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In this paper, we study the relationship of the Brouwer degree of a vector field with
the dynamics of the induced flow. Analogous relations are studied for the index of a
vector field. We obtain new forms of the Poincar é–Hopf theorem and of the Borsuk
and Hirsch antipodal theorems. As an application, we calculate the Brouwer degree
of the vector field of the Lorenz equations in isolating blocks of the Lorenz strange
set.
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Introduction

The aim of this paper is to study the relationship of the Brouwer degree of a vector
field with the dynamics of the induced flow, in particular with the dynamical and
topological properties of the isolated invariant sets and their unstable manifolds.
Analogous relations are studied for the index of a vector field, obtaining in this
way new forms of the Poincaré–Hopf theorem. This classic result has brought a
considerable amount of attention in the past 10 years and several results in the
same spirit have been obtained in different contexts (see for instance [10, 16, 17,
20, 23]).

As consequences of these relations, we also obtain generalizations of Borsuk’s and
Hirsch’s antipodal theorems for domains that are isolating blocks. We calculate the
Brouwer degree and the index of vector fields in several situations of dynamical and
topological significance. Some applications include the detection of linking orbits in
attractor–repeller decompositions of isolated invariant compacta and the calculation
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of the Brouwer degree of the vector field of the Lorenz equations in isolating blocks
of the Lorenz strange set. Furthermore, we present an expression of the shape index,
originally defined by Robbin and Salamon [25], in terms of the Euclidean topology.
This new expression is quite intuitive and easy to handle.

We consider flows ϕ : Rn × R −→ Rn in the Euclidean space, induced by smooth
vector fields F : Rn −→ Rn. We will use through the paper some basic notions of
dynamical systems (see [6]) and the Conley index theory (see [9, 26]).

We shall make use of the concepts of ω-limit and ω∗-limit of a compactum X ⊂ Rn

defined as

ω(X) =
⋂
t�0

X[t,+∞), ω∗(X) =
⋂
t�0

X(−∞, t].

We recall that a compact invariant set K ⊂ Rn is said to be isolated whenever it is
the maximal invariant subset of some neighbourhood N of itself. A neighbourhood
N satisfying this requirement is known with the name of isolating neighbourhood.
We shall make extensive use of a special kind of isolating neighbourhoods called
isolating blocks. An isolating block N is an isolating neighbourhood with the prop-
erty that there exist compact subsets L, L′ ⊂ ∂N called the exit and entrance sets
such that:

(1) ∂N = L ∪ L′.

(2) For every x ∈ L′ there exists ε > 0 such that x[−ε, 0) ⊂ Rn \ N and for every
x ∈ L there exists δ > 0 such that x[0, δ) ⊂ Rn \ N .

(3) For each x ∈ L there exists ε > 0 such that x[−ε, 0) ⊂ N̊ and for every x ∈
∂N \ L there exists δ > 0 such that x(0, δ] ⊂ N̊ .

It is well known that an isolating invariant set possesses a basis of neighbourhoods
comprised of isolating blocks. Moreover, since we are dealing with smooth flows,
these blocks can be chosen to be n-dimensional manifolds with boundary, satisfying
that L and L′ are (n − 1)-dimensional submanifolds of ∂N of with ∂L = L ∩ L′ =
∂L′ (see [8] or [33, Apéndice A.2]). In this case, the points of L ∩ L′ are exactly
those where the vector field is tangent to ∂N . All the isolating blocks considered
in this paper will be assumed to be of this kind without explicitly mention it.

Among isolated invariant sets attractors play a central role. An attractor K is
a compact invariant set that is stable and possesses a neighbourhood U such that
the omega-limit ω(x) of each point in U is non-empty and is contained in K. The
condition on stability means, roughly speaking, that the positive semi-trajectories
of nearby points remain nearby. More precisely, if V is any neighbourhood of K,
there exists a neighbourhood U of K with the property that U [0, +∞) ⊂ V . An
attractor is said to be global if the neighbourhood U can be chosen to be the total
space. Repellers are defined in an analogous way using the negative omega-limit
ω∗ and negative semi-trajectories. Notice that a repeller is just an attractor for the
flow obtained by changing the sign of the time variable.

We are going to use some notions from algebraic topology, including duality the-
orems. All the material we are going to need is covered in the books by Hatcher
[13], Munkres [21] and Spanier [30]. We use the notation H∗ and H∗ to denote
the singular homology and cohomology functors and Ȟ∗ for the Čech cohomology
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functor, all of them with integer coefficients unless otherwise specified. We recall
that Čech and singular cohomology theories coincide on manifolds and, more gen-
erally, polyhedra and pairs of such spaces. We say that a pair of spaces (X, A) is
of finite type whenever Ȟk(X, A) is finitely generated for every k and non-zero for
only a finite number of values of k. Pairs of compact manifolds or, more generally,
polyhedra are examples of pairs of finite type. While attractors and repellers of
flows defined on Euclidean spaces are of finite type [15, Corollary 4.2], this is not
the case for every isolated invariant set. For instance, the author in [1, Remark 9]
shows an example of a flow on R3 which has the Hawaiian earring as an isolated
invariant set. In order to make our statements cleaner we shall make the following
standing assumption.

Stand 0.1. Whenever K is an isolated invariant set, we shall assume, without
further mention, that K is of finite type.

If a pair (X, A) is of finite type, its Euler characteristic is defined as follows:

χ(X,A) =
∑

k

(−1)k rk Ȟk(X,A).

We shall make use of the following property of the Euler characteristic [30, Exercise
B.1, p. 205]: if two of the three (X, A), X, A, are of finite type, then so is the third
and

χ(X) = χ(X,A) + χ(A).

Notice that if (X, A) is a pair of manifolds or polyhedra, then the Euler charac-
teristic defined in an analogous way using singular cohomology coincides with the
previous one.

The Conley index of an isolated invariant set K, denoted h(K), is defined as the
pointed homotopy of the quotient space (N/L, [L]) where N is any isolating block
for K. Notice that, while different isolating blocks may represent different homotopy
types, the Conley index only depends on K. The cohomology index CH∗(K) is
defined to be the Čech cohomology of the pointed space (N/L, [L]). Using the
strong excision property of Čech cohomology we get that the cohomology index is
isomorphic to Ȟ∗(N, L).

Given an isolating block N for an isolated invariant set K, we shall denote by
deg(F, N) to the degree of F|N̊ and, if K has only a finite number of singularities, by
I(F|N ) to the total index of F|N , that is, the sum of the indices of the singularities.
When we refer to I(F|N ), we say that the index is defined if F|N has a finite number
of singular points. For a detailed treatment of mapping degree theory, including the
index theory of vector fields, see the book by Outerelo and Ruiz [22].

We shall make use of the following result, obtained by Srzednicki [32], McCord
[19], Fotouhi and Razvan [24], in different levels of generality, that relates degree
of a vector field near an isolated invariant set, with its Conley index. We present
here a slightly different but equivalent version of the one presented by Izydorek and
Styborski in [14, Theorem 4.2].

Theorem 0.2. Let ϕ : Rn × R −→ Rn be a flow induced by a smooth vector field F
defined on Rn. Suppose that K is an isolated invariant set for ϕ and N an isolating
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block for K. Then,

deg(F,N) = (−1)nχ(h(K)).

Moreover, if K contains only a finite number of equilibria then

I(F|N ) = (−1)nχ(h(K)).

Notice that the Euler characteristic of the Conley index is well-defined, taking
into account that the pair (N, L) used to compute it can be chosen to be a pair
of compact manifolds. The second part of the statement follows from the fact that
the Brouwer degree is, by the additivity property, the sum of the indices of all the
singular points of F in N .

Finally, we will also use some elementary facts from Borsuk’s homotopy theory
(named Shape theory by him). This theory was introduced by K. Bosuk in 1968
in order to study homotopy properties of compacta with bad local behaviour for
which the classical homotopy theory is not well suited. We are not going to make
an extensive use of Borsuk’s homotopy theory, in particular we are only interested
in the following very simple situation: consider a compact metric space K, a closed
subspace K0 and a sequence of maps fk : K −→ K such that fk|K0

: K0 −→ K0 (i.e.
fk|K0

maps K0 to itself) and the following conditions hold for almost every k:

(1) For every neighbourhood U of K0 in K we have Im fk ⊂ U and fk � fk+1

in U .

(2) fk � idK .

(3) fk|K0
� idK0 in K0.

Then K and K0 have the same shape (there is an analogous statement for pointed
shape). We shall use the notation Sh(K) = Sh(K0) to denote that both K and K0

have the same shape. We shall also make use of the following fact from shape
theory:

(1) If X and Y have the same homotopy type, then they have the same shape.

(2) If X and Y are polyhedra (or more generally, ANR), X and Y have the same
shape if and only if they have the same homotopy type.

(3) If X and Y have the same shape, then they have isomorphic Čech cohomology
groups.

More information about the theory of shape can be found in the books by Borsuk
[7], Mardešić and Segal [18] and Dydak and Segal [11]. Some applications of shape
theory to dynamics can be seen in [15, 27].

1. Shape index, initial sections and the degree of a vector field

In [3], the authors proved that some parts of the unstable manifold of an isolated
invariant set admit sections that carry a considerable amount of information. These
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sections enable the construction of parallelizable structures which facilitate the
study of the flow.

Definition 1.1. Let K be an isolated invariant compactum and let S be a compact
section of the truncated unstable manifold Wu(K) \ K. Then S is said to be an
initial section provided that ω∗(S) ⊂ K.

If S is an initial section we define

Iu
S(K) = S(−∞, 0].

Obviously, Iu
S(K) = {x ∈ Wu(K) \ K | xt ∈ S with t � 0}. In accordance with this

terminology, we say that Iu
S(K) ∪ K is an initial part of the unstable manifold of K

and we denote it by Wu
S (K). In [3], it was proved that, although Iu

S(K) depends on
S, all the initial parts have basically the same structure. More specifically, if S and
T are initial sections of Wu(K), the pairs (Wu

S , S) and (Wu
T , T ) are homeomorphic.

Analogous notions known as final section and final part of the stable manifold
can be defined and have similar properties.

If N is an isolating block for K, we denote by N− the negative asymptotic set,
that is, the set {x ∈ N | xt ∈ N for every t � 0}. Set n− = N− ∩ L. It is easy to
see that N− is an initial part of the unstable manifold with initial section n−. The
positive asymptotic set N+ is defined in an analogous way and is a final part of the
stable manifold with final section n+ = N+ ∩ L′.

In this paper, we make some use of the shape index of an invariant isolated
set K. The shape index S(K) was introduced by Robbin and Salamon in [25]
as Sh(N/L, ∗), where ∗ = [L]. The cohomology of the shape index is the classical
cohomological (Conley) index. In [28], the second author showed that the shape
index can be represented in terms of compact sections of the unstable manifold
endowed with the intrinsic topology (as defined also by Robbin and Salamon). The
constraint of the intrinsic topology is substantial, since this topology is not very
intuitive and difficult to handle, so we believe that an expression of the shape index
in terms of the Euclidean (or extrinsic) topology is much more useful and we find
it in the first result of the paper. A crucial element of this expression is the use of
the initial sections of truncated manifolds as defined above.

Theorem 1.2. Let ϕ : Rn × R −→ Rn be a flow (not necessarily differentiable) and
K an isolated invariant set of ϕ. Let Wu(K) the unstable manifold of K, S an
initial section of Wu and Wu

S (K) the corresponding initial part of the unstable
manifold of Wu(K). Then the shape index S(K) is Sh(Wu

S (K)/S, ∗), that is, the
pointed shape of the quotient set Wu

S /S where ∗ = [S]. Furthermore, if CS is the
cone over S then S(K) = Sh(Wu

S ∪ CS, ∗), where ∗ is the vertex of the cone.

Proof. Let N be an isolating block of K and L its exit set. Since all the pairs
(Wu

S , S), where S is an initial section, are homeomorphic, we can limit ourselves
to the pair (N−, n−). Let α : N \ N+ −→ R the map defined by

α(x) = max{t ∈ R | x[0, t] ⊂ N}.
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Then for every k ∈ N ∪ {0} we define the map fk : N −→ N by

fk(x) =

{
kx if x[0, k] ⊂ N

α(x)x otherwise.

The map fk is continuous and fixes all points in L (this is essentially Wazewski’s
lemma [34, Theorem 2]). Suppose that U is an open neighbourhood of N− ∪ L in
N . We claim that there is a k0 ∈ N such that Im fk ⊂ U and fk � fk+1 in U for
every k � k0, and the homotopy leaves al points in L fixed. In order to prove it
we show that there is a positive s0 such that N+[s0, ∞) ⊂ U . Otherwise, there
would be sequences xn ∈ N+ and sn −→ ∞ such that xnsn → y ∈ N+ − U . Then,
γ−(y) ⊂ N and, since y ∈ N+, the whole trajectory γ(y) would be contained in
N \ K in contradiction with the assumption that N is an isolating block of K.
Furthermore, there is a s1 � s0 with the property that xt ∈ U for every x ∈ N \ N+

and for every t such that s1 � t � α(x). Otherwise there would be sequences xn ∈
N , tn → ∞ with xntn /∈ U , xntn → y ∈ N and xn[0, tn] ⊂ N . But this would imply
that y ∈ N−, in contradiction with the fact that y /∈ U , as limit of xntn. We obtain
from this that Im fk ⊂ U for k � s1 and select an index k0 � s1. It is clear that the
homotopy hk : N × [0, 1] → N defined by

hk(x, t) =

{
fk(x)t if fk(x)[0, t] ⊂ N

xα(x) otherwise

links fk and fk+1 in U leaving all points in L fixed. Furthermore, the map

h(x, t) =

{
xtk if x[0, tk] ⊂ N

xα(x) otherwise,

defines a homotopy h : N × [0, 1] −→ N linking idN with fk. Similarly, it can be
seen that fk|N−∪L

is a map N− ∪ L −→ N− ∪ L homotopic to idN−∪L, with the
homotopy fixing all points in L.

Notice that the subspace (N− ∪ L)/L ⊂ N/L can be identified with N−/n−. We
use the notation ∗ to designate both the point [L] ∈ N/L and the point [n−] ∈
N−/n−. Now consider the composition f̄k = p ◦ fk : N −→ N/L, where p : N −→
N/L is the natural projection. This map induces a map f̂k : N/L −→ N/L such
that f̂k = p ◦ f̄k. We then have a sequence of maps f̂k : N/L −→ N/L such that
f̂k|N−/n− : N−/n− −→ N−/n− and the following conditions are satisfied for almost
every k:

(1) For every neighbourhood Û of N−/n− in N/L we have Im f̂k ⊂ Û and f̂k �
f̂k+1 in Û .

(2) f̂k � idN/L .

(3) f̂k|N−/n− � idN−/n− .

(4) All the homotopies leave the point ∗ fixed.
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It follows from this that Sh(N/L, ∗) = Sh(N−/n−, ∗) and, therefore,
Sh(Wu

S /S, ∗) = S(K) (where ∗ = [S].)
To finish the proof it remains to observe that by [18, Corollary 3, p. 247], the nat-

ural projection Wu
S ∪ CS −→ Wu

S /S is a pointed shape equivalence and, therefore
S(K) = Sh(Wu

S ∪ CS, ∗), where ∗ is the vertex of the cone. �

Remark 1.3. The statement in theorem 1.2 does not hold if the section S is not
initial. An example of a compact section S is given in [3, Fig 2, pg. 840] which is
not initial and such that Sh(Wu

S (K)/S, ∗) is not the shape index S(K).

By combining theorem 1.2 together with theorem 0.2 we obtain the following
corollary that relates the degree of a vector field (or the index when defined) near
an isolated invariant set, its Euler characteristic and the Euler characteristic of an
initial section.

Corollary 1.4. Let ϕ : Rn × R −→ Rn be a flow induced by the smooth vector
field F : Rn −→ Rnand K an isolated invariant set of ϕ. Let Wu(K) be the unstable
manifold of K and S an initial section of Wu(K). If N is an isolating block of K
then

deg(F,N) = (−1)n(χ(K) − χ(S)). (1.1)

Moreover, if the index I(F|N ) is defined then

I(F|N ) = (−1)n(χ(K) − χ(S)). (1.2)

Proof. First observe that, if L is the exit set of N we have that χ(N, L) is defined
and

χ(S(K)) = χ(N,L) = χ(h(K)).

As before, we use that N− is the initial part of the truncated unstable manifold
relative to the initial section n−. By an argument similar to that used in the proof
of the theorem 1.2, it is easy to see that Sh(N−) = Sh(K). Then Ȟr(N−) = Ȟr(K)
for every r and, thus, χ(N−) = χ(K). Moreover, theorem 1.2 ensures that S(K) =
Sh(N−/n−, ∗). Hence, as a consequence of the strong excision property of Čech
cohomology we obtain that

χ(N,L) = χ(N−, n−) = χ(N−) − χ(n−) = χ(K) − χ(S).

Notice that, since χ(N−, n−) and χ(N−) are defined so is χ(n−) (hence, χ(S)).
Equalities (1.1) and (1.2) follow from theorem 0.2. �

This corollary allows in many cases to establish a direct relation of the Brouwer
degree and the total index with the topology of the invariant set K, as we show
in various results of the paper. In other cases we also need some knowledge of the
initial section of the unstable manifold, which is often easy to compute. This gives
an alternative method to the one provided by theorem 0.2 that has some advantages
in certain cases.

A direct consequence of corollary 1.4 is a particular case of a result obtained by
Srzednicki [32, Lemma 6.2].
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Corollary 1.5. If K is a continuum in R2 then deg(F, N) � χ(K). Also I(F|N ) �
χ(K) when I(F|N ) is defined.

Proof. In [3] it was shown that for n = 2 the section S is a disjoint finite union of
circles and (possibly degenerate) topological intervals and, consequently, χ(S) � 0.
Then deg(F, N) = χ(K) − χ(S) � χ(K). �

The following corollary deals with the important particular case of theorem 1.4
when the initial part of the unstable manifold is a genuine manifold whose
boundary is the initial section S.

Proposition 1.6. Suppose that Wu
S is an m-dimensional manifold with boundary

∂Wu
S = S. Then

deg(F,N) = (−1)(n+m)χ(K).

In particular, deg(F, N) agrees with χ(K) if the parities of n and m are the same
and with −χ(K) otherwise. The same statement is valid for I(F|N ) when defined.

Proof. Since by corollary 1.4

deg(F,N) = (−1)n(χ(K) − χ(S)),

we only have to compute χ(S). Taking into account that Wu
S (K) is a genuine

m-manifold whose boundary is S, it follows that S is a closed (m − 1)-manifold.
If m is even, then m − 1 is odd and Poincaré duality ensures that χ(S) = 0. On
the other hand, if m is odd, Lefschetz duality, together with the fact that the
Sh(Wu

S ) = Sh(K) ensure that

χ(Wu
S , S) = −χ(Wu

S ) = −χ(K).

As a consequence, χ(S) = 2χ(K) and the result follows. �

The classical Poincaré–Hopf theorem is the most important particular case of
proposition 1.6:

Corollary 1.7. If F points outwards in ∂N and I(F|N ) is defined then I(F|N ) =
χ(N). The same holds for deg(F, N). In this case there is no requirement for I(F|N )
to be defined.

Proof. Since F points outwards in ∂N it follows that the maximal invariant set
contained in N must be a repeller. Moreover, N is a negatively invariant neigh-
bourhood of K and, as a consequence, we can take Wu

S = N , S = ∂N and n = m.
Since Ȟ∗(Wu

S ) = Ȟ∗(K) the result follows from proposition 1.6. �

The following result refers to flows that have a global repeller.

Corollary 1.8. If ϕ has a global repeller K then deg(F, N) = 1 for every isolating
block containing K and I(F|N ) = 1 when defined.
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Proof. If K is the global repeller of ϕ then K has the Čech cohomology groups of
a point by [15, Theorem 3.6]. Since the degree does not depend on the choice of
the isolating block, we may assume that N is negatively invariant, i.e., such that
N = N−. Hence, χ(N) = χ(K) = 1 and the result follows from corollary 1.7. �

In dimension 2 we obtain a kind of reciprocal to the Poincaré–Hopf theorem and
a nice characterization of the flows such that I(F|N ) = χ(N).

Proposition 1.9. If K is a continuum in R2 and I(F|N ) is defined then the
vector field F is tangent to ∂N in exactly 2(χ(N) − I(F|N )) points. As a conse-
quence, I(F|N ) = χ(N) if and only if F either points outwards or inwards in every
component of ∂N .

Proof. The first part of the statement follows from the fact that the points of
tangency are exactly the points of L ∩ L′ = ∂L, where L′ is the entrance set. Since
L is a compact 1-dimensional manifold, it is a disjoint union of circles and closed
intervals. Hence, ∂L consists of the endpoints of each interval component of L. Since
each interval has exactly two endpoints and χ(L) is just a count of the number of
interval components of L, the result follows from theorem 0.2. The second part of
the statement is a direct consequence of this discussion. �

Example 1.10. Let ϕ be a flow in R2 induced by a vector field F and suppose that
K is an isolated periodic trajectory. Then, it is not difficult to see that K admits an
isolating block N that is a closed annulus with two different boundary components,
each contained in a different component of R2 \ K. Since K does not contain fixed
points, then

I(F|N ) = 0 = χ(N),

and, proposition 1.9 ensures that the vector field points either outwards or inwards
in every component of ∂N . Hence, we have three mutually exclusive possibilities:

(1) F points inwards in both components of ∂N and, hence, K is an attractor.

(2) F points outwards in both components of ∂N and, hence, K is a repeller.

(3) F points inwards in one component of ∂N and outwards in the other. In this
case K is neither an attractor nor a repeller.

Although these three possibilities cannot be distinguished only using the index, they
can be distinguished by using the Conley index. Indeed, in the first case, L = ∅ and,
hence, the effect of collapsing is equivalent to make the disjoint union of N with a
point {∗} not belonging to N . Since N is an annulus, it has de homotopy type of
the circle S1 and, hence, the Conley index of K is the pointed homotopy type of
(S1 ∪ {∗}, ∗) where ∗ is a point that does not belong to S1.

In the second case L = ∂N and (N/L, [L]) is a pinched torus that is pointed
homotopy equivalent to the wedge (S2 ∨ S1, ∗).

Finally, in the third case, L is just one component of ∂N . Since N is homeo-
morphic to the product S1 × [0, 1], (N/L, [L]) is just the cone (CS1, ∗) that is
contractible. It follows that the Conley index of K is trivial.
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This shows that the Conley index is a finer invariant than the index of a vector
field.

2. Brouwer degree of vector fields near non-saddle sets

In this section we study the Brouwer degree of a vector field in a vicinity of a special
class of isolated invariant sets called non-saddle.

We start by recalling that an invariant set K is said to be non-saddle if it satisfies
that for every neighbourhood U of K there exists a neighbourhood V of K such
that for all x ∈ V either x[0, +∞) ⊂ U or x(−∞, 0] ⊂ U . Otherwise K is said to
be saddle. We shall only consider non-saddle sets that are also isolated. Attractors,
repellers and unstable attractors with mild forms of instability are some examples of
non-saddle sets. Isolated non-saddle sets are characterized by possessing arbitrarily
small isolating blocks of the form N = N+ ∪ N− (see [5, Proposition 3]). Moreover,
if K is connected, every connected isolating block is, in fact, of this form. Notice
that if N is an isolating block of this form, the vector field points either inwards
or outwards in each connected component of ∂N . Using the homotopies provided
by the flow, it easily follows that Ȟ∗(K) ∼= H∗(N) and, therefore, K is of finite
type. Another property that we shall use in the sequel is that the union of the
components of the boundary of an isolating block of the form N = N+ ∪ N− in
which the vector field points outwards is an initial section of the unstable manifold
of K. In an analogous way, the union of those components of ∂N in which the
flow points inwards is a final section of the stable manifold. Hence, for isolated
non-saddle sets of smooth flows on Rn initial and final sections of the unstable and
stable manifolds are closed manifolds of dimension n − 1. For more information on
isolated non-saddle sets the reader can see [2, 4, 5].

In view of this, the following result is a far-reaching generalization of the
Poincaré–Hopf theorem. Furthermore, it provides a nice characterization of non-
saddle sets for flows in the plane.

Proposition 2.1. Suppose that K is a non-saddle continuum, N is a connected
isolating block of K and S and S∗ an initial and a final section of the truncated
unstable and stable manifolds of K respectively. Suppose also that I(F|N ) is defined.
Then,

(1) If the dimension n is even then I(F|N ) = χ(K) = χ(N).

(2) If n is odd then I(F|N ) = 1/2(χ(S∗) − χ(S)) = −χ(N) + χ(S∗) (note that if
K is a repeller then χ(S∗) = 0 and, therefore, I(F|N ) = −χ(N)).

Moreover, if n = 2 and K is an arbitrary isolated invariant continuum then
I(F|N ) = χ(K) if and only if K is non-saddle.

An analogous statement is valid for deg(F, N). In this case there is no require-
ment that I(F|N ) be defined.

Proof. We may assume without loss of generality that S = n− and S∗ = n+. If n
is even, since S is a closed manifold of odd dimension it follows that χ(S) = 0 and,
hence, I(F|N ) = χ(K) = χ(N).
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Suppose now that n is odd. Taking into account that ∂N = S ∪ S∗, Lefschetz
duality applied to the pair (N, ∂N) yields

H∗(N,S ∪ S∗) = Hn−∗(N),

where the homology and the cohomology are taken in dual dimensions relative to n.
Since n is odd we deduce from the former expression that

χ(N,S ∪ S∗) = −χ(N).

On the other hand,

χ(N,S ∪ S∗) = χ(N) − χ(S) − χ(S∗).

Summing up,

χ(N) =
1
2
(χ(S) + χ(S∗)).

Since H∗(N) ∼= Ȟ∗(K) we have that χ(N) = χ(K) and, using this fact in the
formula from corollary 1.4 we get that

I(F|N ) =
1
2
(χ(S∗) − χ(S)) = −χ(N) + χ(S∗).

Now suppose that n = 2 and K is an arbitrary isolated invariant continuum. We
only have to see that the equality I(F|N ) = χ(K) ensures the non-saddleness of K
since the converse statement is just case (1). By [3, Theorem 10], K is non-saddle
if and only if all the components of S are circles .The equality I(F|N ) = χ(K)
implies that χ(S) = 0 and, thus, in this case, no component of S can be a (possibly
degenerate) topological interval and, consequently, must be a circle. Therefore, K
is non-saddle. �

In the following result, we use the Alexandrov (or one-point) compactification of
the Euclidean space Rn ∪ {∞} to show that under further assumptions more can be
said about the degree of F and its index. We recall that Rn ∪ {∞} is homeomorphic
to the n-sphere Sn.

Proposition 2.2. Suppose that K is a non-saddle continuum, n is even and every
component of (Rn ∪ {∞}) \ K is contractible (this always happens for n = 2). Con-
sider a connected isolating block N of K. Then deg(F, N) � 1, and I(F|N ) � 1 when
defined. Also, if deg(F, N) = 1 then K is either an attractor or a repeller.

Proof. Let k be the number of components of (Rn ∪ {∞}) \ K (which is finite and
coincides with 1 + rk Ȟn−1(K) by Alexander duality). Since they are contractible,
they have Euler characteristic equal to one. By Lefschetz duality [30, Theorem 19,
pg. 297]

χ(K) = χ(Rn ∪ {∞}) − χ((Rn ∪∞) \ K) = 2 − k � 1.

Then, proposition 2.1 ensures that deg(F, N) = χ(K) � 1. Furthermore, the equal-
ity 2 − k = 1 holds if and only if K does not disconnect Rn ∪ {∞}. In such a case,
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the only component of Rn ∪ {∞} \ K is locally attracted or locally repelled by K
by [5, Theorem 25]. In the first case K is an attractor and in the second K is a
repeller. �

Next we analyse the situation when the dimension n is odd and greater than one.

Proposition 2.3. Suppose that K is a non-saddle continuum, n > 1 is odd and
every component of (Rn ∪ {∞}) \ K is contractible. Consider a connected isolating
block N of K. Then deg(F, N) � k, and I(F|N ) � k when defined. Furthermore, if
I(F|N ) is defined,

(1) I(F|N ) = k if and only if K is an attractor.

(2) I(F|N ) = −k if and only if K is a repeller.

(3) I(F|N ) = 0 if and only if K decomposes Rn in an even number of components,
half of them locally attracted by K and half of them locally repelled.

Analogous statements hold for deg(F, N). In this case there is no requirement that
I(F|N ) be defined.

Proof. By [5, Theorem 25] we have that all the components of (Rn ∪ {∞}) \ K are
either locally attracted or locally repelled by K. We denote by U the union of all the
components of (Rn ∪ {∞}) \ K which are locally repelled by K and by V the union
of all the components which are locally attracted. Then there is an attractor A ⊂ U
such that U is the basin of attraction of A and analogously, a repeller R ⊂ V such
that V is the basin of repulsion of R. Let k be the number of components of Rn \ K
and u the number of components of U . Then, by [15, Theorem 3.6] H∗(U) = Ȟ∗(A)
and, by the duality theorem [30, Theorem 17, pg. 296], Ȟ∗(A) = Hn−∗(U, U \ A).
So, since n is odd, we have

χ(A) = −χ(U,U \ A) = −χ(U) + χ(U \ A) = −u + χ(S).

For the last equality, we use the facts that all the components of U are contractible
and that S is a strong deformation retract of U \ A. Since χ(A) = χ(U) = u we
obtain that χ(S) = 2u.

By an analogous argument applied to R and V we obtain that χ(S∗) = 2(k − u).
So, by proposition 2.1 we get

I(F|N ) =
1
2
(χ(S∗)) − χ(S) =

1
2
(2(k − u)) − 2u) = k − 2u,

and, since u � 0, we obtain that I(F|N ) � k.
Also, I(F|N ) = k if and only if u = 0, which happens if and only if K is an

attractor. On the other hand, the equality I(F|N ) = −k holds if and only if u = k,
which occurs if and only if K is a repeller. Finally I(F|N ) = 0 if and only if k = 2u,
i.e., if and only if the number of components of Rn − K that are locally repelled by
K matches the number of components that are locally attracted by K. �
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3. Brouwer degree and connecting orbits in attractor–repeller
decompositions

In this section we show how to use the Brouwer degree to detect the existence of
connecting orbits in attractor–repeller decompositions. We also give an estimate
of the Euler characteristics of the set of connecting orbits. Finally, we present an
application of these results in order to calculate the Brouwer degree of the Lorenz
vector field in an isolating block of the Lorenz strange set.

We recall that if K is an isolated invariant set and A � K is an attractor for the
restriction flow ϕ|K , then the set

R = {x ∈ K | ω(x) ∩ A = ∅}

is non-empty and is a repeller for ϕ|K . The pair {A, R} is called attractor–repeller
decomposition of K. Notice that if K �= A ∪ R the orbit of any point x /∈ A ∪ R satis-
fies that ω(x) ⊂ A and ω∗(x) ⊂ R. These kinds of orbits are the so-called connecting
orbits between A and R.

Proposition 3.1. Let {A, R} be an attractor–repeller decomposition of the isolated
invariant set K and N an isolating block of K. If deg(F, N) �= χ(A) + χ(R) − χ(S)
then there exists an orbit in K connecting A and R. Moreover, if C is the union of
all connecting orbits then

χ(C) = χ(A) + χ(R) − χ(K).

Proof. We argue by contradiction. Suppose that there is no orbit in K connecting
A and R. Then K is the disjoiunt union of A and R. As a consequence,

χ(K) = χ(A) + χ(R).

Thus, corollary 1.4 ensures that

deg(F,N) = χ(A) + χ(R) − χ(S)

contradicting the hypothesis.
Let us compute the Euler characteristic of the set C of connecting orbits. Since

C is parallelizable we can find a section C0 of C. Define K1 = A ∪ C0[0, ∞)
and K2 = R ∪ C0(−∞, 0]. Then K = K1 ∪ K2 and K1 ∩ K2 = C0. By using the
Mayer–Vietoris sequence

· · · −→ Ȟq(K1 ∪ K2) −→ Ȟq(K1) ⊕ Ȟq(K2) −→ Ȟq(K1 ∩ K2) −→ · · ·

we readily get that

χ(K) = χ(K1) + χ(K2) − χ(C0).

However, C0 is a strong deformation retract of C and so χ(C) = χ(C0). Moreover,
arguing in the same way as in the proof of theorem 1.2 we obtain that Sh(K1) =
Sh(A) and Sh(K2) = Sh(R) and therefore χ(K1) = χ(A) and χ(K2) = χ(R). Hence,
the result follows. �
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https://doi.org/10.1017/prm.2023.98 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2023.98


The Lorenz vector field F : R3 −→ R3 provides a simplified model of fluid
convection dynamics in the atmosphere, and is given by

F (x, y, z) = (σ(y − x), rx − y − xz, xy − bz),

where σ, r and b are three real positive parameters corresponding respectively to
the Prandtl number, the Rayleigh number and an adimensional magnitude. We
consider the so-called classical values σ = 10, b = 8/3. In [31] it is shown that for
values of r between 13.926 . . . (which corresponds to the homoclinic bifurcation)
and 24.06 (where another type of bifurcation occurs involving the two branches
of the unstable manifold of the origin) a ‘strange set’ L originates that exhibits
sensitive dependence on initial conditions. For these values of the parameter r, the
global attractor Ω of the Lorenz system has an attractor–repeller decomposition
{A, L} where L is the Lorenz strange set and A consists of two points. It follows
from [12, Corollary 5.3] and [29, Theorem 7] that the Lorenz strange set has the
shape of a wedge of two circles. Therefore, χ(L) = −1. We shall also make use of
the fact that, since Ω is the global attractor, χ(Ω) = 1.

Proposition 3.2. Let F : R3 −→ R3 be the Lorenz vector field and let N be an
isolating block of the Lorenz strange set L. Then deg(F, N) = 1. Moreover, if N̂ is
an isolating block of the global attractor Ω, then deg(F, N̂) = −1.

Proof. Let C be the set of connecting orbits between A and L. Then, proposition
3.1 together with the considerations made before the statement of the proposition
ensure that

χ(C) = χ(A) + χ(L) − χ(Ω) = 0.

Since Ω is an attractor, the unstable manifold of L is contained in Ω and, thus,
agrees with C. Now, let N be an isolating block of L. By corollary 1.4, we get

deg(F,N) = (−1)3(χ(L) − χ(S)) = (−1)3(χ(L) − χ(C)) = 1.

This contrasts with the situation for the global attractor: if N̂ is an isolating block
of Ω then deg(F, N̂) = (−1)3χ(Ω) = −1. �

Remark 3.3. For values of the parameter r > 24.06 the strange set L becomes an
attractor (the Lorenz attractor) and its Čech cohomology (even its shape) remains
that of a wedge of two circles. Since L is now an attractor, S = ∅ and

deg(F,N) = (−1)3χ(L) = 1.

4. A generalization of Borsuk’s and Hirsch’s antipodal theorems

We now present a result that is a form of Borsuk’s [22, Theorem 5.2, pg. 163]
and Hirsch’s [22, Theorem 5.3, pg. 166] antipodal theorems for domains which are
isolating blocks, involving the dynamics of the flow induced by F rather than the
Brouwer degree of F . Using this result it is possible to conclude from inspection of
K and S the existence of a point x in the boundary ∂N such that the vector field
F points in the same (or opposite) direction at x and −x.
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We say that an isolating block N ⊂ Rn is symmetric if x ∈ N if and only if
−x ∈ N , i.e., N is invariant for the antipodal action.

Proposition 4.1. Suppose that the isolating block N is symmetric and 0 ∈ N .
Then

(i) If χ(K) and χ(S) have the same parity then there is some x ∈ ∂N such that
F (x) and F (−x) point in the same direction. In particular, if N is the unit
ball Bn (and thus ∂N = Sn−1) and F|Sn−1 maps Sn−1 into Sn−1 then there
is some x ∈ Sn−1 such that F (x) = F (−x).

(ii) If χ(K) and χ(S) have different parity then there is some x ∈ ∂N such that
F (x) and F (−x) point in opposite directions. In particular, if N is the unit
ball Bn (and thus ∂N = Sn−1) and F|Sn−1 maps Sn−1 into Sn−1 then there
is some x ∈ Sn−1 such that F (x) = −F (−x).

Proof. If χ(K) and χ(S) have the same parity then by theorem 1.4 the degree
of F|N̊ is even and (i) is a consequence of the Hirsch theorem. If χ(K) and χ(S)
have a different parity then by corollary 1.4 the degree of F|N̊ is odd and (i) is a
consequence of the Borsuk antipodal theorem. �
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