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1. This paper presents two results. They are: 

THEOREM 1. Let G be a doubly transitive permutation group of degree nq + 1 
where a is a prime and n < g. If G is neither alternating nor symmetric, then G 
has Sylow q-subgroup of order only q. 

RESULT 2. There is no unsolvable transitive permutation group of degree 
p = 29, 53, 149, 173, 269, 293, or 317 properly contained in the alternating 
group of degree p. 

Result 2 was demonstrated by a computation on the Illiac II computer at 
the University of Illinois. 

2. Proof of Theorem 1. Let Gi and G2 be largest subgroups of G fixing 
respectively one and two of the letters. G2 is of index (nq + \)nq in G, so that 
G is of order divisible by q. A Sylow g-subgroup Q of G therefore does not fix 
two letters. Since the index of Gi in G is relatively prime to g, Q fixes one letter; 
let 0 be the letter fixed by Q. Since G is of degree less than g2, Q is a subdirect 
product of n g-cycles. 

Assume now that the conclusion of the theorem is false. Then Q has at 
least two independent generators in the direct product of the n g-cycles. There 
must then be in Q a product of powers of two independent generators which 
is not the identity and fixes all letters of at least one of the g-cycles. Let <2i 
be the maximal subgroup of Q fixing the letters of a given g-cycle associated 
with Q. Choose another of these g-cycles, whose letters are not fixed by all 
the elements of Qi. Let Q2 be the maximal subgroup of Q fixing the letters of 
this latter g-cycle; Q2 is of index q in Q, and hence is not merely the identity. 
Both Qi and Q2 are maximal subgroups of Q; hence their union is Q. I t follows 
that none of the nq letters displaced by Q is fixed by all the elements of both 
Qi and Q2. Let x and y be letters displaced by Q and fixed by all elements of 
Qi and Q2, respectively; let H± and H2 be the largest subgroups of G fixing 0 
and x, 0 and y, respectively. Then Q± is a Sylow g-subgroup of Hi and Q2 is 
a Sylow g-subgroup of H2. Let N be the normalizer in G of Qi; since G is 
doubly transitive, N acts doubly transitively on the set of all letters fixed by 
<2i (2, Theorem 5.7.1). 

Let A (JSf) be the doubly transitive component of N permuting all those 
letters fixed by Q\ (''component" is used as a substitute for the "transitive 
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constituent" used by such authors as Burnside; cf. (5)). A (N) is a homomor-
phic image of N\ and hence a Sylow subgroup of the former is a homomorphic 
image of a Sylow subgroup of the latter. Since A (N) is doubly transitive of 
degree congruent to 1 (mod g), A (N) is of order divisible by g, and accordingly 
has a Sylow g-subgroup fixing some letter. Since A (N) is transitive, A (N) has 
a Sylow g-subgroup fixing any letter chosen in advance. Let Q* be the (group 
theoretic) union of all Sylow g-subgroups of N. Let A be the component (or 
perhaps, for the moment, subdirect product of more than one component) of 
Q* permuting those letters fixed by Q\. Each Sylow g-subgroup of A (TV) is a 
Sylow g-subgroup of A by the construction of Q*. Thus A has more than one 
Sylow g-subgroup. It follows that A is not a g-group, so that A has an element 
of order prime to q. A(N), being doubly transitive, is primitive. A is a non-
trivial normal subgroup of A (N) so that A must be transitive. This ensures 
in turn (by taking a conjugate of our initial choice if necessary) that A has 
an element 5 of order prime to q displacing 0. 

Let B(Q*) be the homomorphic image of Q* permuting the set of letters 
displaced by Q\. Regarded as a permutation group on its displaced letters, Ci 
is a subgroup of B ((?*). Since N is the normalizer in G of Qh and Q* is contained 
in N, we have Q\ normal in Q* and hence in B(Q*). By the inequality on the 
degree of G, B(Q*) can have no element of order g2; hence Qi is a subdirect 
product of m < n < q g-cycles. Since each letter permuted by B(Q*) is 
displaced by Qi, each of these g-cycles appears non-trivially in some element 
of <2i. Thus conjugation by any element of B (Q*) must transform each of these 
g-cycles into a power either of itself or of another of the g-cycles. An element 
co of order g of B(Q*) cannot transform m < q sets non-trivially among them­
selves, since q is prime; thus co must transform each g-cycle into a power of 
itself. Furthermore a g-cycle cannot be transformed into any of its powers 
other than itself by an element of order g. Thus co must transform each of the 
m g-cycles into itself, and in turn permute with each generator of Q\. Hence 
co must be a product of powers of the g-cycles forming Qi. But B(Q*) is gener­
ated by Qi and elements of order q such as co and hence is an abelian g-group. 

Let S' be a pre-image of S under the homomorphism taking Q* onto A. 
Then, since as noted above, the component B(Q*) of Q* on the letters not 
permuted by A is abelian, the element a = (S')q has the following two 
properties: 

(i) a displaces 0; 
(ii) a fixes all letters displaced by Q±. 

Carrying out the same argument with Q2 in the role of Qi, it is established 
that G has an element fi such that /3 displaces 0 and 0 fixes all letters displaced 
by Q2. Since Ci and Q2 have no fixed letter in common other than 0, a and /3 
displace only 0 in common. Each of a and 0 has a unique cycle displacing 0; 
call these (Oai. . . as) and (0#i. . . bt) respectively, where the sets of a1 s and 
b's are disjoint. Any other pair of cycles of a and /3, respectively, displace no 
common letter, and hence cancel out in the commutator afiorlfi~l. Thus 
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= (Oaia2. . . a«_ia , ) (06i b2. . . bt-i bt)(Qasas-i. . . a2 ax) (06^ &^_i. . . b2bx), 
One checks t h a t 0 —> bt —» a s —> 0. B u t any a*, 1 < i < 5, and any bj, 
1 < j < /, is fixed by the commutator . T h u s denial of the conclusion has led 
to construction of a 3-cycle. G, being primitive, therefore contains the alter­
nat ing group (1 , p. 207). T h e theorem is proved. 

3 . Let p = 4q + 1, p and q primes, q > 3. We wish to decide whether there 
exists an unsolvable transitive permutat ion group G of degree p other than 
Ap and Sp (the al ternat ing and symmetric groups of degree p). Should such a 
group exist containing odd permutat ions, then this G has an unsolvable 
subgroup of index two consisting of the even permutat ions of G. For this reason 
there is no essential loss of generality in restricting G to be a subgroup of Ap. 

A transit ive group of degree p is of order divisible by p, and in turn has 
an element of order p. This element must be a cycle on all p letters. Since all 
the cycles of degree p are conjugate in Sp, one may select one of these as a 
generator of G. I t is convenient to consider the p letters permuted by G as 
residue classes (mod p). T h e simple form for a generator a of order p of G is 
then x —* x + 1 (mod p). 

Sp has Sylow ^-subgroup of order only p (p prime) ; hence a must generate 
a Sylow ^-subgroup P of G. We now use an impor tan t theorem of Burnside 
(1 , p. 327): If a finite group G has a Sylow ^-subgroup in the centre of its 
normalizer in G, then G has commuta tor subgroup of order prime to p. Should 
the hypothesis of Burnside's theorem be satisfied for the Sylow ^-subgroup of 
G, the commuta tor subgroup of G would be intransit ive (for a transit ive group 
of degree p is of order divisible by p). However, a transit ive group of prime 
degree is primitive and a primitive group can have no non-trivial intransi t ive 
normal subgroup. T h u s one would conclude in this si tuation t h a t G is abelian 
(in fact, cyclic of order p) and in turn solvable. Since P is abelian, the only 
al ternat ive is t ha t G have an element b in the normalizer, b u t not in the 
centralizer of this Sylow subgroup. 

If H is a group of prime degree p with a normal subgroup of order p, then 
up to conjugacy in Sp of residue classes (mod p)1 H is generated by a and b , 
which are respectively x —> x + 1 (mod p) and x —> tx (mod p)} t ^ 0 or 1 
(mod p). T h e order of H is then np, where n is a divisor of p — 1 and is the 
order of b . For G of degree p = 4g + 1, n is a divisor of 4g. Using the restriction 
t h a t G be contained in Ap, it may be assumed t ha t n is a divisor of 2q; for the 
other elements b are odd permutat ions. N . I to (3) has shown by deep methods 
t ha t a transit ive permutat ion group of prime degree p, a Sylow ^-subgroup 
of which has normalizer of order 2p, is solvable unless p is a F e r m â t prime. 
N o integer of the form 4g + 1, q prime, is a F e r m â t prime. T h u s we conclude 
t ha t unsolvable G of the type under discussion mus t have normalizer of its 
Sylow ^-subgroup divisible by pq. G must include the element b : x —> r4x 
(mod p) where r is a primitive root of p. T h e residue class 0 is fixed by b , and 
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the other residue classes are permuted in cycles of length q\ one of these cycles 
is transitive on the quartic residues of p, and the others on cosets thereof in 
the multiplicative group of the field of order p. 

An unsolvable transitive permutation group of prime degree is doubly 
transitive (1). Theorem 1 thus applies immediately when q > 3; b generates 
a Sylow g-subgroup Q of G. We now apply the theorem of Burnside to Q. If Q 
is in the centre of its normalizer, then the commutator subgroup of G must 
be solvable and, in turn, G must be solvable. Since Q is cyclic, G must have 
an element c such that c does not commute with b but transforms b into a 
power of itself. As pointed out above, it is superfluous to consider other than 
even permutations for choices of c. 

A Sylow ^-subgroup of G has no such element c in its normalizer. Thus a 
and c must generate a group with more than one Sylow ^-subgroup. A solvable 
group has a normal elementary abelian subgroup. The only possibility for a 
normal abelian subgroup of a primitive group of degree p is that this subgroup 
be of order p. However, any normal subgroup of {a, c} of order divisible by p 
contains all Sylow ^-subgroups, so it cannot be abelian. Thus {a, c} is un­
solvable, and in fact must contain b by the arguments above. We let G hence­
forth be (a, c}. While it is plausible than an unsolvable group of the sort under 
discussion might not be generated by only two such permutations a and C, 
any minimal example for a given degree must have this property. The search 
process is made more efficient by restricting attention to candidates for 
minimal examples of groups of interest. Further, in restricting the search to 
potential minimal extensions of {a, b} we may assume that c is of prime order. 

Designate the four sets of q residue classes each permuted transitively by 
the cycles of b as W, X, F, Z, including respectively r, r2, r3, and r4 (r a primi­
tive root of p). Each of the four sets is mapped by c either onto itself or onto 
another one of the sets. There is a basic dichotomy in the form of the permu­
tation c, according as c maps each of the sets W, X, Y, and Z onto itself or 
induces a permutation of these sets. In the first case, c fixes exactly one symbol 
in each set, and transforms each cycle of b into its tth power where c_ 1bc = bl. 
Specifying t and the ordered quadruple (w, x, y, z) (mod q) of symbols fixed 
by c in the respective cycles of b determines c. (In our notation for ordered 
quadruples, an i in position j denotes the fact that rAi+j is the fixed symbol 
in the jth cycle, j = 1, 2, 3, 4.) 

When c is specified by t and (w, x, y, z) (mod q), {a, c} is determined by the 
order of c and the quadruple. This is the case since two elements c of equal 
order and the same quadruple of fixed symbols generate the same group with 
b. Thus, for a given (w, x, y, z) (mod q) and a given prime order of c, one 
need consider only one c and equivalently one exponent t. Transforming by the 
permutation g: x —» rx (mod p) reduces the number of c to consider, for 
g - 1 ag = a r so that {a, c} and {a, g -1cg} a r e conjugate in Sv. Transforming c 
by g4 replaces (w,x,y,z) by (w + 1, x + 1, y + 1, z + 1). Repeated trans­
formations of c by g4 permits normalization of c to have zero in a chosen one 
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of the positions. Transformation of c by g sends (w, x, y, z) into (z + 1, w, x, y). 
Thus, the fixed set case for c requires consideration of only one representative 
of each equivalence class under the above transformations for each prime 
order of c dividing q — 1. 

In case C permutes non-trivially the sets W, X, Y, Z, c must have order 2 
or 3. Let c be of order 3 with appropriate exponent t specified. Transforming 
C by 1, g, g2, g3 allows one the liberty of specifying which set, say Z, is fixed. 
Transforming further by powers of g4 permits further normalization of c in that 
it may be assumed that c fixes the symbol 0 in set Z. 

There are two essentially distinct classes of cases, depending on whether c 
permutes the sets (W,X, Y)(Z) or (W, Y,X)(Z), the "forward" or "back­
ward" cases. In the "forward" case, c fixes the initial symbol in the cycle of 
b on Z and maps the cycle onto its tth power. The cycle on W is mapped onto 
the tth power of the cycle on X, likewise for X and F, Y and W. For the 
"backward" case, the roles of X and Y are reversed. For either of these, c is 
fully determined (assuming symbol 0 is fixed in Z) by specifying the map 
under c of symbol 0 in set W, and the map in turn of that symbol. This requires 
two parameters (mod q) for each of the two types of permutations c. 

If c is of order 2 and permutes the sets W, X> Y, Z non-trivially, then C 
either transposes all four sets in two pairs, or transposes two sets and fixes two. 
In the latter case, however, c would consist of q + (q — 1) transpositions and 
hence not be in Av. For c transposing the four sets in two pairs, there are two 
essentially distinct cases. The first of these is for c mapping {W, X)(Y\ Z), 
the pairs of sets "adjacent" in the 4-cycle generated by r. The other alternative 
is (W, Y)(XfZ) with pairs "opposite." The other pattern of two pairs of 
transpositions on the sets, (W, Z){Y, X), is seen to be equivalent under 
conjugation by g to (W, X)(Y, Z). In each case, c is fully determined by 
specifying the image under c of the symbol 0 in the set W. This requires just 
one parameter for each type of permutation c. 

Let 7T be an element of G. Suppose IT is a permutation consisting of an 
r-cycle, r prime, and a non-empty collection of cycles of length relatively prime 
to r. If m is the product of the lengths of the cycles of length prime to r, then 
7rm is an r-cycle contained in G. Since G is a subgroup of AP, r > 3, and G is 
(p — r + l)-ply transitive (1, p. 207). But then G contains Av (4). Hence, if 
| a, c} contains a permutation of the type described above, it must be Ap. 
Since the principal theorem above is due to Netto, we shall say that a group 
containing such an element w satisfies Netto's criterion. 

4. The computer program prepared to verify Result 2 sequentially constructs 
all the necessary elements c described above and then examines permutations 
of the form ca J to determine whether any of these permutations satisfy Netto's 
criterion. The program and the various checks which were performed to 
attempt to ensure its correctness will be explained in some detail. 

In terms of complexity, the major subroutine of the program was the check 
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on the Netto criterion. Because most of the actual computation time was 
spent in the subroutine, an attempt was made to make it relatively efficient. 
The subroutine was presented the permutation w in the form of p words in 
locations C to C + p — 1 of the form (C + i, C + 7r(i), 0, 0) (Illiac II is a 
machine which employs quarter words for its fixed point computations and so 
this format was rather natural.) The basic loop consisted of starting with a 
word (C + i, C -{- ir(i), 0, 0) marking it with a —1 in the fourth quarter 
word, adding one to the cycle length count, and checking to see if the word in 
location C + ir(i) is marked (in which case the cycle is complete). We are 
indebted to Professor C. W. Gear for suggesting a method of utilizing the six 
words of extra high-speed memory of Illiac II to avoid memory references to 
obtain instructions and greatly increase the efficiency of this loop. 

In a special tabular region P prepared as part of the program, the odd 
numbers less than 800 are each assigned a quarter word, the number 
n = Si + 2j + 1 (0 < j < 3) is assigned the (J + l )s t quarter word of word 
i of P. If n is prime, its assigned word contains its primitive root (any positive 
entry would do, but the primitive root was used in another subroutine), and 
if it is composite it is assigned the negative number (in the 13 bit two's comple­
ment quarter word arithmetic of Illiac II) 

212 + £ Tai+1 

where, for 1 < i < 11, at = 1 if pt divides n (where p\ = 3) and au = 1 if 
some prime larger than £n(37) divides n. This enables us to find all the odd 
prime divisors of any number less than 800 by first shifting to eliminate 
powers of 2 and then picking off the small divisors without performing any 
division. For prime divisors exceeding 37, the situation is somewhat more 
complicated, but their infrequent occurrence makes it feasible to treat them 
somewhat less efficiently. 

A region T is used to keep track of the prime occurrences in cycle lengths. 
The positions in T correspond to those in P and for each cycle of TT if the 
length is prime, one is added to the corresponding quarter word in T\ while 
if a prime r occurs as a factor in the length of cycle of T, two is added to the 
corresponding quarter word in T. After all cycles of ir have been traced, T is 
examined for any entries of one corresponding to odd primes smaller than p 
and if any such occurs, the group under consideration is eliminated. 

Since the effective operation of this subroutine is clearly central to the 
program, and since it would be difficult to check it fully in the main program, 
it was checked by a routine which gave it various permutations IT and made 
sure not only that they were properly accepted or rejected, but also that the 
region T had the appropriate entries. We feel that this subroutine is correct. 

The other subroutine of interest is the routine which creates permutations 
C. First, we create the cycles of b. For p = 4g + 1, p, q, prime p > 16, 2 must 
have order q, 2q, or 4g and since 2 is not a quadratic residue of p, 2 is a primitive 
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root of p. Hence the construction of b was straightforward. Since p = 4g + 1, 
p, q prime, q > 2, implies q = 1 (mod 6), p = 5 (mod 24), in particular, 2 and 
3 divide q — 1; hence for every degree considered, elements c of orders 2 and 
3 appeared. For some of these degrees larger prime orders for c also appeared. 
We shall consider in detail the construction of c fixing the sets W, X, F, Z. 
First, we note that by the normalization procedure we may consider quadruples 
(w, x, y, 0) (mod q). Furthermore (w, x, y, 0) is equivalent to (1, w, x, y), 
which in turn is equivalent to (1 — y, w — y, x — y, 0), which will be called 
a shift of (w, x, y, 0). Hence quadruples (w, x, y, 0) are generated in lexi­
cographic order and a quadruple is discarded if any of its three shifts lexico­
graphically precedes it. (The lexicographic discard section of each routine was 
isolated and checked with some care.) When a quadruple is accepted, using a 
table of powers of the least primitive root of q and indices (mod q), the 
permutation c is constructed. 

The construction of ca is quite trivial since if the image of i under c is ir(i), 
the image of i under ca is ir(i) + 1 (mod p). 

Although p = 13 does not satisfy all of the requirements on p we have 
given, the program was written to process degree 13 (not requiring a c of 
order 3). For 13, two outputs, one of which was a pair of generators for 
LF(3, 3) and the other of which was a spurious c which could not be eliminated 
by the Netto criterion on ca*, i = 1, . . . , 12, were obtained. For all other 
degrees considered, all groups G = {a, c} were found to be alternating by the 
Netto criterion. 

For a group with three distinct divisors of q, the number of permutations 
c to be considered is roughly qz, since each divisor gives at least q choices of c 
due to fixed W, X, Y, Z. Hence, for degree 317, q = 79 and about 500,000 
groups had to be considered. If, as seems likely, almost all groups were 
eliminated on the first permutation w = ca of length 317, about 150,000,000 
symbols had to be traced through their respective cycles. The time required 
for the computation for p = 317 exceeded four hours. The total time for com­
putation for p = 13, 29, 53, 149, 269, and 293 was about five hours. Since the 
complexity increases as the fourth power of the degree, it did not seem reason­
able to try larger values of p. The program was run twice to lower the possibility 
that any possible machine malfunction affected the result. 
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