Example Consider (H,〈·, ·〉) as a strong Riemannian manifold. Recall
that the metric spray and the covariant derivative were computed for this met-
ric in Example 4.32: With the identification T k H = H2k , k ∈ N we obtain
S(x,v) = (x,v,v,0) and ∇XY = X.Y for suitable paths and their lifts ∇ċh = ḣ.
Now endow C∞(S1,H) with the L2-metric and pick p ∈ C∞(S1,H). We
now compute the geodesics c : J → C∞(S1,H) starting at p with derivative
ċ = X . Now identify the first and second derivatives as ċ(t) = (c(t),c′(t)) ∈
C∞(S1,H×H) and c̈(t) = (c(t),c′(t),c′(t),c′′(t)). The exponential law allows
us to compute the geodesic equation with respect to the spray as

(c(t),c′(t),c′,c′′(t))∧ = (c̈(t))∧ = (S∗(c(t),c′(t)))∧ = S

(
c∧(t, ·), ∂

∂t
c∧(t, ·)

)
.

Evaluating in θ ∈ S1 one immediately sees that c′′(t) = 0, for all t. Hence,
from the usual rules of calculus we deduce that c(t)(θ) = tX (θ) + p(θ). A
geodesic between f ,g : S1 → H does thus always exist and is described by
a map γ : [0,1] × S1 → H such that for every θ ∈ S1 we have γ(t, θ) =
(1 − t) f (θ) + tg(θ). In other words, geodesics in this example are given by
pointwise linear interpolation between the two functions.

We shall further investigate the geodesic equation of a generalised version
of the L2-metric on the open submanifold Diff(M) ⊆◦ C∞(M,M) in Chapter 7.
We can also use our knowledge of the L2-metric to derive other
interesting examples of metric derivatives for certain weak Riemannian met-
rics. Note, however, that the following example requires a more in-depth knowl-
edge of Riemannian geometry (e.g. the Hodge Laplacian, Definition E.16 and
curvature Definition 4.26).

5.11 Example (Maeda et al., 2015) Let (M,g) be a finite-dimensional Rie-
mannian manifold with metric derivative ∇g . We recall that every (finite-
dimensional) Riemannian manifold has a (Hodge)Laplacian Δ = dd∗ + d∗d
associated to the metric (see Lang, 1999, p. 423) and a curvature tensor R (see
Definition 4.26).

Now consider the loop space LM := C∞(S1,M). By Remark 5.9(c) we
know that the L2-metric admits a metric derivative ∇. We will now use the no-
tation of lifts and covariant derivative along curves on [0,2π] in the context of
curves on S1 (implicitely identifying elements in LM with curves on [0,2π] by
composing with (sin,cos) : [0,2π] → S1). Hence for a smooth curve γ ∈ LM

https://doi.org/10.1017/9781009091251.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781009091251.006


5.1 The L2-metric and Its Cousins 113

we have TγC∞(S1,M) = Lift(γ) ∩ C∞(S1,T M). We can then endow every
tangent space of C∞(S1,M) with the H1-inner product:

gH
1

γ (X,Y ) �
1

2π

∫ 2π

0
gγ(θ) ((1 + Δ)X (θ),Y (θ)) dθ. (5.8)

Rewriting the codifferential in the above formula and exploiting duality with
respect to the metric g, one can show that the inner product (5.8) describes the
sum of the L2-inner products of the lift of γ and its first derivative. We can thus
leverage Exercise 4.1.4(a), where we have seen that the L2-metric is a (weak)
Riemannian metric. Differentiation is continuous linear (on the tangent space
of C∞(S1,M)), whence the H1-metric is a weak Riemannian metric. Now a
(non-trivial!) computation shows that the metric derivative of the H1-metric is
intimately connected to the curvature tensor, the metric derivative of g and the
metric derivative of the L2-metric. Namely, Maeda et al. (2015, Theorem 2.2)
provide for X,Y ∈ TγC∞(S1,M) the following formula for the metric deriva-
tive ∇H1

X Y (γ):

∇XY +
1
2

(1 + Δ)−1
(
−∇g

ċ (R(X, ċ)Y ) − R(X, ċ)∇g
ċY − ∇g

ċ (R(Y, ċ))X

−R(Y, ċ)∇g
ċ X + R(X,∇g

ċY )ċ − R(∇g
ċ X,Y )ċ

)
,

where ∇g
ċ (R(X, ċ)Y ) denotes the lift of γ whose value at θ ∈ S1 is given by the

formula −∇g
ċ (θ) (R(X (θ), ċ(θ))Y (θ)). While the above formula looks daunting

and we do not attempt to unravel its meaning here, we would like to men-
tion that it can be used to connect the Riemannian geometry of the H1-metric
to pseudodifferential operators acting on a trivial bundle over the circle. This
link then yields information on Chern–Simons classes on the tangent bundle of
the loop space. We refer the interested reader to Maeda et al. (2015) for more
information.

Exercises

5.1.1 Let S : T M → T2 M be a spray on M with K : T2 M → T M its asso-
ciated connector.

(a) Prove that S∗ is a spray on C∞(S1,M).
Hint: Use that TC∞(S1,M) � C∞(S1,T M) identifies T (p∗)
with (T p)∗ for smooth maps. For the quadratic condition review
the effect of the diffeomorphism on the fibres.

(b) Check that K∗ is a connector.
(c) Show that the second derivative of the vertical part of S∗ is the

pushforward of the second derivative of the vertical part of S
(see Proposition 5.3).
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5.1.2 Prove for s ∈ C∞(N,C∞(S1,M)) and X ∈ V (N ) the identity

T s ◦ X = (T s∧ ◦ (X × 0S1 ))∨.

Furthermore, establish formula (5.5): ∇ċα(·)(x) = ∇g

ċ∧ ( ·,x)α
∧(·, x),

for all x ∈ S1.
5.1.3 Continue Example 5.10 and compute for C∞(S1,H) with the L2-

metric an explicit form of the geodesic equation ∇ċ ċ = 0. Deduce
again that a geodesic c : J → C∞(S1,H) is given for each θ ∈ S1 by
the affine linear map c(t)(θ) = tc′(0)(θ) + c(0)(θ).

5.1.4 Let (M,g) be a Riemannian manifold with a metric spray and metric
derivative∇. Work in a local chart to establish the identity X.g(Y, Z ) =
g(∇XY, Z ) + g(Y,∇X Z ), (5.3), for the covariant derivative along a
smooth map F : N → M .

5.2 Shape Analysis via the Square Root Velocity Transform

We return to the announced application of the L2-metric to shape analysis. As
we have seen in the introduction, we seek to construct a shape space together
with a Riemannian structure which will allow us to compare its elements using
geodesics and geodesic distance. We begin by defining the necessary spaces
and metrics.

5.12 Define the pre-shape space of closed curves

P � Imm(S1,R2) = {c ∈ C∞(S1,R2) | ċ(t) � 0, for all t ∈ [0,1]}.

In Exercise 2.1.3 and Example 4.6 we have seen that P is an open subset of
C∞(S1,R2) which becomes a weak Riemannian manifold with respect to the
Riemannian metric

gc ( f ,g) =
∫

S1
〈 f (θ),g(θ)〉‖ċ(θ)‖dθ.

We are actually interested in the images of elements in P and want to identify
all curves which yield the same image up to a reparametrisation. To model the
reparametrisation, consider the group

Diff(S1) � {ϕ ∈ C∞(S1,S1) | ϕ is bijective with smooth inverse}

of diffeomorphisms of S1. The group acts on P via reparametrisation, that is,

γ : Diff(S1) × P → P, (ϕ,c) �→ c ◦ ϕ

is a Lie group action; see Example 3.5. We can thus define the shape space
S = P/Diff(S1) as the quotient of P with respect to the Lie group action.
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5.2 Shape Analysis via the Square Root Velocity Transform 115

One can show that S is almost a manifold1 and since the Riemannian metric
is invariant under the reparametrisation action, the Riemannian metric induces
a Riemannian metric on S. Unfortunately, Michor and Mumford (2006, 3.10)
have shown that g has vanishing geodesic distance (see also Example 4.14),
whence any attempt to compare shapes by computing their geodesic distance
has to fail.

The defect of the weak Riemannian metric can be solved by incorporating
derivatives in the definition of the Riemannian metric. This leads to the notion
of a family of metric called H1-metrics (the name indicates that the associated
strong Riemannian manifold consists of Sobolev H1-functions).

5.13 (An elastic inner product, Mio et al., 2007) Let c ∈ Imm(S1,R2) with
ċ = (c,c′). Then we define uc (θ) � c′(θ)/‖ċ(θ)‖ and the arc length deriva-
tive Dc,θ (h) = h′/‖ċ‖. We define an inner product on Tc Imm(S1,R2) =
C∞(S1,R2):

Gc (h, k) �
∫

S1

1
4
〈Dc,θh,uc〉〈Dc,θ k,uc〉

+ 〈Dc,θh − uc〈Dc,θh,uc〉,Dc,θ k − uc〈Dc,θ k,uc〉〉‖ċ‖dθ.
(5.9)

This inner product is called elastic inner product as the first term measures
stretching in the direction of c, while the second term measures bending of
the curve c. Note that due to its construction, the elastic inner products are
invariant under the reparametrisation action of Diff(S1) on P.

It is not hard to see that these inner products yield a weak Riemannian metric
on the pre-shape space P. We will derive this only for a smaller submanifold
using the so-called square root velocity transform (SRVT):

5.14 Definition Define the mappings

R : P = Imm(S1,R2) → {q ∈ C∞(S1,R2) | q(θ) � 0 for all θ ∈ S1}
= C∞(S1,R2 \ {0})

c �→ R (c)(t) � c′(t)/
√
‖ċ(t)‖,

R−1 : C∞(S1,R2 \ {0}) → P,

q �→
(
(cos(t),sin(t)) �→

∫ t

0
q(cos(s),sin(s)) · ‖q(cos(s),sin(s)‖ds

)
.

1 There exist singularities, turning S into an orbifold. See Example 6.4. The existence of
singularities is usually ignored in shape analysis, as an open dense subset of S is a manifold
such that the projection restricts on this set to a submersion.
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We call R the square root velocity transform (SRVT).

Using the idea that P ⊆◦ C∞(S1,R2) and that pushforwards of smooth map-
pings are smooth maps between canonical manifolds of mappings (see Chap-
ter 2), it is not hard to see that R and R−1 are smooth. Moreover, R ◦R−1(q) =
q, but since R involves differentiation, we lose information on the starting point
of the curve and have R−1 ◦ R (c) = c if and only if c(cos(0),sin(0)) = 0, that
is, the curve starts at the origin. As we are interested in shapes, it will be irrel-
evant as to where in R2 the shape is located. In other words, we can restrict to
the submanifold

P∗ � {c ∈ P | c(cos(0),sin(0)) = 0}

of all immersions starting at the origin. We will see in Exercise 5.2.1 that the
SRVT induces a diffeomorphism between P∗ and the manifold
C∞(S1,R2 \ {0}). Recall now the notion of pullback of a Riemannian metric.

5.15 Definition Let (M,g) be a (weak) Riemannian manifold and ϕ : N → M
be an immersion. Then N can be made a (weak) Riemannian manifold with
respect to the pullback metric defined via

(ϕ∗g)m (v,w) � gϕ (m) (Tmϕ(v),Tmϕ(w)).

5.16 Example If U ⊆◦ M and (M,g) is a weak Riemannian manifold, then the
inclusion ι : U → M is an immersion and the restriction of g to U coincides
with the pullback metric obtained from ι. In particular, an open subset of a
weak Riemannian manifold, such as C∞(S1,R2 \ {0}) ⊆◦ C∞(S1,R2) (with the
weak L2-metric), becomes a weak Riemannian manifold by restriction.

5.17 Proposition The pullback metric of the non-invariant L2-metric on
C∞(S1,R2) from Example 4.3 with respect to the SRVT R is the elastic metric
described by (5.9) on each tangent space of P∗.2

Proof By construction, the square root velocity transform R is the composi-
tion of the derivative operator D : Imm(S1,R2) → C∞(S2,R2 \ {0}), q �→ (θ �→
q′(θ) = Tθc(1)), and the scaling map sc : C∞(S1,R \ {0}) → C∞(S1,R \ {0}),
f �→ f /

√
‖ f ‖. Thus by the chain rule we have TcR = Tsc◦TcD and to arrive at

the desired formula, we have to compute the derivatives of these two mappings.
To this end, we exploit that TC∞(S1,R2) = C∞(S1,TR2) = C∞(S1,R2 × R2)
and since Imm(S1,R2) ⊆◦ C∞(S1,R2), we can similarly identify the tangent
bundle of the immersions. Now arguments as in Exercise 1.2.2(c) show that
the differential operator D is continuous linear, whence for an element (c,V )

2 The statement remains valid if we replace R2 by an arbitrary Hilbert space of dimension ≥ 2.
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in TcC∞(S1,R2) = {(c,V ) ∈ C∞(S1,R2)2}, we obtain TcD(V ) = V ′. In Exer-
cise 5.2.2 we shall show that the derivative of the scaling map is

Tqsc(Z ) =
Z

√
‖q‖

− 1

2
√
‖q‖5

〈Z,q〉q. (5.10)

To obtain the derivative of the SRVT at (c,V ), we simply have to replace q
with c′ and Z with V ′. This yields the following formula:

(R∗〈·, ·〉L2 )c (V,W ) = 〈TcR (V ),TcR (W )〉L2=

∫

S1
〈Tc′sc(V ′)(θ),Tc′sc(W )(θ)〉dθ

=

∫

S1

〈
V ′
√
‖c′‖

− 1

2
√
‖c′‖5

〈V ′,c′〉c′, W ′
√
‖c′‖

− 1

2
√
‖c′‖5

〈W ′,c′〉c′
〉

(θ)dθ.

(5.11)

Since the inner product is bilinear, we can factor out terms of the form ‖c′‖
and replace V ′,W ′ and c′ with their rescaled versions (see 5.13). Now an easy
but tedious computation shows that the pullback metric (5.11) coincides with
the elastic metric (5.9). �

Hence the elastic metric can be understood by studying the L2-metric on the
manifold C∞(S1,R2\{0}). However, as this is just an open subset of the (weak)
Riemannian manifold (C∞(S1,R2),〈·, ·〉L2

) we already know the spray, con-
nector, covariant derivative and geodesics of this metric from our discussion of
the L2-metric. It is important to observe that the elastic metric pulls back to the
non-invariant L2-metric. For the non-invariant L2-metric, the geodesic distance
does not vanish (compare this with the invariant L2-metric, Example 4.6) and
the pullback metric (i.e. the elastic metric) is invariant under reparametrisation.

A natural extension for the vector space valued shape spaces discussed in
Proposition 5.17 is Lie group valued shape spaces. Here a shape is (up to
quotienting out the reparametrisation action) an element of the loop group
C∞(S1,G). If G is a Hilbert Lie group, the construction of the square root
velocity transform can be adapted to this more general setting by using the
logarithmic derivative of Lie group valued mappings. For details, we refer to
Exercise 5.2.4. Similar techniques have been used in Celledoni et al. (2018)
for shape analysis on homogeneous spaces.

5.18 Example (Sample application: Motion capturing; see e.g. Celledoni et al.,
2016) Assume that we have motion capturing data of, for example, a human
walking, given by a number of time-dependent datapoints in R3. The associ-
ated virtual character is then modelled as a skeleton for which these datapoints
represent positions of certain parts. Shifting the focus from the position to their
relative position, we can interpret the positions of every part of the skeleton as
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an angle between neighbouring parts. Now angles in R3 can be identified with
rotations, that is, elements in the Lie group SO(3) of rotations of R3. Thus if
we do not impose constraints on the allowed angles (which can lead to unnatu-
ral movements, but is generally fine when working with real motion-capturing
data), we can think of motion-capturing data as a smooth curve with values
in a product of copies of SO(3) (the number depends on the number of data
points which move relative to each other). In Celledoni et al. (2016) numerical
algorithms for automatic interpolation and transformation of motion-capturing
data have been constructed which exploit the above point of view.

5.19 Remark Note that the geodesic distance of the L2-metric on C∞(S1,H)
does not vanish and is indeed positive for any two shapes which are not equal
(where H is a Hilbert space). Indeed the geodesic distance just coincides with
the L2-distance of the curves. The situation gets more complicated in the space
C∞(S1,H \{0}) and, in particular, for H = R2 (which is not simply connected),
so an element γ for which 0 is contained in a bounded connected component
of R2 \ γ(S1) cannot be connected by a continuous curve in C∞(S1,R2 \ {0})
to an element for which 0 is not contained in such a component.

While this does not happen for open shapes (i.e. elements of Imm([0,1],R2)),
the following problem is even more significant when it comes to applications in
shape analysis: As geodesics are not allowed to pass through 0, the L2-distance
of two functions is not the geodesic distance even if there exist continuous
paths between them. If the linear interpolation between two points c(θ) and
d(θ) passes through 0, then the geodesic from the ambient space C∞(S1,R2)
does not exist in the smaller space. Instead, the geodesic distance then needs
to be computed using curves which ‘move one shape around the hole’. This
leads to a geodesic distance, which is strictly larger than the L2-distance. In
numerical applications this is often just plainly ignored.

That the geodesic distance on C∞(S1,R2\{0}) diverges from the easily com-
puted L2-distance is a consequence of the space being incomplete. Indeed since
we have ‘drilled a hole’ by excluding a point, geodesics passing through that
point can only exist up to the time they enter. As the L2-distance moves points
on the image of functions along straight lines interpolating between them, the
L2-distance fails to give the geodesic distance for points lying on opposite
sides of the excluded point.

Exercises

5.2.1 Establish some properties of the square root velocity transform R,
Definition 5.14.
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Hint: Use the substitution rule for integrals on submanifolds; in the
case at hand, this works just as in usual interval cases.
Show that:

(a) R and R−1 are smooth maps with R ◦ R−1 = idC∞ (S1,R2\{0}.
(b) P∗ = {c ∈ P | c(cos(0),sin(0)) = 0} is a closed submanifold of

P.
(c) R and R−1 induce a diffeomorphism between the manifolds P∗

and C∞(S1,R2 \ {0}).
(d) If ϕ ∈ Diff(S1) with ϕ′(θ) > 0, for all θ ∈ S1, then R (c ◦ ϕ) =

ϕ′ · R (c) ◦ ϕ.

5.2.2 Let (E, ‖·‖) be a Hilbert space with ‖v‖2 = 〈v,v〉 and K a compact
manifold. Prove that the scaling map sc : C∞(K,E\{0}) → C∞(K,E\
{0}), q �→ q/

√
‖q‖ is smooth with the tangent map given by the

formula (5.10):

Tqsc(W ) =
W

√
‖q‖

− 1

2
√
‖q‖5

〈W,q〉q.

Hint: Use the exponential law together with the canonical identifica-
tion of the tangent bundles.

5.2.3 Show that the elastic metric (5.9) is invariant under reparametrisations
with elements ϕ in Diff(S1) which satisfy Tθϕ(1) > 0, for all θ ∈ S1.

5.2.4 Let G be a Hilbert Lie group, that is, L(G) is a Hilbert space with
inner product 〈·, ·〉. Then we define a square root velocity transform
on the subset of immersions of the loop group

R : Imm(S1,G) → C∞(S1,L(G) \ {0}), c �→ δr (c)/
√
‖δr (c)‖,

where δr is the right logarithmic derivative.

(a) Show that R is a smooth diffeomorphism (what is its inverse?).
(b) Compute a formula for the pullback of the L2-metric on

C∞(S1,L(G) \ {0}). This metric is known as the elastic metric
on the Lie group valued immersions and it can be used in com-
puter animation and motion-capturing applications. See Celle-
doni et al. (2016) for more information.
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