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Natural oscillations of sessile drops with a free or pinned contact line in different gravity
environments are studied based on a linear inviscid irrotational theory. The inviscid
Navier—Stokes equations and boundary conditions are reduced to a functional eigenvalue
problem by the normal-mode decomposition. We develop a boundary element method
model to numerically solve the eigenvalue problem for predicting the natural frequencies.
Emphasis is placed on the frequency shifts of modes due to gravity for a wide range of
contact angles & and Bond numbers Bo. Three types of a—Bo diagrams reflecting how
gravity shifts the frequency are identified. Specifically, the frequency of zonal modes shifts
downwards (upwards) when « is smaller (larger) than a critical value, while the frequencies
of most sectoral modes are shifted downwards regardless of «. As a result, gravity can
transform the lowest mode from a zonal mode to a sectoral mode. The spectral degeneracy
of hemispherical drops inherited from the Rayleigh—-Lamb spectrum is also broken by
gravity. However, we discover that gravity has no effect on the mode associated with the
horizontal motion of the centre of mass, whose frequency is always zero regardless of «
and Bo. This implies that the ‘walking’ drop instability reported in previous literature does
not exist.
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1. Introduction

A variety of interesting dynamic behaviours of a drop in partial contact with a solid wall,
subjected to different mechanical excitations, may occur, e.g. drop atomization (James
et al. 2003), formation of sub-harmonic interfacial wave patterns (Vukasinovic, Smith &
Glezer 2007), triple modes in liquid puddles (Noblin, Buguin & Brochard-Wyart 2005) and
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controllable motion of sessile drops (Noblin, Kofman & Celestini 2009b; Ding et al. 2018).
When the forcing frequency matches one of the natural frequencies of the constrained
drop, the resonance takes place. The system at resonance allows for the occurrence of the
aforementioned behaviours with very little energy input. Therefore, the natural frequencies
of drops are key features of the vibration phenomena, and their accurate prediction is
important to our basic understanding of drop dynamics.

The earliest study of drop vibrations can date back to the pioneering work of Rayleigh
(1879). In the absence of external forces, a free drop held by surface tension assumes
a spherical equilibrium shape. Owing to its simple geometry, the natural frequencies of
a spherical drop can be analytically derived in the linear inviscid limit (Rayleigh 1879;
Lamb 1932). The discrete spectrum of natural frequencies wiy, ) is

wfk’l]:%k(k—l)(k-i-Z), k1=0,1,..., I<k (1.1)

where the subscripts k£ and [ are the polar and azimuthal wavenumbers, respectively, o
is the surface tension, p is the drop density and R is the drop radius. According to the
spherical harmonic classification [k, [], mode shapes are categorized as zonal ([ = 0)
for axisymmetric modes, sectoral for star-shaped modes (k =/ > 0) and tesseral for all
the other modes (k > [ > 0). The Rayleigh—-Lamb (RL) spectrum (1.1) is accurate for
predicting the frequencies of small-amplitude free oscillations of spherical drops with
low viscosity, which has been verified experimentally using immiscible drops by Trinh &
Wang (1982) and using free drops in microgravity by Wang, Anilkumar & Lee (1996).

Further theoretical studies of the free drop problem have examined the effects
of viscosity (Lamb 1932; Miller & Scriven 1968; Prosperetti 1980), finite-amplitude
oscillations (Tsamopoulos & Brown 1983; Azuma & Yoshihara 1999) and external forces
(such as electrostatic Feng & Beard (1990) and isorotational fields Busse 1984) on natural
frequencies. It was found that viscous and nonlinear oscillations shift the frequency
downwards from the RL spectrum (Becker, Hiller & Kowalewski 1994). By contrast, the
frequency shifts due to external forces are far more complex, as the base state of the drop
is distorted by external forces. For example, the centrifugal force shifts the frequencies
of axisymmetric modes either upwards or downwards, depending on whether the steady
distortion leads to an oblate or prolate spheroid, respectively (Busse 1984). The above
results were experimentally verified by Annamalai, Trinh & Wang (1985).

Unlike the free drop problem, there are generally no analytical expressions for the
natural frequencies of sessile drops. For the small-amplitude oscillations, many theoretical
models have been developed to predict the natural frequencies based on the normal-mode
decomposition (Strani & Sabetta 1984, 1988; Gafdn & Barrero 1990; Gafdn 1991;
Lyubimov, Lyubimova & Shklyaev 2004, 2006; Bostwick & Steen 2014; Sharma &
Wilson 2021; Ding & Bostwick 2022b). These models are to solve a functional eigenvalue
problem governing the linear dynamics of sessile drops (Myshkis et al. 1987, p. 281).
The eigenvalues are the natural frequencies of vibration, and the eigenvectors are the
shapes of these vibrational modes. The eigenvalue problem is generally difficult to solve
because of the complexity of the drop configuration (including solid walls and contact
lines). Strani & Sabetta (1984) used the Green’s function method to solve the problem for
the axisymmetric oscillations of drops supported by a spherical bowl-shaped substrate. It
was found that the presence of the substrate raises the natural frequencies and induces an
additional low-frequency vibration mode. Later, they extended their inviscid model to the
viscous case (Strani & Sabetta 1988). Gafidn & Barrero (1990) used an analytical spectral
method to predict the natural frequencies of the axisymmetric and non-axisymmetric
modes for drops on a plane. This method was extended to drops of more general shape
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(Ganan 1991). In these studies, the contact line (CL) was considered to be pinned to
model the effect of a static contact-angle hysteresis on the drops with a small oscillation
amplitude.

Recent theoretical studies have focused on the role of the CL condition in modifying
the frequency spectrum. There are three types of CLs: free, pinned and dynamic. The
free and pinned CL conditions are to keep the contact angle and CL fixed, respectively.
The dynamic CL condition (where the contact-angle deviation A« varies smoothly with
the CL speed ucr) yields Ao = Aucy with a phenomenological constant A (called
the mobility parameter), referred to as the Hocking condition first introduced by Davis
(1980). Apparently, the free and pinned CL conditions can be recovered from the Hocking
condition as limiting cases for A = 0 and A — oo, respectively. Lyubimov et al. (2004,
2006) considered the Hocking condition for the oscillations of a hemispherical drop and
examined the damping of CL dissipation. Then, Bostwick & Steen (2014) extended the
results of hemispherical drops to spherical-cap base states by using a Green’s function
method. It was found that the free and pinned CL conditions lead to the lower and
upper bounds on natural frequencies, respectively, and the Hocking condition always
leads to a CL dissipation (except for the limiting cases A =0 and A — 00). Sharma
& Wilson (2021) presented a fully analytical solution based on a toroidal analysis for the
spherical-cap drop with a pinned CL. Recently, Ding & Bostwick (2022b) investigated
the frequency spectrum of sessile drops under pressure constraints. The above theoretical
results have compared favourably to experiments (Chang et al. 2013, 2015) and numerical
simulations (Basaran & DePaoli 1994; Olgac, Izbassarov & Muradoglu 2013; Sakakeeny
& Ling 2020, 2021; Sakakeeny et al. 2021).

The theoretical models described above are generally restricted to spherical-cap drops.
To overcome this limitation, several simple models for frequency prediction have been
proposed based on modifications to the RL spectrum (1.1) (Yoshiyasu, Matsuda & Takaki
1996; Perez et al. 1999), or on analogies to one-dimensional waves (Noblin, Buguin
& Brochard-Wyart 2004) as well as a harmonic oscillator (Celestini & Kofman 2006;
Sakakeeny & Ling 2020, 2021). However, the simple models cannot give mode shapes
and are inaccurate for some drop experiments (Vukasinovic et al. 2007; Chang et al. 2013;
Yao et al. 2017). In view of this, we turn our attention to numerical methods to solve
the eigenvalue problem governing the linear dynamics of drops, so that we can deal with
small-amplitude oscillations of inviscid drops of arbitrary shape (e.g. liquid bridges and
flattened sessile drops). Because the governing equation is linear, the boundary element
method (BEM) is suitable for this problem, which has been widely used in the eigenvalue
problem of liquid sloshing (Ebrahimian, Noorian & Haddadpour 2013, 2015). Indeed, the
liquid sloshing in a container and the oscillations of sessile drops are mathematically the
same problem, except for their different boundary shapes. So far, the BEM has only been
applied to drop oscillations with pinned CLs in a microgravity environment (Siekmann &
Schilling 1989). The BEM can be further exploited to investigate oscillations of drops with
arbitrary shapes.

For the special case of hemispherical drops with free CLs (¢ = 90°, A = 0, called the
free semi-drop), the frequency spectrum satisfies the RL spectrum (1.1) with k£ 4 / being
even. The zonal, sectoral and tesseral classification of modes described earlier still holds
for sessile drops. From (1.1), Lyubimov et al. (2004) noted the spectral degeneracy of the
free semi-drop: all modes with the same k but different / have the same frequency. This
degeneracy can be broken by varying either the contact angle o (Bostwick & Steen 2014)
or the mobility parameter A (Lyubimov ef al. 2006). That is, the same frequencies of the
degenerate modes will become different as either the contact angle changes from o = 90°
or the mobility parameter changes from A = 0. Another noteworthy feature of the free
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semi-drop is that the mode [1, 1] (referred to as the Noether mode by Bostwick & Steen
2014) is a zero frequency mode corresponding to horizontal motion of the drop’s centre of
mass. However, the Noether mode tends to be ignored due to its zero frequency. Bostwick
& Steen (2014) reported that the Noether mode can have a non-zero frequency by varying
o or A. For instance, the CL pinning (A — o0) increases the frequency squared /1[21’1](=

w?pR3 /o) from zero to about 4.92. When varying o, Bostwick & Steen (2014) found
that /1[21 1) > 0 for @ < 90° and /1[21 1) < 0 for & > 90°. The latter finding indicates that

a super-hemispherical drop (o« > 90°) with a free CL exhibits an instability (12 < 0) that
correlates with a horizontal centre-of-mass motion. This instability suggests a spontaneous
horizontal walking of drops in practice and is therefore referred to as the ‘walking’ drop
instability by Bostwick & Steen (2014). In addition, the lowest mode (with the smallest
non-zero frequency) is also important in practice, as this mode is usually the first to be
excited. According to the spectral ordering, the lowest mode of spherical-cap drops can be
[1, 1], [2, O] or [2, 2] depending on the CL condition and the contact angle (Bostwick &
Steen 2014). All of these results are closely related to the frequency spectrum.

Due to the limitations of the theoretical models on drop shape, the effects of gravity
on the above results are not fully understood, particularly how the frequency spectrum
is modified by gravity. Gravity not only flattens the sessile drop, but also introduces
an additional restoring force to make the drop ‘stiffer’ in analogy to a harmonic
oscillator (Perez et al. 1999). Recent numerical simulations showed that the frequencies
of the first few axisymmetric modes increase with gravity in their parameter domain
(Sakakeeny & Ling 2020, 2021). A similar downward frequency shift due to gravity
was also observed for pendant drops (Basaran & DePaoli 1994). This implies that
the dependence of the frequency of the axisymmetric mode on gravity seems to be
monotonous. Our results, however, suggest otherwise in a wider parameter domain.
With regard to non-axisymmetric oscillations, non-axisymmetric modes are usually
excited sub-harmonically at half of the driving frequency as the forcing amplitude is
above a threshold, while axisymmetric modes are excited harmonically at the frequency
of forcing (Vukasinovic et al. 2007; Chang et al. 2015). Only some experiments on
non-axisymmetric oscillations of sessile drops dominated by gravity have been conducted
(e.g. Noblin et al. 2005; Vukasinovic et al. 2007; Noblin, Buguin & Brochard-Wyart
2009a). Their main concern is the critical forcing amplitude for the transition from
axisymmetric to non-axisymmetric oscillations. The effects of gravity on high-order
modes and non-axisymmetric modes have not been symmetrically studied in detail.
Moreover, a lot of experiments of drop vibrations on Earth are dominated by gravity, so
one needs a model that covers this aspect. The present work will develop a numerical
model based on the BEM that solves the eigenvalue problem for the oscillations of sessile
drops in the presence of gravity (figure 1a). After validating the results of spherical-cap
drops with free and pinned CLs, we focus on the frequency shifts due to gravity for sessile
drops, depending on the CL conditions (free or pinned) and its equilibrium contact angle.

As mentioned earlier, the walking instability of hydrophobic drops is inferred by
Bostwick & Steen (2014) from the negative eigenvalue squared of the [1, 1] mode.
Physically, the walking drop instability, analogous to the Rayleigh—Plateau instability
(Bostwick & Steen 2018; Wang & Tao 2022), should be a capillary instability driven by
a surface energy gradient, leading to a surface reconfiguration according to the shape of
the instability mode. Since the [1, 1] mode corresponds to a drop translation, the walking
drop instability exhibits a horizontal drop movement. Note that this horizontal movement
should be spontaneous and is different from the directional movement of the drop due
to the parametric instability (see e.g. Ding et al. 2018; Costalonga & Brunet 2020).
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Figure 1. (a) Schematic diagram of a sessile drop with contact angle « sitting on a plane under gravity g.
The drop is flattened by gravity, whereas its equilibrium shape without gravity is a spherical cap (dashed line).
(b,c) The perturbed I" and unperturbed I” surfaces (b) in cylindrical coordinates (r, ¢, z) with a curvilinear
coordinate s and (c) in three-dimensional Cartesian coordinates. Here 7 is the perturbation of the liquid free
surface. At the CL y (red point in b) there is a free or pinned CL condition to restrict the perturbation 7.

Recently, several relevant instabilities have been reported in some theoretical literature
(Bostwick & Steen 2018; Steen, Chang & Bostwick 2019; Ding & Bostwick 2022a,b).
The walking drop instability is also illustrated by energy analysis by Bostwick & Steen
(2014). However, a drop with a free CL on a plane does not possess any energy gradient
leading to instability and should have horizontal translational invariance. This suggests
that the walking drop instability cannot exist and the corresponding eigenvalue should be
zero. In this work, the eigenvalue of the Noether mode [1, 1] is of particular concern from
numerical and theoretical perspectives.

The paper is organized as follows. In § 2 we write the linearized governing equations and
boundary conditions to generate a functional eigenvalue problem for natural oscillations
of sessile drops with free or pinned CLs. In § 3 a model based on the BEM is developed
to numerically solve the eigenvalue problem for determining the natural frequencies and
corresponding mode shapes. In § 4 numerical results are compared with theoretical and
experimental results to confirm the model, and then the frequency shifts due to gravity
are examined. In § 5 we discuss some fascinating consequences of the frequency shifts.
Finally, in § 6 the paper is summarized and the conclusions are presented.

2. Mathematical formulation

Consider a sessile drop of contact angle « sitting on a plane under gravity g, as shown
in figure 1(a). To establish the vibration model, we follow the theoretical framework set
forth in Myshkis ez al. (1987) for oscillations of capillary surfaces in an external force
field. Two assumptions are made: (i) the liquid is assumed to be incompressible and
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ideal so that the potential flow theory can be used; (ii) the small-amplitude oscillations
are considered, i.e. the velocity, the deformation of the free surface and their derivatives
are infinitesimal quantities. Therefore, only linear terms are retained and the higher-order
terms are neglected. The linear assumption allows us to consider the fluid domain D to
remain unchanged for small perturbations (figure 10).

2.1. Governing equations and boundary conditions

In the fluid domain D, based on the potential flow theory, the velocity field u can
be described by u = —V1, where 1 is the velocity potential function. As a result of
continuity (V - u = 0), the potential function has to satisfy Laplace’s equation,

V3¢ =0 [D]. 2.1)

On the free surface 3D/, there are two boundary conditions. The first is the free-surface
kinematic condition, given by

o _ o f
— =21 (D], 2.2)

where n is the normal unit vector directed out of the fluid domain and 7 is the perturbation
of the free surface. The kinematic condition (2.2) means that the normal velocity u, =
—0dy/dn on the surface coincides with the perturbation velocity. In the linear potential
theory, the pressure is only related to the potential, expressed by the linearized Bernoulli
equation

— —=—-11=0, (2.3)

where [T = gz is the gravitational potential.
The second condition on the free surface is the Young—Laplace equation that relates the
mean curvature and the pressure difference,

20H =—p [dD/], (2.4)

where H is the mean curvature of the perturbed surface I". We consider the Bernoulli
equation (2.3) on I" and then substitute the linear form of (2.4) into (2.3) to obtain the
dynamic pressure balance (Myshkis et al. 1987, p. 280)

W o oIT :
— 4+ —[Arn+ (k> + kPl — —n=0 [dD/], (2.5)
at P on

where Ap is the Laplace—Beltrami operator depending on the equilibrium shape I", and
k1, ko are the two principle curvatures of I". It is worth noting that the sign of the two
principal curvatures of the axisymmetric drop surface I" depends only on the direction
of the normal vector of the liquid surface, and here k| and k> have negative signs (see
Appendix A).
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On the solid surface dD?, there is a no-penetration condition,

Y

— =0 [dD]. (2.6)
on
At the CL vy, there is a CL condition,
an
—+xn=0 [y] (2.7)
de

where e is a unit vector normal to y in a plane tangential to I” (directed out of the free
surface I") and y is a boundary parameter depending on the geometry at the CL. For the
axisymmetric case, the expression of y will be given in § 2.4.

Additionally, the perturbation has to satisfy the condition of volume conservation

f ndl" =0 [aD/]. (2.8)
r

The system of equations and boundary conditions (2.1), (2.2), (2.5)—-(2.8) governs the
natural oscillations of sessile drops under gravity and can be further reduced to a functional
eigenvalue problem (see § 2.3).

2.2. Dimensionless analysis in cylindrical coordinates

We scale all of the drop volumes by v, = 30/2m to compare with the hemispherical drop,
where v is the drop volume. As a consequence, the dimensionless volume, v = v/vy, of
all the cases is kept constant at 27/3, which is equal to the volume of a hemisphere of
radius one, thereby excluding the volume effects. Therefore, the characteristic length is
I, = vy !/3. Accordingly, we introduce the following characteristic time and potentials:

L=+ pllJo, Y =12t I, = (L/t)>. (2.9a—c)

Then, in dimensionless forms, the governing equations and boundary conditions (2.1),
(2.2), (2.5)—(2.8) are rewritten as

Vi =0 [D], (2.10a)
9
W _ o o (2.10b)
on
Y an :
- =—— [aD]], 2.10
o o [0D’] (2.10c)
) 3
W Arnt k4 kD~ Borin =0 (9D, (2.10d)
/ ndll =0 [aD7], (2.10¢)
I
an
30 +xn=0 [yl (2.101)
where the Bond number is defined as
1,2 35\?/3
Bo = P8 =@(—v) . @2.11)
o o \2x

In the cylindrical coordinates (r, ¢, z) with a curvilinear coordinate s (see figure 10),
the two principle curvatures (k, k;) and the operators (V2, Ap) for the system (2.10) are,
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respectively,
k= Boxz— 0P L 2.12a)
r
Ky =SB (2.12b)
r

19 [ oy 1 8%y 3%y
(r 8r> + 292 32 (2.12¢)
%n  1drdn 1 8%p
Arn = 052 + rds s + r2 9¢?’ (2.12d)
where § is the inclination angle of the free surface, u is a Lagrange multiplier whose
value is equal to twice the mean curvature of the drop apex, and the drop equilibrium
shape I" := (r(s), z(s)) is the base state of the vibration problem. The static equilibrium
shape of sessile drops in the presence of gravity has been studied extensively (e.g. Padday
1971; Del Rio & Neumann 1997). The numerical method for determining the drop shape
is given in Appendix B.

There are only two independent parameters for the drop configuration, namely the
contact angle « and the Bond number Bo. Note that all variables considered here and

in what follows are dimensionless and retain their original notations for convenience.

2.3. Reduction to eigenvalue problem
Normal modes of ¥ and 5 in cylindrical coordinates are written as (see e.g. Bostwick &
Steen 2014)
Vx, 1) = ¢(r, eV and  n(s, @, 1) = y(s)eel?, (2.13a,b)

respectively, where 1 = wr* is the scaled frequency and [ is the azimuthal wavenumber.
Applying (2.13) to (2.10) with (2.12), we obtain the functional eigenvalue problem
governing the linear dynamics of drops,

19 [ ¢ i’¢ 2

Tar (r5> toz ~2%=0 Dl (2.14a)
% _o [aD], (2.14b)
on

/" ’ / 2
OV L 2(22) o r = (k2 + k) + 5| 22 = —2p 1071, @40
r2 | on

on 7\ on

/ Mar—o [aD/], (2.144)
r on

ap\ 3¢

(811) tX on 0

Equation (2.14a) is Laplace’s equation written in cylindrical coordinates (r, z), (2.14b)

is the no-penetration condition on the solid surface and (2.14d) is the condition of

volume conservation. Equation (2.14c¢) is the free-surface governing equation derived from

the kinematic condition (2.10c) and the dynamic pressure balance (2.10d), where the prime

refers to the derivative with respect to s. Equation (2.14¢) is the CL condition, where s, is
the arc length at the CL.
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2.4. Contact line conditions
In (2.14¢) the boundary parameter is given by (Myshkis et al. 1987, p. 126)

_ ki(s¢) .cosoz - k’ 2.15)
sin o
where k is the curvature of the solid surface at the CL s = Se.

Two types of CL conditions are considered in this work: ‘free’ and ‘pinned’. The free CL
condition is to preserve the contact angle during motion, and the solid surface is considered
to be ideally smooth so that k = 0 for the planar substrate. Therefore, for the free CL
condition, the boundary parameter is

x = ki(s¢) cotar. (2.16)
For a spherical cap with a contact radius of 1 (i.e. with a signed curvature k; = — sin «),
the boundary parameter can further reduce to x = — cos«, which recovers the free CL

condition in Bostwick & Steen (2014) except for having a minus sign for cos «. This minus
sign will lead us to different results, in particular regarding whether the walking drop
instability reported in Bostwick & Steen (2014) exists, as will be discussed in detail in
§5.1.

For the pinned CL condition, the boundary parameter is (Myshkis et al. 1987)

X — +oo. (2.17)
Substituting (2.16) and (2.17) into (2.14¢), we obtain the free CL condition,

ap\’ 9
%9 + ki cotoz—d) =0/ , (2.18)
on on —
and the pinned CL condition,
0
_(b =0 , (2.19)
an S=Sc

respectively.

3. Boundary element method model

In this section we introduce how to apply the BEM to solve the eigenvalue problem
(2.14) for a given equilibrium shape I" (figure 1b) to obtain the natural frequencies and
corresponding mode shapes. As mentioned in § 1, the classical theoretical methods to this
problem (e.g. Lyubimov et al. 2006; Bostwick & Steen 2014; Sharma & Wilson 2021)
require the drop shape to be a hemisphere or a spherical cap, which are difficult to be
extended to drops of flattened shape. Compared with the theoretical methods, the BEM can
deal with arbitrary geometry and is therefore applicable to our problem. The key idea is to
establish the relationship between the velocity potential ¢ and its normal derivative d¢/on
on the boundary through a boundary integral equation, so as to construct a generalized
matrix eigenvalue problem.

The BEM is widely applied to potential flow problems governed by the Laplace
equation (2.14a) (Pozrikidis 2002). However, there are relatively few models based
on the BEM for modal analysis of free interfaces. To our knowledge, two major
axisymmetric BEM (hereafter referred to as axiBEM) models for axisymmetric problems
have been developed by Siekmann & Schilling (1989) and Ebrahimian et al. (2013, 2015),
respectively. The first model is based on the indirect formulation of axiBEM, whereas the
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latter uses the direct formulation. The direct formulation utilizes the velocity potential and
its normal derivative as solutions, whereas the solution of the indirect formulation is a
distribution of singularities that has no physical significance (Pozrikidis 2002). Therefore,
our model takes the more intuitive direct formulation of Ebrahimian er al. (2013,
2015).

3.1. Discretization of boundary integral equation

The BEM has the advantage of reducing the overall dimension by one and, thus, we only
need to deal with the problem on the boundary. Here we follow Ebrahimian et al. (2013,
2015) and adopt the standard axiBEM formulation (Pozrikidis 2002) to construct a system
of linear equations.

3.1.1. Boundary integral equation
On the boundary dD, the velocity potential ¢ and its normal derivative d¢/dn are related
by the boundary integral equation (Pozrikidis 2002)

¢, . 3G (x,x0)

1
¢ (x0) =/ [Gl(x, x0) —(x) ¢(x)] rds(x), (3.1
aD

d

on on
where xo = (rg, z0) and x = (r, z) are the coordinates of the source point and the field
point on the boundary, respectively. In (3.1), G'(x, xp) is the axisymmetric free-space
Green’s function of (2.14a) for a given azimuthal wavenumber /, given as (for a detailed
derivation, see Appendix C)

1 n/2 20¢)d
G(x, x0) = eos@le)ds o1 (G2
(=202 + (r+r0)?Jo V1 —Kkcos’s
with
4
2= 770 (3.3)

(z— 20+ (r + ro)*
When [/ = 0, the Green’s function (3.2) can be reduced to the Green’s function of Laplace’s
equation in the axisymmetric problem (Pozrikidis 2002, p. 108).
Equation (3.1) defined on the boundary 9D is a reformulation of Laplace’s
equation (2.14a) and can be further discretized on the boundary 9D.

3.1.2. Boundary discretization

The boundary 9D = 3D/ + dD° is discretized by line elements with straight or curved
shapes (figure 2). The free-surface elements 0D;, i=1,2,...,N are defined by
clamped-end cubic splines, while the wall elements dD;, i =N+ 1,N+2,... N+ M
are straight lines. Based on the cubic spline interpolation, we obtain the approximate

analytical expression for each free-surface element,
ri(&) = d; + aiE + biE* + i3
€)= _’5 _’52 _’53 ondD;, i=1,2,...,N, (3.4)
zi(§) =di+ ai§ +bi§” +ci§

with a change of variables s = As/2(§ +2i— 1) so & € [—1, 1], where (d,, d;) is the
location of the midpoint P; and As = s./N is the length of the free-surface element.
The algorithm for computing clamped-end cubic splines is well known (see e.g.
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Figure 2. Discretization of the boundary 3D = 3D/ + 3D’ into a collection of cubic spline elements dD;,
i=1,2,...,NforaD/ and straight line elements 0D;, i =N+ 1,N +2,..., N + M for dD*. The midpoints
of elements dD; denoted by P; serve as collocation points for the collocation method. Here, the boundaries
aD/ and 3D* are uniformly divided, respectively. Thus, the length of each free-surface element is As = s./N.

Pozrikidis 2002, pp. 56-60). Here the eight coefficients a;, b;,. . ., c_i,- are calculated by using
the MATLAB function ‘spline’, where the nodes Q;, i =1,2,..., N + 1 for the cubic
spline interpolation are determined by numerically solving the Young-Laplace equation
(Appendix B).

In this model, we adopt the simplest approximation: the boundary distribution of ¢ (x)
and its normal derivative d¢/dn(x) are assumed to be constant functions on each element
0Dj,j=1,2,...,N + M, denoted respectively by ¢; and qu‘. Approximating the boundary
integral equation (3.1) with the sum of integrals over the boundary elements, we obtain the
discretized boundary integral equation,

N+M N+M

1
0G0 = Y axof — D bxo)e, (3.5)
j=1

j=1

with the influence coefficients

a;(xo) :/ G (x, x0)r dS(x),
oD;

J

1
b;(xo) — / MrdS(x).
D on

i

(3.6)

Using the midpoints P; of boundary elements (see figure 2) as collocation points
(i.e. letting every point P; be the source point xg), denoted by le , for (3.5), we obtain
a set of algebraic equations,

Ki¢F = Hyg, 3.7)
with the influence matrixes
Ki=dF) and Hj = bl(x]) + 15y, (3.8a,b)
where §;; is Kronecker’s delta. The corresponding vector form of (3.7) is
K'¢* = H'¢. (3.9)

The non-diagonal matrix coefficients of K’ and H' can be calculated by the Gaussian
quadrature. However, the computation of diagonal coefficients Kfl. and Hfl. involves
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the numerical evaluation of improper integrals with singular integrands G'(x, x¢) and
dG'(x, xp)/dn (when the field point x approaches xp), which need special numerical
techniques to ensure accuracy, such as subtracting out the singularity and then
approximating the integral term by a Gaussian quadrature (called the subtraction
singularity technique) (Pozrikidis 2002, p. 72).

An important feature of (3.9) arising from the BEM formulation is that the influence
matrixes K' and H' depend only on the geometry of dD. This means that we can
determine the influence matrixes only according to the drop shape I" without knowing
other conditions.

By distinguishing the flow boundaries into free-surface and wall elements, (3.9) can be

recast as
[ / I ]
[Kn Ku“ﬁ}_[ﬂn le}{‘bL} 310
I / - ] ] ’ :
K, K5, ¢§ H, H;, s

where the subscripts L and S denote the liquid and solid surface, respectively, and K fnn
and H',, (m,n = 1, 2) are the associated blocks of the influence matrixes. Note that so far
we have not used any conditions other than Laplace’s equation (2.14a).

3.2. Discretization of free-surface governing equation

In the present study, the free-surface governing equation defined in curvilinear coordinates
is discretized into a system of linear equations using the finite difference method (similar
to Ebrahimian et al. 2015). Then the CL condition is integrated into the above system
of linear equations by the ghost point method (instead of via left/right finite difference
formulas as in the Ebrahimian et al.’s model). The ghost point strategy enables the central
differencing scheme to be used for all finite differences, thus ensuring higher accuracy.
Using the fourth-order central finite difference schemes for (d¢/dn)” and (9¢/dn)" on
the free surface (see figure 2), the discretization of (2.14¢) can be written in a matrix form

K'¢r = -2’14, (3.11)

where I is the identity matrix. Here, K’ corresponds to the linear operator on the left-hand
side of (2.14c¢), given by

RL=ay+ g [Bo x ny(s;) — (k1 (s1)? + ka(s)%) + L} 8ij (3.12)
ij y ]"(Sl') y r\ 1 1 L r(sl)z - .

In (3.12), s; is the arc length at P;, n, is the radial component of the normal unit vector
n on 9D, and the coefficients A;; and Bj; are given respectively by (see Appendix D
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Position Free Pinned

cA ct A o
(N—1,N) 16 — 1 8 — ¢ 17 9
(N,N—1) 16 — & —8—& 17 -7
(N,N) —30 + 16¢; 8¢ —46 -8
Position Even [ Odd [

A chB A o
(1, 1) —14 —8 —46 8
(1,2) 15 9 17 7
2,1) 15 -7 17 -9

Table 1. Coefficients C* and C? in the matrixes A and B depend on the type of the CL condition and whether
the azimuthal wavenumber [ is even or odd. For the free CL condition, 61 = (2 — Asx)/(2 4+ Asy) and &, =
(2 —-3Asx)/(2+3Asy) with x being given in (2.16). The subscript of coefficients indicates the position in
the matrix. For example, the subscript ‘2,1° in (3.13) denotes the position (2, 1), i.e. the row 2 and the column
1 of the matrix. The derivation is provided in Appendix D.

for derivation)

A A .
Cl,l C1,2 -1
¢4, =30 16 -1
X -1 16 =30 16 -1
=— SR : . (3130
12A 2 . . . .
’ 1 16 -30 16 —1
-1 16 =30 Cp,y
) :
L —1 CN,N—l CN,N
(O 7
g, 0 8 -1
| 1 -8 0 8 -1
B= S (3.13b)
12As
1 -8 0 8 —1
I -8 0  Ch_,y
L 1 Cll\;/,N—l C]l\gl,N

There are still twelve coefficients CA and C? to be determined in (3.13), which are
located at the top left and bottom right corners of the matrices 4 and B. The values of
the undetermined coefficients depend on the type of the CL condition and whether the
azimuthal wavenumber / is even or odd (table 1). In this way, the free (2.18) or pinned (2.19)
CL condition is incorporated in (3.11) by taking the corresponding values of coefficients
C* and C® presented in table 1.

3.3. Generalized matrix eigenvalue problems for natural oscillations

Until now, we have obtained two sets of linear algebraic equations (3.10) and (3.11),
corresponding, respectively, to Laplace’s equation (2.14a) and the free-surface governing
equation (2.14¢) with the free (2.18) or pinned (2.19) CL condition being incorporated.
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In this section we utilize the discrete form of the yet-unused condition (2.14b)
to assemble (3.10) and (3.11) into a generalized matrix eigenvalue problem in a
similar way to Ebrahimian et al. (2015). To eliminate the non-physical volume mode
{1, 0}, we additionally impose the volume conservation condition (2.14d) by projecting
the problem to the null space of the constraint (Porcelli et al. 2015). Its solution
gives the natural frequencies and corresponding mode shapes for a given azimuthal
wavenumber /.

The discrete forms of the no penetration condition (2.14b) and the volume conservation
condition (2.14d) can be written as, respectively,

¢5=0, (3.14a)
rg; =0 forl=0, (3.14b)
where r; = {r(s1) ... r(sy)} with N being the number of free-surface elements.

For non-axisymmetric modes (I #0), the volume conservation condition is naturally
satisfied. Substituting (3.14a) into (3.10) yields

~1 -1
i () K - K6 = () A e s

Combining (3.11) and (3.15), we have the matrix eigenvalue problem for / > 1,

X¢; = 1’Y¢}, (3.16)
with
l l AT
X =|Hi, ~H, (HY) HYy |K, (3.17a)
1 1\ l
Y =|Hi, (HY,) Kb - K| (3.17b)

For axisymmetric modes (/ = 0), the eigenvalue problem (3.16) is also subject to the
volume conservation condition (3.14b). The linear constraint (3.14b) can be imposed by
suitably transforming this constrained problem into a modified unconstrained eigenvalue
problem (Porcelli et al. 2015). The transformation consists of projecting the eigenvalue
problem (3.16) into the constraint space by explicitly constructing a basis for the null space
N(rp) of rp. For ¢7 € N(rp), let v be such that

¢; =2Zv, (3.18)

where Z is the matrix whose columns span the null space N(ry). Then, we obtain the
equivalent unconstrained formulation of problem (3.16) subject to (3.14b),

Z'xzv = 12Z7YZv. (3.19)

3.4. Mode classification

According to the spherical harmonic classification, the vibration modes of sessile drops
can be categorized as zonal [k, [ = 0], sectoral [k = [,/ > 1] and tesseral [k > [,/ > 1]
by polar k and azimuthal / wavenumbers, where k 4+ [ = even (Bostwick & Steen 2014).
However, our model does not employ the spherical harmonic functions as basis functions,
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Figure 3. Mode shapes of a sessile drop with o = 90° and Bo = 5 (see also figure 5 in Bostwick & Steen
(2014) for Bo = 0) for the (a) free and (b) pinned CL conditions. The modes are defined by the number pair
{n, I}. The insets show the cross-sectional shapes of mode {3, 1}.

so an alternative classification is used to categorize the modes, as shown in figure 3. This
classification uses the number pair {n, [} to distinguish the modes, where

n= u +1 (3.20)

2

denotes the number of vertical layers (Chang et al. 2013, 2015). Therefore, the zonal,
sectoral and tesseral modes can also be labelledas {n > 1,1 =0},{n =1, > 1} and {n >
1,1 > 1}, respectively. The layer-sector classification {n, [}, which gives the layer number
n, is more intuitive than the spherical harmonic classification [k, [].

The generalized matrix eigenvalue problems (3.16) and (3.19) for axisymmetric (/ = 0)
and non-axisymmetric ([ > 1) modes can be solved numerically by using the MATLAB
function ‘eig’. Since the sizes of (3.16) and (3.19) are N and N — 1, respectively, the
numbers of corresponding eigenvalues computed are also N and N — 1, respectively.
For a group of solutions with a fixed I, the eigenvalues are ordered from small to
large, so that the corresponding mode numbers n are sequentially in order from small
to large as well. For [ = 0, the first eigenvalue is the dimensionless frequency squared,
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{n, 1} A2 Art? Difference E
{2,0} 8.00016 8 0.10 x 1074
{5, 0} 560.073 560 0.65 x 1074
{10, 0} 6122.78 6120 227 x 1074
{50, 0} 958686.2 950 600 424 x 1073
{2, 5} 378.077 378 1.02 x 1074
{5,5} 2340.49 2340 1.04 x 1074
{10, 5} 12657.4 12650 2.92x 1074

(50,5} 11129327 1103130 4.43 x 1073

Table 2. Dimensionless frequencies of a hemispherical drop with a free CL calculated by our model (1) and by
the RL spectrum (1.1) (/llzi,L = wsz3/0 =2n+0D)QR2n+1—2)2n+ [ — 3)) and the relative difference E =
|4/ Are — 1| for eight modes {n = 2, 5, 10, 50,/ = 0, 5}. In these cases, the number of free-surface elements is
set to N = 300.

/l% 0 of the mode {2,0}, while for /> 1, the first eigenvalue is /l% ; of the mode
{1,1}. The mode number n of the subsequent eigenvalue is the mode number of the
present eigenvalue plus one. The vector ¢; determines the mode shape y(s) defined
in (2.130).

4. Numerical results

In this section the axiBEM model in § 3 is validated by comparing with theoretical and
experimental results, and a grid-independence analysis is performed to guarantee the
accuracy of the numerical results. Then we systematically investigate the effects of gravity
on the axisymmetric and non-axisymmetric oscillations of sessile drops over a wide range
of parameters @ and Bo, focusing on the frequency shifts of modes due to gravity.

4.1. Verification and convergence

The frequency spectrum of a hemispherical drop with a free CL satisfies the RL spectrum
(1.1) with k£ + [ being even (Lyubimov et al. 2006). Table 2 shows the comparison between
the numerical results of the present model and the theoretical results obtained from (1.1),
where the number of free-surface elements is fixed to N = 300. It is found that numerical
and theoretical results are in good agreement and the errors of high modes are larger than
those of low modes. For the mode {50, 5}, a relative error £ = |1/Agr — 1| = 0.43 % can
be achieved when N = 300. It suggests that our model is sufficiently accurate to predict
natural frequencies, even for high modes.

To compare with experimental data, we present the expression of the actual frequency
f = A/(2mt,) (in Hz) with the characteristic time #, being defined in (2.9a),

fF= (gﬁ)l/z (B%)g/z (%)2 = 6:/)512. @.1)

-0.5

Expression (4.1) indicates the power law f oc v™°, which is consistent with the
experimental observations of Noblin et al. (2004). This power law only reflects the effects
of volume on frequency, ignoring those of gravity on frequency. To verify the cases where
gravity plays a significant role (Bo 2 1), we compare the inviscid prediction of our model
with the experiment results of Noblin er al. (2004) for gravity-flattened drops, as shown
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Mode number n v=0.1ml v=2ml

Exp. Model Error (%) Exp. Model Error (%)
2 32.7 33.2 +1.53 8.6 8.72 +1.40
3 71.8 73.0 +1.67 17.2 17.21 +0.058
4 119.8 121.5 +1.42 27.0  26.98 —0.074
5 174.7 177.4 +1.55 38.1 38.09 —0.026
6 238.6  239.8 +0.50 50.7  50.47 —0.45

Table 3. Comparison of the natural frequencies (in Hz) between the present model and the experiments of
Noblin et al. (2004) for zonal modes {n, 0} of sessile drops with @ = 85° and pinned CLs, where the physical
parameters used in (4.1) are p = 998 kg m~3, o =0.0728 Nm™~!, g=98lm s~2. Thus, the drop volumes
v = 0.1 ml and 2 ml correspond to Bo = 1.77 and 13.04, respectively. In these cases, we set N = 300.

in table 3. The excellent agreement of the inviscid predictions with experiments not only
validates our model, but also reveals that the inviscid assumption is more appropriate for
large drops. This is because the viscous effect of small drops is greater than that of large
drops, leading to a larger discrepancy for smaller drops. Furthermore, this discrepancy
appears as a systematic overprediction of inviscid results for the 0.1 ml drop, because its
viscous effect slightly reduces the natural frequency (Lyubimov et al. 2006; Chang et al.
2015).

Figure 4(a) shows that the relative error E decreases with increasing the number of
free-surface elements N for three zonal modes of a hemispherical drop with a free CL. This
plot is in log-log style for analysing the convergence. The changes of E are well described
by power laws (straight lines) with exponents C ~ 1.8. This implies that the degree of
convergence of our model is roughly second order with respect to the grid density. It
is also shown that setting N to 300 can allow for both efficiency and accuracy of the
calculation. Therefore, unless otherwise stated, we always set N = 300 in the following.
Figure 4(b) shows that the mode shape yj¢ ¢ calculated by our model agrees well with that
obtained by the RL theory. The inset shows that the model is highly accurate for calculating
mode shapes, which can serve as a basis for relevant problems. For example, the problem
considering the Hocking condition can be solved by using mode shapes with free CLs as
basis functions (Bostwick & Steen 2014).

4.2. Frequency shifts due to gravity

Recently, the frequency shifts due to gravity for the axisymmetric modes of sessile drops
have been investigated by a direct numerical simulation based on the Navier—Stokes
equations (Sakakeeny & Ling 2020, 2021). It was found that the frequencies of the first few
axisymmetric modes increase (decrease) with increasing the Bond number (contact angle).
However, the question of how gravity affects the frequencies of other modes has not been
answered, especially for non-axisymmetric modes. The simulation of non-axisymmetric
oscillations requires a large amount of computing resources (three-dimensional numerical
simulation). Since our model is based on the normal-mode framework (§ 2.3), the model
can efficiently and accurately predict the frequencies of both the axisymmetric (/ = 0)
and non-axisymmetric (/ > 1) modes. We study the frequency shifts for contact angles
o € [30°,150°] and Bond numbers Bo € [0, 10]. Note that the drop volume is kept
constant at v = 2m/3 to exclude the volume effects on frequency (as reflected in the
relation (4.1)).
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Figure 4. (a) Log-log representation of relative errors £ = |1/Agr — 1] as a function of the inverse of the
grid density, 1/N, where the frequencies A and Ag; are calculated by the present model and the RL theory,
respectively. The straight lines are determined by a least square fit, given as log(E) = Clog(1/N) + B. For
zonal modes {2, 0}, {5, 0} and {10, 0}, the slopes of the fitted lines are C = 1.73, 1.82 and 1.85, respectively.
The red solid symbols correspond to the cases of N = 300. (b) Comparison of mode shape yjo o calculated by
our model and by the RL theory. The absolute error is shown in the inset. The maximum of y(s) is scaled to 1
for comparison purposes.

To measure the frequency shifts due to gravity, we define a shift factor S, ; for mode
{n, 1},
/ll’l,l ((X, B 0)

Sn’l(O(, BO) = /l*—(a) — 1, (42)
where S, ; and A, ; are functions of « and Bo, and A nl = = Ap./(a, 0) is the frequency in the
absence of gravity. The value of S, ; denotes the relauve change of frequency and S, ; > 0
(<0) represents an upward (downward) shift of frequency for given values of « and Bo.

4.2.1. Zonal modes {n > 1,1 = 0}

For Bo = 0, we reproduce the plots of the frequency A* .0 versus the contact angle o by
using the present model and the self-coded Bostwick and Steen (BS) model (which is
self-programmed with an in-house MATLAB code by following Bostwick & Steen 2014),
as shown in figure 5. Note that in the code of the self-coded BS model, the boundary
parameter x for the free CL condition (2.14¢) is x = — cos(«) rather than x = cos(«) as
adopted by Bostwick & Steen (2014), where the reason can be found in § 5.1. The results
show an excellent agreement between our model and the self-coded BS model, except
for the high modes {5, 0} and {6, 0}, where there are small discrepancies at large contact
angles. These discrepancies can be reduced by increasing the number of basis functions
for the self-coded BS model. However, the results of high modes with small contact
angles reported in Bostwick & Steen (2014) differ significantly from those calculated
by our model and the self-coded BS model. For example, for the mode {6, 0} with a
pinned CL and o = 42.4°, the self-coded BS model predicts the dimensionless frequency
/12’ o = 33.87 while the data of Bostwick & Steen (2014) is 41.34 (see figure 5b). Obviously,
the former agrees reasonably with the experimental result of 32.88 (Chang et al. 2015) and
the prediction of 34.81 by the toroidal model (Sharma & Wilson 2021). The comparison
demonstrates that the self-coded BS model developed by Bostwick & Steen (2014) can
accurately predict the frequencies of high modes with small contact angles. Our model
recovers the results of zonal modes for the spherical-cap drop with free and pinned CLs.
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Figure 5. Frequency spectrum of zonal (/ = 0) modes in the absence of gravity (Bo = 0) for the (a) free and
(b) pinned CL conditions. Frequencies of the first five modes (n = 2, 3, 4, 5, 6) are calculated by the present
model and by the self-coded BS model. In (b) the frequency of the mode {6, 0} with o« = 42.4° is compared
with the experiment result of Chang ef al. (2015) and the theoretical results of Bostwick & Steen (2014) and
Sharma & Wilson (2021).

Figure 6 shows how the frequencies of zonal modes are affected by gravity. There are
three different trends for the shift factor S, o over Bo with a fixed contact angle.

(1) For the mode {2, 0} with o« = 45°, the shift factor S, ¢ increases initially and then

decreases as Bo increases (figure 6a). A similar trend is also observed for the mode
{6, 0} with & = 90° (figure 6b). The difference is that, when Bo 2 2, the former has
a shift factor S»,0(45°, Bo) that is less than zero, while the latter always has a shift
factor greater than zero. This means that there is a critical value (*2) of Bo that
keeps the frequency of the mode {2, 0} with « = 45° unchanged (i.e. S2,0 = 0), and
gravity shifts the frequency downwards when Bo = 2.

(i1) For the higher modes n > 2 with o = 45° (figure 6a), S,,0 decreases monotonically
with the increase of Bo.

(iii) For other modes with larger contact angles (figure 6b,c), the frequency increases as
Bo increases, which is consistent with the observations of Sakakeeny & Ling (2020,
2021).

The first two trends show that the gravity can shift the frequency downwards for sessile
drops with small contact angles. For example, for a water drop (p = 998 kg m™3, o =
0.0728 N m~!) with volume & = 1.343 ml, contact angle a = 45° and pinned CL, the
frequencies of the first two modes {2, 0} and {3, 0} are reduced respectively by about 7 %
and 15 % in the Earth’s gravitational field g = 9.81 m s~2 (Bo = 10.0) compared with in
a microgravity environment (Bo — 0), as shown in supplementary movie 1 available at
https://doi.org/10.1017/jfm.2023.252.

To the best of our knowledge, for zonal modes, the downward frequency shift due to
gravity has not been observed in previous literature. This may be because the frequency
decrease with increasing gravity only occurs at small contact angles and the magnitude
of the decrease is much smaller relative to the increase (figure 6d). For example, in the
parameter domain (Bo € [0, 1.389] and o € [50°, 150°]) adopted by Sakakeeny & Ling
(2020, 2021) the frequency is always shifted upwards by gravity. Their simulation results
agree well with our inviscid predictions, e.g. for zonal modes {2, 0} with pinned CLs and
Bo = 1.389 (see figure 6d).
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Figure 6. Effects of gravity on frequency for zonal modes: (a—c) the shift factor S, o versus the Bond number
Bo for fixed contact angles (a) o = 45°, (b) 90° and (c) 135° and (d) S,,0 vs o for fixed Bond number Bo =
1.389. Results are shown for the first five modes (n = 2, 3, 4, 5, 6) with free (black solid) and pinned (blue
dashed) CLs. In (d) results of direct numerical simulations by Sakakeeny & Ling (2021) for the mode {2, 0}
with a pinned CL are denoted by () and a good agreement is observed, where the corresponding Bond number
in Sakakeeny & Ling (2021) is 0.88 due to the use of different scalings.

From figure 6, we see that the modes with free CLs are more susceptible to gravity than
those with pinned CLs, especially for the lower modes. That is, the mode with a free CL
has a larger frequency shift than the mode with a pinned CL and their difference decreases
with increasing the mode number 7. It is further observed from figure 6(d) that the zonal
modes with a larger contact angle are more sensitive to the effects of gravity, consistent
with the observations of Sakakeeny & Ling (2020, 2021).

4.2.2. Sectoral modes {n =1,1> 1}

The sectoral modes {1, [} are star shaped, which have one layer with [ sectors (see figure 3).
Figure 7 plots the frequencies of sectoral modes against contact angle « for Bo = 0 and
Bo = 5. In the presence of gravity, most of the sectoral modes show a significant decrease
in frequency at all contact angles. This differs from previous findings for the zonal modes.
For example, for a drop with « = 90° and a free CL, the frequency of the zonal mode {2, 0}
increases at Bo = 5 by 52 0(90°, 5) = 43.31 %, while the sectoral mode {1, 10} appears to
decrease in frequency by [23.44/32.87 — 1| ~ 28.69 % at the same Bond number (see
supplementary movie 2). It follows that, for different modes, the frequency shifts due to
gravity are different or even opposite.
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Figure 7. Frequency spectrum of sectoral {n = 1,/ > 1} modes with Bo = 0 and Bo = 5, for the (@) free and
(b) pinned CL conditions. From bottom to top the corresponding azimuthal wavenumbers of spectral lines are
1=1,2,3,4,5,10.

It is noteworthy that the numerical results for the frequency of the Noether mode {1, 1}
with a free CL are all zero regardless of o with or without gravity (see the solid and
dashed bottom lines in figure 7a). The observation of 4; ; = 0 is related to the walking
drop instability. Details will be discussed in § 5.1.

Figure 8 shows the frequency shifts for sectoral modes with fixed contact angles
(¢ = 45°,90°, 135°). For free CLs, the frequencies decrease with increasing Bo for all
three contact angles, and the higher the azimuthal wavenumber /, the smaller the relative
frequency decrease (figure 8a—c). The downward frequency shifts for pinned CLs are
smaller than for free CLs, and upward frequency shifts even occur for the modes {1, 1}
with pinned CLs and large contact angles (figure 8d—f). Moreover, the dependence of the
relative frequency decrease on [ for pinned CLs is opposite to that for free CLs (see the
directions of arrows). Similar to zonal modes, the sectoral modes with free CLs are also
more susceptible to gravity than those with pinned CLs. However, the frequency shifts
for sectoral modes are not sensitive to the change of contact angle (with the exception of
the mode {1, 1} with a pinned CL whose frequency shift is strongly influenced by contact
angle).

4.2.3. Tesseral modes {n > 1,1 > 1}

Figure 9 compares the frequency spectra of three groups (I = 1, 5, 10) of tesseral modes
with Bo = 0 and Bo = 5. For Bo = 0, the spectrum of / = 1 has a similar pattern to that
of the zonal modes (see figure 5), in the sense that both have low frequencies at small and
large contact angles and high frequencies at intermediate contact angles (*=70°). For larger
[, the frequencies of low modes at large contact angles becomes higher compared with
small contact angles. Under gravity, the frequencies of most tesseral modes decrease at
small contact angles and increase at large contact angles, similar to zonal modes. However,
some modes with small n and large / (e.g. the modes {1, 5} and {3, 10} with free CLs) show
a decrease in frequency at all contact angles, similar to sectoral modes.

We observe that the frequencies of tesseral modes are always shifted downward at small
contact angles. The main difference among these modes is how gravity affects frequency
at intermediate and large contact angles. Figure 10 plots the shift factor S, ; vs Bo for
o =90° For [ =1, 2, 3, the frequencies of the first five tesseral modes are always shifted
upwards. For [ = 1, the relative frequency change of the mode with smaller »n is larger.
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Figure 8. Effects of gravity on frequency for sectoral modes: S ; vs Bo for fixed contact angles
(a,d) a = 45°, (b,e) 90° and (c, f) 135° with the (a—c) free and (d—f) pinned CL conditions.
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Figure 9. Frequency spectrum of tesseral {n > 1,/ > 1} modes with Bo = 0 and Bo = 5, for the (a—c) free
and (d—f) pinned CL conditions. The results are grouped according to the azimuthal wavenumber / and are
presented separately for / = 1, 5, 10. In each group, the layer numbers of spectral lines from bottom to top are
n=2,3,4,5,6.

For [ = 2, 3, however, the dependence of the relative frequency change on the mode
number n is progressively reversed as [ increases (see the directions of arrows in
figure 10b,c). For [ > 3, the frequencies of modes with small n are shifted downwards
at o = 90°. In general, the frequency shifts due to gravity for tesseral modes with large n
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Figure 10. Effects of gravity on frequency for tesseral modes with fixed contact angle o = 90°: S, ; vs
Bo for [ =1,2,3,4,5,10. For each azimuthal wavenumber [, results are shown for the first five modes
(n=2,3,4,5, 6) with free and pinned CLs.

and small [ are similar to those for zonal modes, while modes with small » and large [ are
similar to sectoral modes.

4.2.4. Phase diagram

We study the frequency shifts for contact angles o € [30°, 150°] and Bond numbers
Bo € [0, 10]. For zonal modes, we observe downward and upward frequency shifts at small
and large contact angles, respectively. This feature can be illustrated by a typical contour
(type I) of the shift factor S, ;, as shown in figure 11(a). It is shown that, whether the
frequency of mode {2, 0} with a free CL increases or decreases depends on the position
of the phase point (o, Bo): when («, Bo) is in the blue region to the left side of the
contour 7 o = 0, the frequency is shifted downwards, whereas the opposite occurs when
(o, Bo) is in the red region. However, most sectoral modes exhibit a downward frequency
shift at all contact angles, as reflected by the second typical contour (type II) of S, ;
(figure 11b). These shift factors S, ; are always less than zero regardless of o and Bo. For
tesseral modes, both the typical contours of S, ; can occur, depending on the mode number
pair {n, [}.

In addition to the two typical contours (types I and II), contours with other shapes
are collectively referred to as transitional contours (type T), because these contours are
transitions between types I and II. Figure 12 shows four common shapes of type T. We note
that the classification of the contours depends on the ranges of o and Bo. For example,
reducing the upper limit of the range of « from 150° to 130°, the contour of the mode
{2, 3} with a free CL (figure 12b) will be classified as type I. This means that the ranges
of parameters we have chosen still cannot capture all the features of contours for some
modes. On the other hand, the ranges of parameters in this work are reasonable because
they cover the vast majority of real physical situations.
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Figure 11. Two typical contours of the shift factor S, ;: (a) type I, a region of S,,; < O (blue) on the left and a
region of S, ; > 0 (red) on the right, separated by a critical contour line of S, ; = 0 for mode {2, 0} with a free
CL; and (b) type 11, a complete region of S, ; < 0 for mode {1, 2} with a free CL. Here and in what follows,
all contours are generated from 100 x 100 uniformly distributed cases in the region « € [30°, 150°] x Bo €
[0, 10].
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Figure 12. Four common shapes of transitional contours of S, ; (type T) for (a) mode {1, 2} with a pinned
CL, (b) mode {2, 3} with a free CL, (¢) mode {3, 6} with a free CL and (¢) mode {4, 10} with a pinned CL,
respectively. The transitional contours are transitions between types I and II.
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Figure 13. Types of contours of S, ; for modes with (a) free and () pinned CLs, where n =1, 2, ..., 10 and
[=0,1,...,10.

We classify the contours of S, ; for modes with / = 0 to 10 and n = 1 to 10 as types L, I
and T, as shown in figure 13. Results are given for both the free and pinned CL conditions.
For zonal modes, all contours are of type 1. For sectoral modes, except for the modes {1, 1}
and {1, 2} with a pinned CL and the mode {1, 1} with a free CL, the contours are of type
II. For tesseral modes, all the three types (I, Il and T) of contours are possible, where
the mode with larger n (/) is more likely of type I (II) and the remaining modes in the
middle are categorized as type T. It follows that the frequencies of sectoral modes tend
to be shifted downwards at large contact angles, whereas the zonal modes (/ = 0) exhibit
upward frequency shifts under the same conditions. Note that the contour cannot be given
and classified for the mode {1, 1} with a free CL because its frequency is constant at zero
regardless of « and Bo.

The modes [ = 1 are called ‘rocking modes’ because their one sector rocks side to side
during the vibration. It is seen from figure 13 that the contours of S, ; for both zonal (/ = 0)
and rocking (I = 1) modes are of type I. Thus, there is a critical contour line S, ; =0
for each mode: when the phase point («, Bo) crosses the critical line, the shift factor S, ;
changes its sign, and there is a downward frequency shift on the left side of the critical line
and an upward shift on the right side (see figure 11a). Figure 14 shows the critical lines for
the first five zonal modes and the first five rocking modes, respectively. Results for modes
with free and pinned CLs are shown paired, and their differences are not significant. As n
increases, the critical line shifts to the right, but even for higher modes {6, 0} and {5, 1} the
critical lines are still in the region of « < 90°. Therefore, the frequencies of the low zonal
and rocking modes for o > 90° are always shifted upwards by gravity. Moreover, except
for the mode {1, 1} with a free CL, gravity always shifts the frequency downwards as long
as the contact angle is small enough (@ < 40°).

5. Discussion of results

Here we discuss some interesting consequences resulting from the frequency shifts under
the influence of gravity, including whether the walking drop instability (Bostwick & Steen
2014) exists, how gravity breaks the spectral degeneracy of the free semi-drop and the
determination of the lowest mode.
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Figure 14. Phase diagram a—Bo of the frequency shifts for (a) zonal (/ = 0) modes and (b) rocking (I = 1)

modes. For a given mode, when the point (¢, Bo) lies to the left (right) of the critical line S,, ; = 0, the frequency
of that mode is shifted downwards (upwards) by gravity.

5.1. Noether mode {1, 1}: walking drop instability

Walking drop instability, similar to the Rayleigh—Plateau instability, is a capillary
instability whose interface is reshaped according to its instability mode (Bostwick & Steen
2014, 2015). As the name suggests, this instability behaves as a spontaneous horizontal
movement of spherical-cap drops with free CLs and contact angle o > 90° on a plane,
where the horizontal motion corresponds to the mode {1, 1}. Because the mode {1, 1} of a
spherical drop has zero frequency according to Noether’s theorem, this mode is referred to
as the Noether mode by Bostwick & Steen (2014). The walking drop instability is inferred
from the finding of Bostwick & Steen (2014) that the frequency of the Noether mode
{1, 1} with a free CL satisfies /l 11 < 0 for ¢ > 90° and Bo = 0. However, a wrong free
CL condition has been used in the work of Bostwick & Steen (2014), which leads to an
incorrect calculation of /lil More specifically, their omission of the minus sign for the
curvature k; = — sina of spherical-cap drops results in the missing of the minus sign
in the boundary parameter x = — cos «. The discussion about the sign of the principal
curvature kj can be found in Appendix A.

5.1.1. Reproducing the walking drop instability with the wrong condition

To demonstrate the above, we adopt the wrong CL condition (i.e. k1 = sin «) to reproduce
the results of Bostwick & Steen (2014) by using the axiBEM model and the self-coded
BS model, as shown in figure 15. The results of the self-coded BS model are generated
by using a self-programmed code following Bostwick & Steen (2014), while the results of
Bostwick & Steen (2014) are those reported in their paper. It is shown that the results of
the wrong CL condition qualitatively agree with those of Bostwick & Steen (2014), that
is, /12 1.1 > 0for o <90° and /12 1.1 < 0for o > 90° resulting in the walking instability of
hydrophobic drops with free CLs. Furthermore, the results of the axiBEM and self-coded
BS models agree very well when using the wrong CL condition. However, these results
quantitatively differ significantly from those reported by Bostwick & Steen (2014). For
instance, our result shows the maximum instability growth is 2> = —0.6994 at o = 117.4°,
while the result of Bostwick & Steen (2014) is the maximum A2 = —0.0458 at @ = 132.5°.
In view of the above, we believe that the above discrepancies might be due to other obscure
reasons.
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Figure 15. Numerical results of — /l] | against a with Bo = 0 for the wrong free CL condition. For comparison,
the results for the correct CL condition (dash-dotted line) are drawn. In these cases, the scaling is the same as
in Bostwick & Steen (2014), and the grid number of the axiBEM model is set to N = 300.

When we adopt the correct form of the free CL condition (2.18), we find a power law
A o NTH0 (5.1)

for the numerical results of o = 135° and Bo = 5 by using our model, as shown in
figure 16. This implies that the numerical result of /ll | decays to zero as the grid density
N — oo. Since the numerical results cannot precisely reach zero frequency, we can infer
from (5.1) that

A1.1(a, Bo) =0 (5.2)

always holds regardless of o and Bo (see also figure 7a). Equation (5.2) implies that the
translational invariance related to the Noether mode {1, 1} with a free CL is not broken
by varying the contact angle « or the Bond number Bo, which is also consistent with the
expectation from static stability theory (see § 5.1.3).

5.1.2. Effect of the wrong free CL condition on other modes

Apparently, the principal curvature of the surface is not included in the pinned CL
condition (2.19), so the pinned results are not affected by the wrong CL condition.
However, even when the same CL conditions are adopted, there are still some discrepancies
between our calculations and the results reported in Bostwick & Steen (2014), as shown
in the previous section. To further analyse the discrepancies, we reproduce the pinned
results of Bo = 0 to compare with the experimental and theoretical results reported in
Chang et al. (2015), as shown in figure 17. It is shown that, in general, our results
are in better agreement with the experimental results, especially for high modes with
small contact angles. Moreover, we have shown that the results of the self-coded BS
model following Bostwick & Steen (2014) agree very well with those of the axiBEM
model (figures 5). Thus, the discrepancies should be due to some other obscure reasons.
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Figure 16. Numerical results for the frequency squared /lil of the Noether mode {1, 1} with a free CL as a
function of 1/N, where @ = 135° and Bo = 5. The inset shows the base state (dashed line) and the mode shape
(solid line).
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Figure 17. Frequency comparisons of our results with those of Chang er al. (2015) for (a) zonal modes,
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the results of the axiBEM model and those of the inviscid theory (Bostwick & Steen 2014) reported in Chang
et al. (2015), respectively, and the symbols indicate their experimental results. Here the scaling is the same as
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Figure 18. Frequency ratios 4,,/4 due to the wrong CL condition for modes with (@) [ =0, (b) [ =1,(c)[ =5
and (d) [ = 10, where the subscript w indicates the wrong condition. The layer numbers of modes are (a,b)
n=2,3,4,510and (c,d) n = 1, 2, 3, 4, 10 along the arrow.

Since the discrepancy is only significant for high modes with small «, the validation of
Bostwick & Steen (2014) still holds.

Figure 18 shows the effect of the wrong condition on the modes with free CLs. We
observe the frequency ratio A,,/1 > 1 for « < 90° and A,,/4 < 1 for a > 90°, where
Ay, s obtained from the wrong condition. This implies that the wrong condition causes
frequencies for small contact angles to be overestimated and frequencies for large contact
angles to be underestimated, and therefore, is independent of modes with o« = 90° (since
the wrong condition becomes consistent with the correct one in this case). We also
observe that the wrong condition is insensitive to high modes and only has a limited
effect on a few low modes with contact angles away from 90°. Thus, even with the wrong
condition, the verification and most of the conclusions of Bostwick & Steen (2014) are
still valid.

5.1.3. Demonstration through static stability theory

To further justify (5.2), we relate this dynamic problem to the theory of static stability
(Bostwick & Steen 2015). For the considered configuration, the static stability problem is
given by (Myshkis et al. 1987, p. 129)

r 1
—¢{'—7‘/f{+ |:Bo><r/— <k12+k22>+ﬁ} Y1 = Y1, (5-3)

with the boundary condition

Wi(sc) + x¥1(se) =0, 5.4)

where 11 and 1] denote eigenfunctions and eigenvalues, respectively.

From a mathematical point of view, when A;1 =0, the dynamic problem (2.14)
has the same form as the static stability problem (5.3) with a zero eigenvalue A} =0
corresponding to the mode {1, 1}. In this case, the static and dynamic problems have the
same solutions (i.e. eigenfunctions and eigenvalues). This means that when the eigenvalue
of the static stability problem is zero, the eigenvalue of the dynamic problem of the
corresponding mode is also zero. In other words, the static stability can be recovered
from the dynamic stability, and the thresholds for the two instabilities are essentially the
same. Only if the boundary parameter y is equal to the critical boundary parameter Xl 1
the corresponding eigenvalue of the static stability problem is zero (Myshkis et al. 1987;
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Bostwick & Steen 2015). The critical boundary parameter is (Myshkis e al. 1987, p. 141)

' (s¢)
7/ (s¢)

Comparing (2.16) and (5.5), it is easy to see that y = X]*,l for the free CL condition.
Hence, the dynamic and static stability problems both have zero eigenvalue (frequency)
corresponding to the Noether mode with a free CL. It suggests that the frequency of the
mode {1, 1} of sessile drops with free CLs on a plane is always zero regardless of « and
Bo.

In summary, we verify numerically and mathematically that 411 = 0 regardless of «
and Bo, and therefore, demonstrate that there is no walking drop instability related to
the Noether mode {1, 1} for sessile drops with free CLs and o > 90° regardless of the
presence of gravity. This finding contradicts with the conclusions of Bostwick & Steen
(2014), owing to the wrong form of the free CL condition used in the latter.

Xi1 = —ki(se) = ki (s.) cota. (5.5)

5.2. Breaking of spectral degeneracy

For a hemispherical drop (¢ = 90° and Bo = 0) with a free CL (i.e. the free semi-drop),
all the modes with the same polar wavenumber k = 2n — 2 4- [ have the same frequency,
which is known as the spectral degeneracy with respect to the azimuthal wavenumber [
(Bostwick & Steen 2015). This degeneracy is inherited from the free drop problem (refer
to (1.1)), and can be represented mathematically by

A0,1(90°,0) = A,,-1,142(90°, 0). (5.6)

For a given k, there are a total of |k/2]| + 1 modes with the same frequency given by the
RL spectrum (1.1) in dimensionless form (1 = wy/pR3 /o), where | | denotes the rounding
down operation. Prior studies (e.g. Lyubimov et al. 2006; Bostwick & Steen 2014) have
found that the spectral degeneracy can be broken by the contact angle or the mobility
parameter that characterizes the mobility of the CL (see § 1).

We find that this degeneracy can also be broken by gravity. Figure 19 shows the
frequencies of modes with free CLs and o = 90° as a function of Bo for fixed polar
wavenumbers (k = 2, 3,4, 5). For Bo = 0, the modes with the same k have the same
frequency, reflecting the spectral degeneracy just described. As Bo increases, the splitting
of frequencies occurs in a way that leads to lower frequencies for a higher azimuthal
wavenumber /. Consequently, the spectral degeneracy described by (5.6) is broken by
gravity.

5.3. Lowest mode

The lowest mode is that with the lowest non-zero frequency of all modes, which is
generally the dominant mode and is more likely to be excited. For free CLs, the lowest
mode of a sessile drop with o > 90° in the absence of gravity (i.e. Bo = 0) is the zonal
mode {2, 0}, while the lowest mode of a drop with & < 90° is the sectoral mode {1, 2},
as shown in figure 20(a). As Bo increases, the lowest mode of a drop with o > 90°
gradually changes from mode {2, 0} to {1, 2} (figure 20b). This is because, for « > 90°,
the frequencies of sectoral modes decrease under gravity, while the frequencies of zonal
modes increase. As a result, the lowest mode becomes the sectoral mode {1, 2} at Bo = 2
(figure 20c). Note that the mode {1, 1} with a free CL cannot be the lowest mode due to
its zero frequency (§ 5.1). However, for pinned CLs, the mode {1, 1} that has a non-zero
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Figure 19. Breaking of the spectral degeneracy for modes with free CLs and o« = 90°: frequency A, ; versus
the Bond number Bo for fixed polar wavenumber (a) k = 2, (b) k = 3, (¢) k = 4 and (d) k = 5, where the layer
number n is determined by (3.20). The dots indicate the spectral degeneracy at Bo = 0 (see also figure 2 in
Bostwick & Steen 2014), where the frequency is given by 22 =kk—1)(k+2).
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Figure 20. The lowest mode with a free CL for Bo = 0, 1, 2. In (a) the lowest mode in the absence of gravity
is {1, 2} for o < 90° and {2, 0} for @ > 90°. In (b,c) the lowest mode (red line) gradually changes from {2, 0}
to {1, 2} for @ > 90°.

frequency is always the lowest mode, even if its frequency increases significantly under
gravity at large contact angles (see figure 8f).

In experiments, the CL in the non-axisymmetric oscillations of large drops (Bo > 1) is
usually movable (see e.g. Noblin et al. 2004). Therefore, from the above conclusions we
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can see that, for large drops, the lowest mode is usually the non-axisymmetric mode {1, 2},
which means that large drops may be more prone to non-axisymmetric oscillations than
small drops.

6. Summary and conclusions

We have investigated the natural oscillations of sessile drops on a plane under gravity. In
the linear inviscid limit, the oscillation problem is reduced to the functional eigenvalue
problem (2.14) by the normal-mode decomposition. Due to the limitations of theoretical
models on the drop shape, we have developed an axiBEM model to numerically solve
(2.14), in which both the free and pinned CL conditions are considered. It should be
noted that even though our model uses the axiBEM formulation, non-axisymmetric
oscillations can be considered through the normal-mode decomposition (2.13). The model
is independent of the drop geometry and can be easily extended to drops of arbitrary shape.
It has been validated against analytical results, and was shown to achieve the second-order
convergence with mesh refinement. The excellent agreement of the inviscid predictions
with the experiments of Noblin ef al. (2004) in a terrestrial gravity environment further
confirms the accuracy of our model.

There have been various axiBEM models developed to determine the vibrational
characteristics of axisymmetric liquid surfaces (Siekmann & Schilling 1989; Ebrahimian
et al. 2013, 2015, and references given therein). Most of these axiBEM models are
designed for modal analysis of liquid sloshing inside a vessel and, therefore, usually
consider flat liquid surfaces. Compared with Siekmann & Schilling (1989) using the
indirect formulation of axiBEM, our model uses the more intuitive direct formulation in
Ebrahimian ez al. (2013, 2015) for the purpose of one-dimensional reduction. To extend
to drops with curved surfaces, the free-surface governing equation together with the
Young-Laplace equation in our model is solved in curvilinear coordinates and the free
CL condition for non-90° contact angles is considered. Besides, the volume constraint is
included in our model to eliminate the non-physical volume mode {1, 0}. Compared with
the axiBEM models of liquid sloshing, our model allows for curved liquid surfaces.

In the presence of gravity, not only does the drop flatten, but an additional restoring
force is introduced for the oscillations, resulting in the frequency shifts of modes. It was
found that the effects of gravity on frequency are different or even opposite for different
modes. Overall, there are three types of «—Bo diagrams reflecting how gravity shifts the
frequency. For the zonal modes, gravity shifts the frequency downwards at small contact
angles, and upwards when the contact angle exceeds a certain critical value. That is,
there is a longitudinally inclined critical line in the «—Bo diagram (type I, figure 11a).
For most sectoral modes, gravity always shifts the frequency downwards regardless of
o and Bo (type II, figure 11b). For the tesseral modes, both types I and II can occur,
depending on the mode number pair {n, [}. Generally, type I is more likely to occur
for modes with small / and large n and type II is for large / and small n, with more
complex frequency shift diagrams (type T, figure 12) possible in between (see figure 13).
Interestingly, except for the Noether mode {1, 1} with a free CL, gravity always shifts the
frequency downwards as long as the contact angle is small enough. The counter-intuitive
behaviour of the frequency spectrum suggests that the effects of gravity on the oscillations
of drops with small contact angles differ dramatically from those with large contact
angles.

The frequency shifts of the modes due to gravity can lead to some interesting results. For
example, gravity can break the spectral degeneracy of the free semi-drop. This breaking
follows that ‘the larger the /, the lower the frequency’ (figure 19), in contrast to the spectral
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Figure 21. The generatrix (r(s), z(s)) of the free surface parameterized by it arc length s in the Frenet frame
(denoted by the tangent e and normal n unit vectors). The surface of revolution is generated by (r(s), z(s)),
where the unit normal N of the surface is directed outwards.

breaking by the CL pinning (Lyubimov et al. 2006). Similarly, gravity can change the
lowest mode of a drop with a free CL and o > 90° gradually from mode {2, 0} to {1, 2}
(see figure 20). The Noether mode {1, 1} with a free CL is the only mode whose frequency
is not shifted by gravity and is always zero regardless of o and Bo. This finding is verified
numerically by our model and mathematically by the static stability theory. In other words,
our results suggest that the walking drop instability reported by Bostwick & Steen (2014)
does not exist.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2023.252.
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Appendix A. On the sign of the principal curvatures of I

For an axisymmetric drop surface (figure 21), the sign of its principal curvatures can
be arbitrary and depends only on the direction of the unit normal vector N. The mean
curvature is related to the unit normal by (see Weatherburn 1955, p. 225)

2H=-V-N, (A1)

where H = (k1 + k2)/2 is the mean curvature. This definition is also in accordance with
the definition of mean curvature in Do & Manfredo (2016, p. 148). Such a definition gives a
negative mean curvature for a convex surface with the unit normal N pointing outward, as
shown in figure 21. Assuming a zero gas pressure, the Young—Laplace equation is written
as p =V . N = —2H, consistent with the physical nature of the liquid pressure p > O.
We note that this does not violate the positive mean curvature of spherical drops in some
literature (e.g. Finn 1986; Rath 2012), since the difference lies in the definition of mean
curvature (which they define as 2H = V - N).
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In fact, the signed curvature K of the generatrix may also differ in sign from the principal
curvature k; of the surface. In the Frenet frame, the signed curvature K of a plane curve
parameterized by it arc length s is given by the Frenet—Serret formulas (see Do & Manfredo
2016, p. 20)

de dn
— =Kn or — = —Ke. (A2a,b)
ds ds
When the curve is oriented as in figure 21, we have from (A2a,b) that
K =dg/ds <0, (A3)

where S is the inclination angle measured counterclockwise (here B < 0). By the
definition of normal curvature (see Do & Manfredo 2016, p. 143), the principal curvature
ki 1is related to the signed curvature K as

ki = (N -n)K = £K, (A4)

where the upper (lower) sign is taken if N and n are in the same (opposite) direction.
Equation (A4) ensures that the sign of the principal curvature k; does not depend on the
orientation of (r(s), z(s)), even if the signed curvature K changes sign with the change
of variable s — —s. In the derivation of the CL condition in Bostwick & Steen (2014),
the unit normal vectors of the curve and surface are oriented in the same direction as in
figure 21. Therefore, we have k; = df/ds < 0O for the considered configuration (figure 1)
where the surface is convex in the direction of its unit normal N. Specifically, the CL
condition in the appendix of Bostwick & Steen (2014) is correct, with the only exception
that the principal curvature of the liquid surface should be expressed as k; = —sin«
instead of k| = sin .

Appendix B. Equilibrium shapes of sessile drops

The determination of the equilibrium shape (see figure 21) of the drop requires the
numerical integration of the (dimensionless) Young-Laplace equation, which can be
expressed in parametric form (see e.g. Finn 1986), i.e.

dr
% = cos 3,
d
d—Z =sinf,
s (B1)
dg np
— =Bo xz7— ",
ds
dv 5 . 5
— = —7r°sin B,
ds

with initial conditions
r(0) =0, z(0)0=0, B0O)=0, v0) =0, (B2a—d)

where (r(s), z(s)) is a parameterization of the generatrix of the free surface by its arc
length s, the angle S(s) is the inclination angle of the drop surface, which is measured
counterclockwise (in this work, 8 <0), n is a Lagrange multiplier whose value is
unknown a priori and v is the dimensionless drop volume.

Our goal is to find the appropriate value of u such that both the conditions v = 27 /3 and
B = —a (the equilibrium contact-angle condition) at the CL are satisfied. The numerical
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procedure is as follows. First, the system of differential equations (B1) is integrated with
a given Bo, using (B2a—d) and a guessed value of p as initial conditions, until 8 = —« is
satisfied. Second, we obtain a volume v corresponding to the guessed value of w. At this
point, the volume constraint v = 27/3 is generally not satisfied. Third, the value of w is
adjusted by a secant method and this process will be repeated until v = 27/3 is satisfied
to a desired accuracy. Finally, the equilibrium shape I" of the sessile drop is determined.

Appendix C. The derivation of Green’s function G’

By definition in Pozrikidis (2002), the Green’s function of (2.14a) is the unit-impulse
response of the Laplace operator in the r—z plane. Unlike the two- or three-dimensional
case, the unit impulse §, for the Green’s function of (2.14a) is not centred at a point, but
on a circular ring of radius r¢y positioned at z = zg. Thus, §, is the integral of an annular
impulse, given by

1 27
8 = ;S(r — 10)8(z — 20) / cos (lp — lpo) 6(¢ — @o) de
0

= %5(1’—1’0)8(1—20), (CDH

where § is Dirac delta function. Therefore, the Green’s function G’ of (2.14a) by definition
satisfies

19 (3G 3G 12 , 1

——r— — — =G + —-6(r—rg)é(z—z0) = 0. C2

r8r< 8r)+812 r? +r(r r0)3(z — 20) ©2)
We can construct the Green’s function G’ from the three-dimensional ones G3P using
rotational symmetry. The Green’s function G°P of the three-dimensional Laplace’s
equation in cylindrical coordinates is already known, which satisfies

L0 (AGPN 9GP 19GP L st —r)s—z) =0, (C3)
-—\r = —8(p — r—r —z0) =0.
ror or 972 r2 9¢? r g% 0)01z = 20

Multiplying both sides of (C3) by cos(lp — lgg), and then integrating with respect to
@ — o from 0 to 27, we find that

27
G — /0 G3P cos (lp — lgpo) d(¢ — @o)

1 2 cos (lp — lpg)
" 4n

d(¢ — ¢o),

0 \/(z — zO)2 + (rcosg — rocos (p0)2 + (rsing — rp sin (po)2
(C4)

satisfying (C2). This implies that (C4) is the Green’s function of (2.14a). After a simple
but tedious reduction of (C4), we finally arrive at the expression (3.2).

Appendix D. Determination of the coefficients in 4 and B

The matrices 4 and B correspond to finite differences of the derivatives (d¢/dn)” and
(0¢/0n)’, respectively. Using the fourth-order central differences, we can approximate
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Figure 22. Two sets of ghost points (P_1, Py) and (Py+1, Py+2) on ghost elements (located on both sides of
dD/ and marked by dashed lines) are added for applying (a) the axisymmetric axis condition and (b) the CL
condition, respectively.

(0¢p/0n)" and (d¢/0n)’, respectively, as

¢*(P_1)
¢*(Po)
o5 (PD) Lo =30 16 - 6*(P1)
124s ~1 16 —30 16 -1 ¢*(Py)
¢*(PN+1)
¢*(PNn+2)

(Dla)

* (Py)

o*(P_1)
¢*(Po)
@5 (P1) 1 -8 0 8 -1 ¢*(P1)

$*(Py) 1 -8 0 8§ -1 ¢*(Py)
¢*(Pn+1)
¢*(Py+2)

(D1b)
where ¢, ¢¥ and ¢* denote the values of (d¢/dn)”, (3¢ /dn)" and d¢/dn, respectively. It

55
is noted that the points P_1, Pg, Py+1 and Py4> are not in our domain, which are referred
to as ghost points (see figure 22). These points are artificially introduced to implement the
finite difference approximation at the points Py, P, Py—1 and Py.
At the point Q1, the axisymmetric axis condition needs to be imposed, as shown in
figure 22(a). When [ is even, the perturbation d¢/dn is orthogonal to the axis r =0,
while when [ is odd, the perturbation vanishes at » = 0. Therefore, the axisymmetric axis

condition can be written as
¢;(Q1) =0, leven, (D2a)
#*(Q1) =0, [odd. (D2b)

At the point Qny1, there is a free (2.18) or pinned (2.19) CL condition, as shown in
figure 22(b). The CL condition at Qn1 can be rewritten as

&5 (On+1) + X" (Qn+1) =0, free, (D3a)
¢*(Qn+1) =0, pinned. (D3b)
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Using linear interpolation for ¢*(Q1) and ¢*(Qn+1), we have

¢*(Po) + ¢*(P1)

¢*(Q1) = 5 +0(AsY), (Déa)
o0y = TEVETED o) (Dab)
¥ e = TIVETEND | o0 02) (Do)
# (= TEVDETEND) | o002y (Dd)
Similarly, using a second-order central difference for ¢*(Q1) and ¢*(Qy.1), we have
g0y = LEOETED  pa0) (D5a)
si0n = FEDTIED | op0) (DSh)
5oy = LIVETEND o002y (D50)
o7 (Qusr) = 21BN ‘13) AJFS PN L oiasd), (D5d)

Substituting (D4) and (D5) into (D2) and (D3) gives the values of ¢* at the ghost points.
Then, the axisymmetric axis condition (D2a) or (D2b) and the CL condition (D3a) or
(D3b) can be applied by using the corresponding values of ¢* at the ghost points to rewrite
(D1). Finally, the coefficients in A and B are determined.

For example, substituting (D4c¢) and (D5c¢) into the free CL condition (D3a) yields

2 — Asy

m‘? (PN). (D6)

¢*(Pn+1) =

Then substituting (D6) into (Dla), we can determine the undetermined coefficients
(table 1) in A4,

Ch_iny=16—e1, Cyy=—30+ 166y, (D7a,b)
with
2 — Asy
£l = ————. (D8)
2+ Asy
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