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THE EXISTENCE OF BOUNDED HARMONIC FUNCTIONS
ON C-H MANIFOLDS

QING DING AND DETANG ZHOU

Let M be a Cartan-Hadamard manifold of dimension n (n ^ 2). Suppose that
M satisfies for every x G M outside a compact set an inequality:

—62 ^ sectional curvature (x) ^

where b, A are positive constants and A > 4. Then M admits a wealth of bounded
harmonic functions, more precisely, the Dirichlet problem of the Laplacian of M
at infinity can be solved for any continuous boundary data on 5n~1(oo).

1. INTRODUCTION

The study of the existence or nonexistence of harmonic functions has led to new
insights into the geometry of complete Riemannian manifolds. Yau [9] proved that
on any complete noncompact Riemannian manifold M there are no globally defined
nontrivial harmonic functions in LP(M) for any 1 < p < oo. In the case p = oo,
that is, for bounded harmonic functions, the conclusion is strongly influenced by the
sign of the curvature of the manifolds. Yau [10] proved that there are no nontrivial
bounded harmonic functions on manifolds of nonnegative Ricci curvature. Since then,
the existence or nonexistence of nontrivial bounded harmonic functions on complete
noncompact manifolds of nonpositive curvature has become an attractive topic both in
analysis and geometry.

On one hand, Greene and Wu (Theorem D in [6]) proved that if M is a complete
noncompact Riemannian manifold satisfing:

0 ^ sectional curvature (x) ^ — k(p(x)),

where p(x) denotes the distance function from x to a fixed point O G M, k is a
nonnegative continuous function on [0,oo) such that J^° sk(s)ds < oo, then the ex-
ponential mappings of such a manifold are always quasi-isometries and every positive
harmonic function (hence every bounded harmonic function) on M is constant. On the
other hand, there is a conjecture (see [6, Section 0]) as follows
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CONJECTURE. If M is a Cartan-Hadamard manifold which satisfies for every x £ M
an inequality outside a compact set:

sectional curvature (x) ^
P (z)

where p(x) is the distance function, A is a positive constant, then M possesses enough
bounded harmonic functions.

A study along these lines was first done by Anderson [1] and Sulh'van [8] inde-
pendently in 1983. They proved that if the sectional curvature KM of M satisfies
—b2 ^ KM *S —fl2 for some constant a, b > 0, then M has a wealth of bounded
harmonic functions, precisely, there is a geometric compactification of M obtained by
adding a sphere 5'n~1(oo) at infinity and the Dirichlet problem of the Laplacian of
M can be solved for continuous boundary data on Sn~l(oo). In 1985, Anderson and
Schoen studied in [2] the intersection between the geometry of such a manifold and
some aspects of function theory on this space. Recently, the first author obtained in [5]
an existence theorem for bounded harmonic functions on Cartan-Hadamard manifolds
in terms of negative Ricci curvature pinching conditions and a relation of the angle
and its sides, which gives Anderson or Sullivan's result as a special case. It should
be mentioned that Ballmann [3] got a existence theorem for bounded harmonic func-
tions for (symmetric) manifolds of rank 1 with nonpositive sectional curvature by using
stochastic methods.

In this paper, we shall give a new existence theorem for bounded harmonic func-
tions on Cartan-Hadamard manifolds, which provides a partial answer to the above
conjecture. Namely, we shall establish

THEOREM 1 . Let M he a Cartan-Hadamard manifold of dimension n (n ^ 3).
Suppose that M satisfies for every x £ M outside a compact set an inequality:

—b2 ^ sectional curvature (x) ^
P (

where b,A are positive constants and A > 4. Then M admits a wealth of bounded
harmonic functions.- More precisely, the Dirichlet problem of the Laplacian of M at
infinity can be solved for any continuous boundary data on •Sn~1(oo).

THEOREM 2 . Let M be a Cartan-Hadamard manifold of dimension two. Suppose

that M satisfies for every x £ M outside a compact set an inequality:

—b2 ^ sectional curvature (x) ^ -rr—r
p2(x)

where b, A are positive constants and A > 2. Then M admits a wealth of bounded

harmonic functions. More precisely, the Dirichlet problem of the Laplacian of M at

infinity can be solved for any continuous boundary data on 51(oo).
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REMARK 1.1. To establish the solvability of the Dirichlet problem at infinity is a natural
and beautiful way to show the existence of bounded harmonic functions on a Cartan-
Hadamard manifold. It is a standard method. We wonder if the restriction A > 4
(when n ^ 3) and A > 2 (when n = 2) in Theorems 1 and 2 can be deleted or not.
However, it is necessary in our arguments.

We shall first present some terminology, set up notation and recall some basic facts
in Section 2, Theorems 1 and 2 will be proved in Section 3, and some further discussion
will be given in Section 4.

2. PRELIMINARIES

Throughout this paper, unless otherwise stated,we always denote by M an n-

dimensional Cartan-Hadamard manifold, that is, a complete simply-connected Rieman-
nian manifold of nonpositive sectional curvature. It is a well known fact about these
manifolds that the exponential mapping at each point x, expx : TXM —» M, is a diffeo-
morphism. The sphere 5"~1(oo) at infinity of such a manifold M is defined to be the
set of asymptotic classes of geodesic rays in M. (Two rays 71 and 72 are asymptotic
if dist (7i(<)>72(0) is bounded for all t ^ 0.) If we choose a point 0 £ M as the origin
of the rays, then, from the viewpoint of geometry, iSn - 1(oo) is the collection of rays
emanating from point O(== 53~1(1) C ToM) (see [1] or [2] for details).

There is a natural topology, called the cone topology on M (for details see [1]).
Under this cone topology, M,M and Sn~1(oo) are homeomorphic to B(l) C Rn,B(l)

and S n ~ 1 ( l ) respectively. This is the compactification of M. It should be pointed out
that there is no natural differential structure on S"~1(oo). But , if necessary, we use
the above homeomorphism to identify Sn~1(oo) with Sn~1{l) C Rn.

Although our main object is to study Cartan-Hadamard manifolds, we have found
it advantageous to work in the category of models (see [6]). The models not only
provide a wealth of concrete manifolds with certain geometric features, but also allow
us to compare the geometry of some kinds of non-symmetric manifolds with them.
Let Rn be a linear vector space of n dimension endowed with a Riemannian metric
ds2 = dp2 + f2(p)d82 , where (p,0) are the usual polar coordinates of Rn, f £ C°°(R)

is a positive function with / (0) = 0, / ' (0 ) = 1, and d82 denotes the standard metric
of S " " 1 ^ ) . For this model M = (Rn,da2) , by a direct calculation, we have [4]:

PROPOSITION 2 . 1 . The Riemanniaji curvature tensor of the model M at point

(p, 0) is expressed as follows:

f"--r(gikgji - gugjk), when at least one ofi, j , fc, I = 1;

{9ik9ji - gugjk), when none ofi,j, k,l = l.
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where gu — 1, gij = gj\ = 0(j ^ 1), gij = 6ijf2(p) (i,j ^ 1), and Sij is the Kronecker
symbol.

Now we turn to the properties of harmonic functions on M. Let A and V denote
the Laplacian and gradient of M respectively. If Ric(M) ^ — b2 for some constant
b > 0, then we have the Harnack Principle: A sequence of harmonic functions u on a
domain fl C M such that \u\ ^ K < oo has a convergent subsequence which converges
to a smooth harmonic function (see [2]). We also recall the well known maximum
principle of the operator A : For any compact domain fi CC M and harmonic function
u on f!, the maximum and minimum of u in f2 are achieved only at points on 9f2. It
is straightforward to verify that the maximum principle remains valid for any domain
fiCMss well (also see to [2]).

3. THE SOLVABILITY OF THE DIRICHLET PROBLEM AT INFINITY

Let M be as in the Main Theorem, that is, M satisfies the following inequality
outside a compact set:

(3.1) — b2 ^ sectional curvature (x) ^ ,

where A > 4. The crucial point is to give a geometric characterisation of the curvature

restriction ^ . This leads us to consider the models mentioned in Section 2.
p2{x)

Take the model M = (Rn,ds2) with f(p) = p(l + p)1+a for some constant a > 0
which will be determined later. Because of Proposition. 2.1 in Section 2, by a direct
calculation, we have

/ " = 2(1 + a) a(l + a)

(32) f - ~ ' ( 1 + ' ) ~ ( ! + ' ) '
2(l + ) + (l + )

and

l - ( / ' ) 2
= 1 2(1+a) (1+a) 2

(3.3) /2 p\ p{yp)

From (3.2) and (3.3), we see that when a ^ 1,

(3.4) sectional curvature (p,6) of M ^ ^—-
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Hence when n ^ 3, for any given A > 4 in (3.1), we may choose a suitable small a > 0
such that

(3.5) A>{2 + a)2>4.

Since M is diffeomorphic to Rn, we choose a fixed point O 6 M as the origin and
let {(p,6)\6 £ 5'3~1(1)} be the normalised geodesic coordinates at O. Then , for the
a chosen as in (3.5), the curvature condition (3.1) become

—b2 ^ sectional curvature (p, &) of M

^ sectional curvature (p, 6) of M

outside a compact set. This allows us to compare the geometry of M with M.

REMARK 3.1. When n — 2 from (3.2) for A > 2 we can choose a > 0 small enough
such that

Then the curvature condition (3.1) with A > 2 implies (3.6) for a chosen as above. It
is easy to see that Lemma 3.1 is valid for such a when n = 2.

REMARK 3.2. With the same argument as above, we can construct a lot of models
(Rn,ds2 = dp2 + p{\ + p) ad82 J satisfing the following inequality outside a compact
set:

j ^ sectional curvature (x) ^

with A > 4.

LEMMA 3 . 1 . Suppose n ^ 3. Let x\,X2 G M with dist(zi,X2) ^ 1 and let 0
be the angle of the geodesic rays from O to x\ and from O to X2 • Then

Q
(3.7) 6 < 2a.a ( when p(xj) is large enough)

(l+p(x)) '

where C > 0 is a constant.

PROOF: Without loss of generality, we assume that (3.1) or (3.6) holds outside a
geodesic ball Bo(Ro) C M for some Ro < oo. Since xi,z2 EM with dist(xi,X2) ^ 1,
we see that, when p(xi) is sufficiently large, x\,x-i are located outside the ball Bo(Ro) •
Let y be the intersection point of the ray Ox\ and dBo(Ro)- Obviously, we have

(3.8) 0 -

for M is a Cartan-Hadamard manifold.
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We choose two points x\,x2 £ M such that p(x\) = dist^(y,xi),p(x2) =

distjw (y, X2) and distjjj (£1, £2) = distM (11,2:2) • From the geometric structure of

M, we see that

~ ~ C N

Zz2Ozi < 2 + a ( when ^(zx) » 1)

for some constant C > 0. By using Toponogov's triangle comparison theorem, we have

, C
(3.9) Zx2yXl

(Here we have used (3.6).) Combining (3.8) with (3.9), we get the desired inequality:

Q

for some constant C > 0. It is easy to see that we can restrict a < — . This
ito + 1

proves the lemma. D

Now, we are in a position to prove Theorems 1 and 2.

PROOF OF THEOREM 1: We fix a point 0 e M as the origin in M and identify
5n~1(oo) with the collection of the geodesic rays emanating from 0, that is, 5'3~1(1) C
ToM. It is well known that any continuous functions on 5n~1(oo) can be uniformly
approximated by a sequence of Lipschitz functions on 5n-1(oo) = 53~1(1). By using
the Harnack Principle and maximum principle mentioned in Section 2, we see that if a
harmonic sequence {v,k G C°°(M) D C°(M)} converges uniformly on 5n~1(oo), then
it converges uniformly on M to a harmonic function in the class C°°(M) ("I C° (M) .
Therefore, without loss of generality, we may assume that the boundary data <p is a
Lipschitz function on 5n - 1(oo).

Since M is a Cartan-Hadamard manifold and expo : ToM a Rn —* M is a
diffeomorphism, we let {(p, 8); 6 6 55- 1( l)} be the normalised geodesic coordinates at
O 6 M and if = <p(8), 9 6 SQ~1(1) = 5n-1(oo). Extend <p radially along the rays
emanating from O, that is,

<p{p,6)=y{9), Vp>0.

The extended function is still denoted by ip, and is a bounded function on M \ {0}.

As in [2], we introduce the notation osc = sup \<p(y) — <f{x)\ which is the
B*M »6Bx(l)

amplitude of <p on the geodesic ball Bx(l) in M.
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The proof is divided into three steps:

S tep 1: osc <p — O{ 1 + p(x)~^2+a') when p(x) » 1, where p(x) is the distance
Bx(i) \ /

function from the origin O to x.

In fact, since <p is Lipschitz, that is, Vy £ Bx(l)

\f(y) - v{*)\ = \<p(8y) - <PV*)\ ^c\8v-ex\

where 6y and 6X denote the sphere coordinates of y and x respectively, \6y — 9X\ is

the angle between the rays Ox and Oy at the origin and C is a constant. And from

lemma 3.1, we have

for some a > 0. Therefore, we get

C
(3.10) osc ip \2+a"

S tep 2: There is a C2 function (p on M with boundary data <p on 5'n~1(oo) and

such that

In fact, we define the average function ip of <p, with respect to a function x , by

- = SMx(pl{y))v{y)dy
V JMx(pl(y))dy '

where x '• R ~* -R ls a ^ 2 function satisfying supx C [—1,1] and % = 1 on [0, | ] ,

0 ^ X ^ 1- Obviously, ip is a C2 function on M . Under the assumption — 62 ^

sectional curvature of M ^ 0, with the same argument as in [2], we can get

(3.11) \ip{x) - tp(x)\ ^ osc ip,
Bill;

(3.12) \A<p{x)\ £ C O8£V

where C > 0 is a constant. Therefore, Step 1 leads to

It is easy to see that the ip is the desired function.
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S t e p 3: Consider a C°° function g(x) = j on M \ {0} (S > 0) . It is
( l + p(z))

easy to see that

2+S(l+p(X)f+S (1+P(x))

As in Lemma 3.1, we assume that (3.4) or (3.6) holds outside a geodesic ball B0(Ro)
for some Ro < +oo. Since M is an n dimensional Cartan-Hadamard manifold, from
the Hessian comparison theorem, we know that

5* ̂ f^ p(s) > 0
p(z)

on M \ {O}. Thus, from (3.13), we have

6(1 + 6) (n-
A<7

n - l
- n - ] < 0 (whenp(z) > 0).

Now, choose a fixed 6 < a such that (3.14) is valid. Since Aip - O ((1+ p(a;))"(2+O! ))

from Step 2, when the constant C is sufficient large, we get

A(Cg) ^ -

that is, A(^ + C5) < 0 and A(lp - Cg) > 0.

So ip + Cg is a superharmonic function on .M with boundary value <p on 5rn~1(oo)
and ip — Cg is a subharmonic function on M with boundary value (p. The functions
<p + Cg and ip — Cg may be used as barrier functions to solve the Dirichlet problem
on 5 n - 1 ( o o ) via the Perron method. Therefore, there is unique harmonic function
u G C°°(M) 0 C° (M) satisfing ip-Cg^u^lp + Cg and achieving the desired
boundary value <p oh 5'n~1(oo). The latter assertion is from the following fact:

|u - <p\ (z) ^ \u - ip + Ip - <p\ (x)

—> 0 ( a s p(x) —> 00) .

This completes the proof of the Theorem 1. D
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PROOF OF THEOREM 2: Most of the details are the same as in the proof of The-
orem 1. By Remark 3.1 the difference lies in Step 3 of the proof of Theorem 1. We

consider the C°° function g(x) = j on M \ {0} (6 > 0).

As in Lemma 3.1, we assume that (3.4) or (3.6) holds outside a geodesic ball B0(Ro)
for some Ro < +oo Since M is an 2 dimensional Cartan-Hadamard manifold, from
the Hessian comparison theorem, we know that

1 , , „

p{x)>Ro

on M \ {0}. Thus from (3.13) we have

6(1 + 6) 26

( 3 1 5 )

^+S\—^A+6)<° (when P(x)Pi')

when 6 < — is small. Now, choose a fixed 6 ^ a such that (3.15) is valid. Since
Ro +1

Aip = O((l(l + p(x))~^2+a^j from Step 2, when the constant C is sufficiently large, we

get
A(Cg) ^ - \

that is, A ( ^ + Cg) ^ 0 and A(ip — Cg) ^ 0. By the same method as in the proof of
Theorem 1 we can see that the conclusion of Theorem 2 will hold. u

REMARK 3.3. It is easy to see that the result due to Anderson and Sullivan (see [1] and
[8]) is a special case of our Main Theorem. From Remark 3.1, we also see that there
are lots of Cartan-Hadamard manifolds satisfying the conditions in our theorem but
not satisfying the negative sectional curvature pinching conditions. Based on this Main
Theorem, we can study the harmonic maps that map 5n~1(oo) of such a manifold into
a bounded convex ball of another manifold. We shall discuss it in another paper.

The solvability of the Dirichlet problem leads naturally to the harmonic measure
and the Poisson kernel as Anderson and Schoen studied in [2]. Similarly, we have:

PROPOSITION 3 . 2 . Let M be as in the Main Theorem. Then, for almost ail
Q G 5n~1(oo) , the Poisson kernel K(x,Q) (see [2]) at infinity exists.
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4. FURTHER DISCUSSIONS

As pointed out in Remark 1.1 in Section 1, we wonder if the restriction A > 4
(n ^ 3) or A > 2 (n = 2) is necessary to guarantee the existence of bounded harmonic
functions on the manifold. If M is a 2-dimensional simply connected complete Rieman-

nian manifold with Gaussian curvature K(x) ^ and rotational symmetry
1 + r (X)

about a point, then we claim that M has enough bounded harmonic functions. In
fact this is a direct corollary of a theorem obtained by Milnor in [7]. For omitting the
restriction on A, we have the following interesting results which are straightforward
from Theorem 1 and 2.

THEOREM 4 . 1 . Let M be a Cartan-Hadamard manifold of dimension n (n ^
2). Suppbie that M satisfies for every x £ M outside a compact set an inequality:

—b2 sectional curvature (x) Sj —;—r-
P2-C(x)

where b,A, and e are positive constants. Then M admits a wealth of bounded harmonic
functions. More precisely, the Dirichlet problem of the Laplacian of M at infinity can
be solved for any continuous boundary data on 5n~1(oo).

PROOF: We only need to check that M satisfies for large p(x)

—b2 ^ sectional curvature at x ^ TT~\

for some fixed constant B > 4. In fact for

A _ Apc(x)
p2-°(x) ~ p^xj

when p{x) is sufficiently large we can obtain

Ap'{x) > B>4

for some fixed constant B. By applying Theorems 1 and 2 in Section 1 we prove the
theorem. D

COROLLARY 4 . 1 . If M satisfies the following inequality outside a compact set:

Q
—b2 ^ sectional curvature at x ^ -i—r

p{x)

for some positive constant C then M admits enough bounded harmonic functions.
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