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Strichartz Inequalities for the Wave
Equation with the Full Laplacian
on the Heisenberg Group

Giulia Furioli, Camillo Melzi, and Alessandro Veneruso

Abstract. 'We prove dispersive and Strichartz inequalities for the solution of the wave equation related
to the full Laplacian on the Heisenberg group, by means of Besov spaces defined by a Littlewood—Paley
decomposition related to the spectral resolution of the full Laplacian. This requires a careful analysis
due also to the non-homogeneous nature of the full Laplacian. This result has to be compared to a
previous one by Bahouri, Gérard and Xu concerning the solution of the wave equation related to the
Kohn Laplacian.

1 Introduction

The aim of this paper is to study Strichartz inequalities for the solution of the follow-
ing Cauchy problem for the wave equation on the Heisenberg group H,, of topological
dimension 2n + 1 and homogeneous dimension N = 2n + 2:

QPu+Lu= feL'((0,T),L*(H,))
(1) u(0) = uo € By* (L)
O,u(0) = u; € L>(H,)

where L is the full Laplacian on H,, (to be defined in Section 2) and the Besov spaces
BY(L) are defined by a Littlewood—Paley decomposition related to the spectral res-
olution of the full Laplacian (see Section 3). To our knowledge, the problem of estab-
lishing dispersive or Strichartz inequalities for solutions of partial differential equa-
tions in H,, or more generally on Lie groups, has been treated only in three recent
papers. Bahouri, Gérard and Xu [BGX] studied the Cauchy problem analogous to
(1) with the Kohn Laplacian A instead of the full Laplacian £, using the Besov spaces
B(A), which contain B/(L) for p > 0 (see Proposition 3.4). Furioli and Vene-
druso [FV] studied the corresponding Cauchy problem for the Schrodinger equation
where they introduced the full Laplacian instead of the Kohn Laplacian, but still they
used the Besov spaces B/"/(A). Del Hierro [D] generalised the results of [BGX] to
H-type groups.

Strichartz and dispersive inequalities were first introduced in the Euclidean set-
ting. They concern the so-called “dispersive equations”

O =iPD)u+ f, u(0) = u
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or, more generally, equations whose linear operator is related to oscillatory integrals
as for the wave equation. For these equations, the question is whether a solution with
? initial data becomes eventually more “regular” due to some smoothing effect of
the related linear operator combined with the integration in time appearing in the
expression of the solution (as for example in formula (3)). This question has been
addressed in R following the pioneering paper by Strichartz [S] on the Schrodinger
equation, and has since been the subject of a huge literature concerning many dif-
ferent kinds of equations. In the beautiful introduction to their paper [KPV], Kenig,
Ponce and Vega briefly touched on the history of the problem and showed that ellip-
ticity is not essential for proving this kind of result; what is essential is the behavior of
the real symbol of the operator P(D): P(D)f(x) = f ei"fP(f)f(f) d¢. In the setting
of the Heisenberg group, two operators have been considered: the Kohn Laplacian,
which is not elliptic and the full Laplacian, which is elliptic. For both operators it is
possible to prove this kind of result.

Let us begin by recalling the structure of the solution of the Cauchy problem (1).
It is well known that the solution of (1) can be written as u = v + w, where v is the
solution of (1) with f = 0 and w is the solution of (1) with uy = u; = 0. More
precisely,

(2) v(t) = cos(t\/Z)uo + %ul,
wit) — /’ sin((t — 0)V/L)
0

3) 7T

flo)do.

We can now state the main results of this paper. As always when dealing with
Strichartz inequalities, we prove first the following dispersive inequality on v.

Proposition 1.1 Letp € [N —

3N —1anduy € BY' (L), uy € B "' (L). Then
there exists a constant C > 0, which do

es not depend on uy, uy, such that
Hv(t)”Lm(lH[n) < C|t|_%(Hu0”B/{"1(L) + ||“1HB§’*‘=1(L))= t € R

We note the main difference between Proposition 1.1 and [BGX, Théoreme 1.2]:
in the hypotheses of the latter theorem, they obtain only the index p = N — 1, which
in that case is sharp because of the homogeneity property of the Kohn Laplacian A.

For every interval I C R, we will denote by Lf (X) the space LP(I,X). The
Strichartz inequalities we have obtained are the following.

Theorem 1.2 Letry, 1, € [2,00]. Let py, p2 € Rand py, p, € [1, 00] such that
(1) %: ;- %fori: 1,2

(i) —(N=3)(5-
(iii) —(N -
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+ % = 1fori = 1,2. Then for every interval I

which contains 0, the following estimates hold:

HV”L&I (B2 (L)) + ”atVHLﬁl B W) <C (HMOHB;-Z(L) + ”ulHLz(llIin))v

||WHL§1<B¢’;=Z<L>> + HafWHLf‘ ey SC ||f||L§’z'<B7’2~2(L>)’
n

where the constant C > 0 depends neither on ug, uy, f nor on the interval I.

We can deduce from Theorem 1.2 the following result, which we compare to the
analogous result by Bahouri, Gérard, and Xu.

Corollary 1.3

0<2<y—qand(N-1(; 1

Let u be the solution of the Cauchy problem (1). If p and r satisfy
)—1< % <NG -1

> ) — 1, then there exists

a constant C > 0, which does not depend on ug, u,, f, such that, for every interval I
which contains 0, the following estimate holds:

||MHL§)(L’(]H[”)) S c (HMOHB;Z(L}) + HMIHLZ(]H[,‘) + HfHL}(LZ(]H[y,)) ) :

In [BGX, Théoréme 1.1], the solution of the wave equation with the Kohn Laplacian
was proved to belong to Lf (L"(H,)) only for p and r satisfying 2N — 1 < p < oo

1 1
and E = N(z —
found (since it is equivalent to 0 < %

%) — 1, which is a subset of the range of values of p and r we have

<1l _

3 %and% :N(% — %)— 1). The set of

the admissible values (7, ;) found in Corollary 1.3 is represented in Figure 1, where
the result by Bahouri, Gérard, and Xu corresponds to the segment BC.
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Other results on the sharpness of the dispersive inequalities and remarks about

the behaviour of the operator e~ "VE when analysed by the Besov spaces B/!(A) can

be found in Section 6.

2 Notation and Preliminaries

In this paper, N denotes the set of nonnegative integers, 7, the set of positive integers
and R, the set of positive real numbers. For p € [1, 00] we denote by p’ the conjugate
index of p such that % + }% = 1. We will denote by C any positive constant, depending
only on the group, which will not be necessarily the same at each occurrence.

In this section we recall some basic facts about harmonic analysis on the Heisen-
berg group. For the proofs and further information, see also [Gel, Ge2, N, F, BIRW].

The Heisenberg group Hi,, n € Z,, is the nilpotent Lie group whose underlying
manifold is R* x R" x R with the following multiplication law:

(x,7,9)(x", y",s") = (x+x', y+y' sts'+2(y-x"—x9"), x,x,y,y  €R", 5,5 € R.

The Lie algebra of Hl, is generated by the left-invariant vector fields X, ..., X,,
Yy,...,Y,, S, where
0 0 0 0 0
Xi=— +2y;— Yi= — — 2xj— S=—.
T Ox; Vigs T Oy; s Js

We indicate an element ¢ = (x, y,s) € H, as ¢ = (z,s), wherez = x + iy € C".
The family of dilations {4, : r > 0} given by 6,(z, s) = (rz, r*s) makes H,, a stratified
group of homogeneous dimension N = 2# + 2. The Kohn Laplacian

A== (XG+Y))
j=1

satisfies the homogeneity property A(f o §,) = r*(Af o §,), r > 0, while the full
Laplacian £ = A — §? is not invariant with respect to the dilation structure of H,.

The bi-invariant Haar measure dg on H|, coincides with the Lebesgue measure on
R?"+L, The convolution of two functions f; and f, on G, defined by

fl*fz(g):/ filgg’ Nh(gHdg', g€ H,
H,

satisfies Young's inequality (where 1 + 1 = ;7 + é):

iy < Al [ £l

i+ f2

The convolution of ¢ € $(H,) and u € 8'(H,), where S(H,,) is the Schwartz space
and 8'(H,) is the space of tempered distributions, is defined as usual (see [V]). We
say that a function f on H, is radial if the value of f(z,s) depends only on |z| and s.
We denote by 8,.q4(H,,) and by Lfad(]H[n), 1 < p < o0, the spaces of radial functions
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in 8(H,) and in LP(H,), respectively. The space L. ;(H,) is a commutative, closed
x-subalgebra of L'(H,). The Gelfand spectrum X of Liad(lH[n) can be identified, as
a measure space, with the space N x R equipped with the Godement—Plancherel
measure / defined by

2V X (mn—1 ,
/EF(w)du(w) = mZ( . )/RF(m,Aw dA.

=0

The spherical Fourier transform of a function f € L} ,(H,) is given by

f(m,\) = / f(@wmr(g)dg, meN, X €R,
H,,

with
m+n—1

—1
) e LGl

wm,)\(z, S) = (

where L!%) is the Laguerre polynomial of type a € N and degree m € N, defined by

mo ok
10 =3 k}) (’Z:j) 7 TeER

k=0

We have ]m = ﬁfg for any fi, o € L} (H,). Since ||wy| @, = 1, the
spherical Fourier transform is bounded from Liad(]H[n) to L*°(X). Moreover, by the
Godement—Plancherel theory, it extends uniquely to a unitary operator

G: L2 (H,) — [*(%).

We still write f instead of Gf. If f € L2,,(H,,) and f € L(%), the following inversion
formula holds:

P <m+n—1

@ so=253 (") [ e @ a, gen,

m=0

The space G(8,.4(H,,)) has been described first in [Ge2] and then in [BJR]. For
our purposes, it is sufficient to remark that G(S..q(H,)) C L'(X). Moreover, if
f € 8ra(Hy), the functions A f and L f are in 8,,4(H,,) and their spherical Fourier
transforms are given by:

(5) AF(m,A) = 4Q2m +m)|A|f(m, \),
(6) Lf(m, \) = (4Q2m + m)|A| + A2 f(m, N).
Both A and L are positive self-adjoint operators densely defined on L*(H,,). So by

the spectral theorem, for any bounded Borel function /4 on [0, +00) the operators
h(A) and h(L) are bounded on L*(Hj,). Since the point 0 may be neglected in the
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spectral resolution (see [A, C]), we consider that the function / is defined on R,.
If f € L2 ,(H,) the functions h(A)f and h(L)f are in L2 ;(H,,) and their spherical
Fourier transforms, by (5) and (6), are given by:

7) RA)YF(m, \) = h(42m + n)| ) F(m, \),
(8) L) f(m, A) = h(42m + m)|A| + A*) f(m, A).

If f € 8:aq(H,), then by the previous remarks, the functions h(A) f and h(L) f can
be recovered from their spherical Fourier transforms by means of the inversion for-
mula (4).

The operators h(A) and h(L) commute with left translations. So by Schwartz’s
kernel theorem, which is valid also on H,, (see [KVW, Theorem 3.2]), they admit
kernels in 8'(H,,) which we call Hx and Hy, respectively, satisfying h(A) f = f * Ha
and h(L)f = f « Hg, forany f € S(H,). If h is the restriction on R, of a function
in 8(R), then Hx and H, are in S.,q(H,) (see [Ge2,Hu, M| for Hp, [V] for H ; see
also [FMV, Corollary 7]), and their spherical Fourier transforms, by (7) and (8), are
given by:

Ha(m, \) = h(4Q2m + m|A]),  Hz (m, A) = h(4Q2m + m)|A| + \2).

3 Littlewood-Paley Decompositions and Besov Spaces

Let R be a non-negative function in C*°(R) such that supp R C [i, 4] and

Y RQUr)=1, 7>0.

j€z

For any j € Z we denote by ¢; and 1; the kernels of the operators R(27%/A) and
R(27%/L), respectively. The remarks at the end of Section 2 guarantee that ¢;,1); €

Srad(Hi,,) and
) Pi(m,\) = R (2m+n)|\|),
(10) $i(m, A) = RQ™Y(4Q2m + m)|A| + A2)).

If j,k € Z with |j — k| > 2, then ¢ * ¢ = 1); * ¢ = 0. Moreover we have the
following.

Lemma 3.1 Forany j € 7 the sets
Ui={keZ:pj+p #0} and V;={k€Z:1;*pp#0}

are finite, and minU; > j — 2, max V; < j + 2.
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Proof Fix j € Zand k € U;. By (9) and (10) there exist m € N, A € R such that
R(2¥2(2m + n)| A)RQ ™ (4(2m + n)|\| + \2)) # 0.

Put £ = 4(2m + n)|\| and n = A2, The pair (£, 7) satisfies the following system of

inequalities:
1 —2j
2 <276 <4,
1
(11) ;S <4,
52
0<n< ——.
== Ten2

On the other hand, it is easy to check that the system (11) admits solutions only if

2j—4 2k 24j+2 2744
2T <2 < Ty,
n

These conditions give the conclusion not only for Uj;, but also for V;; for the latter,
it is sufficient to interchange the roles of j and k, noting that k € V; if and only if
j € Ug. |

A direct application of the inversion formula (4) gives

(12) ©ilz,s) = 2Njap0(2jz, 2%s), jEZ, (z,5) € H,.
So
(13) leillean) = lleollm,, j€Z

On the other hand, despite the lack of homogeneity, by [EMV, Proposition 6] there
exists C > 0 such that

(14) Vil <C, jEL

In this section, in order to carry on some results which are valid for both operators
A and L, we use the notation L to denote either A or L. For any u € 8'(H,), if
L=A,weset Aju=uxpj,if L =L, weset Aju = ux1p;. Bystandard arguments
(see [FMV, Proposition 9]) we can deduce from (13) and (14) that
(15) |

115 Ajullra,) < C277(|Ajul

L(H,) s S ]R{, ] S Z, 1 S p S oo, U S SI(]H[n),

where both sides of (15) are allowed to be infinite.
By the spectral theorem, the following homogeneous Littlewood—Paley decompo-
sition holds for any f € L*(H,) :

(16) f= ZAjf in L2(H,).

jer
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So

Lo(H,) S ifllLeeH,)s )
(17) vl <> 1Al f e 2(H,)

jez

where both sides of (17) are allowed to be infinite.

The methods of [St], together with any multiplier theorem for L (see [A]; see
also [He,MS] for L = A, [MRS1,MRS2] for L = L), yield the following Littlewood—
Paley theorem.

Proposition 3.2 Let1 < p < oo andu € §'(H,,). The following facts are equivalent:
(1) ue LP(H,);

(i) u=>c, AjuinS'(Hy) and (3, |Ajul*)? € LP(H,).

Moreover, if u € LP(H,,), then

1
il ~ || (30 185u8)

jez

L (H,)

Remark For L = A, using the homogeneity property (12), Proposition 3.2 has also
been proved in [BGX, Proposition 2.3].

Letq,r € [1,00] and p € R. The homogeneous Besov space B/ (L) associated to
the operator L is defined as follows:

Brar) = {ue 8'(H,) s u=">" Ajuin §'(H,)
€L .
' and {277||Aju

) }iez € lq(Z)} )

In the following proposition, we collect all the needed properties about the spaces
BP(L).

o . N
Proposition 3.3  Letq,r € [1,00] and p < 7.

(i)  The space BYI(L) is a Banach space endowed with the norm

l[ull ooy = [[{277 )| Aju

L’(JHIn)}jGZqu(z) ’

(ii) The definition of B/I(L) does not depend on the choice of the function R in the
Littlewood—Paley decomposition.
(iii) For any u € 8'(H,) and ¢ > 0 we have that u € B (L) if and only if L>u €
By 7U(L), with
Iz

BX(L) ™ ”L5 ”HBf‘”“I(L)'

(iv) The inclusion BY''(L) C 8'(H,,) is continuous.
) If-5 < p <, then $(H,) C BY(L) with continuous inclusion.
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(vi) Ifg,r € [1,00) and —f]—, <p< %, then S(H,) is dense in B (L).

(vii) Ifgq,r € [1,00) and —f]—, <p< %, the dual space of By'(L) is B’r_,’]’ql(L).
(viii) Forallg € [1,00] and o € [N — 1, N] we have the continuous inclusions

. . 1 1
Bpae) C BpL), — Lo 2 s )
1 2 71 « 1 «
I pp_ 1 m

Bf]lzq(A) c ij’q(A), ——=——==/p1 > p

8] N &) N’

(ix) Forallr € [2,00) we have the continuous inclusion B%*(L) C L"(H,,).

(x)  BY*(L) = L2(H,) with equivalent norms.

(xi) Forall ¥, p1, p2,q1, q2, 11,12 satisfying ¥ € [0,1], gi,ri € (1,00),p; < &, we

r,-’
have By (L), By *(L)]g = BY'(L) with p = (1 = 9)p1 + 0po, § = 10+ &
1 1-9 J
and F T T + n

We omit the proof of Proposition 3.3. In fact, all the statements of the proposition are
well known for the spaces B/?(A) (see [BG, BGX,FV]) and the proofs for the spaces
BY(L) are analogous. The only properties really needed are estimates (14) and (15),
Proposition 3.2, and the fact that the kernel of (L) is in S(H,,) if h € S(R) (see
§2). Once we have these properties, we can prove Proposition 3.3 by the methods
in [P], which do not involve any homogeneity property. More generally, we could
define homogeneous Besov spaces and prove, with the same methods, an analogous
proposition in the more general context of a nilpotent Lie group G endowed with a
sub-Laplacian L = — ZI;ZI X2, where X1, ..., X are left-invariant vector fields on G
which satisfy the Hormander’s condition, i.e., they generate, together with their suc-
cessive Lie brackets [X;,, [...,X;, |- -], the Lie algebra of G. For more details about
properties of Besov spaces in this context, see [S1,S2, FMV], where nevertheless in-
homogeneous Besov spaces are considered. Here we want to prove some continuous
inclusions between the two kinds of homogeneous Besov spaces which we have in-
troduced.

Proposition 3.4  The following continuous inclusions hold:

. . N
(18) BYI(L) C BP(A), 1<g<00,1<r<00,0<p< —;
-
. . N
(19) BYM(A) C BM(L), 1<q<o0, 1<r<oo, —— <p<O0.
r

Proof We only prove (18), since the proof of (19) is analogous. Fix u € B/(L),
with1 < g<oo, 1 <r<ooand0 < p< ¥ Sinceu = > jez u* 1y in 8'(H,), by
Lemma 3.1 we have u * p = ijk—2 ux 1) * prin 8'(H,) for any k € 7, and so

2w prllrany < 2% D ux vy x o

Lr(H,)
j>k=2
<C Z 2(k—j)/)2jﬂ||u* w], Lr(H,)
j>k=2
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by (13). Therefore, by Young’s inequality

(| €24 | = ox

L (H,,) }keZ

19(2) < Cllullgoae)-

We still have to prove that u = ., u * @i in 8'(H,). By Lemma 3.1, for any
f € 8(H.,) we have

DD Muxixon =D > uxwy, fxpm)l

JEZ kez JEL h=—00
2
< 30 (X2 a2 S gl )
h=—o00 j€z
2
< 3 2 900 |l ) < 00

h=—o00

Note that ¢ = Zje;l @k * 1 in 8(H,) for any k € Z, by (16) and Lemma 3.1.
Therefore, since u = Zj oz U *vj in 8'(H,), by Fubini’s theorem we have

(u, ) = D uxthjxpi ) = (uron f), f€8(H,). n

i€z kez kez

However, with the exception of particular cases p = 0, q = r = 2 (see Proposition
3.3(x)), the spaces B/"(A) and B/"?(L) do not coincide. For example, by applying
the Godement—Plancherel’s formula and arguing as in the proof of Lemma 3.1, it is
not difficult to check that for j — 400 we have

lillsgaa) ~ 2772, lpjllgae) ~ 27272, 1<g<00,0<p< bR
As a further evidence, in the following we will see that the spaces B//(A) and B/ (L)
have very different behaviour with respect to Strichartz estimates for the solution of
the Cauchy problem (1).

4 Dispersive Estimates

We begin by proving Proposition 1.1. Let us introduce the tools of the method; first
we recall the stationary phase lemma [St, pp. 332-334] which will be the central ar-
gument.

Lemma 4.1 Suppose g, h € C*>([a, b)), with g real-valued and h(b) = 0. Suppose
also [g® (x)| > & for any x € [a,b], withk € Z, and § > 0. If k = 1, we also require
that ¢’ is monotonic in [a, b]. Then there exists a constant Cy > 0, which depends only
on k but noton a, b, g, h,d, such that

b b
/ e_ig(")h(x)dx‘ <Ct / 1B (x)| dx.

a
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Moreover, we will use the following properties of the Laguerre polynomials (see
[BGX, EMOT)).

Lemma 4.2 Fix o € N. There exists C,, > 0 such that for T > 0 and m € N we have
(@) (3 a d ) y-3 a
|Lm (1)e 2’ < Cp(m+1)%, ‘Td—(Lm (1)e 2)‘ < Cup(m+1)“.
T

Finally, we will exploit the following estimates, which can be easily proved by com-
paring the sums with the corresponding integrals.

Lemma 4.3 Fix 3 € R. There exists C3 > 0 such that for 0 < a < bandn € 7, we
have

(20) Y @m+n)’ <Cua™, <1

meN
2m+n>a

(21) Z em+n)’ <Cab*t, B> —1;

meN
2m+n<b

b
(22) > @m+m)' <log(C-).
e " " Og( a)

a<2m+n<b

We can now prove the following.

Proposition 4.4  There exists a constant C > 0, which depends only on n, such that
foranyp € [N —3 N—11],j € Zandt € R* we have

le= "4 |1,y < Cle[ =227,

Proof Fixt € R*, j € Zand (z,s) € H,. By (4), (8) and (10), putting o = f and
M = 2m + n inside the sum over m, we have

n—1 Too

2

7r71+1
m

e VEY;(z,5) = /efit(”“\/‘W)R(T”(‘lMP\\ +2%)
R

=0 /1

x e MIFL=D 1| [2]) |A]" dA.

Performing the change of variable x = 272/ M\, we obtain

\/— zﬂ—l .+OO .02
eIz = 2V / e e () dx,
R
m=0
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where
1 -
(23) gjom(x) = i (Ux+ V222 M2 x| +x2) ,

22j 2 2j 11212 21+2j 2 n
(24)  hjomx) = R(4\x\ 122 )e‘z S “L("_“< /12 ) i

M2 m M M+l :
So
(25)
1 2%y
supphjzm C {x eR: 1 < 4|x| + Ve <4} ={xcR:aj, <|x < bj,m},
where
1 2

iy s v A Y v v
In particular
(26) bjm < min{1,2'/M}.
Note that g; 5 u(—x) = gj,—o,m(x) and hj; ,,(—x) = h;j;n(x). Therefore, by symme-

try we can consider only the integrals

by
I, = / 128 () dx
a,

where we write g, Hy, @, by £OT & 6.m, Bz my @jms bj s> Tespectively. We prove that
+00 1 3 .
Clt|72271) j>0
(27) Mol < T
m=0 C|t| 2272 J <0.

For x € [a,,;, b,,], by (23) we have

1 22741M4
28) 6 = (1 ),
" M 22=2jM2x + x2
(29) g (x) = =22 M2 MPx 4+ 4P) 5.
Note that by (25) we have
(30) 27 UM <22 UMPx+x* < 227UM?, x € [a, byl.

So (29) and (30) yield

(31) 27 < gl )| <27, x € [am, bl
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Furthermore, by Lemma 4.2 and (26), one can verify that

C27"M"2 M <2/,

!
(32) ||hmHLl([“m-bm]) S {CMZ M > 2]

So, by Lemma 4.1 with k = 2, we obtain

Clt|=22-m2)ipn=2 M < 2,
Clt|"7271 M2 M > 2J.

(33) In| < {

For j < 0, (27) follows directly from (33). For n > 2 and j > 0, (27) still follows
from (33) by applying Lemma 4.3 separately to the sums >,/ |[In| and Y, 5 [In]-
But for n = 1and j > 0, this argument does not work, since we cannot apply (21) to

thesum >/, [In]-
So, from now on we assume # = 1 and j > 0. We divide N into five (possibly

empty) disjoint subsets:

A ={meN:M > 2/},

Ay={meN:M<2,M< |f|"121},

As={meN:M<2 M> |12}, 0>—V1+2 -20M},
Ay={meN:M <2 M>|t| 7727, 0 < —V1+25-2M?},
As={meN:M<2 M>|t| 12}, —V1+ 2 UM < 0 < —V1+2 1 2M?}.

Then our assertion reads:

ol
[S]

2

(34) STl <CleTi27Y, r=1,...,5 A # @
meA,

We prove (34) separately for each r, each time using Lemma 4.3 , i.e., we will use (20)
forr =1,3,4, (21) for r = 2 and (22) for r = 5. The case r = 1 can be treated as for
n > 2. For r = 2, we estimate » |L;| by means of the inequality

L_J
M<|t| 7222
|Im| < CHhmHLl([“vn7bm]) < C2_2jv
which follows from (24), (26) and Lemma 4.2. For r = 3, 4 we estimate
> Il
M>\t\_%2%

by means of Lemma 4.1 applied with k = 1, using (32) and the estimates

1

M(\/l +272M2 — V1+27172M2) > C27UM, m € As,

(%) >

1 , : :
—gh(x) > M(\h +25-2M2 — V1 +242M2) > C27HM, m€ Ay,
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which are consequences of (28) and (30). For r = 5, we note that As # & implies
o< —landM € J = (27732 — 1,2/*2/52 — 1). Then we estimate > vy |
by means of Lemma 4.1 applied with k =2

From Proposition 4.4 we can obtain the following by the same proof as in [BGX,
pp. 114-115], [FV, Corollary 10].

Corollary 4.5 For p € [N — 3N — 1] there exists a constant C,, > 0 such that
—; 1 *
(35) || ™E f|lremn < Coltl I fllgrey S € S(H), ¢ €R,

(36) H e—it\/EfHB;OU(L) S Cp‘t‘_% ||f||B/l,71.1(L), f (S S(IH[n), t e IR{*

The proof of the dispersive inequality is now straightforward.

Proof of Proposition 1.1 By (35) we obtain
_1
) cos tvCanoll=a1, < Clel~H ol e
and by (17), (15) and (36) we obtain

H sin VL

Slnt\/
£/ [ H} ZH
oo (H,,)

[Z5] *1/)JH

(H,,)
jez )

- . 1
<Y 2| sintvVBur x|,y < ClETE g m
jez

5 Strichartz Inequalities

We can now prove Theorem 1.2 and Corollary 1.3.

Proof of Theorem 1.2 By (2) we can write
it L =itV itV L ,—itV L
o) = - g+
21 2
where v/Lug and u; both belong to L2(H,). Analogously, by (3)

ti(t—o)VE  ,—it—o)VE
Aow(t) = / ¢ +2‘”' (o) do.
0

So
HVHLJT @2y T H&V”Lgl B L)
< C( H\/EV”L&I (B’:]l*l‘z(L)) + HatV”L&l (B’,']"u

< C( Hefit\/z\/EMOHLIpxl (B/rvl]fl.z

(L)))

) + ||€7it\/zulHLgl(Bfllillz(L)))
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and
”WHLP(BQ'%L)) + HafWHLfl(Bfr”m))

<c( H\/Zwuwlmq_l,z(m) + ||atw||Lf1(Bc,ll_l,z(m))
t

<C(H/ ei(t—d)\/z d ’

< i f(o)do )

t
+H/ e =VE f(0) do|
0

Therefore, if we substitute p; — 1 for p; in the following theorem, Theorem 1.2 easily
follows.

LP] (Bﬂl 12(&))) '

Theorem 5.1 Letry, r, € [2,00]. Let p1, po € Rand py, p2 € [1, 00] such that

(i) %Zg——fom_lz
(i) —(N - )(———)_pl < —(N - )(———)fom_l 2.
Letr}, p] such that %> + 1 =1 and = 1 fori = 1,2. Then for every interval I

which contains 0, the followmg estzmates are satzsﬁed

”e_itﬁUOHL@l @2y < Cllwllza,),

| [erosd

ClA 2z nig

L BA(L)) £y’

where the constant C > 0 depends neither on uy, f nor on the interval I.

We omit the proof of Theorem 5.1. In fact, once we have obtained Proposition 4.4,
the procedure is classical and a good reference is given, for example, in the papers by
Ginibre and Velo [GV] or by Ginibre [Gi]. A detailed presentation in this framework
is also given in [FV].

Proof of Corollary 1.3 Let us remark first that for p; > 0, (viii) and (ix) of Propo-
sition 3.3 imply
(37) BI*(L) C BY?

(L) N BY2 (L) C L™ (H,,) N L™ (H,),

Tmin Tmax

1 1 P1 1 1

where 70 =5 —Nand oo =4 = -IN=DG -1
2(2N—-3)

in Theorem 1.2, we have p; > 0 ifand only if r; < SN Taking into account also
the condition r; > 2, which corresponds to p; < 1, we obtain by (37) the extremal
spaces

u=v+we LB L) N LN (B, (L)

21V7

C L (L¥2 (H,) N LN (H,) NIV (L5 (H,)) .
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On the other hand, taking p; = —(N —3)(3 —+)+1in Theorem 1.2, we have p; > 0

2 a1
ifand only if r; < 228=L. The other bound r; > 2 still corresponds to p; < 1, and
therefore we obtain the extremal spaces

u=v+weLFB L) NN (B, (L))
2N—5

2AN—1) 2@2N—1)

C L (L¥5 (H,) N L3 (H,)) NI~ (L5 (H,).

By interpolation we obtain u € LF(L'(H,)) with 0 < % < 1 —1and

(N=-D(3—7) —1<3<N(3-7) - L -

6 About the Sharpness of the Dispersive Estimates

We end this paper by discussing the sharpness of the dispersive estimate obtained in
Proposition 1.1. Let us define the functions v; € 8,,q(H,), j € Z, by

vi(m,\) = )
7 otherwise.

R(272/(4nX+ X?)) ifm =0, >0,
0
Lemma 6.1 Forany p € R there exists C,, > 0 such that

||Vj||Bf'](£) <C2", jeL

Proof We only have to prove the uniform estimate ||v;||;1qy,) < C, j € Z. Indeed

— RQ27Y(4n\ + N)RQ2-*(4nX + \2)) ifm =0, >0,
v x hp(m, N) = 0

otherwise,

implies v; * ¢ = 0if | j — k| > 2. Therefore by (14)

j+1
piey = 2 2% vix Uillu, < Collvillum,2”,
k=1

[[vil
where C, depends only on p.
Let us estimate ||v;| 1 ,):

n—1

(38) lvi(z,9) =

)\2 . o 2
/ e MR TH (A + N))e NN AN,
A

7.‘-nJrl
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where \; = V4n?2 +22=2 — 2nand \;, = V4n? + 227*2 — 2n. Then for s # 0

271 d RV () + A7) M
69 I@al= | (™ - dA\
. ‘/A ~ixs 4 (RQ27H (4n) + A2)) _*‘Z‘z)\")d)\’
Tl ¢ " ¢
znfl 1 A2 ) dz ] R
= —g /A e”ASW(R(2’21(4n)\+ A2))e A X’)dA’.

So we have two possible ways to estimate |v;(z, s)|: using (38)

222

C2/me==¢ i >0,
(40) |Vj(Z, S)‘ < . 22|72 ] N
C22(m =2 j <0,
or using (39)
CHj(n—1) 12 2 92114y = 2L :
52/ (142727 + 297 |z|*)e” < >0,
(41) lvi(z, )] <4< i i 2|22 !

§220=D (1 4 2% |z 4 24|z )" j <.

For j > 0, we have by (40)

/{|s|<zfﬁze<cn} |vi(z,5)| dzds < C21‘<”+1>(/{|S|<2j} ds) (/( e_msz dz)
— sz(/{s<2j} ds) (/(Ln i dw) —c

and by (41),
/ [vi(z,s)| dzds
{Is|>277 zeCr}
. 1 . . 27|22
<crv ([ L) ([ araiep e 2ape  az)
{Isl>2-7} S cr
. 1 w|?
:CZ_J(/ —zds) ( (1+|w\2+|w|4)e_‘c‘ dw) <C.
{Is}>2-7} $ cr
Therefore,

villoron,) = / lvi(z,s)] dzds+/ [vi(z,5)| dzds < C.
{|s|]<2—7,zeC"} {|s|>2—7.zeC"}

Similarly, for j < 0, we have

villron, = / [vi(z,s)| dzds+/ [vi(z,s)| dzds < C.
{Is|<2-% zeC} {Is1>2-2 e}
| ]
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By the definition of the functions v; we have

(42)  cos(tVL)v;(0,0;t)

+00 . Y T
— 2V / e () dx + G2V / e (x) dx,
0 0

where o is a constant depending only on j, gj = gjs;0 and hj = hjo, are the
functions defined in (23) and (24) respectively, and

(43) gi(0 = l (o7~ VI 2).

Lemma 6.2  Forany j € 7, let1; be a function in C*(R) with suppn; C [a;, b;] and
let ; be a real-valued function in C4([aj, b;]) with Wf(xj) = 0 for some x; € (aj, bj)
and ’y](’(x) # 0 for any x € [aj, b;]. Then there exists Tj > 0 such that

bj 2 s 1 : 1
‘/ e~ (x) dx‘ > %t_iz_’h}'(xj) )l > T
aj

Proof It is not restrictive to suppose ;(x;) = 0 and 7;(x;) # 0. Let £; be the
function defined by

27;(x)
'Y]‘”(x])

x € [aj,xj],

§ilx) =
27;(x)
v (x5)

X € (x]', bj].

It is not hard to check that &; € C*([aj, bj]),fjf > 0 on [aj,bj] and ﬁj(xj) = 1.
Performing the change of variable y = £;(x),

b Eib)) Ay
/ e*ltzzﬁyj(x),r/j(x) dx:/ efztzz)%yz(bj(y) dy’

aj &jlaj)
where ®; € C?, ®;(y) = n;(§7 (P))(E ) (), supp ; C [€(a)),&;(b))], and
®;(0) = n;(x;). We can write
&i(b) 4t22j""j”(x1’) 2
/ e’ TV di(y)dy = Jj + Ky,
&ilaj)

where

too g Ay . )
]jt = / eiltzh%)’ze*)’z@j(o) d)/ — ﬁn] (xJ) e*é arctan(tZzJ']%)

oo V12 0
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and

+00 o
K”:/ e*'fz“’ y(<1> (y) — eV ®;(0)) dy

_/+oo d( i ]21 z)q) (y)—e }’(I) (O)d
dy it22y1'(x))y

1 /+Ooe—1t22/’2] zd(@(}l)—ey‘b(())

it22y] (x;) dy y '

Therefore,
K]
[Tl

b
‘/ efthZJ"/j(X)T]j(x) dx’ > |]j~¢| 1
aj

and, since y + (®;(y) — e_)’z(I)j(O))/y is a function in C'(R) whose derivative is in
L'(R), (as can be verified by direct calculation), we have

v]()|
1

. 1+it22 .
|K]:t| < | C] t 2 g

- C:
il = V][22 (x))]

IN

/ N\2
] ) t24(C])7

N —

where C; and C; are positive constants depending on j but not on ¢. Thus we obtain

‘/ e i27) n;(x) dx| > iffz J|’y]{’(xj)\7%|nj(xj)|, t>Tj. ]

2j.2

Returning to (42), for any j € Z we can fix x; > 0 such that 4x; + zn—zx’ = l and
0 < 0 such that gjf (xj) = 0. By Lemma 6.2 and (31) we obtain the following lower
estimates for t > T':

+ . 1 —( l)‘ P
(44) | / e ad > (O 2T 20
0 ! ~\ct 2 if j < 0.

In order to estimate the last integral in (42), we first remark that g; '(x) < 0 for any
x € supph; C [a;j, b;]. Performing the change of variable y = g;(x),

bj i 22j~ g](b]) . 22]
’/ e ! gj(x)hj(x) dx‘ = ’/ e ’Hi(y)dy|,
aj &jlaj)

where H; € C* and H;(y) = hj(g; ~'(»))(g; ~")(y), supp H; C [g;(b)),&;(aj)].
Then, for any j € 7Z there exist C;, T; > 0 such that

+00 ) )
(45) ‘/ e EW () dx| = |H (2P <Cit™!, 1> T!.
0
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By (42), (44), and (45), there exists T](’ > 0 such that for t > T](':

Ct=220N=r=2j if j >0
oo,y > , -7
(46) I COS(t\/Z)V]HL (H,) = {Ct%Z(N%)J ifj<o0.

Sharpness in t Estimates (46) give, for instance, || costv/Lvol[pem,) > Ct™7,
t > Ty. So the decay in t in Proposition 1.1 cannot be improved.

Sharpness in p Suppose that for some p € R the estimate || cos (VL f|| 11, <
Cp|t|*% | fll g1 () holds for any f € S(H,). In particular, by Lemma 6.1,

H COSt\/E‘VjHLoc(][:[“) < Cp|l’|7%2jp7 ] c 7.
Estimates (46) force p € [N — n — %,N — %].
Final remarks We would like to emphasise that there is no hope of obtaining a

dispersive inequality as in Proposition 1.1 with the spaces B/*(A). Let us define the
functions w; € 8,q(H,), j € Z, by

R(2%72in)) ifm=0,A>0,

0 otherwise.

Wim, \) = {

By the inversion formula (4)

Zn—l +00 . . )
wi(z,s) = W/ e_”\sR(Zz_an)\)e_’\‘Z‘ N

™ 0
2 N [T i —v[2iz]?

=—2"/ e """ R(4nv)e “vdv
m 0

= 2Ny (272, 2%75).

Therefore || wjl|piai,) = [[wollpra,)- This implies, as for the functions v; (see the

proof of Lemma 6.1), that ||| g1y, < C,27, where C, depends only on p. By the
definition of w; we have

+00 . ~ptoo e
cos t\/ij(O, ojt) = C2Ni / e 8 Wk(x) dx + C2NT / e 5 k(x) dx,
0 0
where 0; is a constant depending only on j, g; = gj,,0 and g; are the functions
defined in (23) and (43), respectively, and k(x) = R(4x)nf;l1. For any j € 7Z we fix

xj = i and o; < 0 such that g}(i) = 0. Arguing as before (see the proof of (46)) we
obtain for t > T;

Ct—22N*i - if j >0
NV Lw; || ooy > _ -
”wSJ‘“M‘“){a—hW%U if j <0.
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These estimates imply that there is no p € R for which
_1
| cos tVL 1w, < Cle| > [RAR0N:

forany f € S(H,).

As a conclusion we would like to remark that analysing the wave equation related
to the Kohn Laplacian A with the spaces B/*?(L), we obtain the dispersive inequality
for the wave semigroup: forany p € [N — 3,N — 3],

12 fll oy S Colt I fllgpreys £ € 8(HL), € R
This result does not give Proposition 1.1 (unless 11 = 0) because estimate (15) does
not hold with L = A and Aju = u* ;.

Finally, for the Schrodinger equation related to the full Laplacian, by Proposition
3.4 and [FV, Corollary 10] we have the dispersive estimate

i 1
(47) 1™ fll josy S Ct 2N fllgs210)s f € S(HA), 2> 0.

By a direct computation as in Section 4, the estimate (47) cannot be improved. So by
analysing it with the spaces B/ (L), the behaviour of the Schrodinger operator e~ %
is the same as in [FV] with the spaces B/"(A).
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