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ABSTRACT. Three-dimensional (3-D) snow analysis techniques provide comprehensive and accurate
snow microstructure data. Nevertheless, there remains a requirement for less elaborate methods for
snow characterization, as numerical snow models such as SNOWPACK are presently based on two-
dimensional (2-D) grain analysis. We present a detailed assessment of various methods and shape de-
scriptors used for snow characterization from digitized images. Dendricity, the ratio of the square of
grain perimeter to its area, allows distinction between new and old snow while sphericity distinguishes
between faceted and rounded grains. The concept of sphericity is based on curvature, yet another pow-
erful shape descriptor. However, curvatures obtained from images of disaggregated snow grains depend
on both resolution and methods chosen. We compared the standard parabola method with a cubic
smoothing spline approach for curvature measurement. Applying both methods to parametrically gen-
erated shapes, descriptor values were compared with their analytical counterparts. The spline method
was found to be able to measure a wider range of curvatures accurately, but both methods suffered
from a filtering effect. Although some descriptor errors were as high as 50%, a method for effectively
outlining snow grains was found. As well as assessing the classification potential of 2-D analysis on full
samples, new descriptors were also investigated.

1. INTRODUCTION

At present there are several comprehensive and advanced
three-dimensional (3-D) methods for the analysis of snow.
These methods include techniques such as X-ray microto-
mography, originally developed for medical purposes. While
providing thorough physical information about snow struc-
ture, these methods require somewhat elaborate equipment
which cannot easily be used in the field. For this reason,
two-dimensional (2-D) snow-grain analysis remains an ef-
fective technique. Samples may be analyzed directly in the
field or in the laboratory. Numerical snow-cover models used
for avalanche forecasting, such as SNOWPACK (Bartelt and
Lehning, 2002; Lehning and others, 2002a,b) are based on
2-D grain analysis.
The methods utilize digital images of disaggregated sam-

ples of snow grains. The images have to undergo several
stages of image processing before being segmented. The out-
lines of the snow grains can then be extracted and used as
the source of all the quantitative information available for
each snow grain.
Spline approximation for curvature measurements (see

S. Hermann and R. Klette, http: //doi.ieeecomputersociety.
org/10.1109/ICCTA.2007.2) as well as estimators for length
and area (see, e.g., Sladoje and others, 2003) are classical
problems in image processing. While methods are often as-
sessed using simple shapes, snow grains may exhibit quite
complex contours, and a comprehensive assessment of the
currently available tools is still lacking.
There are several well-developed shape descriptors already

used for snow grain classification. Dendricity, the ratio of
the square of the perimeter of a grain to its area, is used
to indicate the complexity of the grain outline. Sphericity
(Lesaffre and others, 1998) and zero curvature (Fierz and

Baunach, 2000), which are designed to distinguish between
faceted and rounded grains, are both based on curvature
measurements. Curvature is itself a very useful shape de-
scriptor (Cesar and da Fontoura Costa, 1997; da Fontoura
Costa and Cesar, 2001). Despite its usefulness, the accurate
calculation of the curvature of digital contours has proven to
be difficult, mainly because of the noise and distortions that
are an inherent feature of digitally sampled signals. Errors
ranging from 1% to >500% have been reported with re-
spect to the application of standard techniques in the esti-
mation of the curvature of circular contours (Worring and
Smeulders, 1993). Despite these difficulties, some studies
have used the distribution of curvatures to gain even more
information about snow samples (e.g. to distinguish between
wind-transported snow and new snow deposited under calm
conditions (Guyomarc’h and Mérindol, 1995)).
The aim of this paper is to present some of the techniques

which have been developed for the quantitative 2-D analy-
sis of snow grains. Curvature of snow grain contours can be
measured using a parabola-fitting method as described in
Lesaffre and others (1998) and Fierz and Baunach (2000).
However, a cubic smoothing spline can also be used to
generate smooth outlines from which the curvature can be
evaluated. Furthermore, spline outlines can be used to evalu-
ate both the perimeter and area of snow grains. These
two parameters have previously been calculated using
closed-source commercial software, and the algorithms for
performing these calculations were not explicitly defined.
We therefore use an all-in-one package providing both image
processing as well as numerical tools to estimate the shape
descriptors of interest.
The methods developed for calculating shape descriptors

for snow grains are then tested. First we use synthetically
generated single shapes for which the shape descriptors are
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Fig. 1. No-gradient method to find optimal smoothing coefficient p.
The dashed line shows the p value chosen by seeking the region of
lowest gradient on the mpk vs p curve. The dotted line shows the p
value corresponding to the spline outline which yielded the lowest
error in the mpk calculation.

known to quantitatively assess the methods. Second, well-
characterized samples of disaggregated snow grains are used
to show how effective various shape descriptors are at classi-
fying different snow types. Finally, we attempt to use new de-
scriptors to augment the classifying power within the group
of dendritic snow grains, namely precipitation particles and
decomposing and fragmented precipitation particles.

2. METHODS
2.1. Outline extraction
We developed a MATLABTM-based graphical user interface
to process images and calculate all relevant parameters from
the extracted contours, avoiding proprietary codes. Whole
snow grains or crystals were arranged on a small glass slide
and then photographed from above, creating 2-D projections
of the grain objects. All of the images were digitized at reso-
lutions ranging from approximately 100 to 200 pxmm−1 (i.e.
pixels per millimetre). In a process referred to as segmenta-
tion, the images were converted from 8-bit greyscale images
to binary images to extract the snow grain outlines. Before the
segmentation process can be performed, background extrac-
tion, sharpening and smoothing techniques are first applied
to pre-process the images (Jähne, 2002). The threshold for
segmentation is then manually set, and the greyscale images
are thresholded into binary images. The discrete outlines of
the grains are now easily extracted from the binary image.
Manual editing of the outlines can be performed after thresh-
olding if necessary. The outlines are then ready for analysis.
A cubic spline can be used as a smoothing interpolator to

produce smooth grain shapes from the discrete outlines ex-
tracted from the original images. Full descriptions of the ap-
plication, mathematics and algorithms governing splines are
given by de Boor (1978) and Dierckx (1993). A discrete grain
outline C may be parameterized in terms of arc length s and
represented in Cartesian coordinates byC (sn) = (x(sn ), y (sn )),
where n is the vector index of x and y . The smoothing

spline f (s) then minimizes the expression

p
N∑
n=1

| C (sn)− f (sn) |2 + (1− p)λ
∫
| d

2f (s)
ds2

|
2

ds , (1)

where N is the number of points in the outline and p is a
parameter referred to as the smoothing coefficient.
The first term in Equation (1) is a standard measure of

squared distances while the second term is a roughness
measure. When p = 1, the second term of Equation (1) dis-
appears so the spline is bound only by the condition of mini-
mizing the distance between the spline curve and the original
outline points. When applied to sets of closed outline points,
this corresponds to a ‘natural’ cubic spline because the spline
is forced to pass through all of the original points (de Boor,
1978). When p = 0, the first term of Equation (1) disappears
so the spline is bound only by the condition of minimizing
the roughness measure term. Since the second derivative of
the spline function is effectively a measure of the curvature,
minimizing the second term of Equation (1) requires that the
curvature of the spline outline be minimized at all points on
the curve. The result is therefore simply a linear least-squares
fit, as a straight line effectively has a curvature of 0.
For a particular outline shape, a simple increase of scale

changes the relative balance of the two terms in Equation (1).
The curvatures of a shape are inversely proportional to its
scale. An increase of scale therefore decreases the curvature
of a shape by a factor proportional to the scale of the shape.
As the second derivative of the spline function is effectively a
measure of curvature, the second term of Equation (1) can be
adjusted to account for this scale-related curvature change.
Square curvature is inversely proportional to the square of the
shape scale. The total arc length s will also increase linearly
with scale, hence the integration path also increases in the
same way. The distance measure term of Equation (1) will
also increase with the square of scale.
To eliminate scale-induced changes to both terms of Equa-

tion (1), we must therefore multiply by a weight factor pro-
portional to the cube of the shape scale. This weight factor
is denoted λ in Equation (1) and is simply the cube of the
maximum diameter of the particle outline (in pixels) multi-
plied by a fixed constant of proportionality. Tests performed
on synthetic shapes showed that once this weight factor was
included, changes of scale had no effect on the behaviour
of the spline. For any outline shape and a fixed value of
p, altering the size of the discrete outline had no effect on
the characteristics and degree of smoothness of the resulting
spline outline. The remaining parameter to be selected from
one grain to another was the smoothing coefficient p.

2.2. Curvature
Curvature is a fundamental shape descriptor used for a vari-
ety of shape analysis problems (da Fontoura Costa and Cesar,
2001). The curvature of a plane curve given by Cartesian
parametric equations x = x(t ) and y = y (t ) is defined by

κ ≡ dφ
ds

where φ is the angle between the tangent to the curve and the
x axis, and s is the arc length. Although the above equation
does not provide a means to calculate the curvature of an
outline, from it we can derive

κ(t ) =
ẋ ÿ − ẍ ẏ
(ẋ2 + ẏ2)

3
2

, (2)
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where ẋ, ẍ, ẏ and ÿ are the first and second derivatives of
x and y with respect to t , respectively. Curvature has units
of inverse distance: either pixel−1 or mm−1 in the case of
discrete outlines.

2.3. Curvature measurement
The parabola method is the current standard for curvature
calculation of snow grain outlines. It is based on a routine de-
scribed in Lesaffre and others (1998). The curvature at every
pixel in the discrete outline is calculated. At each pixel it
utilizes a section of the outline comprising the pixel of in-
terest and Np pixels either side of that pixel. This outline
section must then be rotated by angular increments into the
most horizontal orientation before the parabola can be fitted.
After extensive testing on a complete range of outline sec-
tions, the most versatile and effective method for choosing
the most horizontal orientation was found. The technique
aimed simply to find the orientation with the largest differ-
ence in x coordinates between the start and end points of
the outline section. This method proved effective even for
sharp corners and other difficult outline sections where other
methods failed.
While Lesaffre and others (1998) used rotation increments

of π/4, Fierz and Baunach (2000) used 2π/31. The latter
value is used in this study. The method then fits a parabola to
the outline section in this rotated system and evaluates the
curvature κ at the origin for x(t ) = t and y (t ) = at2 + bt
according to Equation (2):

κ ≡ κ(0) =
2a

(1 + b2)
3
2

.

A cubic spline is ideal for curvature measurement, as it
has well-defined and continuous curvature at all points, by
nature of its construction. Furthermore, problems stemming
from low sampling resolutions may be overcome by the use
of the spline to evaluate curvature at many more points than
just the pixel locations of the discrete outline. While useful,
this feature is unable to reveal the small details that can be
lost when a snow grain is sampled at a low digital resolution.
We now introduce a parameter which is equal to the mean

of the positive curvature values of a snow grain outline, the
mpk. The mpk of a spline contour can be used as a means
of selecting the most effective smoothing coefficient value p
for a particular grain outline (see section 2.1). The mpk is
evaluated for the complete range of smoothing coefficients
0 < p < 1. When mpk is plotted against p (Fig. 1), an ex-
tended region of vanishing or 0 gradient is sought. The p
value corresponding to this region was found to yield out-
lines which were smooth and free from pixel-induced high-
frequency noise. This p value represents the best estimate of
the point at which the outline is settling into some kind of
stable state. This technique was necessary because the ideal
p value varied for different grain shapes.
Simple shapes required a large amount of smoothing due

to the larger number of redundant pixels, i.e. pixels that were
not entirely necessary to make a complete definition of the
shape. As an extreme example, a circle could be defined
using a very large amount of smoothing and only four outline
points. More complex shapes, however, require less smooth-
ing because the majority of the points in their outlines play
a fundamental role in defining the features of the shape. For
these shapes, the priority is shifted more towards adherence
to the discrete points than smoothness. Once this p value has
been found, the resulting smooth outline yields themaximum

a

b

Fig. 2. Spline outlines for (a) no-gradient method and (b) p value
yielding minimum mpk error. Original (dash-dot line) and discrete
contours (open squares) are also shown. The discrete contours
show pixels which are regarded as being inside the object after
segmentation.

available amount of information about the characteristics of
the shape at that given image resolution.
Figure 2 shows the resulting spline from both the no-

gradient p value and the p value yielding the minimum error
in the calculation of mpk. The spline curve produced using
the no-gradient method is free from pixel-induced noise but,
as a result of this smoothness, underestimates curvatures at
sharp, high-curvature regions. The spline which gives the
lowest mpk error can be seen to exhibit features that are not
part of the grain shape but result from the high-frequency
noise produced when the grain outline is forced onto an
integer-valued pixel grid.
Other methods of curvature estimation from discrete

curves can be found in S. Hermann and R. Klette, http: //doi.
ieeecomputersociety.org/10.1109/ICCTA.2007.2.

2.4. Perimeter and area
The perimeter of a snow grain is defined as the length of the
closed curve which encloses it. However, simply summing
the distances between adjacent pixels along the discrete out-
line will overestimate the perimeter, the error growing as the
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a b

Fig. 3. Parametric shapes: (a) rounded hexagon; and (b) dendritic
shape.

resolution increases. This problem can be overcome either
by using stereological methods based upon Crofton’s theo-
rem (Santaló, 2004) or by using a smooth continuous curve.
The area of a snow grain is defined as the area of the 2-D

region enclosed by its boundary. Simply counting the number
of pixels within the grain boundary will yield a value which
rapidly approaches the exact area, obtainable by increasing
the resolution sufficiently. Two methods for area measure-
ment were assessed. The first was a zero-order geometrical
moment calculation (Seul and others, 2000). The second was
a standard MATLABTM binary object area computation func-
tion (Pratt, 1991). The latter method was found to be more
accurate when tested on all synthetic shapes and was there-
fore chosen as the method best suited for snow grain area
measurement.

2.5. Shape descriptors
2.5.1. Sphericity
The sphericity spg of a snow grain is defined as

spg =
σκ+

κ+
, (3)

where σκ+ represents the standard deviation of the positive
curvature values of the outline and κ+ represents the mean
of the positive curvature values of the outline (mpk).
The sphericity is designed to distinguish between rounded

and faceted grains. A rounded grain will tend to have simi-
lar convex (positive) curvatures for a large proportion of the
points in its outline, therefore its positive curvature distri-
bution will tend to have a low standard deviation. Faceted
grains, however, are usually comprised of very low- or even
zero-curvature straight sections as well as of sharp corners of
high curvature. This means there is a much greater spread in
positive curvature values and hence the standard deviation
is higher for this grain type. The sphericity expresses these
differences in curvature characteristic: rounded grains with
low σκ+ and high mpk will tend to have a low sphericity
whereas faceted grains with high σκ+ and low mpk will tend
to yield high sphericity values.
The sphericity for a sample was calculated by evaluating

both σκ+ and κ+ over all positive curvature values from all
grains, yielding the sample’s total sphericity spt . This param-
eter can initially appear somehow inverted because a cir-
cle would ideally have a sphericity of 0. Lesaffre and others
(1998) therefore proposed the following regime to map spt

onto the closed interval [0,1]:

ˆspt =

⎧⎪⎨
⎪⎩
1 if spt < 0.8

0 if spt > 1.3

2(1− spt) + 0.6 if 0.8 ≤ spt ≤ 1.3.
(4)

With this mapping, rounded grains should give a ˆspt value
of 1 (being similar to spheres) and faceted grains should give
a ˆspt value of 0. This mapping could lead to incorrect re-
sults if a particular sample was composed of rounded grains
of a non-uniform size distribution. However, because the
mapping utilizes a high threshold value below which the
total sphericity is set to 1 (see Equation (4)), a sample of
rounded grains would have to contain a very wide range of
grain sizes to show a sphericity of <1. Such non-uniform
grain-size distributions are generally only found in samples
of new snow, i.e. precipitation particles as well as decom-
posing and fragmented precipitation particles (Colbeck and
others, 1990). For such samples, however, the sphericity is
not such a relevant parameter as it is primarily designed to
distinguish between faceted and rounded grains.

2.5.2. Zero curvature
The zero curvature zcg of a snow grain represents the per-
centage of contour pixels in which the curvature is found
to be within a small range (±r ) of 0. Given a small enough
range, this represents the percentage of straight portions on
the grain contour (Fierz and Baunach, 2000). Indeed, it is
rare that a curvature of exactly zero will be calculated for
any particular point on a grain outline, due to pixel-induced
distortions. As with sphericity, this parameter allows faceted
and rounded grains to be distinguished, as faceted grains
tend to be composed of longer straight sections. To avoid
scale dependency in zero-curvature measurements, curva-
ture values must be expressed in mm−1, thus requiring a
calibration factor. As for sphericity, it is better to evaluate the
total zero curvature zct over all curvature values N from all
grains from a particular sample as

zct =

∑N
n=1 δκ

N
, (5)

where

δκ =
{
1 if −r < κ < +r

0 otherwise.
(6)

Fierz and Baunach (2000) chose r to be 0.05mm−1, but
no demonstration on how this choice affects the calculation
was given. The same authors also argued that samples of
fully faceted snow grains gave values for zct > 1.4%, and
that fully developed depth hoar was consistently observed
for values >2.5% (Baunach, 1999). However, no mapping
onto the closed interval [0,1] has been proposed so far.

2.5.3. Dendricity
The dendricity ddg of a snow grain is defined as

ddg =
P 2

4πA
, (7)

where P is grain perimeter and A is grain area. This parameter
aims to distinguish between new, fragmented and decom-
posing snow grains (dendritic grains) and older, fully decom-
posed snow grains (non-dendritic grains). The principle of
this parameter is that dendritic grains, with their characteris-
tic branches and dendrites, tend to have a large perimeter and
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a relatively small area. Non-dendritic grains, however, tend
to have much simpler shapes with a larger area and smaller
perimeter. A perfect circle has a dendricity of 1, whereas
a new snow grain yields values of up to 20 or more. For a
complete sample containing small grains, Lesaffre and others
(1998) found this parameter to be more effective as a sum
over all grain perimeters and areas, i.e.

ddt =

∑N
n=1 Pn

2

4π
∑N

n=1 An
. (8)

Lesaffre and others (1998) also used the following regime
to map this total dendricity ddt to the closed interval [0,1]:

ˆddt =

⎧⎪⎨
⎪⎩
1 if ddt > 12

0 if ddt < 2
ddt−2
10 if 2 ≤ ddt ≤ 12 .

(9)

However, it is not clear whether ˆddt is able to efficiently
discriminate further between samples containing either new
snow, decomposing precipitation particles or both.

2.5.4. Density functions
Density functions of curvatures either over all pixels or per
grain as well as of dendricity per grain may also convey add-
itional information about the shapes we want to characterize
(see, e.g., Guyomarc’h and Mérindol, 1995).

3. SHAPES AND SNOW SAMPLES
3.1. Synthetic shapes
We use a small set of synthetic shapes to assess the methods,
comparing results with known values for shape descriptors.
The two parametric functions

r (θ) = z
(
sin 6θ
10

+
cos θ

25
+ 2

)

and

r (θ) = z
(
sin 6θ +

cos 20θ
2

+ 2
)
,

where r is the radius of the shape at angle θ and z is a scaling
factor, generate a rounded hexagonal and a dendritic shape
shown in Figure 3. We use an angle index of 106 equally
spaced values for θ in the closed interval [−π, π] to draw
the shapes, and can explicitly calculate perimeter, area and
first and second derivatives for any value of θ. Curvature is
evaluated from the derivatives according to Equation (2).
A further two shapes are generated by fitting a spline to

a limited number of points taken from discrete, real snow
grain outlines. Figure 4 shows the form of the two spline-
generated outlines: a depth-hoar grain and a precipitation

a
b

Fig. 4.Digitized, spline-generated grain outlines: (a) depth hoar; and
(b) precipitation particle.

particle. Again, we can evaluate exact perimeter, area and
curvature values for the above outlines.
The continuous outlines are sampled at a high resolution

(20×) and the coordinates are used to produce a binary
image of the shape. This image is then resampled back to
the original resolution as follows. If more than half of the
pixels in each 20 × 20 square are ‘on’ (have the value 1),
then the corresponding single pixel in the new (1× reso-
lution) image is set to 1; otherwise the pixel is set to 0. The
discrete outlines are then extracted from this image using the
same function as is used for real snow images. This process
mimics the way real snow images are thresholded and out-
lined. Shape descriptors derived from either discrete or fitted
continuous contours can then be compared with the exact
values obtained from the original synthetic shapes. We also
draw the shapes at various sizes, i.e. their largest extension,
to investigate scale and resolution dependencies.

3.2. Snow samples
Fierz and Baunach (2000) describe well-defined temperature-
gradient metamorphism experiments performed in a cold
laboratory. Here we use the pictures taken during two of
these experiments that lasted 3 days each. Table 1 gives an
overview of both experiments and samples. Each sample
contained 100–270 individual snow grains. We use these
well-characterized samples to look at the time evolution of
shape descriptors.
We took images of new snow crystals collected in situ

during various snowfall periods in 2006. The samples, which
contained 27–114 grains, represent different mean wind
conditions from 0.75 to 8.25m s−1. These samples help to
explore the potential of chosen descriptors to discriminate
between different stages of dendricity, from unbroken stellar
and dendritic particles at low wind speed to highly broken
crystals at high wind speeds.

Table 1. Characteristics of the two cold-laboratory experiments after initial settling (duration each 3 days)

Experiment† Temperature gradient Snow density Grain shape∗ Number of samples
At beginning At end

Km−1 kgm−3

4 –150 290 Small rounded particles 3a Depth hoar 5a 6
6 –350 110 Precipitation particles 1d Columns of depth hoar 5b 6

∗Colbeck and others (1990). †Fierz and Baunach (2000).
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Fig. 5. Parabola method: percentage mpk error as a function of
parabola-fitting value Np for synthetic depth-hoar grains of different
sizes (in pixels).

4. RESULTS
4.1. Synthetic shapes
A general trend was observed that the parabola method suf-
fers from a strong scale dependence. The number of pixels
used for the parabola fitting (2Np + 1) at each outline point
must be selected (see section 2.3) and this choice has a fun-
damental effect on the resulting curvature values. For any
particular value of Np, there exists an optimum curvature
radius which the method will evaluate accurately. Curvature
values far from this optimum value will be either under- or
overestimated while a small range either side of this value
will be evaluated with a reasonable degree of accuracy. This
was observed for all synthetic shapes. Applying the parabola
method to the synthetic depth-hoar shape and altering the
size (equivalent to altering the resolution) reveals the scale
dependence of the method.
Showing the percentage error in calculated mean positive

curvature mpk relative to the known exact values, Figure 5
indicates that the optimum Np value for the synthetic depth-
hoar shape is Np = 4, keeping errors in mpk <20% for all
sizes except the smallest. For the rounded hexagon shape,
however, Np = 9 was found to be optimum for all sizes with
an error smaller than 15% (not shown). In general, errors
increase with size for Np values smaller than the optimum,
and the converse for larger Np values.

Table 2. Percentage errors for perimeter, area and dendricity per
grain ddg relative to exact values for the synthetic shapes of size
D = 140 px, measured using the spline with p values chosen using
the no-gradient method

Shape Perimeter Area ddg

Rounded hexagon 1 0 1
Dendritic shape 8 1 16
Depth hoar 2 0 5
Precipitation particle 2 2 6

Fig. 6. Spline method: percentage mpk error as a function of smooth-
ing coefficient p for synthetic depth-hoar grains of different sizes (in
pixels). The solid circles show the error for the p value found by the
zero-gradient method.

Figure 6 shows corresponding results for the splinemethod.
A minimum is reached for each size at different p values. We
find the same behaviour for all four synthetic shapes. In addi-
tion, solid circles mark the errors for the optimized p values
as determined by the no-gradient method (see section 2.1).
Although these errors appear unexpectedly large for an op-
timized fit, it should be noted that the no-gradient method
seeks outlines which are smooth and free from pixel-induced
noise and distortions. In order to smooth out these artefacts,
high-curvature regions are generally smoothed to a certain
extent. The method therefore underestimates curvature val-
ues in these regions. However, the no-gradient method was
found to be effective at producing smooth outlines which
were well matched to the original grain shape (when plotted
over the original real snow images). For these real grains,
since we cannot compare calculated parameter values with
their exact values, the most important consideration is how
well matched the smooth spline outlines are with the grain
shape on the original image.
To summarize our results for the four synthetic shapes, we

present the errors for all the parameters of interest for a fixed
size D of 140 px in Tables 2 and 3. We give the errors found
for each method discussed above, using an Np value of 8 for
the parabola method (P8), the no-gradient method (Sng) and,
for each shape, the p value which yielded the minimal mpk
error (Smin).
From inspection of Table 2, it is clear that perimeter and

area measurements are reasonably accurate for all but the
dendritic shape. The large error in perimeter measurement
is due to two factors. First, the digitization process results
in a large amount of detail being lost at the sharp, concave
sections near the centre of the shape. Second, for a shape
as dendritic as this, a distortion-free outline will inevitably
smooth out high-curvature regions to a certain degree. As
a result, measured perimeter values are generally underesti-
mated for such complex shapes.
Table 3 shows that, in general, the spline method yields

more accurate curvature measurements than the parabola
method. It is interesting to note that even when the p value
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Table 3. Percentage errors for mean positive curvature mpk, standard deviation of positive curvature SDpk, sphericity spg and zero curva-
ture zcg (all per grain) relative to exact values for the synthetic shapes of size D = 140px

Shape mpk SDpk spg zcg
P8 Sng Smin P8 Sng Smin P8 Sng Smin P8 Sng Smin

Rounded hexagon 5 2 1 20 12 2 14 9 2 13 11 12
Dendritic shape 40 11 0 51 3 9 19 16 9 91 44 51
Depth hoar 36 2 0 67 25 22 47 24 22 31 31 29
Precipitation particle 25 12 0 62 24 13 50 14 13 8 13 20

(see section 2.3) which yields minimum mpk error for a par-
ticular shape is known (this is the case only for the synthetic
shapes), other parameters show similar errors to those shown
by the no-gradient method. This highlights the fact that while
one p value may achieve a good result for one parameter,
another p value could yield a more accurate overall distri-
bution of curvatures.

4.2. Cold-laboratory experiments
Figure 7 depicts the evolution with time of total mean posi-
tive curvature mpkt, standard deviation of positive curvature
and sphericity spt for the six samples analyzed during cold-
laboratory experiment 6. The different filtering effects of the
parabola (Np = 8, bandpass filter) or the spline method (no-
gradient method, low-pass filter) can be clearly seen from
the differences in mpkt values at all stages of the experiment.
Indeed, the spline method yields larger mpkt values, being
able to accurately measure a larger range of curvatures (and,
in particular, high curvatures). Both methods show similar
changes with time, however, and the decrease in mpkt re-
flects the growth from faceted to large depth-hoar crystals
with longer straight portions and less high-curvature regions
on their contour. The standard deviation follows a similar
behaviour. Again, the spline method yields higher values,
as the density function for positive curvature is expected to
be broader due to the larger range of values measured. On
the other hand, sphericity values are very similar for both
methods. Note, however, that the mapped sphericity ŝpt is
low (≤0.2) from the beginning of the experiment and has
reached 0 at 1.5days (spt ≥ 1.3).
The partly decomposed and dendritic precipitation parti-

cles composing the initial samples quickly recrystallize to
faceted grains under the action of a temperature gradient
of 350Km−1. Initial total dendricity ddt drops from >8 to
<4 within the first day of the experiment, corresponding to
mapped values ˆddt of ≥0.6 and ≤0.2, respectively. As may
be expected, mean positive curvature mpkt as well as its
standard deviation are high at the initial stage, and spher-
icity is near the threshold value for fully faceted grains, i.e.
ŝpt ≤ 0.2.
Experiment 4 begins with small rounded grains subjected

to a temperature gradient of 150Km−1. Snow density is
290kgm−3. From observation, we know that recrystalliza-
tion to faceted grains is well developed after the first stage
and proceeds to small depth-hoar crystals (size <0.75mm).
However, the recrystallized grains still show noticeable
rounding and no typical striations of depth hoar. While these
shape characteristics do not change much during the exper-
iment, the size or maximal extent of the grains increases
slightly to about 1mm. This evolution is nicely reproduced

by both ˆddt and ŝpt as shown in Figure 8. While
ˆddt shows

little or no change during the experiment as expected, ŝpt
drops from an initial value slightly above 0.6 to slightly be-
low 0.5 at the first stage of the experiment and decreases
steadily afterwards but never seems to reach zero. Indeed,
total sphericity spans the range 0.9 < spt ≤ 1.3 without ever
crossing the upper threshold, contrary to experiment 6.

4.3. New snow
Figure 9 shows the density functions of ddg for new snow
samples collected at five different mean wind speeds (e.g.
3.75 (±0.25)m s−1). The non-parametricWilcoxon rank-sum
test reveals that the two density functions for wind speeds
>4m s−1 are significantly distinct from the three at lower
wind speeds (95% level). Total dendricity ddt also indicates
this break which is associated with the onset of saltation, i.e.
mechanical fragmentation of precipitation particles. How-
ever, no further discrimination is possible within the two dis-
tinct ranges.

5. DISCUSSION
A fundamental characteristic of the parabola method is that
it exhibits a distinct scale dependence. For a particular Np
value, curvatures within a small range around an optimum
value will be measured accurately. Outside of this range,
however, errors in measured curvature will increase. In a
sense, the parabola method acts like a bandpass filter. If a
shape does not exhibit a large range of curvatures (e.g. simple
shapes) and the mpk of the shape is close to the optimum cur-
vature value for the chosen Np, the parabola method should
yield reasonable results. However, its accuracy can be re-
duced if the shape complexity is high. Complex shapes tend
to exhibit a broader range of curvatures and the parabola
method will therefore be unable to measure the entire range
accurately with a fixedNp value. Even if the real mpk is close
to the optimum curvature value for that particular Np value,
the measured density function of curvatures will not reflect
the real distribution because values away from the optimal
range will be under- or overestimated. As stated previously,
the method could be described as a filter through which val-
ues close to the optimal range pass easily and values which
differ are blocked.
Depending on the grain shape and Np value, small details

of the outline can be smoothed or, on the other hand, pixel-
based artefacts can be intepreted as grain features. Therefore,
choosing the most effective Np value is neither simple nor
trivial. Lesaffre and others (1998) found Np = 8 to be opti-
mum for isolated and overlapping circles. While this value
yields reasonably accurate results for simple shapes (e.g. the
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Fig. 7. Cold-laboratory experiment 6: (a) total mean positive curva-
ture mpkt ; (b) standard deviation of mpkt ; and (c) total sphericity spt
as a function of time.

rounded hexagon depicted in Fig. 3a), it is too large to effi-
ciently measure the smaller features and high-curvature re-
gions of more complex shapes. However, it is important to
choose an Np value which is too high rather than too low. If
the method inteprets pixel distortions as grain features, then
the results will rapidly become unstable. If Np is too high,
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Fig. 8. Cold-laboratory experiment 4: (a) total mapped dendricity
ˆddt and (b) total mapped sphericity ŝpt as a function of time.

a simple underestimation of curvatures would be observed;
however, an estimate of the underlying distribution would be
reproduced with albeit lower magnitudes.
The cubic smoothing spline can provide valuable informa-

tion for the distinction and characterization of snow grains.
Firstly, it is an effective method for producing a smooth con-
tour from a discrete pixel outline from which perimeter and
area values can be evaluated. By using a weight factor pro-
portional to the cube of the shape scale, the method was
adapted to be completely invariant under changes of scale.
For measurements of curvature, the spline method bears

a filtering effect similar to the parabola method. This can be
observed most strongly on complex shapes. A certain amount
of smoothing is crucial to eliminate pixel noise from the low-
curvature regions of these shapes. It would be incorrect to use
a method which consistently exhibited pixel-based artefacts
in its outlines. With this amount of smoothing, however, the
high-curvature sections of a complex outline will always be
smoothed out to a certain degree. In this way, the spline
method acts like a low-pass filter, reducing noise due to digit-
ization but unveiling all features of interest at larger scales.
One way to avoid this effect would be to use non-constant
weight factors as additional inputs to the spline.
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A first-guess outline could be constructed using the no-
gradient method. Based on the curvature values of that out-
line, a weight factor could be constructed which altered the
relative requirements of smoothness and point adherence de-
pending on the position in the outline. Theoretically, succes-
sive iterations would yield more accurate results because the
function would use more smoothing in the low-curvature re-
gions, and the converse. However, such a technique would
require extensive investigation before being made effective.
For our datasets and resolutions, the no-gradient technique
offers an effective way to choose the smoothing coefficient
p, from which smooth, distortion-free outlines can be pro-
duced. Parameters such as total sphericity spt can then be ap-
plied, providing a satisfactory tool for a coarse classification
of samples of disaggregated snow grains, as for experiment 4.
On the other hand, mapping these quantities to a closed in-
terval [0, 1] will reduce their usefulness, as information may
get lost as in the case of experiment 6.
Although the spline method may act as a low-pass filter, it

can nevertheless accurately measure a wider range of curva-
tures than the parabola method. The degree of accuracy with
which the spline method can measure curvatures is generally
dependent on the image resolution. If images with progres-
sively higher resolutions were used, the spline method with a
very large amount of smoothing would yield more and more
accurate results. There would of course be some threshold
resolution, above which nomore information about the snow
grains would be revealed. At this resolution it should be pos-
sible to have complete and fully accurate 2-D information
about the grains. These data might then be compared with
the analagous data from 3-D analysis.
Shape descriptors based on perimeter and area measure-

ments are both more robust and more accurate (see Table 2).
Nevertheless, total dendricity ddt does not allow for more
than a coarse classification into dendritic and non-dendritic
shapes. Unfortunately, analysis of the density functions
for the per grain dendricities does not provide any extra
advantage.

6. CONCLUSIONS
Methods for the characterization and analysis of 2-D snow
grain images have been assessed. This assessment was con-
ducted in the context of several well-established shape de-
scriptors. The ratio of square of perimeter to area, known as
the dendricity, allows the distinction of new snow from older
snow. The ratio of standard deviation of positive curvature
to mean positive curvature allows the distinction of faceted
from rounded grains.
Two techniques for curvature measurement were com-

pared: the parabola method (which is the current standard)
and the spline method. The methods were tested using syn-
thetic grain outlines which were then digitally sampled. The
resulting discrete outlines from these synthetic shapes sim-
ulated both the form of real snow grains and the effects of
digitization. The exact values for all necessary shape descrip-
tors could be calculated exactly from these synthetic shapes
before digital sampling. Results of this analysis showed the
parabola method to be highly scale-dependent, showing
characteristics of a bandpass filter. The splinemethod showed
a low-pass filtering effect whereby high-curvature sections
and small outline details were smoothed out to a certain
extent. Errors in mean and standard deviation of positive
curvature were found to be considerable for both methods,
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Fig. 9. (a) Total dendricities and (b) box-and-whisker plots showing
the lower-quartile, median and upper-quartile value for new snow
dendricity per grain ddg at five different mean wind speeds.

particularly for more complex grain shapes and shapes with
more small details. The parabola method was optimized by
choosing a parabola-fitting value of Np = 8. This same value
was chosen by Lesaffre and others (1998). The spline method
was optimized using a no-gradient technique to choose the
smoothing coefficient p.
The methods were then applied to samples of disaggre-

gated snow grains. These samples consisted of cold-
laboratory experiments, in which the snow grains underwent
metamorphism due to a constant temperature gradient which
allowed the time evolution of the various shape descriptors
to be analyzed. Sets of new snow samples taken at different
mean wind velocities were also used to assess the ability of
descriptors to distinguish different stages of grain decompo-
sition and fragmentation.
The results showed that the sphericity is indeed capable

of making a broad characterization of faceted from rounded
grains. However, the mapping of these values can have dif-
ferent effects depending on the method and resolution used
for the analysis. The total dendricity ddt was found to offer
some effectiveness at showing the change in grain form from
highly dendritic to fragmented particles.

https://doi.org/10.3189/172756408784700752 Published online by Cambridge University Press

https://doi.org/10.3189/172756408784700752


112 Bartlett and others: Techniques for analyzing snow crystals

ACKNOWLEDGEMENTS
This work is dedicated to J.-B. Brzoska, who contributed so
much to the field of snow microstructure and acted as sci-
entific editor of this paper before he unexpectedly passed
away. Many other people also contributed to this work, but
we would particularly like to thank F. Perret, J. Hendrikx,
M. Connolly, R. Grant, C. Zwart and A. Clifton. Thanks
also to M. Lehning for supporting this work over the years.
S.J. Bartlett and A. Craig would like to thank both the Uni-
versity of Bath and the WSL/SLF for allowing them to fulfil
their internship in Davos. The constructive comments of two
anonymous reviewers helped improve this paper.

REFERENCES

Bartelt, P. and M. Lehning. 2002. A physical SNOWPACK model
for the Swiss avalanche warning. Part I. Numerical model. Cold
Reg. Sci. Technol., 35(3), 123–145.

Baunach, T. 1999. Snow metamorphism under temperature gradi-
ents in the snow cover. (Universität GH Essen.)

Cesar, R.M., Jr and L. da Fontoura Costa. 1997. Application
and assessment of multiscale bending energy for morpho-
metric characterization of neural cells. Rev. Sci. Instr., 68(5),
2177–2186.

Colbeck, S.C. and 7 others. 1990. The international classification for
seasonal snow on the ground. Wallingford, Oxon., International
Association of Scientific Hydrology. International Commission
on Snow and Ice.

da Fontoura Costa, L. and R.M. Cesar, Jr. 2001. Shape analysis and
classification: theory and practice. Boca Raton, FL, CRC Press.

de Boor, C. 1978. A practical guide to splines. New York, Springer-
Verlag.

Dierckx, P. 1993. Curve and surface fitting with splines. Oxford,
etc., Oxford University Press.

Fierz, C. and T. Baunach. 2000. Quantifying grain-shape changes
in snow subjected to large temperature gradients. Ann. Glaciol.,
31, 439–444.

Guyomarc’h, G. and L. Mérindol. 1995. Protéon: vers une prévision
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