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Abstract

All such nonabelian finite p-groups are classified. They coincide with the class of nonabelian
finite p-subgroups of GL (p, F), where F is a field, not of characteristic p, which contains all p power
roots of 1, or again with the class of all nonabelian finite subgroups of Zp'wrZp. Various
automorphism groups associated to them and their representations are calculated. Two such
subgroups of GL (p, F) are conjugate as subgroups of GL (p, F) iff they are isomorphic.

Introduction

Let G be a nonabelian finite p-group with an abelian maximal subgroup M
and cyclic center. As G has cyclic center, it has faithful irreducible representa-
tions. As G has an abelian maximal subgroup, these must have degree p. Hence
G is isomorphic to a subgroup of GL (p, F), where F is the complex numbers,
for instance.

If now G is any nonabelian finite p-subgroup of GL{p,F), where F is a
field with all p power roots of 1 and has characteristic not equal to p, this
realization of G is similar to a group of monomial matrices. Let W( = ZP-) be
the p-torsion subgroup of F*(=F-{0}). We identify A = W x • •<">• • x W
with the corresponding group of diagonal matrices in GL (p, F). The permuta-
tional matrices corresponding to the monomial matrices of G can be taken to be
powers of

(0.1) x =

Thus (wi, • • •, wp)
x = (w2,

P = (A,x) = Zp'wrZp.

0 0 • •• 0 1
1 0 ••• .0 0

0 0 ••• 1 0

vvp, Wi) (w, G W). Then G is a subgroup of
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Finally let G be any nonabelian finite subgroup of P. Then M = G D A is
an abelian maximal subgroup of G. The center Z = Z (P) of P is the set of scalar
elements in A = W(p\ i.e. Z ~ W « Zp~. As G is nonabelian, its center is
G f l Z and so is cyclic. This shows the equivalence of the three classes of
p-groups mentioned in the abstract.

Various methods of attack exist. One can use Szekeres' classification
(Szekeres (1949) and Nazarova, et al. (1972)) of all finite p-groups with an
abelian maximal subgroup. However those with cyclic center can be found more
directly. The author's original approach was to look for minimal nonabelian
p-subgroups of GL{p,F) and construct inductively all p-overgroups of those.
The approach here will be to write down all nonabelian finite subgroups of
P(~ Zp-wrZp). The author is grateful to the referee for pointing out that this
approach is the more economical.

Szekeres' techniques will be used to advantage. His method is to study the
structure of the abelian maximal subgroup M of G as a Z(G/M)-module. This is
carried out in section 1. The extension problem from M to G is resolved in
section 2 and generators and relations given. Orbits of such G under Aut P are
determined. In section 3 the isomorphism problem is resolved. In section 4, it is
shown that the conjugacy classes in GL (p, F) coincide with the isomorphism
classes. Examples and further properties are given in section 5. Section 6 is
devoted to Aut G and in particular to the subgroup SA (G), consisting of those
automorphisms of G realized as similarity transformations in GL (p, F). It is
found that Aut G is the product B • SA of disjoint subgroups, where B
permutes faithfully (and transitively) the different faithful irreducible represen-
tations of G. In section 7 the representations of G are discussed.

The notations of W( = ZP-)SF* and of Z = Z(P), A = Wip), G and
M = G n A considered as subgroups of P, with this last in turn being embedded
in GL (p, F), will hold throughout.

An investigation has also been completed of p-subgroups of classical groups
derived from linear groups of degree p over any field F (perhaps finite), not of
characteristic p.

I wish to thank Dr. John Cannon and Miss Robyn Gallagher of Sydney
University who checked the presentations of these groups on the computer and
also Dr. Gordon Elkington for helpful discussions.

1. Normal subgroups of P lying in A

An element g E G - M has form g = x"m (0< n < p, m G M) and acts on
M just as x" does. Set X = (x). To obtain all possibilities for the abelian
maximal subgroup M = G n A of G, we look at finite X-modules (Z(X)-
modules) M lying in A or equivalently finite normal subgroups M of P,
contained in A.
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[3] p-groups 223

We distinguish two X-submodules of A: Z = Z (P) and V =
{(w,, • • •, wp)£ A | n w,, = 1}. Clearly A = YYZ, with the subgroup of Z of
order p being amalgamated.

In the group algebra Z(X), write

<f> = x - l a n d Tj- = l + x + ••• + x " ' 1 ;

we regard (j> and IT as abelian group endomorphisms of A. As xp = 1, we have
<J)TT = 7T0 = 1. From the corresponding polynomial identity in x we have that

Thus for a in A we have:

(1.1) f OH[fl,l]

and TT: a " a^o,*]®- • • [a,x, • •(p"1)- ;x]V>.

LEMMA 1.2. If y E Y, then 3y' £ Y such tfzaf y = y '*, Thus Y = P'. Y, Z
and A ={Y,Z) are characteristic in P and any automorphism of P sends an
X-submodule M of A to another X-submodule of A.

PROOF. Suppose y = (w,, • • •, wp)E Y and so Ilw, = 1. Set y' =
(1, w,, H>,W2, • • •, w, • • • Wp̂ i) and then y '* = y. The rest is immediate. Q.E.D.

LEMMA 1.3. Z = ker<f> = im w and Y = ker-n = im <f>.

PROOF The following inclusions are clear:

im n ^ ker<j> g Z and Y § im <f> S ker TT.

As Z( = Zp-) is divisible and z" = zp for z in Z, we have Z S imTr.
Take a £ kerir and so a • a' • • • a1""' = 1. If a = (w,, •• •, wp), x permutes

cyclically the coordinates and so each coordinate of a • a' • • • a""' is IIwt, i.e.
a <E Y. Thus kerTT^Y. Q.E.D.

LEMMA 1.4. If a in A has order p", then a*"""*' = a""*' = 1. (See Szekeres
(1949), Theorem 1.)

PROOF. If a £ A, let (a)x be the X-submodule of A generated by a. Take y
in Y and so y" = 1. From 1.1, y*p~'G (yp)x. By induction on /, we get that
y*1(P"£(y"')x. If a in A has order pn, so a* £ Y and a*"""*' £ ((a"")*)x =(1).
Also a" E Z and a" has order at most p". Then a""*' = (a")"" = (a")p" = 1.

Q.E.D.

LEMMA 1.5. For each n g l , Yn = Y C\ ker<f>" (Zn = Z D ker-rr") is an
X-submodule of Y (of Z) and is generated as an X-module by any element
yEY(zEZ) satisfying y*" = 1 and y*"" ^ 1 (z"" = 1 and z""~V 1). A/so
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^» I = P" (I Zn | = p") . These are the only X-submodules of Y (of Z ) and are
characteristic in P.

PROOF. For z in Z, we have z77 = zp and so the statements for Zn follow
immediately.

Clearly Yn is an X-submodule. Take y in Y satisfying y*" = 1 and y *" ' / 1
and so Yn g (y)x. We proceed by induction on n. For n = 1, Y, coincides with
the central subgroup of order p.

By induction we have | Yn_, | = p""1 and Yn_, = (y*)x. Take y' in Yn. Then
y '* = (y * ) " " ' ' ' ' (y*" ')m"' for some integers m( satisfying 0 =s m, < p. Set y" =
ym|---(y*""2)m"1(y')"1 and we have that y"G Y, = Y D ker<f> = (y)x. Thus
y 'G(y ) x . Thus Yn = <y)x. Now y" = 1, y* G Yn_, and yp G Yn_, by 1.1. Hence
| Yn | = p". This rest is immediate. Q.E.D.

L E M M A 1.6. Suppose n = r(p — l)+s, where r g O and l^sSp — 1. If
y G Yn - Yn ,, then y has order p ' * \ As an abelian group, Yn has at most
p - 1 generators, viz. Yn = (y, y * , • • • , y*"~2), and is of type

PROOF. Take y in Yn - Yn_, and so y" = 1. From the second relation in 1.1,
using induction on n, we have that y~p = y*F ' ^ 0 mod Yn_p, i.e.
yp G Y_ p+1 - Yn_p and so y has order p'*\ Also Yn is generated by

If n=p-l, then Yn is elementary abelian of order p", generated by
y, y *,•••, y*" '. If n > p - 1, then we show that y, • • •, y*"~2 are independent.
For this it suffices to show that they are independent modulo Yn_p+1. A nontrivial
relation, modulo Yn p+1, would be transformed by 4>n~p+1 to one in Yp_,, which is
impossible as this last is elementary abelian of order pp~' and is generated by the
i m a g e s y * " ~'*\ • • • , y + " ~ \ Q.E.D.

LEMMA 1.7. If a = xsy ( 0 < s < p, y G Y), then 3 y ' e Y such that ar = x'.

Also a has order p.

PROOF. Choose r ( 0 < r < p ) such that a' = xy" (y"G Y). If y" =
yT" • • • yi"1, set y' = yT+i • • • y™1 and then (a')y = x. Thus ay = x' and a has
order p, as x has. Q.E.D.

We now have X-submodules Au = (Yk,Z,) (k g 1, / g 1) of A of order
pk+i-i (Akl=Yk, Au = Z,) which are characteristic in P. Choose 1 ^ yi =
Z\ G Y\ = Zx. For each 1 = 1, choose zt in Z( — Z,-, such that zp = z,-t. For each
k g 1, use 1.2 to choose yk in Yk - Yk_, such that y* = yk_i. Write yk = z, = 1 if
k, I = 0.

PROPOSITION 1.8. The only finite X-submodules of A are the Ak, (k = 1,
/ g 1) and Aklm = (Ak.ul, yim)) (0< m < p, k =2, 1 = 1), where yim)= ykz?+l.
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PROOF. Let M be a finite X-submodule of A not equal to any Akl. It is
immediate that Afg Y, = Z,. Choose integers k and / maximal such that
Yk-t § M and Z, ̂  M. Suppose m = y,"'- •• .yT1 • z.""- • • z"*G M - Y- Z, where
0 ̂  m,, n, < p and m,^0/ n,. Then m" = z"'.., • • • z"2 E Z, and m* =
y ' V y ^ G V i - i and so r S fe and s S/ . Modulo A*-,,, (= <Yk-,,Z,», it
suffices to look at elements y[m) = ykzT+\ (0< m < p ) in M. However both yk and
z,&. M and so m is uniquely determined and M = (y{m),Ak,i) = AUm of order
p*+|- ' . Q.E.D.

At,m is annihilated by vk'1 - m'<f>' (0< m,m' < p) iff m = m' and so Ak,,
and the Aklm (0<m < p) are not isomorphic as X-modules. Take ip = i/»(n) in
Aut X given by x *+x" ( 0 < n < p ) . An additive map 0: M •-» M' between
X-modules is an t(i-homomorphism if (m*)9 = (m8)** (m G M).

LEMMA 1.9. Take 4> = iA(n) m Awl X. ( a ) An is not ty-isomorphic to any

Aklm (0 < m < p). (b) IfAklm is >p-isomorphic to Ak/m-, then m' = mnk~' mod p.

PROOF. <{>' = <t>* = (x - 1)* = x" - 1 = (x - l ) ( x " " ' + • • • + 1) = 4>x, say. By

choosing n' such that nn ' = l m o d p , we see that <f> = <])'x'. Also IT'= IT* =

(1 + • •• + x""')* = 1 + • • • + x"~l = jr. Hence an ^- isomorphism induces t/f-

isomorphisms from ker<f> to fcer^>' and from kern to kerv'. For Ati, we have

fcer<£ = Z, and /cerTr = Yk. This proves (a), as Ak,m = (y[m\ A k _ 1 ( ) .

Now let 6:Akim—>Aklm be an i/»-isomorphism and so 6 induces an

i/f-isomorphism Ak_,,, - * Ak_,,,. Suppose (yi"1')" = (yk"1')*modAt_,,,. Then y° =

[y{m\ x, • • (k-'>• •, x]° = [(y[my,xn, • • ( * - '>• • ,*" ] = y ! " " ' As (yT*)"' =

(y tzr+ . )" ' = *7 = y7, so (yT) 9 = ( (y i" 0 ) ' ) " ' = y T ' . As y, has order p, so m ' ^
mnk~'modp. Q.E.D.

Such (/^-isomorphisms between the Aktm will be given in the next section.

2. Construction of groups G and abstract presentations

We have determined the X-module structure of the maximal subgroup
M = G fl A of G. Although the extension problem is easy to resolve, instead we
put each G into a standard form by elementary automorphisms of P.

(2.1) Regard P= WwrX as embedded in Wwr 2P g GL (p, F), with Sp

being realized by permutation matrices (Ep is the symmetric group). The element
x is realized by the p-cycle permutation (12 • • • p) (see (0.1)). For 0 < n < p, let
K (n) be the permutation (matrix) leaving invariant the symbol 1 and satisfying

x«(n)_ %n T h e n ^ K{n))= NYp((x)) and this has order p(p - 1).
PROPOSITION 2.2 Given a nonabelian finite subgroup G of P, there exist an

element a in A and an integer n with 0 < n < p such that ( C ) " w is one of the
following groups:
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Pkto = <x, Akl>, Pk(m = (x, Aklm) or Pklp = (x',Akl), where fc g 2, / g 1, 0< m < p
and x' = xz,+1. Each of these groups has order pk*'. The automorphism K (n) of P
permutes the Pklm ( 0 < m < p ) , changing Pklm to Pklm- with m' = mnk'J modp.
Apart from this last, the orbit of G under AutP contains exactly one Pklm

(O^m § p ) .

PROOF. Suppose first that M = G fl A = Akl. There exists g in G - Ak, of
form g = xyz (y G Y, z £ Z). By 1.7, 3y' in Y such that g' = gy = xz. Let
z = 2^'---z? (Ogn, <p). Then g'p = z ^ • • • z"2e Ak, and so q g / + 1. Mod-
ulo Akl, one can assume that g' = xzT+i (Q= n < p). If n = 0, then G' = Gyl =
Puo. If n >0, then (g')K(n) = (xz,+1)

n = (x')n (x' = xz,+1) and so (G'Y^=Pklp. In
this latter case, every element in G - M has order p'+1 by 1.7.

Suppose G Pi A = Akim (0 < m < p). As above, the form of an element g in
G - Ak,m can be assumed to be g = xzT+i ( 0 § n < p). As yi"1' = ykz™ i G Ann, g
can be written g = xyk (mod Aklm) for some s. Then gy{*' = x and GyJ+1 = Pktm.
The remainder follows from 1.9. Q.E.D.

COROLLARY 2.3. There exist elements of order p in Pkl0 ~ Akl. Every element in
Pkip- Ak, has order p'*\

PROPOSITION 2.4. We have the following abstract presentations for k g 2,
/ g 1 and 0< m <p:

Pkio = (x, y , , • • •, yk, z, | x p = 1, z, central, zf'~' = y i ,<y . , • • •, yk) abelian,

[y,,x] = y > - , ( 2 S / g fc), yl = y<f>. • • y l ? ^ , = 1).

P k l m = ( x , y i , - - - , y (
k

m ) , z, I a s in Pklo except that y(
k

m)" =

Pup = <x', y u • • •, yk, z, | as in Pklo, except that x'p = z,).

PROOF. The necessity of these relations follows from their realizations in P.
The sufficiency follows if the order of these groups is pk+l. This is shown by
induction on k for Pk u, and follows for Pkm, as Pkl0 ~ Pk io Y Zp'. In Pk/m and Pklp,
the element z( is central and so by adding a central element z,+i such that
zf+i = z, the order is increased by p. The extended groups are readily seen to be
isomorphic to Pk,J+i,0 of order pk+l+\ Q.E.D.

COROLLARY 2.5 Pklm Y Zp<*> ~ Pk,,+1,0 (Ogm gp) .

In the above presentations the last relation may be replaced by (ykx~')p = 1
in Pklo, by (y[m)x'ly = z"\ in Pklm and by (y* (x')"1)" = z7' in Pk(p.

When necessary, the relevant prime p will be included as a fourth suffix:
£klmp.
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3. Isomorphic classes

(3.1) P2IO (7^2102) has the following automorphism:

p>2 : u>:x » y2,y2>-> x~\ z, <-> z,.

p = 2, I g 2: (o: x >-» y2zf "2, y21-» xzf ~\ z, i-» z,.

Also the element y3 acts by conjugation.

(3.2) The P2lm (0<m <p) and P2lp lie in P2,,+i,0. Choose m' (0< m'< p)
such that mm' = 1 modp. Then the composite automorphism o> • yT • w • yT' of
P2.i+i,o induces an isomorphism P2lp —» P2,m, except when p = 2 and / = 1. In this
last case, the automorphism o> • y3 • w of P2202 induces an isomorphism
P 2 I O 2 * ' 2 1 1 2 -

The above isomorphisms arise as such a group G has more than the one
maximal abelian subgroup M = G D A. As A is characteristic in P, these
isomorphisms cannot be induced by elements of AutP. (They will be realized as
similarity transformations in GL (p, F) in section 4.)

PROPOSITION 3.3. A nonabelian finite subgroup G of P(~ Zp~wrZp) is
isomorphic to one of the following groups:

Pkio, Pk,P (k g 2, / i? 1) or Pklm (k g 3, / g 1,0 < m < p).

These are nonisomorphic except that Pklm = Pkim' (0 < m, m' < p) whenever m' =
mnkl modp, for some integer n. Thus the number of such groups of order pk+l and
center of order p' is (k - 1, p - 1) + 2 if k ^ 3 and 2 if k = 2.

PROOF. From the isomorphisms of 3.2, there are at most two nonisomorphic
groups amongst the P2tm (0Sim Sip). If p is odd, then P2W has exponent
p(P2w2 ~ Ds). As P2IO ~ P210 YZp' (2.5), so P2IO (7* P2102) has exponent p'. On
the other hand P2lp has exponent p'+1 (2.3) (P2122 ~ C?s)- Hence P2l0 ^ P2tp.

If Pklm has two abelian maximal subgroups, their intersection is a central
subgroup of index p2. As. the index of the center of Pktm is pk, we have that for
fcS3 each Pklm has a unique abelian maximal subgroup (Akt or Aklm). An
isomorphism between the Pklm would induce a corresponding ^-isomorphism
between the Ak, or Akim. From 1.9, neither Pk(<, or Pkip is isomorphic to any Pklm

[0 < m < p ) and from 2.2 Pktm ~ Pktm^ iff m' = mnk~' modp for some integer n.
By 2 . 3 , Pklo ¥> PUp. Q.E.D.

COROLLARY 3.4 77ie groups of 3.3 are </je on/y nonabelian finite p-subgroups
of GL (p, F) and form a complete list of nonabelian p-groups with cyclic center
and with an abelian maximal subgroup.
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4. Conjugacy classes in GL (p, F)

LEMMA 4.1. The automorphism a> of P2io ( ^ P2io2), defined in 3.1, is realiz-
able as\a similarity transformation in GL(p,F).

PROOF. If p >2, w sends x •-» y2, yi*-> x~\ z, >-> z,. Suppose y, = (w, • • •, w)
and y2 = (1, w, • ••, wpl), where w in W has order p. Write t = t(w) =
(w(1 1K| ") for the pXp van der Monde matrix. Then f"1 = (1/p)-f (w"1),
fxr"1 = y2, and / y 2 r ' = x~ \

When p = 2, / g 2, and y2 = (w, w 1 ) and z2 = (w, w), where w is an element

(1 — 1 \
) ^'-f'

rgf ' = g - ( g e P 2 l o ) ) . Q.E.D.

PROPOSITION 4.2. Two nonabelian finite p-subgroups of GL (p, F) are conju-
gate iff they are isomorphic.

PROOF In 2.1, we had P = WwrX S Wwrl.p § GL(p,F). Thus /c(n),
action by elements of Y and w are similarity transformations. Composites of
these realized the isomorphism relating the arbitrary G to one of the groups
listed in 3.3. Q.E.D.

COROLLARY 4.3. Given two faithful (irreducible) representations, /x and /1 ' ,
of Pun, in GL (p, F), there exists an automorphism 6 of Pt(m such that fj," is similar
to ix'.

5. Properties and examples

(5.1) For p > 2, P210 has order p3 and exponent p, while P2ip has order p3

and exponent p2. Pt l02 = D2"^, Pkm ~ SD2
k*' (semidihedral) and Pu22 = O2'*1.

(5.2) As already noted, Pklo ~ PMOY ZP'. Also Zp-wrZp ~ P,(p_,)+lt.m, where
m = (— I)'"1 mod p. Pjip is the p-group of order p H 2 which has a cyclic maximal
subgroup and center of index p2.

(5.3) The descending central series of Pum is:

Pklm > Plm, = <yi, • • •, y-c-,) > • • • > <y,, y2) > <y,> > (1),

and so Pkim has class k.

(5.4) PMm has maximal class (k) iff / = 1. The groups Pk{m of maximal class
were classified by Wiman (1946).

(5.5) The homomorphism Pklm —»Pi_u,0 (k g 3), x (or x') •-» x, yk (or y'k
m))

•-» yk-i, z, y* 1, indices an isomorphism PklmIZ(Pklm) ~ Pk..,,,,0. As Pi,m =
(y,, • • •, yk-1), we see that for a fixed k (I and m varying), the Pklm are isoclinic
(to Pk,o, say).
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(5.6) The Frattini subgroups are as follows:

*(P*io)= A* . , , - , ( /S 2) and <&(Pkl0) = Ak_,., = V*-,.

For 0 < m S p ,

229

(5.7) From an analysis of the maximal subgroups of the Pklm we obtain the
following diagram of inclusions to within isomorphism.

Pk+ 1,1,0 Pk+I.l.n Pk+UI,f Pk.l+I.o

"kip

where Icg2 , / § l and 0 < m < p (fc g 3 in Pkim). These inclusions provide an
alternative method for showing that Pklo, Pklm (0<m<p) and Pklp are
nonisomorphic.

6. Automorphism groups

We have the following automorphisms of P:

K (n) (0 < n < p),

y (G Y), acting as an inner automorphism,

xm (0 =i m < p), acting as an inner automorphism,

A (n): x »-» x, yk •-» yk, z, •-» z" (0< n < p),

TJ = TJ ( a 2 , a 3 , • • • ) : x •-» x , yk •-» yk • y"k-2 • • • y""~', z, >-> z, (0 g af < p ) ,

£ = £(pu p2,---):x»x,yk» yk, z, » z, • z*l-t • • • zf1- (0 g /3, < p ) .

The arbitrary element $ of A M / P can be expressed as the composite
£ • TJ • A (n) • xm • y • K («'). Here y is only determined modulo Vi = (y,) S Z(P).
This is shown by composing 0 with K (n) and y to obtain identical action on x,
with xm, A (n) and 17 to obtain identical action on Y and finally with £ to obtain
the identity automorphism.

The same method is used for the Pk(m. Use is made of the characteristic
subgroup $(Pkim) • Z {Pkim) of index p2 and of the abelian maximal subgroup
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whenever it is characteristic. For Pkto (k > 2) and P2w2 we simply use restrictions
of the above automorphisms. For P«m (0 < m < p), K (n) gives an automorphism
iff nkl = \ modp and so these K (n) generate a group of automorphisms which
involves a cyclic group of order (k - l,p - 1).

If G is equal to P2to ( ^ P2102) or P2122, an automorphism 6 may permute the
maximal (abelian) subgroups of G and induces a linear transformation of
G/ (c&(G)Z(G)) . If

6: x » x"yb
2, y2 ^ xcyl mod < t>(G)Z(G),

then (U l (G GL(2,FP)) is called the mafrix of ft Thus y3 has matrix ( ~ J

and w (see 3.1) has matrix I i n ) - Thus y3 and a> generate a group of

automorphisms involving SL (2, Fp) which has order p (p2 — 1). If w,, • • •, wp(p^u

denote automorphisms in (o>, y2) whose matrices are the distinct elements of
SL(2,FP), then the arbitrary automorphism 0 can be expressed as above with
the a»/ replacing the « (n) .

The groups Pklp ( / P2122) do not admit the K (n) as automorphisms. Also the
automorphism A (n) must be varied to A'(n): x'-*{x')", yk —» yl!2"(0< n < p).

(6.1) The A (n) (or A'(n')), 17 and £ generate a subgroup B = B (Pklm) of
AMf(Pt(m) of order (p - l)pk+l~3. The * (n ) (or «>,), yk+, and inner automor-
phisms generate a group C(Pktm)of similarity automorphisms. Also AMr(Pklm) =
B (Pklm) • C(Pk,m) and the order of A«f(Pklm) can be calculated exactly. In
particular \Aut(Pklm): C(Pklm)\ = (p-l)pk+'~3/\ B (1 C .

PROPOSITION 6.2. Pktm has (p — l)pk+l~3 faithful irreducible representations in
GL (p, F).

PROOF. Any representation fj. of G = Pklm of degree p may be written vG,
where v is a linear representation of the abelian maximal subgroup M. Moreover
IX is faithful iff the restriction of v to (y,) = ft,(Z(G)) ( g M) is faithful. Now M
of order pk+l'] has (p - l)pk*'~2 such linear "faithful" representations v. These
fall into orbits of size p under the action of x in G - M and so there are
(p — l)pk+l~1 distinct faithful irreducible representations /u. of G. Q.E.D.

Given a faithful representation ju: G—> G" § GL(p,F), one can look at
the subgroup SA = SA^ (G) of AutG (similarity automorphism group), con-
sisting of those automorphisms realizable by similarity transformations acting on
G*\ By 4.3, SA is determined up to conjugacy in Aut, as ^ varies. SA contains
I A, the inner automorphism group, and we call the quotient SA/IA = OS A,
the outer similarity automorphism group. Henceforth SA and OS A will be
calculated from the natural embeddings G = Pklm S P g GL (p, F).
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Now the group C(Pklm) of 6.1 lies in SA (Pklm). Again by 4.3,
| Aut (PUm): SA (Pum)\ is the number of faithful irreducible representations of
Pklm, i.e. (p - l )p k + l \ by 6.2. So from 6.1 we have:

( p - l ) p k + ' - 3 = | Aut: SA | g \Aut: C\ = (p - l ) p k + ' " 3 / | B n C |,

and so B fl C = (1) and C = SA. Summarizing we have:

PROPOSITION 6.3. Aut {Pklm) = B (Pklm) • SA (Pk,m) with B (Pklm) D SA (Pklm)
= (1). If n is the representation ofPklm afforded by its embedding in GL (p, F), then
the conjugates of fi by elements of B(Pk)m) are the ( p ~ l ) p t + ' 3 faithful
irreducible representations of Pum.

In general neither B or SA is a normal subgroup of Aut.
As | /A | = p \ so |SA | = |OSA | - p \ Also | Aut | = | SA \-,(p - l)pk+'\

We list only the orders of the OSA.

(6.4)

Group

(1)

(2)

(3)

(4)

Pklo

Pklp

Pklm

P 2 ( o

OSA

(kS3)

( r '2122) , P2102

(k^3,0<m<p)

(/P^),P^

OSA

P(P~

P

(*-]

P{P2

-1)

. P - 1 )

- 1 )

metacyclic

cyclic

cyclic

SL(2,FP).

In (1), the subgroup O of order p is unique and | COSA ( 0 ) | = (k,p — l )p.
A p-overgroup of G in GL(p,F) is defined to be any p-subgroup of

GL (p, F), in which G is a maximal subgroup.

PROPOSITION 6.5. (a) Pkim has one p-overgroup isomorphic to PJU+I.O, viz.
Pk.i+i.o /tee//. / / fc g 3 and 0 < m < p, rni's is f/ie on/y p-overgroup of Pktm.
(b) The p-overgroups of Pklo (k ^ 3) [o/P2102] are Pk,,+1,0 and Pk+U,m (0 S m < p)
[are P2202, P3102 and Pun].

(c) T/ie p-overgroups of Pklp ( ^ P2122) are Pt.,+i.o, P k + u , P and (Pl+1,,,m)>"?;2, wnere

0 < m, m' < p and mm' = 1 mod p.
(d) / / fc = 3, fhen PkJm is contained in one subgroup of GL(p, F) isomorphic
Pk+u+1,0 w'z. P)c+u+i,o i/se//.

PROOF, (a) In enlarging the center of Pk)m one must add scalar matrices by
Schur's lemma and this gives Pk,i+,,o. If k g 3 and 0 < m < p, this is the only
possible extension by 6.4 (3).
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(b) and (c): By 6.4 (1) and (2), each of the groups in question has
essentially one outer automorphism 6 of order p and this acts as y^., does. By
Schur's lemma, 0 must have form yk+iz (z E. Z). As z' EZ(Pklm) we can
assume 6 = yk+izT+i (0=m < p), which gives the possibilities listed above.

(d): If k g 3, each p-overgroup of Pklm is contained in Pk+u+i,o- Q.E.D.

Proposition 6.5 shows why the inductive method of construction the Pklm

within GL (p, F), as mentioned in the introduction, is feasible. One obtains the
diagram 5.7 of p-overgroups.

(6.6) Note that NGL (Pkta )/(CGL (Pklm)- Pklm) « OS A (Pklm).

7. Irreducible representations of the Pktm

(7.1) The following construction sets up a one to one correspondence
between the nonequivalent irreducible representations fi of Pku> of degree p
over F and those of Pktm (0< m S p ) , which preserves faithfulness. Choose a
primitive p '+ 1 th root w of 1 in F*. Suppose (z/)*1 = w^I, where / is the unit
matrix and OS n < p'. Write (z,+,Y = w"I to get a representation fi of P u + U .
The corresponding representation of Pklm is given by restriction.

As Pkw ~ PnoYZp' (see 2.5) the problem of degree p representations is
reduced to that of Pkl0. For l g i ^ k — 1, there is only one normal subgroup
(y, , - -- ,y ,) of Pkw of order p1 and PMo/(yi, • • •, yf> = P*-u.o ( 0 S / < k - l )
(Pkw/(y\, • • •, y n ) ~ Zp x Zp). Thus we need only look at faithful irreducible
representations of Pkw.

Suppose fc = r ( p - l ) + s, with r g 0 and l g s ^ p - 1 . The maximal sub-
group Yk of Pkio is generated as an abelian group by elements yk, • • •, yk-P+2 (see
1.6). Let v: yk >-> vu • • •, yk-p+2>-> vp_, be a linear representation of y». As
(yr(P-D+I)P' = y' "', we see that fi = vp"m is faithful iff v, is a primitive pf + 1 th root
of 1. The image vp of yk -p+l is given by

(7.2) V\V---VPE-SVPV=\.

Instead of looking at the orbit of v under the action of x, we look directly at the
matrices JC" and (yk)''. We can assume that x" has form 0.1 and that
(yk)" = diag (au • • •, ap). Then we have that

(7.3) «„ = i / j -s1 ' -vi -^OSfiSp)

and IIan = 1. If/i is faithful, then at least one of the an is a primitive p'+1 th root
of 1. We regard two p-tuples (a,, • • •, ap) equivalent if they are the same under
cyclic permutation (action of x).

Conversely, if a,,--,ap are pr+lth roots of 1, at least one of which is
primitive and with product 1, then the matrices (yt)" = diag (a,, • • •, ap) and x
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generate a subgroup of GL (p, F) isomorphic to Pkw, where k = r (p - 1) + s and
l ^ s S p - 1 . To find the precise value of s, form

(7.4) cr = a (
r ' »

1 ) a ^ 1 ) " - a ! - i r ' ( - 1 ( l g r ^ p ) .

Suppose vs is the last primitive p '+ l th root of 1 in the sequence vu • • •, vp. Then
s < p and s is the value sought above.

For instance if w is a primitive p'+1th root of 1, then x and
diag(w, • • • ,w,wl'p) generate Pr(P-i)+i,i,o in GL(p,F)

O , = w, v2 = • • • = PP-I = l,vp = w~").
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