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MEAN VALUES OF CHARACTER SUMS
H. L. MONTGOMERY AND R. C. VAUGHAN

1. Introduction. For a non-principal Dirichlet character x modulo g, let
M(x) = maxy | 27 x(n)].

The Pélya-Vingradov inequality asserts that M(x) < ¢'*log ¢; see [7]. In
the opposite direction it is a trivial consequence of Lemma 1 below and
Parseval’s identity that if x is primitive modulo ¢, then

M(x) > ¢"*/mv/2.
We show that on average the latter of these estimates is the more precise.

THEOREM 1. For any real k > 0,

Y M(x)* < 6(9)"

X=X

where the summation s over all non-principal characters modulo q.

THEOREM 2. For any k > 0,

z (% 3

2<pSP N
As an immediate consequence of the above for any fixed £ we have the
following:

2

k
& m(P)P*.

COROLLARY. Suppose that 0 < 0 < 1. Then there 1s a constant C(6) such that
(1) for at least 6¢(q) of the non-principal characters modulo q we have

M(x) = CO)g'"?
and
(1) for at least 0w (P) of the prime numbers not exceeding P we have

N n)
%G
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max
N

2. Lemmata. Our argument uses the Fourier expansion for character sums
which was first given by Pélya [8] and which we state in the following form.
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LEmMA 1. If x is a primative character modulo q, ¢ > 1, then for real u and v
with u < v we have

T o) =0 X xS o L o),

ug<nSoq 0<InSH 2mih
Here 7(x) is the Gaussian sum, and |7(x)| = V/q.

We also require an estimate of Burgess [2] for character sums over short
intervals.

LEMMA 2. Let p be an odd prime number. Then for any real u,v = 1,

> (2
u<nSuto P

In the proof of Theorem 1 we make use of the following well known identity
which is immediate from the orthogonality of characters modulo g.

) L0 p* " log p.

LEMMA 3. Let the a, be arbitrary complex numbers and Y, denote a sum
extended over all characters modulo q. Then, for any M, N > 0 we have

M+N 2 q 2
2 X ax®m| =@ X2 an
X n=M+1 h=1 n=h(mod q)
(h,@)=1

In Lemmas 6 and 9 we establish corresponding estimates for use in the proof
of Theorem 2. In place of Lemmas 4-9 we could simply quote the weaker
Lemmas 10 and 11 of Elliott [3]. However, we prove the stronger results
because of the desirability of having basic tools in as sharp a form as possible.
We begin by extending an estimate of L. K. Hua (see (7) of Bateman and
Chowla [1]).

LeEmMA 4. If x is a non-principal character modulo g and x(—1) = 1, then
2onse (¢ — m)x(n) K g2 min (g, x).

Proof. Suppose first that x is primitive modulo ¢. In Lemma 1 we take
u = 0, integrate with respect to ¢t = vg from 0 to x, and let A tend to infinity.
Then

Donsa (x — m)x(n) = (gr(x)/27%) 251 (x(h)/h?) (1 — cos 2nhx/q)
+ O(x).

Since 1 — cos § << min (1, %) the first expression on the right is

K @ D%, h~tmin (1, hxg~?)
< min (¢32, xq''?).

This deals with the case when x is primitive. When x is imprimitive, suppose
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that x is induced by the primitive character x* modulo 7, so that ¢ = rs. Then

,,Z: w—mn)xn) = 2 (n—2x)x"()
= (nrf)il

Il

2w () m;” ((c/t) — m)x*(m)

t]s

< E t min (1'3/2,%071/2) <« min (qm, xqm).
tls

For the exposition of the following lemmas we introduce the summation
convention ).,/ to denote a sum restricted to quadratic discriminants d,
namely those integers, both positive and negative, that either lie in the residue
class 1 modulo 4 and are square free or are of the form 4D where D = 2 or 3
(mod 4) and D is square free. Associated with each such d is a primitive quad-
ratic character, x;(n) = (d/n), the Kronecker symbol. Note that we include
d = 1 as a quadratic discriminant.

LeEmMMA 5. For arbitrary complex numbers c; we have
Znéx (x — n)| Za<d§D Caxa(n)|?
= (¢%/2) Yicozp le*(@)/d + 0(Locoz leald*?)?).

A similar conclusion also holds when we replace the d with 0 < d < D by those
with —D < d < 0.

Proof. The left hand side is

S = Zt,il,dz Ca,Cay Znér (x - ”)Xd1Xd2 (”)

When dy # ds, xa,x4, is non-principal. Moreover x4,x4,(—1) = 1 since d; and
ds have the same sign. Hence, by Lemma 4,

S= > ]cd|2 ; (x — n) +0(x > chlcd2|d1”2d21/2)

0<dsD sl d1#d2
2
— Z/ |Cd|2(%x2_¢~((i@ +O<x2w(d))) +O(x( Zr lcdldllz) ) )
0<d=D 0<d=D

Clearly the first error term is majorized by the second.

LeEMMA 6. Let the a, be arbitrary complex numbers and write
> o)
Then

1) SKP Pozn n()(Xmlam:))? + (X lan [21/2)?
and consequentially

(2) SK (P + N2) ZséN I'L(S)z(Zm |asm2|)2‘

2

S=

2<p=P
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Proof. For each integer n (# 0) we can write 4n uniquely in the form dr?
where d is a quadratic discriminant. Let

N

Cg = Z Ay
n=1
dn=dr?

We have (n/p) = (d/p) unless p|r. Hence

3) é a(Z) =2 cd(g) + o(i1 \a,,|).

p2in

The error term here is easily estimated in mean square by observing that

> (Nl lan|)2<< mzn lana] Y, 1K (g‘i la,,llogn).

p<P n= ?
ptln 22| (m.n)

For the main term we use Lemma 5. Thus

2
>oald) «r 3ol ( T )
0aZay  \P 0<aZ =iy

<d<4N 0<d=4
2 2
LP 3 #(k)Q(Z Iakrrﬂ]) + (Z lanlnl’z) .
k=N m n

These estimates with (3) give (1). The second bound (2) follows from (1)
by observing that Cauchy’s inequality gives

(2 laalnt2)? = (22, m) (20 [anl®) = N* 206 n(R)? (o lawme])2

LeEMMA 7. Let f be a real-valued arithmetic function and put g(n) = > u, f(k).
Suppose that f(n) = 0 for all n > y and g(n) = 0 for all n. Then for any q we
have

2

P=P

4) 0= ) o g s [
W 0= Zn: n = ¢(q) ; n
(n,q)=1
A special case of this occurs in Hooley [5]. If g(n) =< 0 for all %, then the chain
of inequalities (4) are reversed, as is easily seen by replacing f by —f.

Proof. Let 2 be the set of those integers none of whose prime factors exceed
y,andlet Z(q) = {k: k € D, (k,q¢) = 1}. Then

s o s s L eme)

n n€a(g) " €2 N rin
(n,@)=1

u(m) g(r)
mea(p M  rea( 7

)52
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The left hand inequality in (4) is immediate on taking ¢ = 1. The right hand
one follows on observing that

(m0-3)) 2= (mb-3)) 52

ptq

IIA

and then applying (5) with ¢ = 1.

LEMMA 8. Let the real numbers \,, be such that \,, = 0 whenever m > z. Then
for any q we have

6) > [ka < Z [m n]

m,n
(mn,q)=1

Proof. Let

> Ahe

[m,n]=r

Then Y .1 f(r) = (XCmis Mn)? 2 0. The desired conclusion is then obtained by
appealing to Lemma 7 with y =

LEMMA 9. Suppose that a, (n = 1, ..., N) are arbitrary complex numbers and
P = N2 Then

g‘i a(Z) 2<<P(log2]\—,l')§)-l )y u(s)z(; |am2|)2,

Proof. We show that when P = 4D? we have
' _d_) i ___E_ ’ 2
géb Cq (P < P Z lcdl ,

log L ¢
for then (7) follows in the same way that Lemma 6 was obtained from Lemma
5. Let

(7)

2<psP

(8)

2<p=P

z = (4P/D?)1/3

and for m with 1 < m < zlet \,, be real with \; = 1, while \,, = 0 form > z.
Then (3 nn M)? = 1 whenever n is a prime number greater than z. Hence
the left hand side of (8) is at most
2 2
(E xm) .
mlk

2
S ald)| 2 er-n
By Lemma 6, the first term makes an acceptable contribution to (8). The

0<k=2P

’

25%: 10&aZp  \P
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second term is

P‘IZ Mhe 2, (2P —k)
0<k<2P
[m,n] |k

2

Z' caxa(k)

0<dsD

2P )

0< j<2P /[m,n] ([m, n)

X | >
0<d=D

= P—l Z )\m>\n[my n]

By Lemma 5 this is
d 2 2
B 3 R (g ) ()
(mnd) 1

In the first term we take the sum over d outside, and apply Lemma 8. Thus the
above is

< (P Zm,n (>\m)‘n/|:my n]) + D2( Zm |)\ml)2) Zd/ chlz'

In Selberg’s method it is well-known ([4, pp. 97-103]) that real numbers M\, can
be chosen such that \; = 1, )\, = 0 (m > 2), [A\s] = 1 (m = 2) and

Zm.n A/ [m, n] < 1/log z.
This gives the desired result.

LEMMA 10. Let k be a positive integer and vy be a real number with y = 1.
Then

9) 2% (Xme1 di(m®s) min (371, m~2571))? <&, 3! (log 2y) 442,
Here d; is the k-th division function determined by the relation
2 di(m)n= = ¢(s)".
Proof. Note that di(ab) = di(a)dy (), that
D mer dr(m?) & x (log 2x)F**+5=2)
and that
(10) D i<z di(s)? K x(log 2x)¥—1,
Then the left hand side of (9) is

<<Ic Zx dk(S)Z(Zm dk(mz) min (3’_1, m—2s—l))2
&y (log 29)+=23" dy(s)2s~ min (y~!, s~1)
Ky (log 2y)2e+h=2y—1,

3. Proof of theorem 1. By Hélder’s inequality we see that the assertion
becomes stronger as k increases through real values. Hence it suffices to prove
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the assertion for a sequence of % tending to infinity. We consider integral

k = 2. In the proof we allow implicit constants to depend on k. We shall show
that for ¢ > 1 we have

(11) 2% M(x)* < ¢(g)q*

where >* denotes a sum over the primitive characters modulo ¢. The deduc-
tion of the theorem from this is straightforward. For let x be a character

modulo ¢, let x*, modulo 7, be the primitive character which induces x and let
s = ¢g/r. Then

Dot MO K 210,51 A(g/7) 2 % moar M (%)%
KX ntg dg/r) %7 (r)

L qrog) 2o d()*/s

L ¢ (q).

In order to deal with character sums of varying lengths we use a technique
which is already found in the work of Menchov and Rademacher. Let

& =1{a2"a€Z0<a< 2k
where R is an integer to be chosen later. For a € &/ we write a = 3,7 ¢,277
with e, = ¢,(a) = 0or 1. Let»; = 0,and forr > 1let

v, = v.(a) = 2’2;_1 €n2™™.

Then v, < 27 and the interval (0, «] is a disjoint union of intervals
27", (v, + €)277], 1 =7 < R. Choose N = N(x) so that N =g and
[>¥x(n)| = M(x). Then there is an « € &/ with @ = a(x) and such that
N = ag < N + ¢27%. Hence

(12) MO = | 2nzae x()] + g27%.
We take R = [$(Jog ¢)/log 2]. Thus to prove (11) it suffices to show that
(13) 2% | 2onzag x(m) | K 9(9)g"

(where, of course, o = a(x) is as above).
By Holder’s inequality

| 2onzaa X(m) P = | 2000 20 0 ra<nz or e o rg X (1)
(14) = (22, 772M@=0) (30,725 30, a-rgcnz Grten=g X (1) %).
Now x is primitive, so by Lemma 1
Zv,2_7q<n§(v,+er)2—fq x(n) < ¢'2(| D o<nza x (h)e(hv./2")a (h)]
+ | Zocnzu x(B)e(w,/20a(W)]) + 1 4 gH ' log g,

where

(15) a(h) = a(h,7) = (1/h)(e(h/27) — 1) < min (277, k7).
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Thus, by (14),

Do I Dz x ()P X D0 (g D o<nsa x (e (hor /27)a (B) |2
+ 1+ (¢H " log ¢)*).
The last two terms contribute
K ¢(Q)R* (1 + (¢H ' log q)*).

This is acceptable provided that H = ¢*(log q)®.

In order to obviate the dependence of v, on x we sum over all possible ». We
make no further use of the x being primitive so we also permit x to run over all
characters modulo ¢. Therefore, to establish (13) it suffices to show that

r

k

1) T % T M T x®ebze®)| < o).

We now write

(17)  (Xocnsa x(W)e(w2-a (k)" = 3 peur x(R)b(R),
where, by (15),
(18) b(h) = bp(h;r, v) L dip(h) min (27%7, h~1).
Thus, by Lemma 3,
2o | 2oz x (b (W)[? K dg) 2ohaal 2o di(h + mq)
X min (277, (b + mg)=)]%.

For m = ¢* we have d;(h + mq) < ¢¢. On considering separately the cases
m = 0 and m > 0 we obtain

2o | 2wz x (Wb (B2 < $(q) iy di(h)? min (2727, /~2)
+ o(g) Dofor (gie 24 1/m)?
<< ¢(q)2—kr 7k2—1 + q36

in view of (10). We have assumed that £ = 2 and we have chosen R so that
2% > ¢1/2, Thus the left hand side of (16) is

K R ($(g)27 L - gie)
K ¢(q) + q*<2"
K ¢(q)

as required.
4. Proof of theorem 2. We proceed as in the proof of Theorem 1, but we

require several new ideas to compensate for the weakness of Lemma 6. We
define & as before. Then, for a given N = N(p) there is an a = a(p) such

https://doi.org/10.4153/CJM-1979-053-2 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1979-053-2

484 H. L. MONTGOMERY AND R. C. VAUGHAN
that N < ap < N + p2=F, Thus

@)=zl +,2 )

By Lemma 2 the last term is << p11/162=3% Jog p. If R is chosen so that

max
N

P38(log P)? < 27 < 2P3/3(log P)2,

then this is << p'”? whenever p < P. Thus it suffices to show that for « ¢ &7,
a = a(p) we have

=

P=P
As in the proof of Theorem 1 we define v, = v,(p), ¢, = €,(p), and appeal to
Lemma 1 with H = P'2 (log P)* Corresponding to (16) we now have to

2

k
& w(P)P".

show that
B 271 I T 2%
19) > 23> (-—)e(—;)a(h) L w(P).
2<p=P =1 y=0 0<hsH p 2

Here a(h) = a(h, r) is given by (15), and we note the trivial bound

©0) 3 (h> (é’;’)a(k) < 3 Ki<log P.
0<nsH =

P 0<ngn

In (19) we first consider the contribution from those & which are relatively
large, say H(r) < h £ H, where H(r) is to be defined. We apply (20) to
2k — 2 of the 2k factors. Hence this range of % contributes to (19) an amount

H(r)%gu (g) ¢ (;2:) a(h)

By (2) of Lemma 6 we see that the sum over p is
K (P + H?) D oen (2omosm>an la(sm?)])?
K H2Y (Do amrsn STim2)2

By Lemma 10 with y = H(r), &k = 1, this is
< H?*H (r)"‘log H
K H(r)~'P (log P)".

We take

(22) H(r) = 27 (log P)%+7.

2’1 2

21) « (log P)** ZRZ

=1 v=0 2<p=P

Then the expression in (21) is < 7 (P).

When & < H(r) we distinguish two cases, 7 < R;and R; < r £ R where R;
is chosen below. We first of all consider the contribution to (19) when» = R,
and & £ H(r). Clearly (17) holds with H replaced by H(r), x(k) by (h/p), and

https://doi.org/10.4153/CJM-1979-053-2 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1979-053-2

CHARACTER SUMS 485

then (18) holds. If, say,
(23) H(r)k £ P13,
Then by (18) and Lemma 9 we have

o BelB)aon”
< 7(P) g (

2<p=P
© 2

dy(sm®) min (27%", s‘lm"z)) .
m=1

By Lemma 10 this is
KL (P)2-kry2hitk—2,
Summing over » and 7 we obtain a total contribution in this case of an amount

L w(P) to (19) (since k = 2). We determine R; so that H(r), defined by (22),
satisfies (23) whenever » < R;. The choice

(24) Ry = [(1/4k)(log P)/log 2]

suffices.
We finally consider the terms in (19) with & < H(r), Ry < r < R. We apply
(20) to 2k — 4 of the 2k factors. Thus we have to show that

0<h§ZH(7) (g) ¢ (g;) a(h)

We now make use of the cancellation produced by the factor e(hv2-7) as »
varies. Multiplying out the fourth power and taking the sum over v inside,
we find that

r

2°—1 4
(25) (log P)** 3 <L 7 (P).

R1<r=R 2<ps=P »v=0

r

I BB =2 5

22—1

" 2
v=0

’

> (ﬁ)C(h; 7, t)
0<nSH(N? \P

C(h; 7, t) = th,hz (Z’(hl)a(h?)r

where the sum is constrained by the conditions

hi, he < H(r); hihe = by by + by = t (mod 27).

Then, by (1),
e
o<n§ZH<r> (P “\o7 a )

2"—1 4
T

2<p=P v=0
2

<<2’Pz_: > lelhyr, e, t)]

hh'
w=0

2" 2
+27 3 ( 2 lc<h;r,t)lh”2> =Ti+ T,

t=1 \OKKSH(r)?
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say. In T'; we observe that

21;1 Zhh'=[] le(h;r, t)e(h'sr, 1)] < Ehlh2h3h4=lj la(hi) ... a(hy)|
< Zx (Zm d(m?s) min (2727, m—2s71))2,
By Lemma 10 this is << 272778, Thus

(26) T, << P2-"7%.

As for T, we have

Zo<zz§11(r)2 {C(h; 7, t)lh% < ZO<M§H(T) b2 E homt 2,

where in the sum over %, we have
0<hy < H(r)and hy =t — hy (mod 27).

Since H(r) = 27, the inner sum is << H(r)1/22=". Thus the above is < H(r)2~",
whence

(27) T, << H(r)
To establish (25) we note that by (22), (24), (26) and (27),

(log P)# =4 3> p crzn(Ty + T3) K P(log P)¥=4 > op, 27778
+ (lOg P)12k+10 22R << W(P)

The principal difficulty in this proof is to give a satisfactory estimate for 71%.
In fact there are two other ways in which one might proceed. A. I. Vinogradov
[9] has sharpened Lemma 2 in such a way that we could take 2% to be about
Pt/4te in size. Then we could dispense with the cancellation produced by
e(hw2-7), and replace (27) by the more immediate estimate 73 << 27H (r)?
X (log P)*. Alternatively, instead of appealing to Lemma 6 we could use the
more complicated bound of Jutila [6, Lemma 3]. This would give 75 <
P12+ which is acceptable.
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