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Abstract. With the development of modern technologies such as integral field units, it is pos-
sible to obtain data cubes in which one produces images with spectral resolution. Extracting
information from them can be quite complex, and hence the development of new methods of
data analysis is desirable. We briefly describe a method of analysis of data cubes (data from
single field observations, containing two spatial and one spectral dimension) that uses principal
component analysis to express the data in the form of reduced dimensionality, facilitating effi-
cient information extraction from very large data sets. We applied the method, for illustrative
purposes, to the central region of the LINER galaxy NGC 4736, and demonstrate that it has a
type 1 active nucleus, which was not known before. Furthermore, we show that it is displaced
from the center of its stellar bulge.
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1. Introduction
With the advent of panoramic spectroscopic devices such as integral field units (IFUs),

it is possible to construct data cubes of immense proportions that present data in three
dimensions: two spatial and one spectral. The analysis of these data may become complex
and overwhelming, as it may involve tens of millions of pixels. Of even greater concern
is that, given this complexity, only some restricted subset of the data ends up being
analyzed; the rest is at the risk of being largely ignored. New techniques that allow us
to extract information in a condensed, fast, and optimized form are therefore necessary
and welcome. Here we briefly present a method of data cube analysis that uses principal
component analysis (PCA). This method condenses the significant information content
associated with the data through effective dimensional reduction, facilitating its inter-
pretation. PCA compresses the data expressed as a large set of correlated variables in a
small but optimal set of uncorrelated variables, ordered by their principal components.
Clearly, our shared goal of analyzing data is to extract physical information from them; a
dimensional reduction does not necessarily produce valuable information, but an appro-
priate choice of coordinates may help. PCA is a nonparametric analysis, therefore there
are no parameters or coefficients to adjust that somehow depend on the users’ experience
and skills, or on physical and geometrical parameters of a proposed model. PCA provides
a unique and objective answer. PCA has been used many times in the astronomical lit-
erature and a more extended presentation of this technique is given by Murtag & Heck
(1987) and Fukunaga (1990). Most of the applications of PCA in astronomy are related
to finding eigenvectors across a population of objects. In the present case, we want to
apply the technique to a single data cube in which the objects are spatial pixels of an
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individual field, containing a single galaxy, nebula, or a set of stars. We identify eigen-
vectors (the uncorrelated variables) that we refer to as eigenspectra, and tomograms,
which are images of the data projected in the space of the eigenvectors. In traditional
tomographic techniques, one obtains images that represent “slices” in tri-dimensional
space (the human body, for example) or in velocity space (Doppler tomography). In
PCA tomography, one obtains images that represent “slices” of the data in the eigenvec-
tors space (tomograms). Each tomogram has associated with it an eigenspectrum. The
simultaneous analysis of both brings a new perspective to the interpretation of them. For
a full presentation of PCA tomography, see Steiner et al. (2009).

2. Eigenspectra and Tomograms
Our aim is to analyze data cubes in which we have two spatial and one spectral

dimension. Each pixel of this original three-dimensional data cube has intensity Iijλ ;
here i and j define a spatial pixel and λ a spectral pixel. Now we organize the data cube
Iijλ (which has zero mean) into a matrix Iβλ of n rows (spatial pixels, referred to here
as objects) and m columns (spectral pixels, referred to here as properties). Then β can
be expressed as

β = μ(i − 1) + j. (2.1)
The data cube transformed into the matrix Iβλ will be the subject of the PCA which is

a technique used to analyze multidimensional data sets and is quite efficient at extracting
information from a large set of data as it allows us to identify patterns and correlations in
the data that in other ways would hardly be noted. Mathematically, it is defined as a linear
orthogonal transformation that expresses the data in a new (uncorrelated) coordinate
system such that the first of these new coordinates, E1 (eigenvector 1), contains the
largest variance fraction, the second variable, E2 , contains the second largest variance
fraction and so on. These new coordinates are orthogonal to one another.

The covariance matrix of Iβλ , CCov , is square and has m rows and columns (equal to
the number of the original spectral pixels). The main diagonal elements correspond to
the variances of each of the isolated variables, while the other (cross) elements correspond
to the covariance between two distinct properties. The m × m covariance matrix has m
eigenvectors, Ek , each one associated with one eigenvalue, Λk . Ek are the new uncorre-
lated coordinates and k is the order of the eigenvector that can vary from 1 to m; the
eigenvectors are ordered by decreasing value of each associated Λk , which is the variance
of each component, to form the characteristic matrix, Ek , in which columns correspond
to eigenvectors. The transformation that corresponds to the PCA can be represented by
the formula

Tβk = Iβλ · Eλk (2.2)
where Tβk is the matrix containing the data in the new coordinate system. As the aim
of PCA is to express the original data on the new system of uncorrelated coordinates,
one concludes that the ideal covariance matrix of the data in this new coordinate system
(DCov) must be diagonal, that is, the covariance between the coordinates must be zero.
One may say that the PCA execution consists in determining the matrix Eλk that satisfies
equation (2.2) and so that DCov is diagonal,

DCov =
[Tβk ]T · Tβk

(n − 1)
. (2.3)

The diagonal elements of DCov are the eigenvalues. In the case of data cubes of astro-
nomical interest, it is usual to have two-dimensional images with spectra associated with
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each spatial pixel. In calculating the PCA of such data cubes, one obtains eigenvectors as
a function of wavelength, energy, or frequency (properties), that we will also refer to as
eigenspectra. On the other hand, Tβk represents data in a new coordinate system. As our
objects are spatial pixels, their projection on to a given eigenvector may be represented
as a spatial image. Each column of Tβk can now be transformed into a two-dimensional
image, Tij,k using equation (2.1). We will refer to these images, Tij,k as tomograms, since
they represent “slices” of the data in the space of the eigenvectors. Analyzing tomograms
simultaneously with eigenspectra brings together a wealth of information. Spectral char-
acteristics may be identified with features in the image and vice versa. Interpreting such
associations facilitates the understanding of the three-dimensional structure within the
data cube.

3. Application: The Central Fegion of the LINER Galaxy NGC 4736
Let us illustrate the application of the method to answer the following question: is

there a supermassive black hole in the nearby LINER galaxy NGC 4736? LINERs are
a class of objects with diverse nature. Although most of them seem to host an AGN
in the sense that they are powered by accretion on to a supermassive black hole, some
objects have not shown any evidence of this. NGC 4736 is somewhat peculiar because it
presents a stellar population that corresponds to an aging starburst. Could this explain
its LINER nature (Cid Fernandes et al. 2004)? We observed this galaxy with GMOS
(Allington-Smith et al. 2002) operated in the IFU mode on Gemini North Telescope.
The data cube was obtained using 500 fibers on the object. The spectral resolution was
R = 2900 over the wavelength range 4700–6800 Å. Three 20-minute integrations were
obtained.

Table 1. Eigenvalues of the Principal Components of NGC 4736.

Eigenvector Eigenvalue Accumulated Fraction
Ek (% of the variance) (% of the variance)

E1 99.7443 99.7443
E2 0.0883 99.8326
E3 0.0325 99.8651
E4 0.0129 99.8781
E5 0.0084 99.8864

The three principal components are shown as eigenvectors and tomograms in Figure 1
and their eigenvalues in Table 1. As can be seen, eigenvector 1 contributes 99.74% of
the variance. This means that this eigenspectrum basically replicates what one would
see in a spectrum obtained with traditional spectroscopic techniques. Tomogram 1 is the
image comparable with that of a classic central stellar bulge. Eigenvector 2 contributes
0.088% of the variance and displays, in combination with its tomogram, a clear map of
the rotation of the emission-line gas in the field of view, uncorrelated with the stellar
component. Eigenvector 3 contributes 0.032% of the variance. Its characteristic is that it
displays correlations among features that can be associated with emission-line transitions.
It is quite surprising that features related to two kinds of emission lines are visible narrow
lines of [O i], [N ii], and [S ii] as well as Hα. But there is also a broad Hα component,
typical of Seyfert 1 (or LINER type 1) galaxies and is usually taken as clear evidence for
an AGN associated with a supermassive black hole. This has not been reported before
despite the fact that this is a nearby galaxy.
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Figure 1. Upper left: Tomograms and eigenvectors 1. Upper right: Tomograms and eigenvectors
2. Lower left: Tomograms and eigenvectors 3. Lower right: Tomogram 3 (AGN) is superposed
on tomogram 1 (bulge) for NGC 4736 showing that the AGN is displaced from the bulge center.

4. Discussion and Conclusions
(i) PCA tomography identifies eigenvectors, ordered in the form of principal compo-

nents according to the rank of the corresponding eigenvalues. Tomograms are images that
represent “slices” of the data in the eigenvectors space. The association of tomogram with
eigenvectors is important for the interpretation of both.

(ii) One of the main advantages of PCA Tomography is dimensional reduction. This
is also important for data compression and transmission.

(iii) The fact that the eigenvectors are orthogonal among themselves is important for
their handling and interpretation. When the data cube presents uncorrelated physical
phenomena, the orthogonality may be useful for identifying them.

(iv) The reconstruction of the data cube with the original format, but with separated
components associated with distinct eigenvectors, allows the extraction of spectra or
images in order to isolate a given feature.

(v) By selecting the eigenvectors or tomograms with certain correlations or anti-
correlations, one can enhance features by reconstructing data cubes in original format.

(vi) Various types of noise may be eliminated or corrected by selecting their eigenvec-
tors and tomograms: cosmic rays, hot/cold pixels, etc.

(vii) We applied PCA to the central region of the LINER galaxy NGC 4736. The
dimensional reduction of the data allowed the identification of characteristics that were
previously unknown. For example, we identify a type 1 nucleus, of very low luminosity,
displaced from the center of the stellar bulge.
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