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Abstract

In a homogeneous continuous-time Markov chain on a finite state space, two states that
jump to every other state with the same rate are called similar. By partitioning states into
similarity classes, the algebraic derivation of the transition matrix can be simplified, using
hidden holding times and lumped Markov chains. When the rate matrix is reversible, the
transition matrix is explicitly related in an intuitive way to that of the lumped chain. The
theory provides a unified derivation for a whole range of useful DNA base substitution
models, and a number of amino acid substitution models.
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1. Introduction

In some applications of homogeneous continuous-time Markov chains on a finite state space,
it is important to calculate the transition matrix across the interval [0, t], P (t), from the transition
rate matrix Q. In molecular evolution, the substitution patterns observed in DNA sequences
is often modelled as a Markov chain on the DNA bases {T,C,A,G}. Such models are used
routinely to answer important questions in evolutionary biology, such as estimating evolution
rates and estimating gene distances, which are both important for reconstructing phylogenies.
Early works on molecular evolution focused on gene distances between pairs of DNA sequences
or amino acid sequences, based on models with explicit algebraic expressions for P (t). For
example, the Kimura distance [5, p. 198], [6, pp. 76–77] is based on the Kimura model [12],
with α1 and α2 both positive,

Q =

⎡
⎢⎢⎣

−α1 − 2α2 α1 α2 α2
α1 −α1 − 2α2 α2 α2
α2 α2 −α1 − 2α2 α1
α2 α2 α1 −α1 − 2α2

⎤
⎥⎥⎦ ,

P (t) =

⎡
⎢⎢⎣

1 − r(t) − 2s(t) r(t) s(t) s(t)

r(t) 1 − r(t) − 2s(t) s(t) s(t)

s(t) s(t) 1 − r(t) − 2s(t) r(t)

s(t) s(t) r(t) 1 − r(t) − 2s(t)

⎤
⎥⎥⎦ ,

where r(t) = (1 + e−4α2t − 2 e−2(α1+α2)t )/4 and s(t) = (1 − e−4α2t )/4. This can be derived
from the Kolmogorov equations, P ′(t) = QP (t) or P ′(t) = P (t)Q. In general, the expression
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for an arbitrary four-state process can be found by solving up to twelve differential equations.
Most DNA substitution models impose constraints on Q, but the manipulation can still be
quite complex. See, for example, the eight-parameter model SSL98 [15], where the algebraic
expression for P (t) was used to compute the gradient of the likelihood function of a model,
based on multiple DNA sequences related by some assumed phylogeny.

The present paper outlines a strategy for obtaining algebraic expressions for P (t) which
enables the results to be written down immediately in the simplest cases, such as the Kimura
model. In more complex cases there can still be a substantial reduction in the analytical effort.
The method depends on there being some similarity in the states. It turns out that such constraints
in Q can be revealed in P (t) through the use of hidden holding times, a natural extension of
the uniformisation technique, where unobservable transitions from a state to itself are allowed.

The paper is organised as follows. In Section 2, hidden holding times and similar states are
introduced, leading to a representation of P (t) in terms of a hidden transition matrix. Then the
connection to lumped Markov chains is explained, followed by applications to two substitution
models on DNA bases and amino acids. In Section 3 we present the reversible case, where
there is an elegant relationship between the transition matrix and the lumped chain. This yields
a unified derivation of P (t) in a range of DNA and amino acid substitution models.

2. Markov chains

Consider a homogeneous Markov chain {X(t)}t≥0 on a finite state space S = {1, . . . , s}
defined by a transition rate matrix Q which has strictly positive off-diagonal entries and diagonal
entries such that each row sums to 0. It has a unique equilibrium distribution π which is strictly
positive. The transition probability over a time interval of length t is P (t) = exp(Qt). For any
i, j ∈ S and u, t ≥ 0, Pij(t) = P{X(u + t) = j | X(u) = i}. The chain can be characterised
by a discrete-time Markov chain {Yn}n≥0 and holding times {Tn}n≥0 [14, pp. 87–90], such that
the transition matrix of the jump chain is Q with diagonal elements set to 0, normalised, and,
conditional on (Y0, . . . , Yn−1), (T1, . . . , Tn) are independent exponential random variables with
rates (−QY0Y0 , . . . ,−QYn−1Yn−1). We call this a (Y, T ) description of the Markov chain.

We extend the above formulation as follows. For i = 1, . . . , s, let λi ≥ −Qii, so that
P = I + diag(λ−1

1 , . . . , λ−1
s )Q is a stochastic matrix. Define a process with a discrete-

time Markov chain {Zn}n≥0 with transition matrix P , and holding times {τn}n≥0 such that,
conditional on (Z0, . . . , Zn−1), (τ1, . . . , τn) are independent exponential variables with rates
(λZ0 , . . . , λZn−1). In general, the τ s are hidden, due to possible self-transitions. This process is
equivalent to the original Markov chain, because (a) the associated jump process has the same
distribution as Y ; (b) conditional on the first n jumps, the first n holding times are sums of inde-
pendent random numbers of independent hidden holding times and, therefore, are independent;
and (c) the holding time between Yn−1 and Yn is the sum of N independent exponential variables
of rate λYn−1 , where N has a geometric distribution with success probability −QYn−1Yn−1/λYn−1 ,
so the nth holding time is exponential with rate −QYn−1Yn−1 [3, p. 54]. There are two special
cases: (I) if each λi = −Qii then (Z, τ) is identical to the jump chain (Y, T ); (II) if the λi are
equal then the τ s correspond to a homogeneous Poisson process (this is uniformisation [10,
pp. 20–21]). Let ρi = λi + Qii = λi − ∑

j �=i Qij be the hidden self-transition rate. The (Z, τ)

description is valid for any choice of ρi ≥ 0.
For t ≥ 0, we define a hidden transition matrix W (t) as follows. Start the process at

X(0) = i, so that τ1 has rate λi . For an event E, we write P{E | X(0) = i} as Pi{E}. Set

Wij(t) = Pi{τ1 < t, X(t) = j}. (1)
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Since T1 ≥ τ1 with probability 1, if τ1 > t then X(t) = i. Hence,

Pij(t) = Pi{τ1 > t, X(t) = j} + Wij(t)

= Pi{τ1 > t}δij + Wij(t)

= e−λi t δij + Wij(t)

gives the fundamental representation

P (t) = diag(e−λ1t , . . . , e−λs t ) + W (t).

2.1. Similar states

Now we define similar states in a Markov chain.

Definition 1. Two distinct states i1 and i2 are similar if their rates to every other state agree,
i.e. Qi1j = Qi2j whenever j �= i1, i2. A nonempty subset of S is a similarity class if every
pair of states in the set are similar.

For example, if S = {1, 2} then

Q =
[−α2 α2

α1 −α1

]
(2)

and the states are formally similar. In the following rate matrix on {1, 2, 3}, 1 and 2 are similar,
but not any other pair of states, unless α2 = α5 or α1 = α4:

Q =
⎡
⎣−α2 − α3 α2 α3

α1 −α1 − α3 α3
α4 α5 −α4 − α5

⎤
⎦ . (3)

The relation of similarity is not transitive. For example, if α4 = α1 but α5 �= α2 in (3), then 1 is
similar to 2, 2 is similar to 3, but 1 is not similar to 3. This point is general. Suppose that i and j

are similar, and that j and k are similar. If l �= i, j, k then Qil = Qjl = Qkl. So the similarity
of i and k hinges on whether Qij = Qkj. Although similarity is not an equivalence relation,
it is always possible to partition S into similarity classes, although there may not be a unique
maximal partition having the least number of classes. In the above example, there are two
maximal partitions. It will be shown later that, under reversibility, similarity is an equivalence
relation.

The (Z, τ) description of the process gives us the freedom to choose ρi to exploit similar
states in a very natural way. For example, let ρi = αi in (2), so that λi = α1 + α2. Then
τ1 | {X(0) = 1} and τ1 | {X(0) = 2} are both exponential with rate α1 +α2, Pi{X(τ1) = j} =
αj/(α1 + α2), and it follows from (1) that the two rows of W (t) are identical.

More generally, suppose that S is partitioned into m nonempty similarity classes S1, . . . ,Sm,
some of which are not singletons. Let Sg be a nonsingleton similarity class. For j ∈ S, let

α
g
j = Qij for any i ∈ Sg, i �= j. (4)

The rate α
g
j is well defined because it is independent of the choice of i. For i ∈ Sg , set the self-

transition rate as ρi = α
g
i . Since λi = ρi + ∑

j �=i Qij = ∑
j α

g
j is independent of the choice

of i ∈ Sg , it will be denoted by λ∗
g . For any i ∈ Sg , τ1 | {X(0) = i} is exponential with rate

λ∗
g , Pi{X(τ1) = j} = α

g
j /λ∗

g , and again by (1) the W (t) rows corresponding to Sg are identical.
The results are summarised below.
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Definition 2. If i ∈ Sg , a nonsingleton similarity class, αg
i in (4) is the canonical self-transition

rate of i, and λi = ∑
j α

g
j is the canonical hidden holding rate of i, denoted by λ∗

g . If Sg = {i}
is a singleton then any value λi ≥ −Qii will be called canonical. The matrix W (t) = P (t) −
diag(e−λ1t , . . . , e−λs t ) is a canonical hidden transition matrix.

Theorem 1. Suppose that S is partitioned into similar classes S1, . . . , Sm. Then in a canonical
hidden transition matrix W (t), rows corresponding to any similarity class are identical. In
particular, if i is similar to j then, for any k �= i, j , Pik(t) = Pjk(t).

There is a converse to Theorem 1: if Pik(t) = Pjk(t) for every k �= i, j and every t

in a neighbourhood of 0, then i and j are similar. This easily follows from calculating the
derivative of P (t) at t = 0. Ignoring similarity, P (t) can be derived by solving s(s − 1)

differential equations. Taking similarity into account, only m(s −1) are needed, where m is the
number of similarity classes. Thus, a significant reduction is obtained if the number of states
is large relative to the number of similarity classes. In fact, the required work can sometimes
be less, which can be understood via lumped Markov chains.

2.2. Lumped Markov chains

Let S be partitioned into m similarity classes S1, . . . , Sm. It is intuitive that the chain obtained
by lumping nonsingleton similar classes is Markovian. Indeed, this is true by direct verification
of the criteria in [1]. Denote the rate matrix of the lumped Markov chain by Q∗. We have

Q∗
SgSh

= Q∗
gh =

∑
j∈Sh

Qij for any i ∈ Sg, (5)

which is well defined because of similarity. It is also readily concluded from the Kolmogorov
forward equation P ′(t) = P (t)Q that the lumped transition matrix P ∗(t) is given by

P ∗
gh(t) =

∑
j∈Sh

Pij(t) for any i ∈ Sg. (6)

The lumped transition matrix P ∗(t) can be found by solving m(m−1) differential equations.
Next, (6) and the fact that W (t) is completely determined by certain m rows, one from
each similarity class, implies that solving an additional m(s − m) differential equations will
yield P (t). Although the total m(s − 1) is the same as using just Theorem 1, the lumped
chain clarifies certain cases which need less work. For example, (6) implies that if m − 1
similarity classes are lumped then the columns of P (t) corresponding to the unlumped class is
given directly by P ∗(t). Thus, if the similarity classes are all of equal size, say k, then P (t)

is obtained by applying m times the expression for the case where one class is of size k, and
the other m − 1 classes are singletons, which only requires solving m(k + m − 1) differential
equations. Furthermore, as will be seen later, if m = 1 then no differential equation is required.
Also, if m = 2 then with P ∗(t) given by (11), below, at most 2s − 4 differential equations need
to be solved.

By relabelling the states if necessary, assume that states 1, . . . , k are in the similarity class
S1 with the canonical hidden first passage rate λ∗

1 = λ1 = · · · = λk . By looking at the form
of Q + λ∗

1I , we conclude that −λ∗
1 is an eigenvalue of Q, and its geometric multiplicity is at

least k − 1. Thus, the characteristic polynomial of Q, pQ(x) = (x + λ∗
1)

k−1f (x) for some
polynomial f (x). We claim that in fact f (x) is the characteristic polynomial of Q∗, the rate
matrix for the lumped chain with only S1 lumped. Since every eigenvalue of Q∗ is an eigenvalue
of Q, this is clear if the eigenvalues of Q∗ are distinct, and distinct from λ∗

1. Otherwise, the
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fact that matrices with distinct eigenvalues are dense in the set of matrices implies that, for
any ε > 0, there exists A within ε of Q, not necessarily a rate matrix, having the following
properties: it has n − k + 2 distinct eigenvalues, one of them, µ, having geometric multiplicity
equal to k − 1, and its first k rows are ‘similar’ in the same sense as in Q. If A∗ is obtained
from A in the same way Q∗ is obtained from Q, then pA(x) = (x − µ)k−1pA∗(x). Taking
limits on both sides yields the result. By induction on the number of nonsingleton similarity
classes, we obtain the following result.

Theorem 2. Suppose that S is partitioned into similar classes S1, . . . , Sm such that, for i =
1, . . . , l ≤ m, Si is nonsingleton: si = |Si | > 1, with canonical hidden first passage rate λ∗

i .
Let Q∗ be the rate matrix for the lumped process with S1, . . . , Sl lumped. Then

pQ(x) =
l∏

i=1

(x + λ∗
i )

si−1 pQ∗(x).

2.3. Certain Markov chains with two similarity classes

Consider a Markov chain on s ≥ 3 states having maximal similarity partition with two
components {1, . . . , s − 1} and {s}. Then there exist α11, . . . , α1s and α21, . . . , α2,s−1 such
that, for some k = 1, . . . , s − 1, α1k �= α2k , and i �= j ,

Qij =
{

α1j , 1 ≤ i ≤ s − 1,

α2j , i = s.

For i = 1, . . . , s − 1, λi = ∑s
j=1 α1j = λ∗

1. By Theorem 1, P (t) is determined by the first
and last rows of W (t). They can be derived by solving 2(s − 2) differential equations, in view
of (6) and the fact that the lumped Markov chain has only two states.

Indeed, the differential equations can be reduced to linear equations. First, −λ∗
1 is an

eigenvalue of Q, with geometric multiplicities at least s − 2. Next, the lumped Markov chain
has two eigenvalues, 0 and −λ∗

2 = −α1s − ∑s−1
j=1 α2j , which are also eigenvalues of Q. If

λ∗
2 �= λ∗

1, by Theorem 2, Q is diagonalisable, and P (t) is a linear combination of 1, e−λ∗
1t ,

and e−λ∗
2 . If λ∗

2 = λ∗
1 then the algebraic multiplicity of λ∗

1 exceeds its geometric multiplicity
by 1, and Q is not diagonalisable. In this case, P (t) is a linear combination of 1, e−λ∗

1t , and
t e−λ∗

1t .
For example, the rate matrix (3) has λ∗

1 = λ1 = λ2 = α1 + α2 + α3 and λ∗
2 = α3 + α4 + α5.

The following are found by solving just two linear equations. The equilibrium distribution is

π =
[
α1(α4 + α5) + α3α4

λ∗
1λ

∗
2

,
α2(α4 + α5) + α3α5

λ∗
1λ

∗
2

,
α3

λ∗
2

]
.

If λ∗
1 �= λ∗

2, define

κ = 1

λ∗
1 − λ∗

2
[α1 − α4, α2 − α5],

A =
⎡
⎣π1 π2 π3

π1 π2 π3
π1 π2 π3

⎤
⎦ , B =

⎡
⎣ π3κ1 π3κ2 −π3

π3κ1 π3κ2 −π3
(π3 − 1)κ1 (π3 − 1)κ2 −π3

⎤
⎦ .

Then
P (t) = diag(e−λ∗

1t , e−λ∗
1t , e−λ∗

2t ) + A + e−λ∗
2tB − e−λ∗

1t (A + B). (7)
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For the nondiagonalisable case, λ∗
1 = λ∗

2 but α1 �= α4, π is still as above,

P (t) = diag(e−λ∗
1t , e−λ∗

1t , e−λ∗
1t ) + (1 − e−λ∗

1t )A + t e−λ∗
1tC, (8)

where

C =
⎡
⎣κ1 −κ1 0

κ1 −κ1 0
κ2 −κ2 0

⎤
⎦ , κ = [π3(α5 − α2), π1(α2 − α5) − π2(α1 − α4)].

DNA bases are classified by chemical similarity into pyrimidines Y = {T, C} and purines
R = {A, G}. It is well known that intra-class substitutions, or transitions, occur at higher rates
than inter-class substitutions, or transversions. The SSL98 model of DNA base substitution
models [15] takes this into account, where pyrimidines and purines are similarity classes. For
the bases ordered as T, C, A, G,

Q =

⎡
⎢⎢⎣

− µ2 µ3 µ4
µ1 − µ3 µ4
µ5 µ6 − µ8
µ5 µ6 µ7 −

⎤
⎥⎥⎦ .

Let P ∗1(t) and P ∗2(t) respectively denote the transition matrices of the lumped chains on the
ordered states {T, C, R} and {G, A, Y}. Both are of the form (7) or (8). By (6),

P (t) =

⎡
⎢⎢⎢⎢⎢⎣

P ∗1
11 (t) P ∗1

12 (t) P ∗2
32 (t) P ∗2

31 (t)

P ∗1
21 (t) P ∗1

22 (t) P ∗2
32 (t) P ∗2

31 (t)

P ∗1
31 (t) P ∗1

32 (t) P ∗2
22 (t) P ∗2

21 (t)

P ∗1
31 (t) P ∗1

32 (t) P ∗2
12 (t) P ∗2

11 (t)

⎤
⎥⎥⎥⎥⎥⎦ .

The new derivation is conceptually and computationally easier than the original work,
resulting in a much simpler expression in the diagonalisable case, where µ1 + µ2 �= µ5 + µ6
and µ3 + µ4 �= µ7 + µ8. The authors of [15] seemed unaware that otherwise P (t) assumes
three different expressions, though this may not be too important in practice.

2.4. An amino acid substitution model

The 20 naturally occurring amino acids are encoded by 61 codons, or triplets of DNA bases;
the other three codons act as signals to stop transcription. Like DNA bases, the substitution
process on amino acids is often modelled by Markov chains. Indeed, early research on molecular
evolution focused on amino acid sequences, rather than DNA sequences. In a poster entitled
‘Parametric models of amino acid evolution’ presented by Raspe et al. at the 2008 Annual
Meeting of the Society for Molecular Biology and Evolution, the ‘Bachelor Model 2’ treats
the amino acids as belonging to three similarity classes of sizes 7, 4, and 9. By the previous
discussion, the algebraic expression for P (t) can be derived by solving 3(20 − 1) = 57
differential equations, instead of 380.

2.5. A Markov chain with two maximal similarity partitions

For the rate matrix (3) with α4 = α1 and α5 �= α2, discussed briefly after the definition of
similarity, 1 and 2 are similar, and so are 2 and 3, but 1 and 3 are not. The lumped Markov
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chain on {{1, 2}, 3} gives the third column of P (t) as⎡
⎣ π3(1 − e3)

π3(1 − e3)

e3 + π3(1 − e3)

⎤
⎦ ,

where
π3 = α3

α1 + α5 + α3
, e3 = e−(α1+α5+α3)t .

The lumped Markov chain on {1, {2, 3}} gives the first column as⎡
⎣e1 + π1(1 − e1)

π1(1 − e1)

π1(1 − e1)

⎤
⎦ ,

where
π1 = α1

α1 + α2 + α3
, e1 = e−(α1+α2+α3)t ,

so the second column follows.

3. Reversibility

The utility of similar states is more remarkable when the rate matrix is reversible, i.e. for
i �= j , Qij = βijπj , where βij = βji and π is the equilibrium distribution of the Markov chain
(see [11, p. 7]). Under reversibility, the similarity between two states can be checked by looking
at the symmetric frequency-adjusted rate matrix β, and it is an equivalence relation. Indeed,
suppose that i and j are similar and that j and k are similar. Then βij = βji = βki = βik =
βjk = βkj. By the discussion in Subsection 2.1, this implies that i and k are similar. Therefore,
a reversible chain has a unique maximal partition with the smallest number of components.
Suppose that S is partitioned maximally into similarity classes S1, . . . , Sm. It turns out that
P (t) is completely determined in a simple manner by P ∗(t).

Theorem 3. Let Q be a reversible rate matrix on {1, . . . , s}, the states of which are ordered
such that each similarity class consists of consecutive states. Let λi be the canonical hidden
holding rate for state i, and let λ∗

g be the common rate for similarity class Sg . Let W (t) =
P (t)−diag(e−λ1t , . . . , e−λs t ) be the canonical hidden transition matrix. Denote the transition
matrix of the lumped chain by P ∗(t). Then, for i ∈ Sg and j ∈ Sh,

Wij(t) =

⎧⎪⎪⎨
⎪⎪⎩

πj

π∗
g

[P ∗
gg(t) − e−λ∗

gt ], h = g,

πj

π∗
h

P ∗
gh(t), h �= g,

(9)

where π∗
h = ∑

i∈Sh
πi . Equivalently,

P (t) = diag(e−λ1t , . . . , e−λs t )

+

⎡
⎢⎢⎢⎢⎢⎢⎣

(P ∗
11(t) − e−λ∗

1t )J1 P ∗
12(t)J2 · · · P ∗

1m(t)Jm

P ∗
21(t)J1 (P ∗

22(t) − e−λ∗
2t )J2 · · · P ∗

2m(t)Jm

...
...

. . .
...

P ∗
m1(t)J1 P ∗

m2(t)J2 · · · (P ∗
mm(t) − e−λ∗

mt )Jm

⎤
⎥⎥⎥⎥⎥⎥⎦

,
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where the square matrix Jg is the Kronecker product of a column vector of 1s with the subvector
of the row vector π corresponding to g, divided by π∗

g .

A row vector µ of length s is said to be partially stationary with respect to the reversible
process in Theorem 3 if, for each similarity class Sg , the corresponding entries are proportional
to the corresponding entries in the stationary distribution π . If the proportionality constants
are equal across all similarity classes, then µ is stationary, i.e. µQ = 0. The strategy is to
show that every row of W (t) is partially stationary. Then (9) follows from (6) and the proof is
complete.

It is useful to define diagonal entries of the frequency-adjusted rate matrix β. For i ∈ Sg ,
let βii = α

g
i /πi , where α

g
i is the canonical self-transition rate of i. Consequently, for i ∈ Sg ,

Pi{X(τ1) = j} = α
g
j

λ∗
g

= βijπj

λ∗
g

, j ∈ S. (10)

Lemma 1. (a) Partition the matrix β according to the similarity classes. Then each submatrix
is constant, i.e. if i ∈ Sg and j ∈ Sh, βij = β∗

gh.

(b) For each i, X(τ1) | {X(0) = i} is partially stationary.

(c) If µ is partially stationary then so is µP (t) for any t ≥ 0.

Proof. (a) Since the matrix is symmetric, it suffices to show that, for any i, βij1 = βij2
whenever j1 is similar to j2. There are three cases: (i) if j1 �= i and j2 �= i, then Qj1i = Qj2i ,
or βj1i = βj2i , and by reversibility, βij1 = βij2 ; (ii) if j1 = i then, by definition and reversibility,
βii = βj2i = βij2 ; (iii) if j2 = i then similarly βij1 = βj1i = βii.

(b) Let i ∈ Sg , and let Sh be a nonsingleton similarity class. It follows from (10) and (a) that,
for j ∈ Sh,

Pi{X(τ1) = j} = βijπj

λ∗
g

= β∗
gh

λ∗
g

πj .

(c) We claim that if µ is partially stationary then so is ν = µQ. Let µ = (κ1π1, . . . , κsπs),
where there are κ∗

1 , . . . , κ∗
m such that κi = κ∗

g if i ∈ Sg . Let π∗
g = ∑

i∈Sg
πi . Then, for j ∈ Sh,

νj =
∑
i �=j

µiQij − µj

∑
i �=j

Qji = πj

∑
i �=j

βijπi(κi − κj ) = πj

∑
g �=h

β∗
ghπ

∗
g (κ∗

g − κ∗
h).

It follows that µQk is partially stationary for any positive integer k. Since P (t) is a power
series in Q, µP (t) is partially stationary.

Now we show that row i of W (t) is partially stationary. Start the chain at X(0) = i.
For t > x, the distribution of X(t) | {τ1 = x} is obtained by multiplying the distribution
of X(x) | {τ1 = x} on the right by P (t − x). It follows from Lemma 1(b) and (c) that
X(t) | {τ1 = x} is partially stationary. The result follows from

Wij(t) =
∫ t

0
Pi{X(t) = j | τ1 = x}λi e−λix dx.

Equation (9) reduces the derivation of P (t) to that of P ∗(t), for which the rate matrix is also
reversible, for, by (5) and Lemma 1(a), Q∗

gh = β∗
ghπ

∗
h if g �= h. Thus, the result can be very

useful for dealing with large reversible rate matrices with a fair amount of similarity.
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3.1. All states belong to one similarity class

Suppose that in a Markov chain every pair of states are similar. Then Qij = αj for any
i �= j , so that the canonical hidden holding rates λi = ∑s

j=1 αj = λ∗ are independent of i.
It is easy to check that Q is reversible, and the equilibrium distribution π is proportional to
the αs. Here P ∗(t) ≡ 1, so, by Theorem 3,

P (t) = e−λ∗tI + (1 − e−λ∗t )J , J = 1

λ∗

⎡
⎢⎣

α1 α2 · · · αs

...
...

. . .
...

α1 α2 · · · αs

⎤
⎥⎦ .

Since there is only one similarity class, the hidden holding times immediately bring the system
into stationarity. The hidden holding times are identically distributed, so the Markov chain has
in fact been uniformised.

In the F81 DNA substitution model [4], all states belong to a similarity class. The JC69
model [9] is a special case where all substitution rates are equal, so that the equilibrium
distribution is uniform. A heuristic version of hidden holding times is used in [5, pp. 156–
157, 200–204] to derive P (t) for these models. The analogues of JC69 and F81 on the amino
acids have been described [2, p. 382], [7].

Specialising the result to (2) gives the familiar

P (t) = 1

α1 + α2

[
α1 + α2 e−(α1+α2)t α2 − α2 e−(α1+α2)t

α1 − α1 e−(α1+α2)t α2 + α1 e−(α1+α2)t

]
. (11)

3.2. Reversible chains with two similarity classes

A reversible rate matrix with exactly two distinct similarity classes of sizes s1 and s − s1 has
the form

Q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− β1π2 · · · β1πs1 βπs1+1 βπs1+2 · · · βπs

β1π1 − · · · β1πs1 βπs1+1 βπs1+2 · · · βπs

...
...

. . .
...

...
...

. . .
...

β1π1 β1π2 · · · − βπs1+1 βπs1+2 · · · βπs

βπ1 βπ2 · · · βπs1 − β2πs1+2 · · · β2πs

βπ1 βπ2 · · · βπs1 β2πs1+1 − · · · β2πs

...
...

. . .
...

...
...

. . .
...

βπ1 βπ2 · · · βπs1 β2πs1+1 β2πs1+2 · · · −

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

where π is a positive probability vector, and β1, β2, and β are positive constants. Let π∗
1 =∑s1

j=1 πj and π∗
2 = ∑s

j=s1+1 πj . The canonical hidden holding rates are

λi =
{

β1π
∗
1 + βπ∗

2 , 1 ≤ i ≤ s1,

βπ∗
1 + β2π

∗
2 , s1 + 1 ≤ i ≤ s.

Equation (11) gives P ∗(t), with αi = βπ∗
i . Theorem 3 then allows P (t) to be written down

immediately. In particular, this applies to the TN93 model of DNA substitution [17], which is
obtained by imposing reversibility on SSL98, with s = 4 and s1 = 2. The present approach
is simpler and more general than the heuristic treatment of [5, pp. 200–204], which can be
formalised via hidden holding times. Special cases of TN93 include the HKY85, Felsenstein’s
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F84, T92, and K80 [8], [12], [13], [16]. Even though these models are mathematically quite
simple, they have been used extensively in applications, and will continue to be very useful for
understanding the dynamics of evolutionary forces at the molecular level.

3.3. Amino acid substitution models

The poster discussed in Subsection 2.4 also dealt with a reversible version of the ‘Bachelor
Model 2’. The new approach will significantly simplify the computation, since it only requires
the numerical evaluation of the transition matrix of a reversible Markov chain on three states.
Finally, substitution models on codons, which are often used to detect evidence of Darwinian
selection at the level of DNA, provide opportunities for simplification in the presence of similar
states, for example, codons for the same amino acid.
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