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1. Introduction. McCoy, following Frobenius, studied a problem which can 
be described as follows. Let k be an arbitrary field, kc its algebraic closure, and 
21 any algebra of n X n matrices over k which contains the identity / . Define a 
canonical ordering to be a set of n mappings A* of 21, or of a subset @ of 21, into 
kc such that the sequence Xi(4), X2G4), . . . , \n(A), for each A G ©, consists of 
the characteristic values (roots of det(^4 — xl) = 0) of A, each with the right 
multiplicity. Define a canonical ordering to be a Frobenius ordering if, for all 
non-commutative polynomials f(xh x2, . . . , xm) and all finite subsets Ai, 
A2,... ,Amoî 21, 

(1) \if(Aly A*, . . . , Am) = / (X iUi ) , . . . , X ^ J ) , i = 1, , «. 

Say that 21 has property F if it has a Frobenius ordering. (Previous authors 
defined F in an apparently weaker fashion, demanding that (1) holds only for 
elements of a fixed system of generators of 21 rather than for all finite subsets; 
but a simple substitution argument shows that their definition is equivalent to 
ours. Also they assumed k to be algebraically closed.) 

Frobenius [3a] proved that every commutative 21 has property F; McCoy 
[5] proved that F is equivalent to the property 

(M) 2l/rad 21 is commutative, 

where rad 2Ï = radical of 21 = maximal nilpotent left (or right, or two-sided) 
ideal in 21; Goldhaber [4] proved F equivalent to 

(P) For every A, B Ç 21 there is a canonical ordering, possibly defined only 
for A, B, and A + B, such that 

(2) \i(A + B) = \t(A) + A,(B), i = 1, 2 , . . . , n. 

There is also given in [4] a simple proof of the theorem of McCoy; however, 
the proof of a crucial lemma there (our Lemma 2) is not valid for all n unless k 
has characteristic 0. 

In the present paper we give a simple proof of this lemma which avoids all 
trouble with the characteristic, prove McCoy's and Goldhaber's theorems 
without restriction on the field k, and show that if k is quasi-algebraically closed 
(i.e. is not the centre of any non-commutative division algebra) then P can be 
replaced by the weaker condition 
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(P') The sum of every two nilpotent elements of 21 is nilpotent. 

To see that P implies P' recall that a matrix is nilpotent if and only if all its 
characteristic values are 0. 

2. Equivalence of F, M, P, and P' for quasi-algebraically closed k. 
Throughout the paper 21, k, kc, X* retain the meaning given them in the intro­
duction. All the algebras used are assumed to contain an identity element, and 
if they are matric algebras of any dimension they are assumed to contain the 
identity matrix of that dimension. (It is quite a simple matter to deduce 
theorems from our work about algebras which do not contain the identity 
matrix, but we omit this as not worth the effort.) 

LEMMA 1. If K is any field containing k, then rad (K X* 21) contains 
KXk(rad 21). 

For the necessary theory of the operation KXk see [1], [2], or [3]. In [1] and 
[3] this operation is called "extending the ground field." Since rad 21 is nilpotent 
there is an integer m such that every product of m elements of rad 21 is 0. The 
product of any m elements of KXk rad 21 is a linear combination, over K, of 
products of m elements of rad 21, and hence is also 0. Thus KXk rad 21 is a nil-
potent ideal of KXk 21, and Lemma 1 is proved. 

LEMMA 2. If A Ç 21 and N Ç rad 21 and x is an indeterminate, then 

(3) det (A - xl) =det(A+N- xl). 

Let k(x) be the field of rational functions of x over k. The matrix (A — xl) 
has an inverse in k(x)Xk 2Ï, and 

(4) det (A + N - xl) = det (A - xl) det ( / + (A - xI^N). 

By Lemma 1, (A — xl)~l N is nilpotent, hence it is similar to a matrix with 
zeros on and above the main diagonal, hence the third determinant in (4) 
equals 1 and (3) follows. 

THEOREM 1. For every field k and every matric algebra 21, F is equivalent to M. 

McCoy [5] and Goldhaber [4] give proofs of this theorem when k is algebrai­
cally closed. 

Suppose that k is arbitrary and that 21 satisfies ikf, i.e., 2I/rad 21 is commuta­
tive. By Lemma 1, (kcXk 21)/rad (kcXk 21) is a homomorphic image of (kcXk 21)/ 
(kcXk rad 21), hence kcXk 21 has property M, hence it has property F. If we 
identify kcXk 21 with an algebra of matrices over kc in the obvious way, then 21 
is contained in kcXk 21 and clearly 21 also has property F. 

LEMMA 4. Let 21 and 2Ï* be two matric algebras over k, let A —> A* be a homo-
morphism of 21 into 21* which maps the identity matrix of 2Ï onto the identity 
matrix of 21* and has precisely rad 21 as its kernel. Then for every A Ç 2Ï the 
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matrices A and A* have the same set of char act eristic values {though not in general 
with the same multiplicities). 

Let jf(x) and/*(x) be the minimum polynomials of A and of A* respectively. 
Since/*(A) is nilpotent, f(x) divides some power of/*(#). On the other hand, 
f(A) = 0 implies that/(-4*) = 0, and hence f*(x) divides/(x). Our lemma now 
follows from the well-known fact that the minimum equation and the charac­
teristic equation have the same set of roots. 

THEOREM 2. If k is quasi-algebraically closed, then F, M, P\ and P' are 
equivalent. 

We already know that M implies F, F implies P , and P implies P ; , and thus ft 
suffices to prove that P ' implies M or, what is the same thing, that not M implies 
not P ' . 

Suppose then that 2l/rad 2{ is not commutative. Since it is a direct sum of 
simple algebras it must, in view of our assumption on k, contain a simple compo­
nent which is a total matric algebra of dimension at least two (or order at least 
four) over k. Hence the algebra ?[* of Lemma 4 can be so chosen that it contains 
two elements A* and P* (images of elements A and B of 31) which have in their 
upper left hand corners the elements 

0 
1 

0 
0 

0 
0 

and which have zeros in all other positions. 
A* and B* are clearly nilpotent; Lemma 4 tells us that their inverse images 

4̂ and B are nilpotent (but not in rad 31). Since A* + B* is obviously not 
nilpotent, we see in just the same way that A + B is not nilpotent. We have 
proved that not M implies not P ' . 

3. Equivalence of P, M, and P for arbitrary k. The next theorem requires 
the more elaborate methods of [4]. 

THEOREM 3. If k is any field, 31 any algebra over k, then P, M, and P are 
equivalent. 

In view of Theorem 2 and the well-known fact [1 ; 3] that Galois fields are 
quasi-algebraically closed, we may, and shall, assume that k has an infinite 
number of elements. 

Suppose that 21 has property P . According to Theorem 6.1 of [4] (the proof of 
which does not require the algebraic closure of fe, but only the existence of an 
infinite number of distinct elements in k), % has a canonical ordering such that 
for any finite subset A\, A^ . . . , Am of 21, all ar 6 ky and all •/ = 1 , 2 . . . . , «, 

(5) ^i("H^rAr) = ^2 ar\i(Ar). 
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Let A i, A 2, . . . , Am be a linear £-basis for 21, let /i, t% . . . , tm, x be commutative 
indeterminates over k, and consider the polynomial 

( 6 ) det C £ t r A r - x I ) - I l Œ t ^ i A r - x ) . 
r i t 

From (5) it follows that for every specialization of the tt and x into kx (6) is 
equal to zero. Consequently by [6, p. 70] we have 

( 7 ) d e t ( E U r - Xi) ES J ! ( E a * i l r ~ * ) , 
r t r 

each side of (7) being considered as an element of the ring k [th /2, . . . . , tm, x]. 
Now form the algebra 21* = &cX*2l and, as before, consider its elements as 

n X n matrices with elements in kc. The matrices Ai, A2, . . . , Am are a &c-basis 
for 21*. (7) shows that if we use (5) to define a set of mappings Xi, X2, . . . , \n of 
21* into kc, allowing the ar to be elements of kc, the resulting set of mappings is a 
canonical ordering on 21*. It obviously satisfies P . 

By Theorem 2, 2Ï* has property F, hence its subalgebra 21 has property F. 
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