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COMPLETE AND ORTHOGONALLY 
COMPLETE RINGS 

W. D. BURGESS AND R. RAPHAEL 

This article continues the study of Abian's order on commutative semiprime 
rings (for such a ring R, the relation ua ^ b if and only if ab = a2" makes R 
into a partially ordered multiplicative semigroup). The aim, here, is to extend 
as far as possible the theorem of Brainerd and Lambek which says that the 
completion of a Boolean ring is its complete ring of quotients. Only certain 
subsets of a ring may have upper bounds (in any extension ring) and these are 
called boundable (the notion is due to Haines). A ring will be called complete 
if every boundable subset has a supremum. If R C 5 are (commutative semi-
prime) rings then 5 will be called a completion of R if 5 is complete and every 
element of 5 is the supremum of a subset of R. It is shown by example that 
not all rings have completions but completions exist if the ring has sufficiently 
many idempotents. Such rings will be called i-dense and they include regular 
and Baer rings (in fact all pp-r'mgs and more). A technique, due to Banaschew-
ski, yields a construction which gives the completion in the case of i-dense 
rings: this completion is a ring of quotients with respect to a certain torsion 
theory and, in the case of regular rings, this completion is the complete ring 
of quotients. The completion, in the i-dense case, has a weak form of self-
injectivety and we get the theorem that an i-dense ring is complete if and only if 
it is weakly s elf-infective. 

1. In [1], Abian initiated the study of a partial order relation for commutative 
semiprime rings defined by a ^ b if ab = a2; and, although this order relation 
is known in the study of semigroups [9, p. 40] and is well known in the special 
case of Boolean rings, it will here be called Abian s order. In [2] it is remarked 
that for a ring A, commutative or not, the relation rg defined above is an 
order relation if, and only if, A is reduced (i.e., 0 is its only nilpotent) and 
in this case ^ makes A an ordered semigroup. All order properties below 
refer to Abian's order. 

The purpose of [1] (and, in the non-commutative case, [8]) was to character­
ize, in terms of Abian's order, those reduced rings which are products of fields. 
One of the conditions characterizing products of fields is ''orthogonal com­
pleteness". A subset X of a reduced ring A is called orthogonal if for a, b 6 X, 
a r* b, ab = 0. A is orthogonally complete if every orthogonal set in A has a 
supremum. Orthogonally complete rings as well as orthogonal completions 
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were studied in [7] and this article is a continuation of tha t one; the following 
definitions and results from it are quoted for convenience. 

In wha t follows all rings are assumed to be reduced with 1 and, al though some 
of wha t follows can be extended to the case of reduced rings A such tha t the 
complete ring of quotients, Q(R), is strongly regular, we assume that all rings 
mentioned are also commutative. If R C S are rings, 5 is an orthogonal extension 
of R if every element of S is the supremum of an orthogonal set in R, and S 
is an orthogonal completion of R if it is an orthogonally complete orthogonal 
extension. A regular ring R is orthogonally complete if, and only if, it is self-
injective. Also a regular ring always has an orthogonal completion, namely 
Q(R), the complete ring of quotients; and a Baer ring R has an orthogonal 
completion which may be smaller than Q(R). For any R, an orthogonal exten­
sion mus t lie in Q(R) and for any set X in R, sup^X = s u p ^ ^ X , if both exist. 
Finally not every ring has an orthogonal completion bu t every ring with 
ascending chain condition on annihilator ideals is orthogonally complete. 

2. In [11], Haines introduces a generalization of orthogonality which he calls 
"quasior thogonal i ty" ; we prefer the term "boundable" . A subset X of a ring R 
is boundable if for all a, b G X, ab(a —b) = 0 . Note tha t if R is Boolean, every 
subset is boundable. The purpose of this section is to relate the notions of 
orthogonali ty and boundabili ty and to show tha t certain orthogonally complete 
rings are complete in the sense tha t every boundable set has a supremum. 

We say tha t an extension R C S is an order extension if every element of S 
is the supremum of some set in R and 5* is a completion if it is a complete order 
extension. Clearly any order extension of R must lie in Q(R). 

1. PROPOSITION. The boundable sets of a commutative semi-prime ring R are 
exactly those which have suprema in Q(R). 

Proof. We shall defer the proof of the fact tha t every boundable set X of R 
has a supremum in Q(R) until Theorem 5. Let X be a subset of R with an 
upper bound q Ç Q(R). Then for a, b Ç X} ab(a — b) = a2b — ab2 = abq — 
abq = 0. (In fact a subset X of R is boundable if it has an upper bound in any 
extension ring and this justifies the name.) 

2. Definition. A ring R is called i-dense (idempotent dense) if it is commuta­
tive semiprime and every idempotent of Q(R) is the supremum of a subset 
(necessarily a set of idempotents) of R. 

The class of i-dense rings includes all p.p. rings [4, Lemma 31] and, hence, 
all regular and all Baer rings. However there are i-dense rings which are not 
p.p. rings (for example C ( Q ) ) . Any subdirect product of domains which in­
cludes the direct sum is i-dense and, if R is i-dense, so is any ring between R 
and Q(R). 

3. LEMMA. If R has an order extension S which is Baer then R is i-dense. 

https://doi.org/10.4153/CJM-1975-095-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1975-095-0


886 W. D. BURGESS AND R. RAPHAEL 

Proof. This follows since the Baer ring 5 has all the idempotents of Q(R) 

[13, 1.6 Lemma] . 

4. P R O P O S I T I O N . A commutative semiprime ring R is i-dense if, and only if, 
every non-zero annihilator ideal contains a non-zero idempotent. 

Proof. Suppose R is i-dense. Let X Q R and A n n ^ X ^ 0. We have 
AnnQ(iB)^T = eQ(R) for some e2 = e £ Q(R)- Then e = sup {ea} for some set 
of idempotents in R. Bu t Xea = Xeae — 0. 

Conversely, let e2 = e G Q(R), e T± 0. Let Z) be a large ideal of R so t ha t 
(1 - e)D QR and eD C 22. Then (1 - e)DgZ? = 0 so (1 - e)D is annihi­
lated by some 0 9^ g = g2 ^ R. T h u s g(l — e) = 0 and ge = g and g bounds 
some non-zero idempotents in R. Let 

E = {ea £ R\ea = £a
2, ea fk e). 

P u t / = supQ(#)£. Then , f S e and g — / is an idempotent , e — f ^ e and 
(e ~ f)f = 0. If e - f 9e 0, let 0 ^ e' 6 J? be an idempotent such t h a t 
e' ^ e — f. We get ef ^L e — f ^L e so e' £ E which implies e' ^ / . Now 
e' = e'(e — / ) = e'e — e'/ = ef — e'f so e'/ = 0. This is a contradiction, so 

5. T H E O R E M . If R is i-dense then R is orthogonally complete if, and only if, 
it is complete. Further, if R is i-dense, any order extension of R is an orthogonal 
extension. 

Proof. I t is easy to check t ha t the supremum of a set X in R, if it exists, 
is an upper bound 5 so t ha t A n n X = Ann{s}. Now if R is complete it is 
orthogonally complete. Conversely, if R is orthogonally complete and i-dense, 
it is Baer. Suppose X is boundable. Define q £ Q(R) by q : XR © I —> R 
where I = Ann^X and qx = x2 for x £ X and qa = 0 for a £ L Now q is 
well-defined since X is boundable (^2x^2r = 0 implies for y Ç X, J2x2yr = 
J2xy2r = 0 so tha t (Y,xr)y = 0 for all y £ X; hence ] [>r G Xft H I = 0) . 
Since AnnQ ( j R )Z = AnnQ(R){q}, q = s u p ^ ^ X . 

Let F be a maximal orthogonal subset of XR with the proper ty t ha t for all 
y Ç F, gy = y2. Then , YR + I is large. Indeed, if r ^ 0 and r ( F f t + / ) = 0 
then rl = 0 and, so, rXi? F^ 0. Hence for some x £ X, rx 5* 0. There is an 
idempotent e £ Q(R) so t ha t er = r and g = rr' for some r' G Q(R). Since 72 
is Baer, e £ R. We get t ha t e (F/2 + / ) = 0 and ex j * 0. From this, qex = x2e 
= (xe)2, contradict ing the maximali ty of F. Now q is also defined by qy = y2 

for all y £ F and qa = 0 for a £ 7. 
T h e remaining par t now follows since it has jus t been shown tha t the 

supremum, in Q(R), of a boundable set in R is also the supremum of an 
orthogonal set in R. 

Note t h a t this completes the proof of Proposition 1 since Q(R) has been 
shown to be complete. In fact this shows tha t a regular ring R is complete if 
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and only if it is orthogonally complete if and only if it is self-injective (cf. 
[7, 2. Theorem]). 

For rings which are not i-dense the situation is more complicated. We know 
rather little in this case but the following examples will show that a complete 
ring is not necessarily i-dense and that there are rings which are orthogonally 
complete which have no completion. 

6. Example. Let R be the subring of Yln^NZ generated by YLneNnZ and 1. 
A typical element of R has the form r + m where r £ TInZ, m an integer. 
Hence R has only two idempotents while its complete ring of quotients I I Q 
has infinitely many. If X is a boundable set in R, and x £ X is written x = 
x' + nx, xr Ç TLnZ, nx an integer; then either all the nx are zero or for some 
n 9^ 0, nx = n or nx = 0 and for some x G X, nx = n. In the first case X has 
a supremum which is in TlnZ. In the second, let x G X, nx = n. Then for all 
but finitely many i, the i component of x is non-zero. From this it follows that 
the supremum can be constructed in the form z + m, z G TlnZ. 

7. Example. Let R be the subring of Z[x] X Z[x] X Z[x] generated by 
(x, x} 0), (0, x, x) and (1, 1, 1). A typical element of R is of the form 
(/ + ni f + g + ^ + fty g + ft) where w G Z, f, g, h are polynomials of zero 
constant term and if h 9e 0, deg h ^ 2. Clearly i? has the ascending chain 
condition on annihilators so R is orthogonally complete. Hence [12, p. 113], 
Q(R) is its total ring of fractions Qci(R), which is seen to be Q(x) X O W X 
Q(x). R is not complete since {(x, x> 0), (0, x> x)} is boundable while its 
supremum (xt x} x) G Q{R) is not in R. Further, R has no completion since 
such a completion would contain (x, x, x) + (x, 0, —x) = (2x, x, 0). There 
are no non-zero elements of R below (2x, x, 0). 

The subject of Abian's order in rings which are not ^-dense remains to be 
studied. 

3. In [3], Banaschewski gives a construction of Q(R), where R is a (commuta­
tive semiprime) ring, which resembles that of [10] for rings of continuous 
functions. This method is used below to construct the completion for i-dense 
rings. 

Let X = Spec R be the set of prime ideals of R where an element of X is 
denoted either by x or PX) depending on the context. Then, as usual, X is 
topologized by taking the sets jcoz r\r G R} as a base for the open sets 
(coz r = {x\r d Px), z(r) = X\coz r). Important for us is the observation that 
the clopen (closed and open) sets of X are of the form coz e, e an idempotent, 
and conversely. 

Now R may be represented as a subring of TLx(zxR/Pz in an obvious way and, 
hence, as a subring of S = îlxexQ(R/Px) ; Q{R/P)X is a field. The components 
of q Ç 5 are denoted by #(x), x £ X. For q (z S, coz q = {x\q(x) ?± 0} and 
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z(q) = {x\q(x) = 0}. For each q Ç 5, we define, as in [3], 

^~(g) = {x| for some neighbourhood N of x, there are r, s £ R with 
iV Ç coz s so that for all y € N, q(y) = ^(y)A(y)} 

and 

^?(g) = jx| for some neighbourhood iV of x, there is an r Ç i? so that 
for all y £ N, q(y) = r(y)}. 

Both J ^ g ) and < (̂<?) are open sets of X. We define 

ST{R) = j g 6 S|^"(g) is dense} 

and & {R) == {q £ S\S%(q) is dense}. Hence elements of 3T(R) are "locally 
like" fractions of elements of R while those of & (R) are "locally like" 
elements of R. It is clear that <%/ (R) Q%~(R) C S are subrings. Next let 
J(R) — {q G S\z(q) contains a dense open set}. Then J (R) is an ideal in 
2f(R) and in &(R) and, as Banaschewski showed, Sf(R)/J(R) ~ Q(R). We 
deno t e^ (^ ) / t / ( i ^ )byC(^ ) , i t i s a sub r ingo f (2 (^ ) , i n f ac t ^ C C(J?) C <2(i?). 
Banaschewski remarks in [3] that the same construction, with X replaced by 
a dense subset, also yields Q(R). It can be shown similarly that replacing X be 
a dense subset yields a ring isomorphic to C(R). 

For regular rings, R, Q(R) = C(R), as will be seen later; but, in general, 
Q(R) ^ C(R). In fact, if R is a domain, C(R) = i?. Hence C(JR) is not always 
regular but it is Baer. 

8. LEMMA. For any ring R, C(R) is Baer. 

Proof. We must show that any idempotent of Q(R) is in C(R). Let e £ QCR) 
be an idempotent represented by e 6 2£ (R) and 1 — e represented b y / g $T(R). 
We have e2 — e, ef, f 2 — f £ ^ (R). Let [7i, t/2, C/3 be dense open sets in 
z(e2-e), z(ef), z(f2-f), respectively. Then put U = ^ (e) C\^{f ) Pi 
U\ C\ U2^ Uz', U is a dense open set. For x £ [7, e(x) = 0 or e(x) = 1. 
If e(x) = 1 then for some neighbourhood N of x, N Ç [/, e|iV = r/s|iV where 
r, s £ R, N Ç coz 5. Now on iVH coz r, e = r/s — 1. If e(x) = 0 then 
/(x) = 1 and, similarly, / = 1 on a neighbourhood JV £ U oi x. Hence e is 0 
on N. If follows that g G ^/( i?) . 

It was seen in the previous section that every boundable set in R has a 
supremum in Q(R). In fact the supremum is in C{R). 

9. THEOREM. Every boundable set in a commutative semi-prime ring R has a 
supremum in C(R). Further, C(R) is complete. 

Proof. The first part will be done by exhibiting the supremum. Let {ra\aeA be 
a boundable set in R. Hence for all x £ X, all ra{x) which are non-zero coincide. 
Define q 6 S by: 

/ \ _ ir<*(x)> if f° r some a, ra{x) ^ 0 
q{X) ~ (0, if ra(x) = 0 for all a G A. 
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Now g G <3/(R) since 0?(q) contains U« coz ra U ~ cl ( U« coz ra). 
Let q G C(-R) be the element represented by q. Clearly g is an upper bound 

for {ra}, since (qra — ra
2)(x) = 0 for all x £ X. H h is another upper bound 

represented by h G ^(R), consider {% G X\(qh — g2)(x) = 0}; this includes 

V = U [^ (A) H coz r a n [ / a ] u U d U coz ra 
a \ \ a 

where Ua is the interior of z(hra — ra
2). Now F is dense open since 3%(h) 

and each Ua are dense open. Thus qh = g2. 
For the second part we must show that each boundable set in C(R) has a 

supremum there. Let {qa}a£A be a boundable set in C(R). This set has a 
supremum g G Q(-R) which will be shown to be in C(R). 

For each/ £ 9C (R) let 

J ^ ( 0 = {x\ on some neighbourhood N of x, / coincides with 
a non-zero fraction on N}. 

Then, 3C(t) = coz tC\^(t). Let [/« be the interior of s(gg« — g2), a dense 
open set, where q and ga represent q and g«, respectively. If x G ̂ {q) ^ 
Jf(q.a) (^ Ua = Va then g(x) = g«(x) and F« is dense in J^(qa). Hence, 
L = UaVa Q Sft{q)> Consider Y = ~ cl (UaJT(ga)). If iV is an open set on 
which all the qa are zero then TV C Y. Now define p G &(R) by p(x) = q{x) 
for x G Z, and £(x) = 0, x g L. Then, 3%(p) D L U ^ cl (Z,) so, indeed, 
p G &(R). Next, ^ G C(i^) is an upper bound of {qa}. Indeed, pqa — qa

2 is 
zero on Va and on @k {qa)\C£\qa). Hence £ga — ga

2 is zero on Va, which is dense 
open. Also, p ^ q since pq — p2 is zero o n l U ~ cl (L). Hence p — q G *^ (R)-
Butp G &(R) so g G C(i?). 

The question which arises naturally is: For which rings is C(R) the (ortho­
gonal) completion? The answer will be "i-dense rings". 

10. LEMMA. If R is i-dense then every non-empty open set of X = Spec R 
contains a non-empty open set of the form A C\ V, A clopen and V dense open. 

Proof. We must show that each set coz r, 0 ^ r G R, contains a set of the 
indicated type. L e t / G Q(R) be an idempotent with fr = r a n d / = rf, for 
some ?' G Q(R)> Le t / , rf G &(R) be representatives and so for some dense 
open set U, f \U = rr'\ U. Hence for x G U, r(x) = 0 if, and only if, / (x) = 0 
and r(x) ^ 0 if, and only if /(x) = 1. Since i^ is i-dense, there is an idempotent 
e G R, e ^ 0, with ef = e. Hence ef — e is zero on some dense open set U' 
and for x G £/', e(x) = 1 implies/(x) = 1. Put V = £7 H £/'. Then coz e H 
F Ç coz r. 

Note that the family §1 of sets of the form A C\ V, A clopen and V dense 
open, may not form a base for the topology, but for every open set U there is 
a disjoint family {Aa} from 21 so that each Aa Q U and \JAa is dense in U. 

) ) • 
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11. T H E O R E M . C(R) is the completion of the commutative semiprime ring R if, 
and only if, R is i-dense; and, in this case, it is also the orthogonal completion. 

Proof. If the Baer ring C(R) is the (orthogonal) completion of R then R is 
certainly i-dense. 

Conversely, we shall use the family 31 of open sets discussed in (10) to show 
t h a t each element of C(R) is the supremum of some orthogonal set in R. 

Let q G C(R) be represented by q G <8/(R). For each x G S%(q), there is an 
open set N, x G N, so t ha t for some r G R, q\N = r\N. A maximal disjoint 
family, {Ua}a^Ay of open subsets of â$(q) such t ha t q\Ua = ra\Ua for some 
ra G R, has union dense in 3$(q). For each Ua, in such a family, there is a 
disjoint family 

{coz eap H Va$\$<iKa, eap
2 = ea$ G R, Va(s dense open in X, 

such t h a t its union is dense in Ua. Then Y = {raeap}^Aa,a^A is orthogonal. Let 
h G C(R) be the supremum of F with representat ive h G & (R) as in the proof 
of (9). Then q and h coincide on U (coz eap ̂  Vap), and so q = h. 

12. COROLLARY. 7 / i ? is regular then C(R) = Q(J?). 

Proof. This follows since i? is i-dense with Q(i?) as orthogonal completion. 

The converse, however, is false since the subring R of I I^O» consisting of 
elements which are almost everywhere integers, is Baer, bu t not regular, while 
C(R) = Q(R). 

Jus t as in [7, 18. Theorem] it will be shown t h a t if R is i-dense, C(R) is the 
partial ring of quot ients with respect to an idempotent topologizing family, 
<#), of ideals of R. This is done by making precise the isomorphism Q(R) —> 

&{R)/J{R). Let 5 G Q(R) be represented by 0 : D - » R where D is a large 
ideal of R. Let D' be a maximal orthogonal family from D, D' necessarily has 
zero annihilator. Define q G 3?{R) by: 

/ \ )—J7~\— J if x G coz d for some d G D' 
q(x) = \ d(x) 

v0, otherwise. 

Then define ¥ : Q(R) ->$T(R)/J(R) by *(s) = q. 

1. g is independent of the choice of D and D'. (This is easy to see). 
2. ^ is a ring isomorphism. T h e verification t h a t ^ is an injective ring 

homomorphism is straightforward. I t mus t be shown to be surjective. Consider 
q G &{R)/J{R) represented by q G 3f(R). "LetJV be the set of open sets N 
of X so t ha t for some r, s G R, N C coz s, q\N = r/s\N. A maximal disjoint 
family tyê irovcv^V has union which is dense in X, since it is dense in U^A^ = 

J ^ ç ) , which is dense in X. For each Ua G °M, let q\ Ua = ra/sa\ Ua and choose 
a maximal orthogonal set {/«#} of elements of R so tha t coz tap Q Ua. Then , 

COZ tap = —— 
Sata8 

COZ ta0. 
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Note that U/? coz /a/? is dense in Ua. Then, T = {sjap}a,p is orthogonal and 
Ua,^ coz sjap is dense. Also, TR is a large ideal and T is a maximal orthogonal 
set in it. Define cj> : TR -^ R by <l>(sjap) = ra/a/3. The corresponding element of 
$£(R) defined by T and <t> is ç' where 

,(x) , (*feM = &kfei , for x € coz ^ 
10, otherwise. 

Clearly g and g' coincide on the dense open set Ua p coz sjap and, hence, 
q = q'. 

13. THEOREM. For each large ideal D of a commutative semi-prime ring R> 
letHom'D = {</>: D —> R\<t>(d) = rddfor somerd £ i?}. Then 

C(R) = lim Hom'Z>. 
> 

D large 

If R is i-dense, let (f = {D\D contains a set of idempotents E so that Ann E = 0}. 
Then <§ is an idempotent topologizing family and C(R) = QS{R). 

Proof. A general reference for rings of quotients is [5, Chapitre II, § 2, 
Exercices] or [14, Chapter 2]. Clearly lim Hom'D is a subring of Q(R) since 

each Horn7!} is a subgroup of Hom(Z}, R) which is preserved by restrictions and 
compositions. We next imitate the constructions given above. In fact if 
<j> Ç Hom'D, the corresponding element q 6 S£(R) is in & (R) (for x G coz d, 
q(x) = (t>(d)(x)/d(x) = rd(x)d(x)/d(x) = rd(x)). Similarly, if q G <8/(R), the 
homomorphism <j> : TR —> R constructed above is in Hom'TR since <p(satap) = 
rJap) but, here, sa may be taken to be 1. 

In [7], it is shown that S is a topologizing idempotent family. If D £ S 
with E the set of idempotents in D, then ER is also large; and, the set of ideals 
of the form ER, E a set of idempotents with Ann E = 0, is cofinal in S. But, 
Uom(ER} R) = Hom'ER. Hence, in general, QS(R) C C(#). If R is i-dense 
the first part of this proof will be refined. 

Indeed, let {/«#} be as in the first part of the proof. Then, in coz tap find a 
maximal disjoint family of sets from 2Ï (as in (10)). That is, sets of the form 
coz eapy Pi Vapy, where eapy is an idempotent and Vapy is dense open. Then 
U7 (coz eapy C\ Vapy) is dense in coz tap. Now let E = {ea^)a^ty\ E is ortho­
gonal and has zero annihilator, since \Japy coz eapy is dense. Define 4> : ER —» 
i? by: <t>(ea$y) = eapyrjap. Then <£ gives rise to an element equivalent to q. 

The rings C(R) have a kind of weakened injectivety. 

14. Definition. A commutative ring R is weakly s elf-infective if for every ideal 
I of R and homomorphism <j> : I —> R, so that for all a £ / there is ra G R with 
0(a) = ara, <£ lifts to an endomorphism of R. 
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This allows an extension to i-dense rings of the theorems of Brainerd and 
Lambek, [6], for Boolean rings and those of [7] for regular rings. 

15. THEOREM. Let R be i-dense. Then R is complete if, and only if, R is weakly -
self-infective. Also, C(R) is the completion of R. 

Proof. This follows from (11) and the observation, based on(13), that R is 
weakly self-injective if, and only if, R = C(R). 

Products of domains are weakly self-injective and the following character­
ization is given without proof, since it is straightforward. 

16. PROPOSITION. A commutative semiprime ring R is isomorphic to a product 
of domains if, and only if, it is orthogonally complete, i-dense and its algebra of 
idempotents is atomic. 
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