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ON GALOIS GROUPS OF CLASS TWO EXTENSIONS
OVER THE RATIONAL NUMBER FIELD

SUSUMU SHIRAI

Introduction

Let @ be the rational number field, K/@ be a maximal” Abelian ex-
tension whose degree is some power of a prime ¢, and let f(K) be the
conductor of K/Q; if £=2, let K be complex, and if in addition f(KX)=0(mod 2),
let f(K)=0 (mod 16). Denote by F(K) the Geschlechtermodul of K over
Q and by K the maximal central /-extension of K/Q contained in the ray
class field mod F(K) of K. A. Frohlich [1, Theorem 4] completely deter-
mined the Galois group of K over Q in purely rational terms. The proof
is based on [1, Theorem 3], though he did not write the proof in the case
f(K)=0 (mod 16). Moreover he gave a classification theory of all class
two extensions over @ whose degree is a power of /. Hence we know
the set of fields of nilpotency class two over @, because a finite nilpotent
group is a direct product of all its Sylow subgroups. But the theory
becomes cumbersome, and it is desirable to reconstruct a more elementary
one.

In the present paper we take the m-th cyclotomic field K,, as K and
the central class field Kmpmz’ mod mp, of K,/Q as K, where p.. stands
for the real prime divisor of @. Then we determine the Galois group of
Kmpw over @ by refining the methods used in [1] when (m, 16)#8 (Theorem
6). The proof is based on [5, Theorem 32] which is a generalization of
[1, Theorem 3] to a cyclotomic field over @. We have already shown in
[5] that if L/Q is a normal extension whose Galois group is of nilpotency
class two, then there exists a positive integer m such that LCIi'm,,m.
Thus as regards Galois groups, we possess the set of all nilpotency class
" Received July 19, 1978.

1) This is of sense of Frohlich [1], which implies that the union of all Abelian
¢-extensions defined mod f(K) over Q is K itself, in other words, the 4-genus field of

K/Q contained in the ray class field mod F(K) of K coincides with K.
2) See [5, §3].
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two extensions over @ as well as the set of cyclotomic fields over Q. Tt
seems that in this approach to the theory of fields of class two over @
the structural relation between the fields becomes more transparent in
comparison with the case of Frohlich [1].

Notation

Throughout this paper the following notation will be used.

Z the ring of rational integers on which a finite group acts trivially.

Q the field of rational numbers as in Introduction.

Uup the i-th unit group of K with { > 0 when K is a local field.

G(K|k) the Galois group of K over k.

N the Norm of K to k.

{a,b) the commutator aba™'b™' of ¢ and b when a, b are elements in
a group.

(A, B) the subgroup generated by the commutators (e, b) of all aec A,
be B when A, B are subsets in a group.

(A) the subgroup generated by A when A is a subset in a group.

Y(n) the Euler’s function, that is, the number of positive integers < n
which are relatively prime to n.

Moreover we will use the results and notation of the preceding paper [5].

§1. The Schur multiplicator of a finite group

In this section we describe a well-known result of I. Schur for later
use.
Let G be a finite group, and let
1-R—-F—->G—1

be a free presentation of G in which F is free. Denote by F’ the derived
group of F. Then the sequence in which all groups are Abelian

0—-RNF|R,F)—>R|(R,F)>RRNF" -0
is exact. Since R/R N F’ is isomorphic to a subgroup RF'[F’ of the free
Abelian group F/F’, the above sequence splits, and hence there exists a
complement S/(R, F) to RN F'/(R,F) in R/(R, F). Of course this S is
not uniquely determined.
LEmMMA 1°. Notation being as above, we have

3) See for instance B. Huppert [2, §23]. This follows also from MacLane’s theo-
rem [4, §§50, 52].
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H*G, Z) ~ R/S.
We note that if {z, mod F'},c (R D {z;}:c4) is a basis for the free Abelian
group RF’[F’, then we can take

(1) S =<{zhies (R, F) > .

§2. Relations of local Galois groups

Let p be a rational prime, @, be the p-adic number field, 7/Q, be a
finite unramified extension, { be a primitive p’-th root of unity, and let
K = T®®. We denote by K a central extension of K/Q, such that the
p-exponent p(I%/Q,,) of the Galois conductor® of K/Ql, does not exceed v.

We first assume p + 2. Let g be a primitive root mod p*, and let

(2) o= (p, KIQ)", ©=1(sKQ,),

where ( , K/Q,) denotes the local norm residue symbol for K/Q,. Then ¢
is the Frobenius automorphism of K/Q,(¢) and ¢ a generator of the inertia
group G(K|/T) of K/Q,. It is obvious that {o, r} is a system of generators
of G(K/Q,).

Lemma 2. If p #+ 2, then there exists a system of generators {g, %} of
G(K/Q,) such that
er(p")(%p”‘l, 5-) =1 s

where G, # are extensions of ¢ and t defined by (2) to K, respectively.

Proof. There exists ac UP such that Np,,a = g, because T/Q, is
unramified. Then z = (a, K/T). Since K/T is cyclic, K/T is Abelian. We
take

£ = (a, KIT) .

As is generally known, the unit group U is a direct product of the
group of (p’ — 1)st roots of unity and U, here f = [T: Q,], the extension
degree. Thus we may write,

a=¢&, & '=1, ecUP,
and hence
7 = (7 RIT) .

4) See [5, §1].

https://doi.org/10.1017/50027763000024867 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000024867

124 SUSUMU SHIRAI

Because it follows from p(K/T) = w(K/Q,) < v that
NIQ/TKA* D U%) % Ug})pv-l 95””'1 N

where K* is the multiplicative group of all non-zero elements of K. Then

for any extension ¢ of ¢ to K, we have
g7 = (€)™, KIT) = (67, KIT) = = . Q.E.D.

Next we assume p = 2. In this case K/T is not cyclic when v > 3.
Therefore the situation becomes more complicated in comparison with the
case of p # 2, because K/T is not necessarily Abelian. The relation be-
tween fields to be considered below can be described by the following
diagram, in which we put R = T(6), 6 = ¢ + . Note that extensions
K/R, R|T(¥V=1), K/Q¢) are Abelian, because K/R, K/T(v—1), K/Q\?)
are cyclic and G(K/K) is contained in the center of G(K/Q,).

Q,W=1)

Now set
(3) o= (2,KQ)", *=(-1K[Q), ==(5KQ).

Then ¢ is the Frobenius automorphism of K/Q,%). By direct computation
of norm residue symbols, we have

=, =0,

Thus z*, ¢ are generators of G(K/R) and G(K/T(+/ — 1)), respectively. We
first investigate a relation to be satisfied by a suitable extension # of ¢

5) Furthermore we have U = UP? ™" when p # 2.
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to K. Since T(v —1)/]Qy v —1) is unramified, there exists « € U=, such
that NT(J‘_Ti)/Qz(J__l)a = 1 + 2'\/ —1. Then

r= @1+ 2/=1, K|Q(-1)) = (&, K|T(V-1)),

because of N, =50 (1 + 2¢/—1) = 5. We take
(4) = (a, KIT(V=1)).

LeEMmaA 3. =1,

Proof. The Hasse’s function for Q,(£)/Q, is given by

P —1)=27"C—v+1)—1 forizv.
It follows from [5, Lemma 4] that
HEIQD) < pawelv — 1) + 1 =27,
and hence
NiguoK* D U

Thus we have

#7 = @ KT =1) = Werem KITW=T)
= (& KIK) = Neauo KIQ)
=0+2v-LEQM) =1,

because of 1 + 2v/—1¢ U . Q.E.D.

We next study a relation to be satisfied by suitable extensions g, #*,
z of g, 7*, z to K, here # is the extension defined by (4) to K. There
exists Be U such that Ny, =6 + 6 — 1. It can be easily checked

that
Noyoyg(0* + 0 — 1) =—1  for v = 2.
Hence
™ = (0" + 0 — 1, K/Q(0) = (B, K|R) .
We take
#* = (8, KIR) .
Then

= (8, KR) = (Nimf, KIR) = (8, KIK)
= NVxauof, KIQUQ) = @ + 0 — 1, K|QLQ) -
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Since Ny, 0.l — §) = 2, we have

o=(1-¢ K/@Q)".

We take
§=@1—¢K/Q0).
Then
(7%, 6) = #*r*07  = (1 — /1 — &, K/Q,0))
=1 —¢1 - KIQQ) = (— ¢ KIQL) ,
and hence

€ KjQ)y = (*,0f = ¢, 0) =1,

because G(K/Qz) is a finite nilpotent group of class two and #**¢ G(K/K)
C Z(G(K/Q,)), the center of G(I%/Qz). Since 1+¢+C+C+ ¢ =
+ 6 — 1), we have

z 0 =0 =12t

= (1= /1= & K/QQ) = (1 = /1 — ¢, KIQ(®)
= (& KIQQ)® + 0 — 1, K/Q()

= £

Thus we have proved the following

LemMmA 4. If p = 2, then there exists a system of generators {G,t*, t}
of G(K|Q,) such that

=1, 78,6 =1,

where 6, t*, © are extensions of o, t*, and © defined by (8) to K.

§3. Galois groups of class two extensions over @

Let m be a positive integer, K, be the m-th cyclotomic field over @,
and let I%m,,w be the central class field mod mp., of K, /Q in the sense of
[5, § 8], p.. being the real prime divisor of @. Then I%,,,pw is a nilpotency
class two extension over Q. We have proved the following theorem® in

[5].
6) Denote by m > 0 the finite part of the Galois conductor {(L/Q) of L/Q in the

sense of [5, §2]. Then it follows from the same procedure as the proof of [5, Lemma
37] that L € Rmpe.
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TreorEM A. If L/Q is a normal extension whose Galois group is of
nilpotency class two, then there exists a positive integer m such that L C K,,,..

Hence it is enough to determine the Galois group G(Kmpw/Q) in order
to classify all nilpotency class two extensions over @. The discussion of
our theory is based on the following

THEOREM B ([5, Theorem 32]). Notation being as above, we have
G(Kn,.|K) ~H(G(K./Q),Z)  when (m,16) + 8.

Now put m = 2p* --- p, py, -+ -, p, distinct odd primes. For use of
Theorem B we distinguish three cases:

(@ v=0, b v=2, (c) v=4.

In this paper we will prove our main theorem for (c) and state the cor-
responding results for (a) and (b), because they follow from the result in
the case (c) by only notational changes.

Assume v = 4. Let g, be a primitive root mod p¥, and let

-1
g; = (pi, K) s Ty =~ (_g‘i"‘K‘“')y i = 1,-- T,
b, b,

S (-5
Oy = ’ T =N} T = ’
2 2 2

where (—’—) denotes the norm residue symbol for K/Q, and we write

briefly

A

K=K,, K=K,, .

Then 7, is a generator of the inertia group of a prime factor of p, in K,
and, ¥, ¢ are generators of the inertia group of a prime factor of 2 in K.
Since G(K/Q) is isomorphic to the group of prime residue classes mod m,
{*, ¢, 71, - -, 7.} is a system of generators of G(K/Q). Let F be the free
group with r + 2 generators x*, x, x,, - - -, x,, and let

1—-RK)—>F—GKQ) —1

be the free presentation of G(K/Q) under the correspondence x* — ¥,
x—>7, X —>7,i=1 ---,r. Then we have, from the structure of G(X/Q),

R(K) = < %2, &7, 1} @i, ... xd@ >
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We identify each decomposition group with the corresponding local Galois
group, and choose extensions {é,, #,} and {4, t*, #} of {o,, z;} and {o,, t*, 7}
to K to satisfy the relations contained in Lemmas 2 and 4, respectively.
Then {#*, #, #,, - - -, #,} is a system of generators of G(K/Q), because G(K/Q)
is a finite nilpotent group of class two. Let

1—>RK)— F— GK|Q) — 1

be the free presentation of G(K/Q) under the correspondence x* — #*,
x—% x,—>1%,1i=1-.--,r. Then we have

R(K) D R(K) D (R(K), F)
and
[R(K): R(K)] = [K: K] = [H(G(K/Q), 2):1] ,
because of Theorem B.
LemMA 5. Notation being as above, if ¢, can be written in the form
o, = fi* v, -0, 7)) i=0,1,---,1,
then we have

R(R) = < x*(x, y,), &%, o (@™, y), -,
Xy o (x 1 y), (R(K), F) >,

where y; = f(x*, %, %, -+, %), 1 =0,1, -, 1.

Proof. Since the restriction of f,(#*, %, %, ---,%,) on K is ¢;,, we may
write

f'l(%*; P ZTIRREN %r) = 5101 s 0: € G(K/K) ’
and hence for any ye G(K/Q) we have
(T’ fi(%*’ %, %1, Y fr)) = Td'iptr_lpi_lé'i_l = T&z‘r-lai_l = (Ta 61) ’
because G(I%/K) is contained in the center of G(K/Q). Thus R(K) contains
the right hand side under the homomorphism x* — #*, x— %, x, — %,
i=1,---,r, because of Lemmas 2 and 4. On the other hand,
{x**(x, y,) mod F’ = x** mod F’, x* *mod F’, - - -,

xt PO (xrtt™ yymod F/ = x!P " mod F/, i=1,---,1}
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is a basis for the free Abelian group R(K)F’/F’. Hence by virtue of
Lemma 1 and (1) we have

[R(K): the right hand side] = [H"(G(K/Q), Z):1] ,

which implies that R(K) coincides with the right hand side. Q.E.D.

According to A. Frohlich [1], to write explicitly £, is realized by use
of the product formula in class field theory as follows. We define the
symbols [j, 7], [0, i]*, [0, {] by putting

p,=gy¥? (modpy), i=0,1,---,r, j=1,---,r, i#j,
(5) pi = (— DOIE0I (mod ), i=1,---,r,
[i,i]=0, i=1’...’r,

where p, = 2. In other words [j, ] is the index of p, for the modulus p}
relative to the primitive root g, and [0, i]*, [0, {] are the indices of p, for
the modulus 2’ relative to the basis {— 1,5}. These symbols are called
the cross coefficients for K in [1, pp. 237-238] when K/@Q is a maximal
Abelian extension of prime power degree. It is obvious that

(pi,K)=T§j’i]’ i=0’1""9r, j=1,"',r’ i#:jy
by
(pi’K>=a{1, i=0,1---,r1,
D
(PtéK)___ SHO =1 ..y,

Therefore we have

,
g, = 00 _Hl il fori=1,.---,r,
2.

because of [] <M> =1, and
all p p

,
0
g, = [ %97,
=1

because of [] <M) = 1. Hence each y, in Lemma 5 is given by
allp D
=11 a5,

j=1

7
Yy = 2K[0,1%.00,3] jl:ll ng,tl , 1= L, :.--,r.
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It is well-known that if a, b, ¢ are elements in a group of class two, then
(ab,c) = (a,c)b,0), (a, bc) = (a, b)(a,cC).
Thus we have proved the following main

THEOREM 6. Let m = 2'p2 --- pr be a natural number, K, be the
m-th cyclotomic field over the rational number field Q, and let Ig',,,,,m be the
central class field mod mp., of K,[Q, p.. being the real prime divisor of Q.
Then:

(@) v=0. The Galois group G(I%m,,m/Q) of Kmpw over Q is generated
by r elements x,, - -, x,, and completely determined by the relations

(xi, xj)xk = xk(xi, xj) ’ all i’ j’ k ’

Yi—1

by

Y r -l d .
x;’;’(p‘t) = (nl (xi’ xj) []'ﬂ) ’ 1= 1’ e, T
j=

(b) v=2. G(I%m,,w/Q) is generated by r + 1 elements x, x,, -- -, X;,
and completely determined by the relations

(xi’ xj)xk = xk(xi9 xj) ’ all i) j, k ’
=1,
. T A\ .
x%”p‘b) = ((xia xo)—-[Oﬂ] H (xi’ xj)_[j’ﬂ) ’ 1= 1, e, T
j=1

(c) v=4. G(I%m,,m/Q) is generated by r + 2 elements x_,, X, X, - -
and completely determined by the relations

(xi’ xj)xk - xk(xia xj) ’ all i9 j’ k )
=1,

,
X = Hl (%1, X)),
i=
l)i—l

1 = (G 20 %, 1) ] @ e) ) i
j=1
where [j, 1], [0, i]*, [0, {] are the indices defined by (5).
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