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ASYMPTOTIC EXPECTED NUMBER OF PASSAGES
OF A RANDOM WALK THROUGH AN INTERVAL

OFFER KELLA,* The Hebrew University of Jerusalem
WOLFGANG STADJE,** University of Osnabriick

Abstract

In this note we find a new result concerning the asymptotic expected number of passages
of a finite or infinite interval (x, x 4+ /4] as x — oo for a random walk with increments
having a positive expected value. If the increments are distributed like X then the limit
for 0 < h < oo turns out to have the form E min(|X|, #)/EX, which unexpectedly is
independent of & for the special case where |X| < b < oo almost surely and & > b.
When i = oo, the limit is Emax(X, 0)/EX. For the case of a simple random walk, a
more pedestrian derivation of the limit is given.
Keywords: Random walk; passage; generalized renewal theorem; two-sided renewal
theorem
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1. The result

In this note we prove an asymptotic formula for the expected number of passages of a random
walk with positive drift through (x, x + h] for 0 < h < oo as x — oo. In general, a passage of
a stochastic sequence (Y,),>0 through a subset A of its state space is defined to consist of an
entry to, followed by a sojourn in, and then an exit from A. It is given by a sequence of epochs
n+1,....,n+i(@>1)suchthaty, ¢ A, Y41 € A,.., Y+ € A, Yyyit1 ¢ A. Itis natural
to call i the length of the passage.

Now, let S, = X1 + --- 4+ X, (So = 0) be a real-valued random walk with independent
and identically distributed (i.i.d.) increments X; distributed like X with E|X| < oo and having
expected value © = EX > 0. We fix a constant 0 < 2 < oo and denote by N*, x € R, the
number of passages of S, through the interval (x, x + h] ((x, 00) if A = 00). The classical two-
sided renewal theorem (see, e.g. [2, p. 218] and [3, p. 172]) states that, when the distribution
of X is nonarithmetic, the expected number of visits of the interval (x, x 4+ &], denoted by
R((x, x + h]), where

o
R(A)=E> Iis,ea). )
n=0
converges to i/ as x — 0o and to 0 as x — —oo (with a slight adjustment in the case when
the underlying distribution is arithmetic). The following two results can be viewed as a neat
little supplement to this important theorem.
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Theorem 1. Let 0 < h < o0.

(a) If X has a nonarithmetic distribution,

lim EN — E min[| X]|, /]

X—>00 22

@)
(b) If X has an arithmetic distribution then (2) holds for every h > 0 which is divisible by
the span.

Although it would have been nice if, for the case i = oo, we could simply replace min[| X |, /]
ormin[| X |, k] by | X|, this turns out to be false. Instead, the following holds, where throughout
we use the notation a™ = max(a, 0) and a~— = max(—a, 0).

Theorem 2. Let h = co. Then (nonarithmetic or arithmetic),

EX*
lim EN' = ——.

X—>00 M

3)

In Theorem 2 we count in N also the terminal entrance to and subsequent infinite sojourn in
(x, 00). If we want to exclude this ‘passage’, the limit in (3) becomes EXV/u —1 =EX"/pu.
In Section 2 we consider a few special cases; the proofs are carried out in Section 3.

2. Some special cases

2.1. Simple random walk with 0 < & < oo

We first consider the simple random walk withP(X = 1) = pandP(X = —1) = ¢ = 1—p,
where p > ¢q. Fix x, h > 1 (integers). Note that the expected number of passages through
{x,...,x + h — 1} when starting at O is the same for every x > 0 since the random walk
is skip-free and converges to oo almost surely. Therefore, we set x = 1. Let a; and by, be
the expected numbers of passages through £ = {1, ..., h} when starting from 0 and & + 1,
respectively. Then EN* = a;, and we now give a direct proof that

_ Emin[|X],n] E[X] 1
- EX T EX  p—g

(note that | X| = 1). It is remarkable that EN* does not depend on /.
As p > g, we have

EN* = ay forallh > 1

ap =1+ mpap + (1 — )by, @

where 7y, is the probability that O is reached before 4 4 1 when starting from 1. Indeed, when
starting from a state to the left of E, the random walk enters E at 1 with probability 1 and
thereafter the next passage comes from the left with probability m;, or, with probability 1 — 7y,
state i + 1 is reached before 0. On the other hand, when starting from / + 1, the set E (actually,
the state h) is reached with probability ¢ /p and then the next attained state outside E is O or
h + 1. Therefore, we obtain

by = %(1 + onan + (1 — pp)by). )

where pj, is the probability that 0 is reached before /1 4- 1 when starting from 4. The probabilities
7, and pyp, are of course well known from the standard gambler’s ruin problem:

_ /p) —/p" _ /" =@/

: 6
1—(q/p)tt! 1—(q/p)i+! ©

https://doi.org/10.1239/jap/1363784439 Published online by Cambridge University Press


https://doi.org/10.1239/jap/1363784439

290 O. KELLA AND W. STADJE

Equation (4) yields

ap = + by 7)

1—my

Setting r = q/p, we get, from (5)—(7),

r Ph
by, = 1 .
g l—r< +1—m,>

Next check that pp, /(1 — 7p) = r. A little calculation now shows that

1 r Oh
= 1
an l—nh+1—r<+1—nh>

1 — phtl r
= +—+r"
1—r 1—r
14+r
1—r
1

p—q

as was to be proved. Moreover, for k > 1, the expected number of passages through E starting
from i + k is equal to [1 — r]~1[1 4 r"]rk.

The case of random walks having increments —1, 0, 1 with probabilities p_1, po, p1, reduces
to the case above with p = p1/(p—1 + p1) because here the number of passages is the same
as that of the random walk which is embedded at state change epochs.

2.2. Simple random walk with 2 = oo

In the setting of Subsection 2.1, when & = oo, we are interested in the asymptotic expected
number of passages through (x, 0o). Since x is hit with probability 1, then, for every x > 0,
it is the same as the expected number of passages through {1, 2, ...}, which we denote by ao.
We want to verify that

EX* P
EX p—q’

Indeed, since the probability to ever reach 1 starting from 0 is 1 and the probability to ever
reach O from 1 is g/ p, we have

oo =

oo :1+gao<3a

o)
__
l—q/p p—q
Of course, the last paragraph of Subsection 2.1 applies to this case as well.

oo

2.3. Random walks with inequality constraints

In general, if | X| < b < co almost surely, we have, for b < h < oo,

EIX| 1+ (EX /EXT)

EN* - ,
T EX ~ 1— (EX-/EXY)
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so the limit depends only on the ratio EX~/EX™. This is also the case when & = oo as the
limit may be written as follows:

EX*t 1

EX 1—(EX-/EX*H)’

If X takes only nonnegative values, there is at most one passage through (x, x + ] and

P(N*=1) —

w_/ths—F (h) ®
= R

0 12

where Feq is the equilibrium distribution associated with X. In this case it is interesting to note
that (8) is valid regardless of whether 4 is finite or not.

If|X| > hthen EN* — h/u. Every passage through (x, x + /] corresponds to exactly one
visit of this interval (since every entrance to (x, x + h] is immediately followed by an exit).
Therefore, EN* = R((x, x + h]) in this case and we are back to the classical two-sided renewal
theorem.

Finally, consider the case when X takes only values in [—/, 0] U (&, 0o). Then it follows
that

EX~™ +hP(X >h) EX~
— =
EX EX
where feq denotes the equilibrium density of X.

EN* + hfeq(h),

3. Proofs

We only treat the nonarithmetic case. The proof of the arithmetic case follows along the
same lines. The following lemma will prove useful.

Lemma 1. Let (X,),>0 be a stationary and ergodic sequence, and let A be a measurable subset
of its state space, satisfying P(Xo € A°, X; € A) > 0 (thus, P(Xg € A) = P(X; € A) > 0).
Let V1, Va, ... be the lengths of the successive passages through A. Then, as n — 00,

n
n! Z Vi (1-P(X1€A| Xpe€ A))71 almost surely.
i=1
Proof. Let J; = 1ix,ca) and K; = 1{x;cac, x;,,eA). Let L, be the last time of the nth
passage. As P(Xy € A®, X; € A) > 0, then L, — oo almost surely and, by the ergodic
theorem for stationary sequences,

n L, J:
lim n~' ) " V; = lim —Zfl !
n—>0oo n—oo n .
i=1 Zi:l Kl

. _ L
o dimyeo L5
Y 1L
lim;, 00 Ly Z,’znl K;

_P(Jhh=1)
T P(Kg=1)
P(Xo € A)

= almost surely,
P(Xp € A¢, X1 € A)

completing the proof.
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3.1. Proof of Theorem 1: 0 < & < 00

We introduce the auxiliary regenerative process X that is identical to S, until the level 2x is
exceeded (at which time the first cycle is completed), then restarts from O until 2x is exceeded
again, etc. (2x could be replaced by any f(x) such that f(x) —x — oo as x — 00). Let
N* be the number of passages of X;; through (x, x + &] in the first cycle. Observe that, for
Xx > h, a passage cannot be interrupted by an end of a cycle. We recall from (1) that R(A) is
the expected number of epochs at which S, is in A (the renewal measure) and denote by R, (A)
the expected number of epochs at which X, is in A during the first cycle. R(x 4 I) tends to the
length of I divided by u as x — oo and to 0 as x — —oo for all bounded intervals 7. Clearly,
R, < R and since R(A) and R, (A) differ at most by the expected number of points of S, that
return to [inf A, sup A] after S, has crossed 2x, it follows that

|Rx(x + A) — R(x + A)| < sup R((—y, —y +h]) forall A C (0, A].

y>x
Hence, recalling that R((—y, —y + h]) - Oas y — oo,

lim sup |Ry(x+ A)— R(x+ A)| — 0. )
X0 AC[0,h)]

Since N* — N is bounded above by the overall number of visits to (x, x 4 h] after the first
cycle, it also follows that

0 < EN* —EN* < R((x, x + h]) — Re((x, x + h]),
so we also have

lim (EN* — EN¥) = 0. (10)

X—> 00

Letusfirstfixx > 0. By the ergodic theorem for regenerative processes (see, e.g. [1, p. 170]), the
stationary distribution v, of X; is of the form v, (A) = expected number of points in A in the
first cycle divided by the expected cycle length, i.e. v,(A) = R, (A)/c(x), where c(x) is the
(finite) expected cycle length of X,.

Now, make the (Markov) process (X;),>0 a stationary and ergodic sequence by starting
it with v,. Then let V¥, V¥, ... be the lengths of the consecutive passages of X;, through
(x,x + h]. From Lemma 1, as n — o0,

n
n' Y Vo v =1 (1-P(X{ € (x,x + h] | X§ € (x,x+h])"" almost surely. (11)
i=1
Let Y ~ R,(-)/c(x) be independent of X (X ~ X). Then, the conditional probability on the
right-hand side of (11) can be written as
P(Xy € (x,x + h], X{ € (x,x +h])
P(Xp € (x, x + h])
PYe(x,x+h], Y+ X e (x,x+h])
- P(Y € (x.x + h])
Px+X <Y<x+h—-—X"
- P(Y € (x, x + h)
P+ X <Y<x+h—-Xt X" <h-X"
B P(Y € (x,x + h))
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P e(x+X . x+h—X"] |X| <h

- P(Y € (x,x + Ahl)
c)T'ER ((x + X7, x +h — XT]) 1x1<n)

- c() TR ((x, x + h)

_ ER,(x+X",x+h—-XT") 1{x|<m)

B Ry ((x,x + h]) '

It is well known (and quite easy to show) that there are finite constants a and b such that
R((x, x + h]) < ah + b for all (finite) x, h > 0 and, thus,
Re((x+ X ,x+h—X"D1yxj<ny < R(x + X, x+h — X)) 1x<n)
<ath—|XDT+b
<ah +b.

Thus, by dominated convergence, (9), and the generalized renewal theorem, it follows that, as
X — 00,

ER((x + X, x +h — XD 1(xj<n N Eh — XDt /1

Ry ((x,x + h]) h/u
E(h — X"
- h
11— Emin(|X|, k)
— 0

and so, recalling (11), we have, as x — oo,

h

Y Emin(X], k)

Next let N¥ be the number of passages through (x, x + 4] in the jth cycle, and let Vi j be the
length of the ith passage through (x, x + A] in the jth cycle. Then

N¥
> i Vi
vy = lim L=l &l i

k X
k=00 Zj:l Nj

. - Ny
limy_ 00 k7! 25:1 24 Vi
limkaook_l 21;21 N;C
Ry ((x,x + h])
= ————— almost surely.
EN*

The last equality follows since we have the moment estimator from an i.i.d. sample of size k of
the expected number of points of S, in (x, x + h] before exceeding 2x in the numerator, and
the corresponding moment estimator of EN* in the denominator. Thus, we have, as x — oo,

h Emin(IX[,n)  Emin(|X]|, h)

EN* = R((x, x +h])vx_1 —
h u

(12)

and, finally, from (10), the desired limit is achieved.
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3.2. Proof of Theorem 2: h = o0

We first note that clearly every passage above x can be matched with a passage below x and,
thus, for x > 0, the number of passages through (x, co) is the same as the number of passages
through (—oo0, x], provided that the terminal passage that starts above x and never ends is also
counted as one passage and the same holds for the first passage under x that starts at 0. The
proof, therefore, follows the same procedure as before but with N* denoting the number of
passages below (and, thus, above) x. The only difference is the following computation:

P(Xy <x, X{ <x)

v;l =1
P(Xy < x)
_I_P(Ygx, Y+ X <x)
Py <x)
P(Y <x—X1)
P <x)
i c(x) "ER ((—o0, x — X*])
a T () Re (=00, x])
_ | ER(-00,x - X+
a Ry ((—00, x])
_ ER((x — X7, x])
© Ru((—00, x])

Since
Re((x —XT,x) < R((x — X", x]) <aX" +b,

and E|X| < oo, we can conclude as in (12), using dominated convergence and applying the
same arguments as in the proof of Theorem 1, that

Ex+

EN" = Re(—00, xJuy" = ERc((x — X*.x]) —

as x — oo and, hence, also that
EXT
EN* — ,
7

as required.
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