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Abstract

Existence results are presented for second order discrete boundary value problems in abstract spaces. Our
analysis uses only Sadovskii’s fixed point theorem.
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1. Introduction

This paper discusses the abstract discrete boundary value problem

20 e — e N
(LD {AW D+ fG,yG) =0, ie

y©0)=0, yT+1)=0.

HereT €{1,2,...}, N={1,2,..., T}, Nt ={0,1,...,T+1}, E isareal Banach
space with norm ||.||, and y : N* — E. We will assume throughout this paper that

(1.2) f : N x E — FE is continuous.

REMARK. Recallamap f : N x E — E is continuous if it is continuous as a map
of the topological space N x E into the topological space E (the topology on N will
be the discrete topology).

Let C(N*, E) denote the class of maps w continuous on N* (discrete topology),
with norm (|wllo = max,en+ |lwk)||, thatis, C(N', E) = {w; w : NT — E}, which
is a Banach space.
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REMARK. Since N* is a discrete space then any mapping of N* to a topological
space (in this case E) is continuous.

By a solution to (1.1) we mean a w € C(N™, E) such that w satisfies (1.1) for
i € N and w satisfies the boundary (Dirichlet) conditions. It is worth remarking
here that in fact the Dirichlet boundary data could be replaced by Sturm Liouville
boundary data and the results of this paper are again guaranteed; however since only
minor adjustments are needed in the analysis we will as a result omit the details.

Agarwal in [1, 2] showed if E = Rand if « € C(N*,E), B € C(N*,E) are
respectively lower and upper solutions of (1.1) with ¢ (i) < B(i) fori € N then (1.1)
has a solution y with a(i) < y(i) < (/) fori € N. In this paper by imposing a
condition which coincides with the existence of lower and upper solutions in the scalar
case we will show that the classical result in [1] can be extended to the Banach space
setting. In fact our result will be new even in the finite dimensional setting, that is,
when E = R”, n > 1. Some of the ideas in this paper were motivated by the papers of
Frigon and O’Regan [5, 6] concerning initial value problems in the continuous case.

We now gather together some preliminaries which will be needed in Section 2. Let
E be a Banach space and Qg the bounded subsets of E. Let X € Q. The diameter
of X is defined by

diam(X) = sup{|lx — y|| : x, y € X}; here |.|| is the norm in E.

The Kuratowskii measure of non-compactness is the map « : Q¢ — [0, oo] defined
by
a(X)y=infle >0: X C UX,- and diam(X;) < €}; here X € Q.
i=1

Let E, and E, be two Banach spaces and let F : Y € E, — E, be continuous and
map bounded sets into bounded sets. We call such an F an a-Lipschitzian map if
there is a constant k > 0 with a(F (X)) < ka(X) for all bounded sets X C Y. We
also say F is a Darbo map if F is a-Lipschitzian with & < 1. Next we state a fixed
point result due to Sadovskii [4].

THEOREM 1.1. Let G be a closed convex subset of a Banach space E and let
F : G — G be a bounded Darbo map. Then F has a fixed point in G.

In [3] we proved the following result which will be needed in Section 2.

THEOREM 1.2. Let A C C(N*, E) be bounded. Then
(i) a(A) = a(A(NT)),
(i) a(A(NT)) = sup;cy- 2(A())
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where

Ay ={pG) ¢ € A} and AWN") =] {9()): ¢ € A}.

JENT
The semi-inner products on E are defined by
eyl — il e eyl =l
(x, y) e =[xl Ilgg — and (x,y)_ = |lx]| ,lir(‘} B E—

The following properties are well known [7].

THEOREM 1.3. Let E be a Banach space. Then

@ |0, yhel < lixlliylls
(d) (y,x+ay), = (y.x)s +alyl*foralla € R;
© {y,x)- =y, x);.

Finally we prove a very simple result which will be needed in Section 2.

THEOREM 1.4. Letx ¢ C(N*,E)andi € {0,...,T — 1}. Then
x4+ DA Nx @I = (x( + 1), A%x())+.
PROOF. Now
Ix@ + DIAY x| = (x( + 1), A%x ()4
= (lIxG + 2l = 2/lx(@ + DI + [lxDID Ix@ + Dl
— @+ D, x(+2)=2x(+ 1)+ x0))s
= llxG +2)HxG + DI + xOHlxG + Dl
— @+ D, x(+2)+x())s
> lx(G+DllxG@ + DI+ x@NxG + D
= lxG + DIAxG + 2| + x@1) = 0.

2. Existence theory

In this section we use Theorem 1.1 to establish two existence results for the discrete
boundary value problem (1.1).

THEOREM 2.1. Suppose (1.2) holds. In addition assume

there existsv € CINY, EYand M € C(N™, (0, 00)) with
(2.1) (y —v(i), — @, y) — A% = 1)), > M(DHA’M(@ — 1)
foralli € Nandall y € E with ||y — v(D)|| = M(®i);
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(2.2) lvO) || < M(0) and ||[v(T + D < M(T + 1);
23) a(f(N x A)) < ka(A) for all bounded subsets A of E;
' where k > 0 is a constant;
2.4) rTk < 1; herer = supr; andr; = max G(i, j);
ieN+ JjeN
and

@ for each b > 0, there exists a constant K, > QO with || f (j, w)| < K,
' forall j € N andu € E with |lul| < b

are satisfied. Then (1.1) has a solution y € C(N*, E) with ||y(i) — v(@)|| < M (@) for
ieN.

REMARKS. (1) If E is finite dimensional then (2.3) (with k = 0), (2.4) and (2.5)
are automatically satisfied.
2) HE=Randifa, B8 € C(N*, R) are respectively lower and upper solutions of
(1.1) (that is, A%a(i — 1) + f(i,a()) > Ofori € N,a(0) < 0,a(T + 1) <0 and
ARG — 1)+ f(i, B(i)) < Ofori € N,B(0) > 0,8(T 4+ 1) < 0) and a (i) < B(i)
fori € N thenits easy to check that v = (o + 8)/2 and M = (8 — &) /2 satisfy (2.1)
and (2.2) in Theorem 2.1.

PROOF. Consider the discrete boundary value problem

2.6) A’y(i =)+ f(, p(i,y() =0, €N
' y0 =0, yT+1)=0
where
. . M) M (i) .
, = I, ——— l1—41, —mM— ,
P ) mm{ TEE] y+( { Iy — vl }) v
that is,
| Y, | if |y — v(i)l < MG)
PEN = i 2=20 e, if Iy — v > M)
Iy — @)l

is the radial retraction of E onto {y : ||y — v(i)|| < M(i)}.
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REMARK. Itis well known that || p(i, y1) — p(i, )|l < 2|[yi—y.| forally,, y, € E
and 2 may be replaced by 1 if E is a Hilbert space.

We will now use Theorem 1.1 to show that (2.6) has a solution. Solving (2.6) is
equivalent to finding a y € C(N*, E) which satisfies

T
2.7) y(i) =) GG, NfG, Uy, i € N
j=1
where T 1
L—f‘i—%’ 0 < J < 1 —1
GG j)=1. .
i(T+1-7) .
_— <j<T+1.
T+1 ° t=y=l4

Define the operator S : C(N*, E) - C(N™, E) by setting

T
Sy(iy =Y _ GG, NFG, pU, y())-

j=1

Now (2.7) is equivalent to the fixed point problem y = Sy. Weclaim S : C(N*, E) —
C(N™, E) is a Darbo map. To see this let 2 be a bounded subset of C(N*, E). Fix
i € N*. Then

T
a(SQ)) =« ( { D GG DU PG Yy € 9})
j=1

=a (Tco{GU, NfU. pU. YNy €K, jeND
=Ta({GW HfU. PG, yU)) 1y €, j €ND
=[Trla({f(, pU.y(U))) 1y € R, j €N}

<t Tla (1 (N x @ (2 Jvm)))

since if y € 2 and j € N we have
PUS Y = 130 + (1= 1pe() €T () | Jvw)
where

A =min {1, M())/Ily(j) —v(DHI}-

This together with (2.3) implies

a(SQ()) < [r; Tkl (m (Q(N) U u(N))) = [, Tkl (Q(N) U v(N))
= [ TKa(QUN)) < [rThle (N)) = [rTkla ().
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Now Theorem 1.2 implies

a(SQ) = supa(SQL>E)) < [rTkla(2).
ieNt
Since rkT < 1then S : C(N*, E) — C(N*, E) is a Darbo map. Also (2.5) implies
S is a bounded map. Sadovskii’s fixed point theorem (Theorem 1.1) guarantees that
S has a fixed point. Consequently (2.6) has a solution y € C(N™*, E).
It remains to show ||y(i) — v(i)|| < M (@) fori € N. If this is not true then

r(i) = lly@) — vl — M)

attains a positive global maximum at say m € N, and we may assume without loss
of generality that r(m) > r(m — 1). Thus r(m) > r(m — 1) and r(m) > r(m + 1)

implies

rim+1)=2rim)+r(m—1) <0.
Consequently
(2.8) Ar(m—1) <0.

On the other hand since r(m) > 0 we have, using Theorem 1.4 and assumption (2.1),

Ar(m —1) = AYly(m — 1) —v(m — )| = A*’M(@m — 1)
(y(m) —v(m), A’(y(m — 1) —v(m — 1)),

> — N’M(m — 1)
ly(m) — v(m)||
2 2 —
_ (PO, yom) —vlm), Byen = D) = An = D)o pappen
M(m)
_ {p(m, y(m)) — v(m), — f(m, p(m, y(m))) — &v(m — 1)), AM(m — 1)
- M(m)

> APM@m —1) — A°M(@m — 1) =0.

This contradicts (2.8). Thus ||y(i) — v())|| < M (i) fori € N and we are finished.

In fact it is also possible to discuss the case when M (i), in (2.1), may take on the
value zero.

THEOREM 2.2. Suppose (1.2) holds. In addition assume

there exists v € C(NT, E)yand M € C(N™, [0, 00)) with
(2.9) (y = v@), —f @, y) = D@ — D)y = M(OHAM (i — 1)
foralli e Nandall y € Ewith ||y — v} = MG@)and M(i) # 0
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and

there exists v and M as in (2.9) with

(y —v@), = f(,v@@)) — A — D),
Iy — vl

foralli e Nandall y € E with ||y —v(i)|| > M(i)and M(i) =0

(2.10) > APM(@i — 1)

are satisfied. Also suppose (2.2), (2.3), (2.4) and (2.5) hold. Then (1.1) has a solution
y € C(N*, E) with |y(i) —v(@)|| < M(@) fori € N.

REMARK. If E = R and if @, B € C(N*, R) are respectively lower and upper
solutions of (1.1) with (i) < B(i) fori € N then its easy to check thatv = (¢ + 8)/2
and M = (B — «)/2 satisfy (2.9) and (2.10) in Theorem 2.2. Consequently a special
case of Theorem 2.2 is the classical result of Agarwal in [1].

PROOF. As in Theorem 2.1, (2.6) has a solution y € C(N*, E). Let r(i) and m
be as in Theorem 2.1 and once again (2.8) is true. On the other hand if M(m) > 0
then exactly the same argument as in Theorem 2.1 establishes a contradiction. Next
if M(m) = 0 then Theorem 1.4 and assumption (2.10) yield

Arm—1) > {y(m) = vim), A2y(m — 1) — A%v(m — D)y A M(m — 1)
y(m) — v(m)]
_ ym)y—vim), —f(m, p(m, y(m)) — &%v(m — 1)), A Mm—1)
ly(m)—v(m)||
_ ylm) —v(m), —f(m, v(m)) — A%v(m = D)y AM(m— 1)
ly(m) — v(m)|

> 0.

In both cases we contradict (2.8) and so the proof is complete.
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