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Abstract. In this article, we study localizations of hearts of cotorsion pairs (U , V)

where U is rigid on an extriangulated category B. The hearts of such cotorsion pairs are
equivalent to the functor categories over the stable category of U (mod U ). Inspired by
Marsh and Palu (Nagoya Math. J. 225(2017), 64–99), we consider the mutation (in the
sense of Iyama and Yoshino, Invent. Math. 172(1) (2008), 117–168) of U that induces
a cotorsion pair (U ′, V ′). Generally speaking, the hearts of (U , V) and (U ′, V ′) are not
equivalent to each other, but we will give a generalized pseudo-Morita equivalence between
certain localizations of their hearts.

2010 Mathematics Subject Classification. Primary: 16G99, Secondary: 18E99

1. Introduction. When we say localization in this article, we mean Gabriel–Zisman
localization which is introduced in [7]. A well-known example of such localization is the
bounded derived category of a module category; it is a localization of homotopy category
of complexes. An example on triangulated categories is given in [4]. They proved that the
category of finite-dimensional modules over the endomorphism algebra of a rigid object
in a Hom-finite triangulated category is equivalent to the localization of the category with
respect to a certain class of morphisms. More localizations are discussed in [5] and also
in [13].

Exact categories are used widely in representative theory, and according to the well-
known result by Happel, the stable category of a Frobenius category (a special case of
exact category) is triangulated [8]. One may ask if we can investigate the similar kinds
of localizations on exact categories. Since extriangulated category [17] generalizes both
triangulated and exact categories, it is reasonable to study the subject on this more general
structure.

In this article, let k be a field, (B, E, s) be an extriangulated category defined in [17]
(see Section 2 of [17] for details). Any subcategory discussed in this article will be full,
additive, and closed under direct sums and isomorphisms. Let P (resp. I) be the subcate-
gory of projectives (resp. injectives). For a subcategory C, let C⊥1 = {B ∈B | E(C, B) = 0}
and ⊥1C = {B ∈B | E(B, C) = 0}.

We first recall the definition of cotorsion pair and its heart.

DEFINITION 1.1. Let U and V be subcategories of B which are closed under direct
summands. We call (U , V) a cotorsion pair if it satisfies the following conditions:

(a) E(U , V) = 0.
(b) For any object B ∈B, there exist two conflations:

VB � UB � B, B � V B � UB

satisfying UB, UB ∈ U , and VB, V B ∈ V .
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We denote the subcategory of all the objects B such that UB, V B ∈ U ∩ V in the conflations
in (b) by H. We call the ideal quotient H/(U ∩ V) the heart of (U , V). It is an abelian
category by [12, Theorem 3.2].

DEFINITION 1.2. Let B′,B′′ be two subcategories of B, let

Cone(B′,B′′) = {X ∈B | X admits a conflation B′ � B′′ � X , B′ ∈B′, B′′ ∈B′′},
CoCone(B′,B′′) = {X ∈B | X admits a conflation X � B′ � B′′, B′ ∈B′, B′′ ∈B′′}.
When B has enough projectives and injectives, a rigid subcategory C which is con-

travariantly finite and contains P induces a cotorsion pair (C, C⊥1) (see Lemma 2.7
for details); the functor category (see [2]) mod(C/P) is equivalent to the heart of
(C, C⊥1). Let D ⊂ C, when we consider the mutation of C: C ′ = CoCone(D, C) ∩D⊥1

(see [9, Definition 2.5]) that induces a cotorsion pair (C ′, C ′⊥1) where C ′ is also rigid, we
can investigate the relation of two functor categories mod(C/P) and mod(C ′/P) by study-
ing the hearts. We know if C⊥1 = C ′⊥1 , the hearts are equivalent [12, Proposition 3.12]. But
here it is obviously not the case, since C⊥1 = C ′⊥1 implies C = C ′.

Although these hearts (hence the functor categories) are not equivalent in general,
we can consider the localizations of the hearts (for a quick understanding of localization,
one can see [4, Section 3]), since on this level, we can find an equivalence. In this article
(compare with [13]), we choose the language of hearts of cotorsion pairs since it simplifies
some proofs; it also makes arguments simpler when we deal with general subcategories
compared with the ones obtained from objects.

In this article, we will prove the following theorem. Please note that in [16], a similar
result has been proved for triangulated category.

THEOREM 1.3. Let (B, E, s) be an extriangulated category with enough projectives
and enough injectives. Let C, C ′,D be rigid subcategories such that D ⊆ C ∩ C ′. Assume
we have three pairs of cotorsion pairs ((C, C⊥1), (C⊥1 ,M)), ((D,D⊥1), (D⊥1 ,N )),
((C ′, C ′⊥1), (C ′⊥1 ,M′)) such that CoCone(D, C) = CoCone(C ′,D) and Cone(N ,M) =
Cone(M′,N ). Let

(a) H/C be the heart of (C, C⊥1). Denote (H ∩D⊥1)/C by A. Let SA be the class of
epimorphisms in H/C whose kernel belongs to A.

(b) H′/M′ be the heart of (C ′⊥1 ,M′). Denote (H′ ∩D⊥1)/M′ by A′. Let SA′ be the
class of monomorphisms in H′/M′ whose cokernel belongs to A′.

Then we have the following equivalences:

(H/C)SA 	 CoCone(D, C)/C ′ 	 Cone(N ,M)/M	 (H′/M′)SA′

where (H/C)SA is the localization of H/C at SA and (H′/M′)SA′ is the localization of
H′/M′ at SA′ .

Note that condition CoCone(D, C) = CoCone(C ′,D) implies C ′ = CoCone(D, C) ∩
D⊥1 . This result allows us to study the similar mutations as in [13] on exact categories,
where usually we do not have Serre functors. It generalizes the results by Marsh and Palu
(see [13, Theorems 2.9, 3.2]) for the following reason:

REMARK 1.4. Let B be a Krull–Schmidt, k-linear, Hom-finite triangulated category
with suspension functor �. Let C be a rigid object and D is a direct summand of C, we have

C = D ⊕ R. Let C = add C and D = add D, we have the following triangle R∗ → D0
f−→

R → �R∗, where f is a minimal right D-approximation. Let C′ = D ⊕ R∗ and C ′ = add C′,
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we assume C ′ is rigid. By [13, Lemma 2.7], we have CoCone(D, C) = CoCone(C ′,D).
Under the assumptions for B, we have cotorsoin pairs (C, C⊥1), (D,D⊥1), and (C ′, C ′⊥1).
The module category of the endomorphism algebra EndB(C)op (resp. EndB(C′)op) is equiv-
alent to the heart of (C, C⊥1) (resp. (C ′⊥1 ,M′)) (see [12, Proposition 4.15]). Moreover, if B
has a Serre functor S, then we also have cotorsion pairs (C⊥1 , �−2SC), (D⊥1 , �−2SD), and
(C ′⊥1 , �−2SC ′). One can check that Cone(�−2SD, �−2SC) = Cone(�−2SC ′, �−2SD).

In Section 2, we introduce necessary background knowledge of cotorsion pairs and
prove some lemmas which will be used later. In Section 3, we study a localization of
the heart of a cotorsion pair related to the mutation, which is given as (H/C)SA 	
CoCone(D, C)/C ′ in the main theorem. In fact, we show the result in a more general set-
ting; we only need C ′ = CoCone(D, C) ∩D⊥1 without assuming its rigidity. In Section 4,
we prove our main theorem. In Section 5, we discuss some localizations of B related to our
main theorem. In the last section, we give some examples of our theorem.

2. Preliminaries. Throughout this article, let (B, E, s) be an extriangulated category
defined in [17] (see Section 2 of [17] for details). Let P (resp. I) be the subcategory of
projectives (resp. injectives). Let C ⊃D be subcategories of B.

For a subcategory B′, we define �0B′ =B′ and �iB′ for i > 0 inductively by �iB′ =
CoCone(P, �i−1B′). We call �iB′ the i-th syzygy of B′; by this definition, we have P ⊆
�iB′, i > 0. Dually we can define the i-th cosyzygy �iB′.

From Lemma 2.9 and also in the rest of the sections, we will always assume B has
enough projectives and enough injectives.

We first recall the following proposition ([12, Proposition 1.20]), which (also the dual
of it) will be used many times in the article.

PROPOSITION 2.1. Let A
x
� B

y
� C

δ��� be any E-triangle, let f : A → D be any mor-

phism, and let D
d
� E

e
� C

f∗δ��� be any E-triangle realizing f∗δ. Then there is a morphism
g which gives a morphism of E-triangles:

and moreover, the sequence A

(
f
x

)
� D ⊕ B

( d −g )
� E

e∗δ��� becomes an E-triangle.

Although most of the time we will deal with cotorsion pairs, it is still necessary to
introduce the following more general concept used in the proof of our main theorem.

DEFINITION 2.2. A pair of cotorsion pairs ((S, T ), (U , V)) on B is called a twin
cotorsion pair if S ⊆ U .

Remark that any cotorsion pair (U , V) gives a twin cotorsion pair ((U , V), (U , V)).
Thus a cotorsion pair can be regarded as a special case of a twin cotorsion pair, satisfying
S = U and T = V .

REMARK 2.3. For any cotorsion pair (U , V) on B, the following holds:

(a) An object B ∈ U if and only if E(B, V) = 0.
(b) An object B ∈ V if and only if E(U , B) = 0.
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(c) Subcategories U and V are closed under extension.
(d) P ⊆ U and I ⊆ V .

DEFINITION 2.4. For any twin cotorsion pair ((S, T ), (U , V)), put W = T ∩ U .

(a) Subcategory B+ is defined to be the full subcategory of B, consisting of objects B
which admit conflations VB � WB � B where WB ∈W and VB ∈ V .

(b) Subcategory B− is defined to be the full subcategory of B, consisting of objects B
which admit conflations B � W B � SB where W B ∈W and SB ∈ S .

DEFINITION 2.5. Let ((S, T ), (U , V)) be a twin cotorsion pair on B, and write the ideal
quotient of B by W as B =B/W . For any morphism f ∈ HomB(X , Y ), we denote its image
in HomB(X , Y ) by f . For any full additive subcategory B1 of B containing W , similarly
we put B1 =B1/W . This is a full subcategory of B consisting of the same objects as B1.

Let H=B+ ∩B−. Since H⊇W , we obtain a subcategory H⊆B, which we call the
heart of the twin cotorsion pair [15, 16]. It is semi-abelian by [12, Theorem 2.32]. In
particular, the heart of the twin cotorsion pair ((U , V), (U , V)) is the heart of (U , V) [3, 6].

Let B1 ∗B2 = {B ∈B | B admits a conflation B1 � B � B2, B1 ∈B1, B2 ∈B2}, for a
cotorsion pair (U , V) and its heart, according to [12, Theorems 3.2, 3.5, Corollary 3.8],
we have the following theorem.

THEOREM 2.6. Let (U , V) be a cotorsion pair, then its hearts H is abelian. Moreover,
there exists an additive functor H :B →H such that

• H |H = π |H, where π : B →B is the quotient functor;
• for any object X ∈B, H(X ) = 0 if and only if X ∈ add(U ∗ V); and

• for any conflation A �� f �� B
g �� �� C in B, the sequence H(A)

H(f )−−→ H(B)
H(g)−−→ H(C)

is exact in H.

We call H the cohomological functor associated with (U , V) [1, 12].
A subcategory B′ is called contravariantly finite if any object in B admits a right

B′-approximation. Moreover, it is called fully contravariantly finite if any object in B
admits a right B′-approximation which is also a deflation. Dually we can define (faithfully)
covariantly finite subcategory.

LEMMA 2.7. If C is rigid, closed under direct summands, fully contravariantly finite,
and B has enough injectives, then (C, C⊥1) is a cotorsion pair.

Proof. Since B has enough injectives, any object A ∈B admits a conflation
A �� �� I �� �� B where I is injective. Since C is fully contravariantly finite, object

B admits a conflation B1
�� �� C0

f0 �� �� B where f0 is a right C-approximation. The

rigidity of C implies B1 ∈ C⊥1 . We have the following commutative diagram:

where X ∈ C⊥1 . Hence, by definition, the pair (C, C⊥1) is a cotorsion pair.
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The following lemma will be used later.

LEMMA 2.8. Let (U , V) be a cotorsion pair and H be its heart. If we have a short exact

sequence 0 → A
f−→ B

g−→ C → 0 in H, then we have a conflation A′ �� f ′
�� B′ g′

�� �� C
where A′, B′, C ∈H such that its image by applying cohomological functor H is isomorphic

to 0 → A
f−→ B

g−→ C → 0.

Proof. For morphism g, we have the following commutative diagram:

where VC ∈ V and WC ∈W . Then we obtain a conflation

By [12, Lemma 3.1], we have Kg ∈B−; by [12, Lemma 2.10], we have Kg ∈B+. Hence,

Kg ∈H and we get a short exact sequence 0 → Kg
kg−→ B

g−→ C → 0 in H by the dual of [12,
Corollary 3.7, 3.8]. Hence, Kg 	 A in H.

LEMMA 2.9. If we have a cotorsion pair (C, C⊥1), then any object X admits a
commutative diagram:

where T0 ∈ C⊥1 , C0 ∈ C, P0 ∈P , and f0 is a right �C-approximation.

Proof. If we have a cotorsion pair (C, C⊥1), then any object X admits a conflation
X �� �� T0

�� �� C0 where T0 ∈ C⊥1 , C0 ∈ C. Since B has enough projectives, object

T0 admits a conflation Y0
�� y0 �� P0

�� �� T0 where P0 ∈P . Hence, by the axiom of
extriangulated category, we get a commutative diagram:
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which gives rise to a conflation U0
��

( u0
f0

)
�� P0 ⊕ X

( −p0 t )�� �� T0 . Let f : U → X be any mor-

phism such that U admits a conflation U �� u �� P �� �� C where P ∈P and C ∈ C. Then
we get the following commutative diagram:

since E(C, T0) = 0. Object P is projective, hence there is a morphism P

( −a
b

)
−−−→ P0 ⊕ X such

that ( −p0 t )
( −a

b

) = p and a morphism c : P → U0 such that f0c = b. Since ( −p0 t ) (
(

0
f

) −( −au
bu

)
) = 0, there exists a morphism d : U → U0 such that f = f0d + bu = f0(d + cu).

Hence, f0 is a right �C-approximation.

REMARK 2.10. In the lemma above, if E(T0, B) = 0 for an object B, then HomB(g0, B)

is surjective.

LEMMA 2.11. If we have a cotorsion pair (C, C⊥1) where C is rigid, let g : A � B
be a deflation in B such that g is an epimorphism where A, B ∈H, then HomB(X , g) is
surjective in B whenever X ∈ �C.

Proof. Let g : A � B be a deflation in H such that g is an epimorphism. By [12,
Corollary 2.26] g admits the following commutative diagram:

where C0, C1, Cg ∈ C. By Proposition 2.1, we have a conflation

A ��

( a0
g

)
�� C0 ⊕ B

( −c0 h )�� �� Cg . Let f : X → B be any morphism such that X admits a

conflation X �� u �� P �� �� C where P ∈P and C ∈ C, then we get the following
commutative diagram:

since C is rigid. Object P is projective, hence there is a morphism P

( −a
b

)
−−−→ C0 ⊕ B such

that ( −c0 h )
( −a

b

) = p and a morphism c : P → A such that gc = b. Since ( −c0 h ) (
(

0
f

) −( −au
bu

)
) = 0, there exists a morphism d : X → A such that f = gd + bu = g(d + cu). Hence,

HomB(X , g) is surjective.
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3. Localization of hearts.

DEFINITION 3.1. Subcategory C satisfies condition (RCP) if P ⊂ C, C is rigid, con-
travariantly finite, and closed under direct summands.

(“RCP” means rigid cotorsoin pair)
By Lemma 2.7, if C satisfies condition RCP , (C, C⊥1) is a cotorsion pair.
From now on, let D ⊂ C be subcategories satisfying RCP. Let U = �C and V = �D.
Since (C, C⊥1) is a cotorsion pair, we have a subcategory H according to the definition

of the heart such that the heart of (C, C⊥1) is H/C =:H. In this case, H= CoCone(C, C).
Let HD = CoCone(D, C), then U ⊆HD ⊆H.
The following remark is useful.

REMARK 3.2. For any subcategory B1, let B⊥
1 = {B ∈B | HomB/P(B1, B) = 0}. We

have D⊥1 = V⊥, since in the following commutative diagram:

where D ∈D and P ∈P , morphism v factors through an object in P (then it factors through
p because E(D.P) = 0) if and only if E(D, B) = 0.

PROPOSITION 3.3. Any object X admits a conflation Z �� �� Y
f �� �� X where f is

a right HD-approximation and Z ∈D⊥1 . Moreover, morphism x′ : X → X ′ factors through
C⊥1 if x′f factors through C⊥1 .

Proof. By Lemma 2.9, any object X admits the following commutative diagram:

where T0 ∈ C⊥1 , C0 ∈ C, P0 ∈P , and f0 is a right U -approximation. Object Y0 also admits a

conflation Y1
�� g1 �� V1

f1 �� �� Y0 where f1 is a right V-approximation. Object V1 admits a

conflation V1
�� h1 �� P1

�� �� D1 where P1 ∈P1 and D1 ∈D. Thus we have the following
commutative diagram:
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where HomB(U, f ) is surjective for any U ∈ U since f0 is a right U -approximation. We

claim Z �� g �� Y
f �� �� X is the conflation we need.

Since we have the following commutative diagram of conflations:

where P0 ∈P and C0 ∈ C, by Proposition 2.1, we get a conflation

Y ��

( y
p0

)
�� D1 ⊕ P0

�� �� C0 which implies Y ∈HD.

Now we check that Z ∈D⊥1 . It is enough to show Z ∈ V⊥ since D⊥1 = V⊥. Let V be an

object in V that admits a conflation V �� b �� P �� �� D where P ∈P and D ∈D. Let
a : V → Z be any morphism, since D is rigid, morphism za factors through b. We have the
following diagram:

where za = cb. Since P is projective, there exists a morphism d : P → Z such that c = zd.
Hence, z(a − db) = 0 and there exists a morphism e : V → Y0 such that ve = a − db. Since
f1 is a right V-approximation, there exists a morphism h : V → V1 such that f1h = e. We get
vf1h = ph1h = a − db, then a factors through P , which implies Z ∈ V⊥.

Let Y ′ ∈HD, then it admits the following commutative diagram:

where DY ′ ∈D, CY ′ ∈ C, and PY ′ ∈P . Let x : Y ′ → X be a morphism, then we have a
commutative diagram of conflations:

Since Z ∈D⊥1 = V⊥, morphism z′ factor through P . By Remark 2.10, morphism z′ factors
through v′, which implies x factors through f by [17, Corollary 3.5]. Hence, f is a right
HD-approximation.
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Now we show the “moreover” part. Since we have the following commutative diagram
of conflations:

we get a commutative diagram of conflations:

For convenience, we denote the above diagram by

Now assume there is a morphism x′ : X → X ′ such that x′f admits a commutative diagram

where K ∈ C⊥1 , then there exists a morphism n : D′
1 → K such that l = ny′ since

E(C0, K) = 0. Hence, there is a morphism t′ : T0 → X ′ such that x′ = t′t, which implies
x itself factors through C⊥1 .

The following corollary is an immediate consequence of Proposition 3.3.

COROLLARY 3.4. In the proposition above, if X ∈H, then f is an epimorphism in H.

We also have the following useful corollary.

COROLLARY 3.5. Let A ∈HD. A morphism g : A → B factors through D⊥1 only if it
factors through D⊥1 ∩HD.

Proof. If f : A → B in HD factors through an object X ∈D⊥1 , by Proposition 3.3, there

is a conflation Z �� �� Y
f �� �� X where f is a right HD-approximation and Z ∈D⊥1 .

Hence, we have the following commutative diagram:
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where Y ∈D⊥1 since Z ∈D⊥1 .

DEFINITION 3.6. Let H :B →H be the cohomological functor as in Theorem 2.6.
Denote H(D⊥1) by A. Let SA be the class of epimorphisms f whose kernel belong to A.

LEMMA 3.7. We have A= (H ∩D⊥1)/C.

Proof. Since H |H = π |H, the image of H ∩D⊥1 lies in A, hence (H ∩D⊥1)/C ⊆A.
Let B ∈B, it admits a commutative diagram:

where V B, V0 ∈ C⊥1 , and C0,CB ∈ C. Hence, B− ∈B− =H, by definition in [12], we get
H(B) = B−. If B ∈D⊥1 , we get B− ∈D⊥1 . Hence, A= H(D⊥1) ⊆ (H ∩D⊥1)/C.

Now let HD ∩D⊥1 = C ′, we call C ′ the right D-mutation of C. Note that we do not
require C ′ to be rigid in this section.

We have a functor η :HD/D ↪→H/D�H, and let F be composition of functor η and
the localization functor LSA :H→ (H)SA . By definition, we have F(C ′) = 0 in (H)SA .
Hence, we have the following commutative diagram:

where π ′ is the quotient functor. For convenience, we still denote the morphisms in HD/D
by f (where f is the morphism in HD) since f factors through D if and only if it factors
through C. We will show the following theorem, which is a generalization of the first part
of [13, Theorem 3.2].

THEOREM 3.8. The functor F′ :HD/C ′ → (H)SA is an equivalence.

We shall prove it by several steps.

LEMMA 3.9. Category A is closed under taking epimorphisms.
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Proof. Let f : Y → X be an epimorphism in H such that Y ∈D⊥1 ; we show that X ∈
D⊥1 . By [12, Corollary 2.26], we have the following commutative diagram:

where C0, C1, Cf ∈ C. Hence, we get a conflation Y � X ⊕ C0 � Cf which implies X ⊕
C0 ∈D⊥1 . Since D⊥1 is closed under direct summands, we have X ∈D⊥1 .

By similar method, we can show that if f : Y → X is a monomorphism in H such that
X ∈D⊥1 , then Y ∈D⊥1 .

PROPOSITION 3.10. Functor F′ is dense.

Proof. It is enough to show F is dense.

By Proposition 3.3, any object X ∈H admits a conflation Z �� g �� Y
f �� �� X where f is a

right HD-approximation and Z ∈D⊥1 . By Corollary 3.4, morphism f is an epimorphism in

H. By [12, Lemma 3.1], we get Z ∈H. Then we have an exact sequence Z
g−→ Y

f−→ X → 0;
there is an epimorphism from Z to the kernel of f . By Lemma 3.9, the kernel of f is in
D⊥1 . Hence, Y 	 X in (H)SA .

PROPOSITION 3.11. Functor F′ is full.

Proof. It is enough to show F is full.

Consider a morphism α : X1 → Y2 in (H)SA having the form X1
x−→ X2

f
−1

−→ Y2 where

X1, Y2 ∈HD; by definition, we have a short exact sequence 0 → Z2
g−→ Y2

f−→ X2 → 0 in H

where Z2 ∈D⊥1 . By Lemma 2.8, we have a conflation Z′
2
�� g′

�� Y ′
2

f ′
�� �� X2 in H such

that f = f
′
, Y ′

2 = Y2 in H, and its image is isomorphic to the short exact sequence. Hence,

Z′
2 ∈D⊥1 . By Lemma 2.11, morphism f

′
is an epimorphism that implies HomB(U, f ′)

is surjective for any U ∈ U . Since X1 admits a conflation V1
�� u �� U0

�� �� X1 where
U0 ∈ U and V1 ∈ V , we have the following commutative diagram:

where z factors through P . Hence, by Remark 2.10, morphism z factors through u, then
by [17, Corollary 3.5] there is a morphism x′ : X1 → Y ′

2 such that x = f ′x′. Hence, we have

x′ = f
−1

x in (H)SA , which shows F is full.

PROPOSITION 3.12. Functor F′ is faithful.

Proof. Since (D,D⊥1) is also a cotorsion pair, we denote its heart by H0/D and
the associated cohomological functor by H0. Since C⊥1 ⊆D⊥1 and H0(D⊥1) = 0 by [12,
Corollary 3.8], we have the following commutative diagram:
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Now let X , Y ∈HD and Y
f−→ X be a morphism in SA, then we have a conflation

Z′ �� g′
�� Y ′ f ′

�� �� X in H such that f = f
′
, Y ′ = Y in H, and Z′ ∈D⊥1 ∩H. Then

H0(Z′) = 0, which means H0(f ′) is a monomorphism. Moreover, since f
′ = f is an

epimorphism, we have the following commutative diagram:

where C0, C1, Cf ∈ C. Then we get a conflation Y ′ ��

(
f
c

)
�� X ⊕ C0 �� �� Cf . By applying

H0 to this conflation, we get H0(f ′) is an epimorphism. Hence, H0(f ′) = K0(f ) is an iso-
morphism. By the universal property of LSA , there is a functor J : (H)SA →H0/D such
that JLSA = K0.

Now assume we have X , Y ∈HD and u, v ∈ HomB(X , Y ) such that F(u) = F(v),
then H0(u) = K0(u) = JLSA(u) = JF(u) = JF(v) = JLSA(v) = K0(v) = H0(v). Morphism
K0(a) = 0 if and only if a factors through D⊥1 by [12, Proposition 2.22] then u − v factors
though D⊥1 . By Corollary 3.5, it factors through C ′. Hence, π ′(u) = π ′(v + u − v) = π ′(v),
which shows F′ is faithful.

Since F′ is fully faithful and dense, it is an equivalence. Now we finished the proof of
Theorem 3.8.

Let N ⊂M′ be rigid categories such that both M′ and N are covariantly finite, closed
under direct summands, and contain I.

Since (⊥1M′,M′) is a cotorsion pair, denote Cone(M′,M′) by H′, the heart of
(⊥1M′,M′) is H′/M′ =:H′

.
Let H′

N = Cone(M′,N ), H ′ :B →H′
be the associated cohomological functor.

Denote H′
N ∩ ⊥1N by M.

Denote H ′(⊥1N ) by A′. Let SA′ be the class of monomorphisms in H′
whose

cokernels belong to A′.
We have a functor η′ :H′

N /N ↪→H′/N �H′
. Let G be composition of functor η and

the localization functor LSA′ :H′ → (H′
)SA′ . Since H ′(M) ⊆A′, we have G(M) = 0 in

(H′
)SA′ . Hence, we have the following commutative diagram:

where π ′′ is the quotient functor.
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THEOREM 3.13. Functor G′ :H′
N /M→ (H′

)SA′ is an equivalence.

Proof. This is a dual of Theorem 3.8.

4. Pseudo-Morita equivalences. In this section, we prove the main theorem of this
paper. Please note that a similar result for triangulated category has been proved in [16].

THEOREM 4.1. Let (B, E, s) be an extriangulated category with enough projectives
and enough injectives. Assume we have three twin cotorsion pairs ((C, C⊥1), (C⊥1 ,M)),
((D,D⊥1), (D⊥1 ,N )), and ((C ′, C ′⊥1), (C ′⊥1 ,M′)) such that D ⊆ C ∩ C ′, HD :=
CoCone(D, C) = CoCone(C ′,D), and Cone(N ,M) = Cone(M′,N ) =:H′

N . Let

(a) H be the heart of (C, C⊥1). Denote (H ∩D⊥1)/C by A. Let SA be the class of
epimorphisms in H whose kernel belongs to A.

(b) H′
be the heart of (C ′⊥1 ,M′). Denote (H′ ∩D⊥1)/M′ by A′. Let SA′ be the class

of monomorphisms in H′
whose cokernel belongs to A′.

Then we have the following equivalences:

(H)SA 	HD/C ′ 	H′
N /M	 (H′

)SA′ .

Inspired by [13], we call the equivalence (H)SA 	 (H′
)SA′ pseudo-Morita equiva-

lence.

REMARK 4.2. If C, C ′, and D are subcategories satisfying condition RCP and D ⊆
C ∩ C ′, then CoCone(D, C) = CoCone(C ′,D) if and only if C ′ = CoCone(D, C) ∩D⊥1 .

REMARK 4.3. By [12, Propositions 3.12, 4.15], heart H′
is equivalent to the heart of

(C ′, C ′⊥1), which is equivalent to mod(C ′/P). We also have H	 mod(C/P).

According to the previous results, we only need to show HD/C ′ 	H′
N /M.

Since ((C⊥1 ,M), (D⊥1 ,N )) is a twin cotorsion pair, by Definition 2.4, we have a sub-
category B+ associated with this twin cotorsion pair. In fact, B+ =H′

N . By [12, Definition
2.21], the inclusion functor i+ : B+/M=H′

N /M ↪→B/M has a right adjoint functor σ+
such that every object B admits the following commutative diagram:

where UB ∈D⊥1 , VB ∈N , T ∈M, S ∈ C⊥1 , and σ+(B) = B+, and morphism f is a left
H′

N -approximation. Let H ′
0 be the cohomological functor associated with the heart of

(D⊥1 ,N ), then H ′
0(f ) is an isomorphism. We call the conflation B �� f �� B+ �� �� S

a reflection conflation of B. For every object B, we fix a reflection conflation of it. Then
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for any morphism x : B → C, we define σ+(x) as the unique image of the morphism which
makes the following diagram commute (see [12, Definition 2.21]):

By [12, Proposition 2.22], morphism σ+(f ) = 0 if and only if f factors through D⊥1 . Since
C ′ ⊆D⊥1 , we have the following commutative diagram:

where πC′ and πM are quotient functors. Hence, we have a functor K :HD/C ′ ↪→B/C ′ σ+−→
H′

N /M.
On the other hand, since we have a twin cotorsion pair ((D,D⊥1), (C ′, C ′⊥1)), by the defini-
tion, we have a subcategory B− associated with this twin cotorsion pair. By [12, Definition
2.21], the inclusion i− : B−/C ′ =HD/C ′ ↪→B/C ′ has a left adjoint functor σ− such that

every object B admits a conflation V �� �� B− f ′
�� �� B where σ−(B) = B−, V ∈ C ′⊥1 ,

and f is a right HD-approximation; we call this conflation a coreflection conflation of B.
Then dually we have a functor K ′ :H′

N /M→HD/C ′. We will prove that K ′K 	 idHD/C′ ,
and dually we can get KK ′ 	 idH′

N /M, which shows H′
N /M and HD/C ′ are equivalent.

PROPOSITION 4.4. There is a natural isomorphism between functors K ′K and idHD/C′ .

Proof. Let B ∈HD, we have a reflection conflation B �� f �� B+ g �� �� S , and let

V �� �� B′ f ′
�� �� B+ be a coreflection conflation of B+. By the proof of Proposition

3.10, we have LSAH(f ′) : B′ 	−→ H(B+) in (H)SA . Note that K ′K(B) = B′ in HD/C ′.
We have the following commutative diagram:

which induces a conflation �S ��

( s
qS

)
�� B ⊕ PS

( f −p′ )�� �� B+ . Since H ′
0(f ) is an isomorphism,

we have H ′
0(s) = 0, which implies s factors through D⊥1 . Object �S admits a confla-

tion �S � T � D1 where T ∈D⊥1 and D1 ∈D, hence s factors through T . We have the
following commutative diagram in H by applying H :
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It implies g is an epimorphism. Hence, by Lemma 3.9, Ker(H(f )) ∈A. This implies

LSAH(f ) : B
	−→ H(B+) in (H)SA .

Let x : B0 → B1 be a morphism in HD, denote its image in HD/C ′ by x, then we have
the following commutative diagram:

where the image of y in HD/C ′ is K ′K(x). Since LSAH(fi) and LSAH(f ′
i ) are invertible,

i ∈ {0, 1}, by Proposition 3.11, we have isomorphisms bi : Bi → K ′K(Bi) such that F′(bi) =
LSAH(f ′

i )
−1LSAH(fi). Then we have the following commutative diagram in HD/C ′:

Hence, K ′K 	 idHD/C′ .

Dually we can show KK ′ 	 idH′
N /M. Now we finished the proof of Theorem 4.1.

5. More Localizations. Let D ⊂ C be subcategories satisfying (RCP), and let HD ∩
D⊥1 = C ′ (the same as in Section 3).

Let f : Y → X be a morphism in B, then it admits the following commutative
diagram (�):

where PX ∈P and IY ∈ I. Let R̃1 be the class of morphisms f such that there is a com-
mutative diagram (�) where g factors through D⊥1 and h factors through C⊥1 . Let R1 be
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the class of morphisms f such that there is a commutative diagram (�) where Z1 ∈D⊥1

and h factors through C⊥1 . Then R̃1 ⊇R1. Let BR1 (resp. BR̃1
) be the localization of B at

R1 (resp. R̃1) and LR1 (resp. LR̃1
) be the localization functor. If f ∈ R̃1, object Z1 admits

a conflation Z1 � T1 �D1 where T1 ∈D⊥1 and D1 ∈D, hence g factors through T1. We
have the following commutative diagram in H by applying H :

which implies s is an epimorphism. Hence, by Lemma 3.9, Ker(H(f )) ∈A. This implies
H(f ) ∈ SA. Then we have the following commutative diagram:

We will show that G1 is an equivalence. This implies LR1 inverts all the morphism in R̃1,
then we have a unique functor I :BR̃1

→BR1 such that LR1 = LR̃1
I . Hence, JI = id and

IJ = id, which means G̃1 is also an equivalence.

REMARK 5.1. In the conflation Z �� �� Y
f �� �� X in Proposition 3.3, morphism

f ∈R1.

The following theorem together with the arguments above generalizes [13, Theorem
3.19].

THEOREM 5.2. Functor G1 :BR1 → (H)SA is an equivalence.

Proof. Since H |H = π |H, we get G1 is dense. We show G1 is full.
Let α : G1(X1) → G1(X2) be a morphism. By Proposition 3.3, for i ∈ {1, 2}, Xi admits

a conflation Zi
�� �� Yi

fi �� �� Xi where fi ∈R1 and Yi ∈HD. By the definition
of localization, morphism fi becomes invertible in BR1 . We have isomorphisms
LSAH(fi), i ∈ {1, 2} and LSAH(f1)αLSAH(f2)−1 : Y1 → Y2. By Proposition 3.11, there
exists a morphism g : Y1 → Y2 such that LSAH(g) = LSAH(f1)αLSAH(f2)−1. Hence, α =
LSAH(f1)−1LSAH(g)LSAH(f2) = G1(f

−1
1 gf2).
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We show G1 is faithful. It is enough to check G1LR1(a1) = G1LR1(a2) implies a1 = a2

in BR1 where a1, a2 are morphisms from X1 to X2 in B.
By the discussion above, we have bi : Y1 → Y2 such that f2bi = aif1, i ∈ {1, 2}. Hence,

LSAH(b1) = LSAH(f2)
−1LSAH(a1)LSAH(f1) = LSAH(f2)

−1LSAH(a2)LSAH(f1)

= LSAH(b2)

This implies b1 − b2 factors through C ′ ⊆D⊥1 by Proposition 3.12. Hence, we have b1 =
b2 + (b1 − b2) = b2 and a1 = f −1

1 b1f2 = f −1
1 b2f2 = a2 in BR1 .

Now let R0 be the class of morphisms f such that there is a commutative diagram
(�) where Z1 ∈ C⊥1 and h factors through C⊥1 , let R2 be the class of morphisms f such
that there is a commutative diagram (�) where Z1 ∈D⊥1 and h factors through D⊥1 . Then
R0 ⊆R1 ⊆R2. Let BR0 (resp. BR2 ) be the localization of B at R0 (resp. R2) and LR0

(resp. LR2 ) be the localization functor. Since H(f ) (resp. H0(f )) is an isomorphism if f ∈
R0 (resp. f ∈R2) , we have the following commutative diagram:

where L1LR0 = LR1 and L2L1LR0 = LR2 .

REMARK 5.3. By the similar method as Proposition 3.3, we can show the following
statement:

Any object X admits a conflation Z �� �� Y
f �� �� X where f is a right H-approximation

(resp. H0-approximation) and Z ∈ C⊥1 (resp. D⊥1 ). Moreover, morphism x : X → X ′ factors
through C⊥1 (resp. D⊥1 ) if xf factors through C⊥1 (resp. D⊥1 ).

One can check morphism f in the statement belongs to R0 (resp. R2). Then by the
similar method as Theorem 5.2, we can show that G0 (resp. G2) is an equivalence.

The detail of the proofs is left to the readers.

6. Example. In the last section, we give an example of our result in module category.

EXAMPLE 6.1. Let 
 be the k-algebra given by the quiver
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with mesh relations. The AR-quiver of B := mod 
 is given by
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������
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������
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�� 2

3 4

�������

���
��

��
2

��������
1 .

4
5

�������
3

��������
2

4

��������

We denote by “◦” in the AR-quiver the indecomposable objects that belong to a subcate-
gory and by “·” the indecomposable objects that do not belong to it.

The heart of (C, C⊥1) is the following:
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and the heart of (C ′⊥1 ,M′) is the following:

Obviously they are not equivalent, but if we take localization as in the last section,
we get

When we consider the right D-mutation of C, we cannot always get a rigid subcategory
C ′ = CoCone(D, C) ∩D⊥1 . See the following example in mod 
 of Example 6.1.

EXAMPLE 6.2.

But in the following cases, we can always get a rigid subcategory C ′.

PROPOSITION 6.1. Let C, D be subcategories satisfying condition RCP and D ⊂ C. Let
C ′ = CoCone(D, C) ∩D⊥1 . In the following cases, C ′ is rigid:

(a) B is a Krull–Schmidt, k-linear, Hom-finite, 2-Calabi–Yau triangulated category,
and D is functorially finite.

(b) E2(C,D) = 0.

Proof. (a) By the assumptions, we have a cotorsion pair (C, C⊥1). By [18, Theorem
3.3], we get a cotorsion pair (C ′, C ′⊥1) such that C ′ ∩ C ′⊥1 = C ′, which implies C ′ is rigid.

(b) Let C′ ∈ C ′, it admits a conflation (�) C′ �� �� D
f �� �� C where D ∈D and

C ∈ C. By applying E(C, −) to conflation (�), we get an exact sequence 0 = E(C, C) →
E2(C, C′) → E2(C, D) = 0, hence E2(C, C′) = 0. Since C′ is arbitrary, we get E2(C, C ′) = 0.
Then we apply E(−, C ′) to conflation (�); we get an exact sequence 0 = E(D, C ′) →
E(C′, C ′) → E2(C, C ′) = 0, hence E(C′, C ′) = 0. Since C′ is arbitrary, we get C ′ is rigid.
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