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Abstract

We extend the definition of natural semantics to include simply typed A-terms, instead of first-
order terms, for representing programs, and to include inference rules for the introduction and
discharge of hypotheses and eigenvariables. This extension, which we call extended natural
semantics, affords a higher-level notion of abstract syntax for representing programs and
suitable mechanisms for manipulating this syntax. We present several examples of semantic
specifications for a simple functional programming language and demonstrate how we achieve
simple and elegant manipulations of bound variables in functional programs. All the examples
have been implemented and tested in AProlog, a higher-order logic programming language
that supports all of the features of extended natural semantics.

Capsule review

The author describes a generalization of Plotkin and Kahn’s notation for the specification
of programming languages using inference rules. The extension comprises two closely related
steps: higher-order abstract syntax and hypothetical and schematic judgments as introduced
by Martin-Lof.

Higher-order abstract syntax permits A-expressions in an underlying language of terms
in order to represent variable binding. As the author illustrates, this leads to a significant
simplification of many language specifications, since common concepts such as renaming of
bound variables or capture-avoiding substitution are now directly supported by the represen-
tation language. To fully exploit the added expressive power we also need to generalize the
language of inference rules to accomodate schematic judgments (which introduce parameters
into deductions) and hypothetical judgments (which permit deductions from hypotheses). The
author shows how these two extensions allow very elegant formulations of the operational
semantics, type system, and other aspects of mini-ML.

Kahn’s original motivation for natural semantics came from the goal of building a meta-
environment for programming languages. In this context, specifications should be executable
to some extent, and the logic programming language TYPOL implements natural semantic
specifications within the Centaur system. Hannan observes that the generalization to extended
natural semantics still allows execution of semantic specifications in a suitably enriched logic
programming language. All the examples in the paper can consequently also be read as pure
A-Prolog programs which implement mini-ML.

The primary contribution of this paper is to demonstrate how techniques from type theory
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and higher-order logic programming can be brought to bear on practical problems in the
area of programming language specification and meta-environments.
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1 Introduction

Natural semantics provides a simple and elegant means for specifying many aspects
of programming language semantics, including evaluation, type checking and com-
pilation (Kahn, 1987). This approach to specifying programming languages has been
used successfully in the definition of Standard ML (Milner et al, 1991) and in the
construction of an interactive programming system (Borras et al., 1987). While natu-
ral semantics specifications of programming languages can be considered high-level,
they use very simple data structures for representing programs and other objects,
and they use only very simple formulas and inference rules for expressing program
properties. This simplicity has the advantage of yielding straightforward and effi-
cient implementations of the specifications, but it also has the obvious disadvantage
of sometimes yielding specifications that contain primitive encodings of program
properties that obscure some of the logical nature of these properties.

Addressing this disadvantage, we extend natural semantics in two directions. First
we consider a more expressive representation of programs by an abstract syntax
using simply typed A-terms. This choice allows us to represent various notions of
binding and scoping, typically found in high-level languages, in a purely syntactic
manner (rather than relying on side conditions or explicit axiomatic descriptions).
Second, we consider a richer logic for specifying program properties. This extension
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is partially dictated by our choice of abstract syntax as we demonstrate later on.
Quantification over higher-order variables and equality of A-terms modulo By-
equivalence are two of the more important aspects of the logic used in the kind
of specifications presented in this paper. We argue that this extension to natural
semantics provides a suitable framework for presenting higher-level specifications of
program properties.

We can trace two lines of research that have merged in this work: structural
operational semantics and higher-order logic for meta-programming. The phrase
‘structural operational semantics’ is attributed to Plotkin, based on his seminal
paper A Structural Approach to Operational Semantics (Plotkin, 1981). In that paper
he describes evaluation in terms of a one-step reduction relation and his inference
rules axiomatize this relation. Natural semantics provides further development of
these ideas, and has been used as the basis for an interactive programming system
at INRIA (Kahn, 1987). Though using only a small subset of first-order logic, they
develop proof systems for a variety of meta-programming tasks including evaluation,
type inference and compilation. The work reported in this paper grew directly out of
an attempt to extend natural semantics to a setting using a higher-order meta-logic.

One of the earliest applications of a higher-order logic for meta-programming
is found in Huet and Lang (1978), in which functional programs are specified
as simply typed A-terms and program transformations are applied via second-order
matching. Templates (terms containing free variables) are used to represent a class of
functional programs (all those that match the template via some substitution for the
free variables). This idea is developed further by including it in the programming
language AProlog (Miller and Nadathur, 1987), a language based on a fragment
of higher-order intuitionistic logic, where methods richer than template matching
alone can be implemented. Closely related to this work is the Isabelle theorem
prover (Paulson, 1989), where essentially the same logic is used to implement flexible
theorem provers. Using a dependent type theory based on Martin-Lof type theory
and following ideas first found in Automath (Bruijn, 1980), LF (Harper et al., to
appear) and EIf (Pfenning, 1989) provide similar means for manipulating programs
via operational semantics (Burstall and Honsell, 1991). A relationship between LF
and our logic is established in Felty and Miller (1990), in which LF signatures are
translated into logic programs.

Extended natural semantics, like natural semantics, can be directly implemented
in a logic programming language. Unfortunately, Prolog, based on first-order Horn
clauses, does not directly support our extensions to natural semantics. In particular,
it provides neither a primitive notion of pn-equality for simply typed A-terms nor
an implementation of the natural deduction rules for the introduction and discharge
of hypotheses and eigenvariables. The higher-order programming language AProlog
does support these features. It provides an implementation of a restricted theorem
prover for extended natural semantics and hence a mechanism for interpreting our
specifications as programs. Thus, we can experiment with prototype implementa-
tions of our semantic specifications coding them directly as AProlog programs and
executing these programs.

The remainder of this paper is organized as follows. In section 2 we present
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the terms of extended natural semantics. We first describe the issues involved
in manipulating programs as first-class objects and the idea of abstract syntax.
By presenting several representative examples, we illustrate some of the desired
features of any abstract syntax used for representing programs. We then present
an abstract syntax for an example functional language that supports these desired
features. In section 3 we describe a logic that we use to construct propositions and
inference rules for specifying operational semantics. We describe how specifications
of program properties can be given as either sets of formulas in this logic or as sets of
inference rules. In section 4 we present several specifications of meta-programming
tasks including type inference and call-by-value evaluation for a simple functional
language. In section 5 we summarize our results and discuss directions for future
work.

2 The terms of extended natural semantics

Natural semantics uses first-order terms to represent programs and all other data
structures associated with specifications. While such a representation is often con-
venient to manipulate and efficient to implement, it can also be too primitive. For
example, specifications may require the use of side conditions to enforce restrictions
on the structure of terms.

Before introducing the terms for extended natural semantics we list some desider-
ata for a good, high-level abstract syntax, that the term structure should support:

1. Binding and Lexical Scoping: a programming language can contain a number
of binding or scoping constraints involving identifiers. For example, we might
have constructs that introduce bindings ranging over type names, constructors,
function names and formal parameters. Though a concrete syntax may contain
a variety of binding constructs, an abstract syntax could conceivably use just
a single construct for specifying all of these. Such uniformity and simplicity
would contribute to advantages of manipulating terms in an abstract syntax
rather than a concrete syntax.

2. Handling Substitution: substitution is a fundamental operation used to specify
evaluation and other dynamic operations of functional programming lan-
guages. It is commonly written as b[e/x] where b and e are terms and x is
a variable. Two issues arise during the process of substitution: (i) only free
occurrences of x in b should be replaced with e; (ii) free variables of e should
not become bound after substitution into b. Substitution can require a change
of bound variable names and also a means for matching occurrences of a vari-
able with its binder. Because all the meta-programming tasks that we consider
are invariant under a-conversion and substitution requires changing bound
variable names, a suitable theory for reasoning about terms in an abstract
syntax should probably equate such terms up to a-equivalence.

3. Variable Occurrence Restriction: for several kinds of program analyses, in-
formation about occurrences of bound variables in terms provides valuable
information for meta-programs. For example, programs that specify explicit
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allocation and deallocation of storage rely on notions of ‘fresh’ variables or
unused storage locations. If we assume that storage cells are represented as
variables by our program, then the allocation of a new cell requires that the
variable chosen to represent this cell must not occur in the current represen-
tation of state for the evaluator. Similarly, if some form of garbage collection
is provided by the program, then tests to determine that certain cells (vari-
ables) are no longer accessible can be accomplished by considering variable
restrictions.

We claim that simply typed A-terms support a representation of programs suitable
for meeting these desiderata in a clear and high-level fashion. Below we describe the
basis for an abstract syntax using such terms, followed by a larger example.

2.1 A higher-order abstract syntax

We use a representation of programming languages adapted from a standard en-
coding of the untyped A-calculus into a simply typed A-calculus (Scott, 1980; Meyer,
1981). In this encoding every untyped A-term is represented as a term of some distin-
guished type, e.g..tm, such that all the untyped A-abstractions are encoded as typed
A-abstractions in which the abstracted variable is of type tm. (We call tm a meta-level
type.) We can extend this idea to build a representation for a programming language
in which typed A-abstractions provide a uniform representation for all binding and
scoping constructs of the programming language. Using this approach we can cap-
ture all notions of a-convertibility and substitution in a programming language via
the operations of a-convertibility and f-reduction in a typed calculus.

The essence of this encoding, momentarily restricted to just the untyped A-calculus,
is as follows. First, we introduce a base type tm. Next we introduce two new constants,

app :tm — tm — tm, abs : (tm — tm) — tm,

which we use to encode untyped applications and A-abstractions as typed terms. We
can then define a simple translation from terms in the untyped calculus to terms
(of type tm) in the typed calculus including these two constants. For any untyped
A-term e, the encoding of e, (e)°, is defined inductively as:

(x)" = x:m for x a variable
(e1e))” = (app (e))" (e2))
(Ax.e)® = (abs ix:tm.(e"))

We assume that every untyped variable x maps to a corresponding typed variable
x:tm. Note that the range of this map consists only of normal-form terms of type
tm. One way of viewing this encoding is that it maps a-equivalent classes of terms
to afin-equivalent classes of terms. As argued above, we often wish to reason about
programs up to a-equivalence and we can do this, via this encoding, by considering
the fn-normal forms of terms of type tm.

A useful property of encoded A-terms, that we repeatedly exploit, is the following:
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Proposition 2.1
Let (abs f) and t be the encodings of some terms Ax.e and ¢, respectively. Then

(f ) =py (ele'/x])".

A proof of this can be found in Hannan (1991).

In this abstract syntax we eliminate the need for a-conversion and encode sub-
stitution as normalization. There are, however, other kinds of operations that we
wish to perform on programs. In particular, we often wish to examine the structure
of programs. To provide such analysis capabilities we consider unification of simply
typed A-terms as described in Huet (1975). Using unification we can examine the
structure of terms (representing programs) by unifying such terms with templates,
terms containing free variables. The existence of a substitution unifying a term
representing a program and such a template can indicate that the program has a
certain property (e.g. is tail recursive). Applying the substitution to similar templates
can produce new programs with close relationships to the original program. Using
unification of simply typed A-terms to implement program manipulation systems has
been proposed by various people. In Huet and Lang (1978), second-order matching
(a decidable subcase of A-term unification) is used to express certain restricted,
template program transformations. In Miller and Nadathur (1987) this approach is
extended by adding the flexibility of Horn clause programming and richer forms
of unification. In Hannan and Miller (1988) we first argued that if the Prolog
component of the TYPOL system (Borras et al,, 1987) were enriched with higher-
order features then logic programming could play a stronger role as a specification
language for various kinds of interpreters and compilers.

2.2 An abstract syntax for a fragment of standard ML

To illustrate the use of higher-order abstract syntax (HOAS) to capture notions of
scope, binding and substitution, we present an abstract syntax for a fragment of
Standard ML, called mini-ML, a core language that we use later in some meta-
programming examples. We choose a representative collection of constructs from the
language definition and, using the observations made previously about the nature
of HOAS, we give a direct representation of these constructs in this syntax. Though
other representations (in HOAS) are clearly possible and much of the motivation
for our syntax relies on its use in specifying evaluation, we believe that the examples
given later illustrate the clarity and elegance of HOAS.

We consider a simple core programming language by introducing some additional
constants and constructors to the untyped A-calculus. Then for each programming
language construct we introduce a new constant to a simply typed calculus which is
used to build an abstract term representing this construct. For each construct that
introduces a binding (of an identifier), we use a A-abstraction where the abstracted
variable denotes the bound identifier and the expression over which it is abstracted
defines the scope of the binding. Thus the relationships among various binding
operations (and the occurrences of bound variables) in our programming language
are captured by similar relationships among A-bound variables in our abstract
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c : tm
if : tm-otm-oitm-—>tm
pair : tm—tm—tm int : ty
fst : tm—otm bool : ty
snd : tm—otm arrow : ty >ty >ty
app . tm—o>tm—tm cross 1ty =ty —ty
abs : (tm—>tm) > tm
let : (m—>tm)>tm—tm
fix : (tm—>tm) > tm

Fig. 1. Signature for terms and types of mini-ML.

syntax. This uniform treatment of bindings provides a natural specification of many
programming language constructs.

We use a slight variant of the language introduced in Clément et al. (1986).
Let mini-ML be the functional language whose concrete syntax is defined by the
following grammar:

E = C | x | if E then E else E |
pair EE | fstE | snd E |
EE | ixE | letx=EinE | fixxE | (E)

Here, x ranges over variables and C ranges over primitive constants, typically
including the integers and booleans and a set of primitive operations to manipulate
them. We consider 4, let, and fix to be binding operations, binding the variable in
the corresponding subterms. As an example, consider the following expression that
defines the addition function and then applies it to two numbers:

let add = (fix f.Ax.Ay.(if (zerop x) then y else (s (f (pred x) y))))
in (add (s (s z)) (s (s 2))).

This example assumes the primitive constants z and s for representing natural
numbers and the primitive functions zerop (test for zero) and pred (predecessor).
Object-level types are not part of the Mini-ML language but are used to classify
expressions (e.g. this example has type integer). We postpone any discussion of
object-level types until later.

Our abstract syntax for mini-ML is a simple extension of the one given for
untyped A-terms and in the same spirit as Pfenning and Elliot (1988). We begin by
giving a signature for some constants which we use to construct terms and types at
the object level (see Fig. 1). Notice that the constants abs, let and fix are higher-
order, that is, they each require a functional argument of type tm — tm. Note that
object types are given a first-order representation as terms of type ty.

Using the signature of Fig. 1, we can build up A-terms forming an abstract syntax
for mini-ML as follows. We have already introduced the syntax for application and
abstraction using the constants app and abs. We can introduce a number of primitive
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constants and operators such as those in the example above. For each constant ¢
in our object language we introduce a corresponding constant ¢:tm to our abstract
syntax. For the if statement we introduce the new constant if such that if e, e;
and e3 (each of type tm) encode the concrete terms el, e2 and e3, respectively then
(if e1 ez e3) : tm encodes the concrete term if el then e2 else e3.

For purposes of abstract syntax, the let statement can be viewed as a mechanism
for locally introducing an identifier with an associated value to an expression. For
example, the following expression

let x =y + x in (f x) end

introduces the identifier x as a variable with value y + x to the body of the let
expression (f x). A let definition is not recursive so, for example, the second (textual)
occurrence of x refers to some variable that must exist outside of this let statement.
Furthermore, the introduction of the new identifier x effectively hides this previous
occurrence in the body of the let, i.e. the free occurrence of x in the expression (f
x) refers to this let-bound variable. The example above translates to the term

(let (Ax.f x) (app (app plus y) x)).

The scoping of the introduced identifier x is clear from the use of A-abstraction.
Recursive function definitions provide another binding mechanism that introduce
new identifiers. Consider the representation of the addition example given above:

(let Aadd(app (app add (app s (app s z))) (app s (app s z)))
(fix Af(abs Ax(abs Ay(if (app zerop x) y

(app s (app (app f (app pred x)) y))))).

Note how the four bindings in the concrete syntax (add, f, x, y) are translated into
explicit A-abstractions in the abstract syntax.

3 The logic of extended natural semantics

To motivate the logic that we introduce in this section we consider the simple task
of axiomatizing the definition for checking that a term ¢ : tm represents a pure
(untyped) A-term, ie. it is constructed from only the constants app and abs (and
bound variables). We introduce the predicate symbol pure : tm—o. We axiomatize
this definition according to the possible structure of t. The case for application is
straightforward:

pure E pure E,
pure (app E1 E»)
But what about the case when ¢ is a A-abstraction, represented as a term (abs f),

or when ¢ is a bound variable? Recall that such an f is a term of type tm—tm and,
furthermore, it is equal to any other term g such that f =.s, g. To determine that
(abs f) is pure we must ‘descend through’ the abstraction and check that the only
free variable in the body of the abstraction is the bound variable of the abstraction.
Alternatively we can check that if occurrences of this bound variable are considered
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pure then the body of the abstraction must be pure. Just considering the types of
terms suggests an inference rule of the form

pure (E X)
pure {(abs E)

2

with some assumption that X is pure, for some term X : tm. But the choice of X is
crucial because we must ensure that X is pure and that it does not already occur
in E. We will provide a logic suitable for accomplishing these goals in a simple and
direct manner.

The logic of natural semantics (Kahn, 1987) is insufficient to ensure such condi-
tions above for X without using awkward side conditions. We briefly review this
logic to understand its shortcomings. In natural semantics, inference rules have the
following form. Each rule contains a numerator and a denominator. The denomina-
tor of a rule is a single formula, called the conclusion. The numerator of a rule is
an unordered collection of formulas called the premises of the rule. Formulas come
in two varieties: sequents and conditions. The conclusion of a rule is necessarily a
sequent. Conditions, occurring in the numerator, generally serve to limit the appli-
cability or instances of a rule by restricting the occurrences of certain variables or
requiring that some relation hold between instances of variables, etc. A sequent has
two parts, separated by a turnstile (-): an antecedent (on the left) and a consequent
(on the right). The consequent is an atomic proposition and the antecedent is just
a term that typically represents information about the free (object-level) variables
occurring in the consequent. The connection to natural deduction becomes apparent
if we consider the antecedents of sequents as representing the set of undischarged
hypotheses in a deduction of the consequent.

While natural semantics can be implemented efficiently, it is not suitable for
manipulating programs represented in a higher-order abstract syntax. For example,
there is no direct way of completing the definition of pure above, without resorting to
side-conditions or implicit assumptions that defeat the purpose of the higher-order
syntax. Below we consider a more general class of formulas that extends natural
semantics and overcomes this problem.

3.1 Formulas

Let S be a finite, non-empty set of non-logical primitive types (sorts) and let o be
the one logical primitive type, the type of formulas (o is not a member of S). A type
will be either o, a member of S, or a functional type r—o in which both 7 and ¢
are types. The function type constructor associates to the right so 1;—1;—13; and
71—(12—73) are equivalent as types. The order of a type, @(t), is the measure of how
deeply function types are nested to the left in t and it is defined in the following
way:

e (N(0)=0.
e if T € § then O(1) = 0;
e ift=1—" 7,07 for 19 € SU {0} then O(t) = max({O(z)|i € 1...n}) +1
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So O(t) = 1 exactly when 1 is of the form 7y— - —t,—1p such that each t;
(0 < i< n)is a primitive type.

The logical constants are & : 0o—0—0 (conjunction) and =: o—o0—o (implication)
and V; : (t—o0)—o (universal quantification of type 1) for every type t that does
not contain any occurrences of o. A signature is a finite set £ of typed, non-logical
constants. We often enumerate signatures by listing their members as pairs, written
a : 1, in which a is a constant of type . We restrict occurrences of o in the types
of non-logical constants: if a constant ¢ in X has type 1,— -+ —1,—1p, in which
n = 0 and 7 is primitive type, then the types tj,...,7, may not contain o. If 19
is o then c is called a predicate. If a constant has a type of order 0 or 1, then we
say call that constant first-order; otherwise we call it higher-order. A signature is
nth-order if all its constants are of order n or less and at least one constant in it is of
order n. In the sequel, we use only first-order and second-order signatures. We have
found that second-order signatures are often sufficient for representing the terms of
a higher-order syntax and formulas manipulating these terms.

We extend the general notion of typed A-terms to Z-terms and Z-formulas for a
signature X. If a : 7 € Z then a is a X-term of type 7. If ¢ is a A-term containing at
most constants from Z and the logical constants &, => and V,; and typable according
to the standard rules for the simply typed calculus then t is a Z-term. If the type of
t is o then t is a Z-formula. For readability we write the logical constants & and =
in infix form and we write V,x t for the expression V,(1x t), often omitting the type
when it can be determined from context. Furthermore, we abbreviate a sequence of
quantifiers, VxVxs---Vx, t (n = 0) as VX .

As the predicate symbols of a signature X and logical connectives are just constants
added to the simply typed A-calculus we can define the Sn-equivalence relation over
formulas as:

psis2...sn)=(ptita ...ty iff sy =p, t; fori=1...n;

(Al&Az) = (Bl&Bz) iff A = B; and 4; = By;

(A; = Ay) = (B = By) iff A; = B; and 4; = B»;

(V.x A) = (V.y B) iff A[z/x] = B[z/y] for some z:t not free in A or B.

Thus we can consider a propositional formula as representing an equivalence class
of formulas and we typically choose the one in fSn-normal form as the canonical
representative for each class. Normal forms for formulas must exist since the formulas
are just terms in a simply-typed calculus with a few added constants.

To manipulate propositional formulas we use the inference system given in Fig. 2.
The first two inference rules are conjunction introduction and conjunction elimination.
The remaining rules treat the introduction and discharge of objects in a proof. To
specify the introduction and discharge of assumptions needed to prove hypothetical
propositions we use the inference figures (=1I) (implication introduction) and (=E)
(implication elimination). Using implication introduction we can prove A, = A4; by
first assuming that there is a proof of A; and then building a proof for A> from
it. If such a proof is found, then the implication is justified and the proof of this
implication is the result of discharging the assumption about A4,. Using implication
elimination, from proofs of 4, = 4, and 4; we can prove A;.
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Ay A A & A .
A& A (&) —a (&E) i=1,2
(A1)
A2 Al = A2 Al
A= A4, =D Ay =E)
Aly:t/x] Vex 4
V.xA D Aft:1/x] (VE)

Fig. 2. Primitive inference figures.

To specify the introduction and discharge of eigenvariables we use the inference
figures (VI) (universal introduction) and (VE) (universal elimination). The introduction
rule has the usual proviso that the eigenvariable y does not occur free in A or in
any open assumption. To prove a universally quantified formula V,.x A (using (VI))
we must prove a generic instance of the formula A[y:r/x:t] in which y is an
eigenvariable that satisfies the proviso. Using the elimination rule we can prove any
instance of a (proven) universally quantified formula.

The introduction and elimination rules for implication and universal quantification
are not found in natural semantics, but they find quite natural uses in specifying
manipulations of terms in our abstract syntax. Implication introduction provides a
simple means for introducing local assumptions to a proof. This is a generalization of
the typical use of environments in which local information about variables, typically
relations between variables and values, is maintained. Using implication, however,
provides a direct means of expressing a logical relationship between bound variables
and the terms in which they occur. Additionally, we are free to introduce compound
propositional formulas as assumptions. Introducing compound formulas of the form
Ap => A, can be viewed as introducing locally new inference rules. A call-by-name
evaluator can be expressed simply by introducing a rule of this form to express the
lazy evaluation of arguments. In the next section we present an example which uses
such locally scoped inference rules. Note that we have not included disjunction and
existential quantification in our logic. We could include them, with some restrictions
regarding their occurrence in formulas, but we have found that we do not need them
for the kinds of specifications we wish to write.

3.2 Specifications as formulas

A theory or logical specification is given as a pair (X, ) in which X is a signature and
2 is a set of closed X-formulas representing axioms. We will often leave Z implicit.
A proof constructed from 2 will be understood in the standard sense of proofs in
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natural deduction. If 2 names a particular collection of axioms and proposition B
is provable from this collection (using the inference rules of Fig. 2) then we write
2 |- B. For more information on natural deduction and its terminology see Gentzen
(1969) and Prawitz (1965).

Note that the logic defined here is a particularly weak subset of higher-order
intuitionistic logic. For example quantification of the form (V. x A4) is restricted
to types T not containing the type o. Hence we have no predicate quantification.
Furthermore, for all the examples presented here, the type of t will be at most
second order.

As an example we complete the specification of the pure reiation that introduced
this section. We define a pair (Z, %) as:

E = {abs: (tm—tm)—tm, app : tm—tm—tm, pure : tm—o}

P = {(VE, :tmVE, :tm((pure E; & pure E;) = pure(app E| Ey)),
VE : (tm—tm) ((Vx : tm(pure x = pure(E x))) = pure (abs E)) }.

The negative occurrences of universal quantification provides a means for manipu-
lating bound variables of our abstract syntax. Consider the abstract term (abs Ax.t)
and suppose we wish to manipulate or examine the subterm ¢. Because we equate
terms modulo a-equivalence, any examination or manipulation of ¢t must be inde-
pendent of the bound variable name x. So a-equivalent terms of the syntax must
translate or map to an a-equivalence class of some propositional formula (the ‘se-
mantics’). We use the rule for universal introduction as a means of introducing a new
variable that can be substituted for the bound variable x. If y is this new variable
(universally quantified), then (the normal form of) (4x.t)y is the term in which y has
been substituted for x in t. As an example, consider the following proof that Ax.x is

pure:
purey ey
VE :(tm—tm) (Yx tm(pure x = pure (E x)} = pure (abs E)) purey = purey
YE _— VI
Vx:tm{pure x = purex) = pure (abs 1x.x)  Vx:m(pure x = pure x)
=E

pure (abs Ax.x)

3.3 Specifications as inference systems

Instead of presenting specifications as sets of formulas we can use an alternative
style in which they are given as sets of inference rules, consisting of a collection of
atomic propositions denoting axioms and a collection of inference figures, none of
which introduce the symbols &, = or V. The idea is that a formula of the form
VX(A, = A;) with 4; atomic can be viewed as an inference rule

A,

Az
with the variables X implicitly universally quantified (the schema variables of the
inference rule). If we restrict our attention to provability of only atomic formulas
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then any set 2 of formulas, constructed from atomic formulas and only the logical
connectives &, =, and V, can be translated into an equivalent set &’ in which every
formula is of the form ¥Xx(4; = A,) with A, atomic. Here equivalence means that
both sets define the same theory for atomic formulas. This translation is based on
the following equivalences (intuitionistically provable) between formulas in which
Ay, A3, A3 are arbitrary formulas in our logic:

Ay = VxAs = Vx(4, = A;) provided x not free in A4,
Vx(A1&A3) = (VxAp) & (VxA3)
Ay = (A2 &A3) = (A1 = A)) & (A = 43)

Al = (Ay = A3) = (A41&Ay)) = As

Given any collection of formulas £, we construct the corresponding inference
system as follows. First we translate 2 into 2’ using the equivalences above as
directed (left to right) rewrite rules until none of the rules are applicable. (It is
trivial to show that such rewriting is strongly normalizing and confluent.) Next we
replace each formula of 2 of the form A &A>& - &A,, in which none of the
A; are conjunctions, with the collection Ay, As,...,A,. The result is a collection of
formulas, each of the form VX(A4, = A,) or ¥X(4,) for some atomic formula A,.
Note that the sequence of universal quantifiers can be empty. Then for each formula

. . A
VX(A; = A;) in 2’ we construct the inference rule Al— and for each formula Vx(4;)
2

in & we construct the axiom T The universal quantifications become implicit.
2

The collection of all such inference rules, together with those in Fig. 2, shall be called
2. If a formula A is provable from these rules we write 2"  A. If 4 is atomic then
we have 2 - A iff 2° F A. Depending on the structure of the formulas in the set
2, some of the inference rules from Fig. 2 may never be required to prove atomic
formulas from 2°. For example, if 2 contains no negatively occurring implications
then neither of the implication rules need be included in 2.

When providing examples of inference figures, we shall drop references to the
connective & in premises when they are not within the scope of any other logical
connective (except for outermost universal quantifiers). Inference figures of the form

A & A oy - . A A
D=2 will simply be written as R T B
Ap Ao
Translating the set of formulas for the pure relation produces the following
inference rules:

Vx(pure x = pure (E x)) pure E, pure E;
pure (abs E) pure (app E, Ey)

in which the capitalized letters denote implicitly universally quantified variables.
Using these rules, we can construct the following proof that the term Ax.x is
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pure:
purey

purey => purey

=]

Vi

Vx(pure x = pure x)

pure (abs Ax(x))

In comparison to the previous proof using the specifications-as-formulas paradigm,
this proof does not require the use of elimination rules for V and =

The choice between presenting a specification as a set of formulas or a set of
inference rules is largely one of notational convenience, as both approaches are
equally expressive (for the restricted logic we are considering). In the former case
the formulas represent the only axioms and the only inference rules are those from
Fig. 2. In the latter case, the set of inference rules contains axioms plus other
inference figures, in addition to those of Fig. 2. Note that proofs in classical (or
intuitionistic or minimal) logic using specifications-as-formulas are isomorphic to
proofs using specifications-as-inference-rules. The isomorphism can be explained
approximately as the need to use explicit elimination rules (VE, =E, &E) in the
proofs using specifications-as-formulas. In the sequel we present specifications as
sets of inference rules, as this graphical representation is more readable.

3.4 An implementation of the logic

Meta-logical specifications can be interpreted as logic programs and the literature
on implementing logic programs can be directly applied to provide implementations
of specifications. If a specification is first-order and contains no embedded implica-
tions, Prolog or the TYPOL language of the CENTAUR system (Kahn, 1987) can
provide a depth-first interpreter of it. Because the higher-order logic programming
language AProlog (Nadathur and Miiler, 1988) supports higher-order quantification,
A-conversion, and embedded universal quantification and implication, it can be used
to give a depth-first implementation of the full meta-logic. AProlog can therefore be
used to provide implementations of all the specifications described in the following
sections. By translating the specifications in this paper into AProlog programs, we
have been able to experiment with them. We have found such prototyping and
experimentation valuable in understanding the dynamics of various specifications.

Instead of using AProlog syntax to present examples, we continue use the more
graphically oriented inference figures. All the examples presented here have been
implemented and tested in eLLP (Elliott and Pfenning, 1989), an implementation of
AProlog.

4 Specifications in extended natural semantics

In this section we present specifications for several meta-programming tasks in-
cluding type inference and evaluation. We use mini-ML as the object language
and use the abstract syntax introduced in section 2. Two of these specifications,
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type inference and evaluation, describe a static and dynamic semantics for the lan-
guage, respectively. A third generalizes the dynamic semantics and a fourth defines
a translation from our higher-order syntax to a first-order one.

4.1 Type inference

Mini-ML is an implicitly typed language. To establish that a program is well-typed
we axiomatize a relation between programs and types. This example follows the
one given for mini-ML in Kahn (1987), in which a natural semantics specification
of type checking is given. That example uses sequents of the form p - e : 7 in
which p is an environment, e is a program and 7 is a type. Environments provide
an encoding of hypotheses for typing information for free variables, typically in
terms of pairs (x : 7). To type the term Ax.e in some environment p we introduce
the type assignment x : 7; to the environment; then prove the type of e in this
new environment to be t3; and then finally conclude the type of A1x.e to be 71—13.
The extension and subsequent use of the environment for typing variables can be
explained as a kind of introduction and discharge of assumptions regarding type
information. Note, however, that this relies on the use of additional rules in the
specification, namely those for extracting type information for variables from the
environment. This separation of the introduction and discharge of assumptions in
environments and their subsequent use, though a minor point, obscures some of the
logical properties of the specification.

Using extended natural semantics we can dispense with the environment and
simply axiomatize a relation between programs and types, using open assumptions
(possibly to be discharged at some point) to provide type information for free
variables. We introduce the predicate symbol infer : tm—ty—o and construct propo-
sitions of the form (infer e t) where t is a A-term built up from the constants int,
bool, arrow and cross. The proposition (infer e 1) states that the program encoded
by e has the type encoded by 7 and we write £ | (infer e 7) if it is provable using
the rules of Fig. 3.

Most of these rules are similar to their natural semantics counterparts. For the
constants of mini-ML, we assume some given map ¥, mapping constants to types,
e.g. 6(<) = (arrow int (arrow int bool)}). The first rule of Fig. 3 types the constants
using this map. The next four rules specify the typing of the conditionals, pairs
and projections. Rule 1.6 is the typing rule for lambda abstraction and it exploits
the rule for universal introduction to introduce an eigenvariable y representing the
bound variable and implication introduction to introduce a hypothesis regarding
the typing for y. No environment is necessary. Informally we may read the rule as
follows. If under the assumption that the bound variable of a A-abstraction has a
type Ty, the body of that abstraction has type T,, then the A-abstraction has type
(arrow Ty T,). The universal quantification of x enforces the restriction that the
assumption about the type of the bound variable refers only to the occurrences of
that bound variable, and no others. This is similar to typical uniqueness conditions
placed on variables occurring in environments. Although this is in many ways similar
to the environment approach, it avoids the need to access the types associated with
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infer ¢ €(c) SR

infer E; bool infer E; T infer E5 T (1.2)
infer (if Ey E; E3) T ’

infer Ey T, infer E; T, (1.3)
infer (pair E, E,) (cross Ty T>) )

infer E (cross Ty T>) (1.4)
infer (fst E) T, '

infer E (cross T, T3) (L.5)
infer (snd E) T, '

Vx (infer x T\ = infer (E x) T3) (1.6)
infer (abs E) (arrow Ty T3) )

infer E, (arrow Ty T») infer E; T (I.7)
infer (app £\ E3) T» '

infer E, Ty infer (Ey Ey) Ty 138)
infer {let E\ E;) T, ’

Vx (infer x T = infer (Ex) T) (1.9)

infer (fix EY T

Fig. 3. Type inference system .# for mini-ML.

variables in an environment and the need to make assumptions about the uniqueness
of variables in the environment.

Rule 1.7 is the rule for typing application. The term (arrow T, T3) denotes the
type for functions from the type (represented by) T to the type (represented by) T>.
If we can show that E; has this type and E, has type Tj, then we can conclude that
the application of E; to E,, represented as (app E,\ E,), has type T,. Rule 1.9 for
fixed points uses the same technique as found in Rule 1.6. The rule for let requires
some explanation. Rather than introduce type schemas or polytypes, as done in the
Damas-Milner type system, we use substitution to capture the notion of instantiating
a term at different types. Rule 1.8 checks that E, has some type, but that type is
then ignored. We use f-reduction to substitute E; into the abstraction Ei, and then
type the resulting expression. If we substitute E, into several different places in E;,
we infer a type for each of those instances; the types of different occurrences might
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be different, due to the contexts in E; in which these occurrences appear. Therefore,
E, could be polymorphic in that its occurrences in E; might be at several different
types. Note that we need to type E; explicitly just in the case that the abstraction is
vacuous, i.e. the let-bound variable does not occur in E;.

We do not need a rule for typing variables because any bound variable occurring
in a term is replaced via f-reduction with either (i) a term explicitly typed via an
assumption (abs, fix) or (ii} a term whose type has already been inferred (let). (Recall
that we are typing only closed expressions.) Note that the three clauses that make use
of f-reduction correspond precisely to the three clauses in the environment approach
that extend the environment. This is not surprising as these are the only three clauses
that introduce identifiers and bindings. We do not consider polymorphic types and
the associated rules for type quantification and instantiation. As discussed above, we
type let expressions in a manner allowing us to avoid the use of explicit polymorphic
types.

We can view this proof system as a declarative specification for type checking
problems. Given a closed proposition of the form (infer e 1), finding a proof of this
proposition asserts that the type of (the expression denoted by) e is 7. To perform
type inference we need an algorithm to which we can provide e as input and which
will produce as output t such that # F (infer e 1). For the simple type inference
system here we can directly implement it in a logic programming language such
as AProlog. By encoding each of the above inference rules as AProlog clauses and
then posing the query 7— infer e T, for some closed e and variable T, a proof of
some instance of this query can be found (when one exists). Note that the resulting
answer substitution 8 may not be ground, i.e. §(T) may contain free type variables.
For example, the result of the query

?7— infer (abs Ax.x) T

would have T instantiated to T'— T’ for some variable T’. We have no explicit rule
for quantifying over type variables.

In Hannan (1991) we demonstrate an equivalence between this presentation of
typing, with its use of substitution in the let rule to achieve a kind of polymor-
phism, and the Damas-Milner type system (Damas and Milner, 1982) which uses
polymorphic types and has rules for type instantiation and generalization. First we
show that if we can derive (infer e 1) for closed e and 1, then there is an equivalent
(modulo representation of terms and types) typing derivation in the Damas-Milner
system. Second, if in the Damas-Milner system an expression ¢ can by given some
polymorphic type Vi, (- - - (Vt,(t))), then we can derive (infer e 1).

4.2 The subsumes relation for polytypes

As a second example of using our meta-language to manipulate ML-like types, we
present a proof system for the subsumes relation on polytypes (Mitchell and Harper,
1988). This relation concerns monotypes and polytypes. Monotypes are just simple
types, i.e. those considered in the previous example, which we represent as terms of
type ty. Polytypes are monotypes which may have a prefix of universal quantifiers,
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Vx:ty (subsume T, (T,x)) subsume (Th X) T,
subsume T T subsume T, (forall T5) subsume (forall T\) T,

Fig. 4. Subsumes relation for polytypes.

such as Vt,Vt;(t; —t;), in which the quantification ranges over monotypes. We intro-
duce a new type poly and new constants mono : ty—poly, forall : (ty—poly)—poly
for representing polytypes. All monotypes are polytypes and mono provides a way
of coercing a monotype into a polytype. The constant forall is second-order and
used to represent the V-quantification of polytypes. In the following discussion, the
greek letters T and ¢ represent monotypes and polytypes, respectively. To define the
subsumes relation we need the following auxiliary definition.

Definition 4.1

T is an instance of polytype (forall ity(...(forall At,(7'))...)) if there exists some
substitution & of the variables ty,...,t, into monotypes such that &(7') = 1.

The subsumes relation on polytypes is then given by the following:

Definition 4.2 (Subsumes)

Let a1 and a; be two polytypes. o, subsumes 0,1, written o1 C o3, if every instance of
o3 is also an instance of o,.

For example, the polytype Vt.t subsumes all other polytypes. An informal operational
description of this definition is the following. Given 4, and g, erase the quantifiers of
each yielding two monotypes, 7, and 1. Then g C o, iff there exists a substitution &
such that (1) = . Since the erasure of bound variables is another operation not
available in our meta-language, we need to approach the specification of subsumes
differently.

In our meta-language we can construct a simple proof system for the subsumes
relation and it is given in Fig. 4. We use the binary predicate symbol subsume :
poly—poly—o. The first clause states the obvious: any polytype subsumes itself. The
second clause produces a canonical instance of (forall T,). This step is essentially
like the process of erasing a type quantifier. The meta-level universal quantifier used
in this clause ensures that, after removing the quantifiers on (forall T5), revealing a
monotype, any future substitution does not affect this monotype (its free variables
are, in a sense, protected). The third clause is used to build an instance of the first
type by stripping off a quantifier, replacing a bound type variable with a monotype.

Notice that these three proof rules have a simple declarative reading. Assume that
types are interpreted as sets of objects of that type, that forall is interpreted as
intersection, and subsume as subset. The first clause states that every set (type) is a
subset of (subsumes) itself. The second clause states that if a type is a subset of all
members of a family of types, then it is a subset of the intersection of that family.
The third clauses similarly states that if some member of a family is a subset of a
given type, then the intersection of that family is a subset of that type.
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4.3 Weak evaluation

We now present an evaluator for mini-ML, using a style very similar to the one
for type inference. This evaluator reduces terms using the call-by-value strategy as
described, for example, in Plotkin (1975). The natural semantics approach uses a
judgment of the form I' e = v, with the environment I providing the values for
the free variables of e. We avoid the use of environments by specifying rules that
explicitly substitute values for variables in programs. Higher-order syntax allows
this to be done concisely.

We introduce a new predicate symbol eval : tm — tm — o. Propositions in this
system are of the form (eval e v) in which ¢ and v are expressions in mini-ML and
v represents the result of evaluating e. Proofs of these propositions are constructed
from the proof system CBV given in Fig. 5. If a proposition (eval e v) is provable
in this system we write CBV F (eval e v). The first rule specifies that constants just
evaluate to themselves. The next two rules treat the if expression in a natural way:
Given an expression (if e; e; e3), e; must evaluate to true or false for a proof
to be found. If (eval e; true) is provable then rule E2 applies; if (eval e) false) is
provable then rule E3 applies; otherwise no proof of an if expression is possible.
The next three rules handle the evaluation of pairs and projections. Rule E7 states
that an abstraction evaluates to itself. In the rule for application, E8, we exploit
Proposition 2.1 and the equality of terms up to fn-convertibility: given a term
(app s t), if for some f, (eval s (abs f)) is provable and for some vy, (eval t v,) is
provable, then the f-normal form of (f v;) represents the abstract term in which v,
has been substituted for the (outermost) bound variable of (abs f). In other words,
the use of f-reduction correctly captures the notion of substitution used in function
application. Similar comments apply to our rule for let, E9, in which the schema
variable E; is a functional argument whose instance is applied to the term V>, again
making use of f-reduction to perform substitution. In the rule for recursion, E.10, we
unfold the definition of a fix expression. Recall that the fix constant is essentially
the Y combinator and so this rule expresses the equation (¥ f) = f(Y f). The
result of B-converting the expression (f (fix f)) substitutes the recursive function,
namely (fix f), within the body of the definition, given by f. In each of the rules
manipulating bound variables static scoping is ensured because f-reduction, as a
means of propagating binding information, guarantees that the identifiers occurring
free within a lambda abstraction are replaced (with their associated value) prior to
manipulating the abstraction.

To obtain a call-by-name evaluator we need only change the rules E8 and E9 to
the following:

eval E; (abs E) eval (EEy)) V
eval (app E\ E3) V

eval (E\Ey)) V
eval (let Ey E5) V

No other change is necessary.
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eval c ¢ (ED
eval E| true eval E, V
eval (if E; E; E3) V (E2)
eval E| false eval E; V
eval (lf E, E; E3) Vv (E3)
eval E; ‘Vl euz‘zl E, V, (E4)
eval (pair E| E,) (pair V| V)
eval E (pair V, V3)
eval (fst E) V, (E3)
eval E (pair Vy V)
eval (snd E) V; (E6)
eval (abs E) (abs E) (E7)
eval E| (abs E) eval E, V) eval (E V) V (E9)
eval (app E| E;)) V
eval E; V, eval (EV3) V
eval (let E E)) V (E9)
eval (E (fix E) V (E10)

eval (fix E) V

Fig. 5. Call-by-value evaluator CBV for mini-ML.

The set rules of Fig. 5 can be directly translated into a AProlog program and this
program provides a simple interpreter for mini-ML. The rules are simple enough
that the simple depth-first search strategy employed by a AProlog implementation is
sufficient. Given some closed expression e, we can evaluate e by posing the query
7— eval e V, where V is a variable, resulting in an instantiation v for V exactly when
eval e v is provable using these rules. Searching for a proof in a bottom-up fashion
may involve situations in which several inference rules are applicable. For example,
the proposition (eval (if e; e; e3) V) matches the conclusion of two inference rules,
and the use of at most one of these can eventually lead to a proof (assuming we
cannot prove both (eval e; true) and (eval e; false)). The correct rule to apply in
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this case can only be determined after obtaining a proof of either (eval e, true) or
(eval e; false).

4.4 Normal-form evaluation

The definition of evaluation given in the previous section prohibits the evaluation
of terms inside of a bound variable, e.g. a A-abstraction is already a value. This is a
typical strategy for a programming language semantics in which a function’s body
is not evaluated until the function has been applied to the appropriate number of
arguments. In particular, only closed programs are ever considered. If free variables
do occur in terms they are identified with terms via a substitution or environment.
However, other kinds of operations on programs may require a more flexible
manipulation of programs.

Suppose now that we wish to define a more liberal evaluation strategy, one that
allows evaluation under A-abstractions. In particular, evaluation of A-terms to B#-
normal form requires such a strategy. The notion of descending into an abstraction
to perform reductions can also be viewed as mixed evaluation since evaluation
must be done not only on closed terms of mini-ML but also on terms containing
abstracted variables. These are often treated as symbolic values. Thus, computations
on real and symbolic values must be mixed together.

Two problems immediately arise when we consider evaluation inside the scope of
a A-abstraction. The first is that of correctly evaluating an expression containing an
abstracted variable: our evaluator (from section 4.3) currently only treats expressions
whose top-level symbol is a constant declared in the abstract syntax of mini-ML. A
reasonable approach to extending evaluation to variables is allow bound variables
to evaluate to themselves. The challenge here is to see how a proof system might
support such a treatment of abstracted variables, particularly given that we cannot
directly access the name of a bound variable in our abstract syntax. The second
problem of evaluating within an abstraction is that generally the result of such
rewriting will not be a proper value, that is, a value computable by our standard
evaluator CBV. Consider, for example, the expression

(abs Ax(if x e e3)
for some e, and e,. Obviously, only with v = (abs Ax(if x e; e;)) can we prove
(eval (abs Ax(if x e; e3)) v)

from CBV, even if we can prove (eval e; v)) and (eval e, v;), for some values vy, v;.
Furthermore, for no value v can we prove (eval (if x e e3) ) under the
assumption that x a bound variable. Intuitively, we might want v/ = (if x v; ).
Thus, we must consider a more general notion of values than that defined by the
rules of CBV. As this example suggests, an if expression should be interpreted in
one of three different ways: Fig. 5 provides two ways and the third way relates it
to another if expression in which its arguments may have been evaluated. This last
observation reveals a cost in doing a more liberal rewriting of terms: evaluation
may become more non-deterministic.
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To obtain the new specification of evaluation for mini-ML we add new rules to
those for the standard evaluator of section 4.3. As the discussed above, we should
include the following inference figure in our new evaluator:

eval E, E| eval E; Ej eval E3 E;
eval (if E; E> E3) (if E| E} EY)

Thus, an if-expression can evaluate to another if-expression if their corresponding
arguments are in the evaluation relation. Similar proof rules for some other con-
structs can likewise be defined. The case for A-abstraction is different, however. We
claim that the following inference rule specifies a natural evaluation strategy for
object-level A-abstractions:

Vx (eval x x = (eval (E x) (E' x)))
eval (abs E) (abs E')

This rule for the evaluation of (abs E) can be read operationally as follows: if under
the assumption that x evaluates to itself, in which x is a new constant added to the
signature for mini-ML terms, we can show that (E x) evaluates to (E’ x), then we can
conclude that (abs E) evaluates to (abs E’). This inference rule can be interpreted as
replacing the abstracted variable of (abs E) with an eigenvariable that will name that
bound variable. This variable, say x, is also assumed to evaluate to itself. A value
is then sought for the expression (E x). This value may contain free occurrences
of x. The abstraction E’ is then the result of abstracting all occurrences of x from
this value. The condition that x does not occur in instances of particular terms is
enforced via the conditions for universal introduction.
We might be tempted to write this rule as

VxVy(eval x y = (eval (E x) (E'y)))
eval (abs E) (abs E’) ’

which seems to be a stronger statement about evaluation. Unfortunately, this rule is
not adequate for our call-by-value semantics in which an evaluated term (in function
applications) can be evaluated. Before a function is applied its argument is evaluated
to a value and then this value (after being substituted for the bound variable of the
function) may itself be evaluated. The above rule provides a way for evaluating x
(to y) but no way to then evaluate y.

Fig. 6 contains the inference rules that are needed to extend the proof system for
standard evaluation into a proof system for this new kind of evaluation. Let NF be
the set of inference rules consisting of the ones from Fig. 6 and the ones for standard
evaluation (Fig. 5). We refer to proofs constructed in this system as NF-proofs.

Since we have constructed this proof system by extending the one for standard
evaluation, we have that for all e, v, CBV | (eval e v) implies NF + (eval e v). The
converse is not true, however, and for a given e there may now be many ¢’ such
that NF + (eval e €'). Also, notice that NF-evaluation is reflexive, that is, for all terms
e € mini-ML, NF |- (eval e ¢). In Hannan and Miller (1989) we further explore
the relationship between our original weak evaluation system and this new one. An
important property discussed there is the following result.
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eval E| E| eval E, Ej eval E; Ej

eval (f Er E; B5) (f E| B} E) (M1)

Vx (eval x x = (eval (E x) (E’' x)))
eval (abs E) (abs E') (M2)

eval E; E| eval E; E;
M3
eval (app E; E5) (app E; E) 3)
eval E; E} Vx (eval x x = (eval (E x) (E' x))) (M4)
eval (let E E;) (let E' E}) ’

Vx (eval x x = (eval (E x) (E’ x))) (M5)

eval (fix E) (fix E)
Fig. 6. New inference rules for NF-evaluation.

Lemma 4.3
If NF I (eval (abs f) (abs g)) and NF \ (eval s t), then NF | (eval (f s) (g?)).

The proof follows straightforwardly from results regarding hereditary Harrop
formulas and uniform proofs Hannan and Miller (1991). See Hannan and Miller
(1989) for an outline of the proof. Proving statements similar to this lemma in
weaker meta-logics is typically a much more difficult task and often requires explicit
proofs by induction.

Now let us consider an example of NF-evaluation. Let 4 be an abbreviation of
the addition function given by the term

(fix Af (abs Ax(abs Ay(if (app zerop x) y
(app s (app (app f (app pred x)) y)))))).
Now suppose we try to show that there exists some v such that

CBV I (eval (app A (app s (app s z))) v).
It is not hard to see that the only possible value for v is

(abs Ay(if (app zerop (app s (app s 2))) y
(app s (app (app A (app pred (app s (app s z)))} y)))).

Now consider showing NF + (eval (app A (app s (app s z))) v) for some v. The
additional rules of the NF proof system provide a means for further simplification
of this expression. Using NF we can have the same value for v as obtained with
CBV. However, another possible instance of v is (abs Ay(app s (app s y))).

As noted above, one cost of introducing the additional rules for NF-evaluation
is an increase in the number of possible values for an expression. Thus controlling
the application of these rules in a practical way is an important issue. We elide this
point, choosing to focus only on the declarative aspects of NF-evaluation.
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We can specify evaluation of applications in a slightly different manner, using a
technique that corresponds closely to the use of environments in natural semantics.
Instead of substituting (via f-reduction) the value of the argument for the bound
variable as done in rule E8, we can introduce an assumption specifying that this
variable evaluates to the given value. This idea is similar to the one used to specify
type checking for A-abstraction. We can construct a new specification, NF', by
replacing rule E8 of NF with

eval Ey (abs E) eval E; V, Vx (eval x V; = eval (Ex) V)
eval (app E\ E2) V

Using this rule to evaluate an application proceeds as follows. We evaluate E;
to an abstraction (abs E) and E> to a value V5, just as in rule E8. Then we
evaluate the body of the abstraction under the assumption that the bound variable
x evaluates to V,. The equivalence of NF and NF’ is straightforward to show. The
advantage of using this new rule instead of E8 becomes evident when we consider
the implementation of these rules in a language like AProlog. This new rule can
be implemented in the language L; (Miller, 1991), which employs a simpler form
of B-conversion and whose implementation requires only a decidable subclass of
higher-order unification. The rule E8 cannot be specified directly in L,, but only
a language like AProlog, with general f-conversion. We can introduce similar rules
for let and fix expressions, such that the entire specification for evaluation can
be given in L;. In general, full f-conversion (required by the implementation of
specifications) can be systematically replaced by the simpler form of f-conversion
found in L,.

Note that if we were to use this rule in place of E8 for the weak form of
evaluation, a problem occurs. There may be some occurrences of x in the term
(E x) that we never attempt to evaluate (because they occur within the scope of
a J-abstraction). Hence we can never replace these occurrences with the evaluated
term V5. Furthermore, the resulting value we do get, containing occurrences of x,
cannot match the variable V' because any instance of V cannot contain any instances
of x (due to the universal quantification of x).

4.5 Translation to a first-order syntax

All of the previous examples make only limited use of implication in the antecedents
of rules. In particular, every instance of A = B in the antecedent of a rule is
such that both 4 and B are atomic formulas, and furthermore, such that A4 is an
atomic formula expressing a property of an eigenvariable. This parallels the use of
antecedents in the sequents of natural semantics where they consist of assumptions
about variables. This also parallels the limited use of implication (instead of sequents)
in the operational semantics of Burstall and Honsell (1991). We now consider an
interesting use of implication in the antecedents of rules in which we use formulas
of the form (4 = B) = C. Such a construct has no parallel in natural semantics and
offers a more sophisticated level of reasoning than is possible in natural semantics.
Our example is the translation from a higher-order to a first-order syntax. While
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such a translation can be defined without using such nested implications we believe
that the specification given below illustrates the elegance of this approach.

Manipulating programs in a higher-order abstract syntax has its attractive fea-
tures, but eventually we might want to translate programs into a lower-level syntax,
often for reasons of efficiency. We can think of translating along two different lines:
(1) from a higher-order to a first-order version of the same syntax (language) or
(2) from one language to another, with possibly both represented in a higher-order
syntax. We consider the former problem in this section. We introduce a simple
first-order syntax for mini-ML, and then describe a translation between the two
syntaxes.

We choose a first-order abstract syntax using de Bruijn indices to represent
variables. We introduce new types tm° and nat and the following set of constructors:

0 : nat fst® : tm® - m°
- nat — nat snd® : tm® —m°
¢ om app® : tm® > m® > m°
var : nat — tm° abs’ tm® — tm°
if° : tm® - tm® - tm® > tm° let® : tm°® —tm® — tm°
pair® : tm® — m° - m° fix® . m® >’

We introduce the constants 0 and " to construct natural numbers. For every primitive
constant ¢ : tm of the higher-order syntax, we introduce a constant ¢° : tm°. We
introduce the constant var to construct de Bruijn indices from natural numbers. As
an example of a program in this syntax consider the following representation of the
addition function:

(let® (app°® (app® (var (0)) (app® s° (app°® s° z°))) (app°® s° (app° s° z°)))
(fix® (abs® (abs® (if° (app® zerop® (var ((0)))) (var (0))
(s? (app® (app® (var (((0))))
(app® pred® (var ((0)))))
(var (0))))N))-

Compare this term with the one from section 2.

For the translation between the higher-order and first-order syntaxes we introduce
the predicate symbol trans : nat—tm—tm°—o. The first argument to this predicate
represents the depth, given as a natural number, at which the current expression
occurs. The depth represents the number of abstractions encountered along the path
from the root of the term to the current subterm. Abstractions occur in A-abstractions
(abs or abs®), let-expressions (first argument to let or let’) and fix-expressions (fix
or fix®). For example, in the term above, the subterm (app?® s° (app® s° z°)) occurs
at depth 1 (inside the let® abstraction) and the subterm (app® zerop® (var ((0))))
occurs at depth 3 (inside the fix° and two abs® abstractions). The entire term
occurs at depth 0. We use this depth to determine the appropriate de Bruijn indices
for representing variables in the first-order syntax. Recall that in de Bruijn syntax
a variable occurrence is represented by a natural number which is the number
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trans N ¢ ¢° (T.D)
trans N E, F, trans N E, F> trans N E3 F3 (T2)
trans N (if E| E; E3) (if° F\ F; F3) ’
trans N E| F| trans N E, F; (T3)
trans N (pair E| E;) (pair® F, F3) )
trans N E F
trans N (fst E) (fst° F) (T4)
trans N E F
trans N (snd E) (snd° F) (T3)
trans N E; F, trans N E; F, (T6)

trans N (app E, E;) (app® F, F)

Vx (VNVNz(minus Ny N N, = trans N| x (var N,)) =
trans (N) (Ex) F) (T.7)
trans N (abs E) (abs® F)

trans N E, F,
Vx (YN,VNy(minus Ny N N, = trans Ny x (var N;)) =
trans (N) (Ex) F)
trans N (let E E,) (let° F Fy)

(T3)

¥x (VN \VNy(minus Ny N Ny = trans Ny x (var Ny)) =
trans (N) (Ex) F) (T9)
trans N (fix E) (fix° F)

Fig. 7. Translation from higher-order to first-order syntax.

of abstractions encountered along the path from this occurrence to the defining
A-abstraction for this variable.

The complete specification of trans is given in Fig. 7. We assume that subtraction
has been axiomatized using the predicate minus : nat—nat—nat—o as follows:

minus Ny Ny N;
minus N O N minus ( N1) C N2) N3

The proposition (minus n; n, nj) is provable iff ny,ny,n; are representations of
natural numbers n1, n2, and n3, respectively, n1 = n2, and n1 - n2 = n3.
The rules for translating A-abstractions, let-expressions and fix-expressions require
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some explanation, as these rules contain some uses of our meta-logic that we
have not encountered previously. First, note that we have no explicit rules for
translating variables in the two syntaxes. This definition of trans works only for
closed expressions. We still, however, must handle the translation of bound variables.
We explain the rule for translating A-abstractions, with similar explanations following
for let- and fix-expressions.

The rule T.7 has a similar structure to the rule M2: to descend through a
A-abstraction we use a V-judgment to introduce the quantified variable x which
represents the bound variable of the abstraction. We also introduce an assumption
(or hypothesis) about x. Consider an instance of rule 7.7 (in which the implicitly
universally quantified variables N, E, F have been instantiated by some closed terms

nye, f:

Vx (VN{VNy(minus Ny n Ny = trans Ny x (var N,)) = trans (n) (ex) f)
trans n (abs e) (abs°® f)

To construct a proof of the premise to this rule we first use the (VI) rule to
replace the variable x with an eigenvariable y (requiring the usual freeness condition
as stipulated by the rule for V-Introduction) and then we construct a proof of
(trans (n) (ey) f) using the hypothesis

VN VN;y(minus Ny n N, = trans Ny y (var N»)).

If we write this hypothesis in the more graphical notation of inference rules (the
implication occurs positively in this rule), we get

minus Ny n N
trans Ny y (var Ny)

in which N| and N, are implicitly universally quantified. We can view this hypothesis
as a rule for translating the eigenvariable y (representing the bound variable of the
A-abstraction): y translates to de Bruijn index (var N) such that N, is equal to the
difference between the current depth N\ and the depth n at which the J-abstraction
occurs. This computation of indices is exactly what is expected for de Bruijn notation
of A-terms. Instances of this hypothesis can be obtained and used by first applying
the (VE) rule twice, instantiating Ny and N, with appropriate terms. For example,
to prove (trans n; y ny) for some particular terms n;,n; we could start with the
following deduction:

VN YNa(minus Ny n Ny = trans N, y (var N;))
VNjy(minus ny n N, = trans ny y (var N))
minus ny n n, => trans ny; y (var ny)

From this deduction and a deduction for (minus n, n n;), we can prove (using
implication elimination) (trans n; y (var ny). Note that for each A-abstraction
encountered during the translation of an expression, a new assumption is made for
translating the bound variable of the abstraction.

As an example of this specification consider the following formula which is
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provable using the rules of Fig. 7 (for readability we use integers 0, 1,2, 3 instead of
their actual representation):

(trans O (abs Ax(abs Ay(app x (abs 2z (app (app x z) ¥)))))
(abs® (abs® (app® (var 2) (abs® (app°® (app°® (var 3) (var 1))
(var 2)))))).

This formula relates two representations for the A-term AxAy(x Az(x z y)). Note how
the two occurrences of the bound variable x are represented as (var 2) and (var 3)
in the first-order representation. To translate these two occurrences of x the proof
uses two instances of the hypothesis

VYN {VN;y(minus Ny n N; = trans Ny x (var N»))

modulo renaming of the bound variable x with an eigenvariable.

5 Conclusion

We have extended natural semantics to include a richer notion of syntax and appro-
priate mechanisms for describing semantics at a reasonably high level. An important
aspect of this work is the use of a higher-order abstract syntax for representing
functional programs. By uniformly encoding various binding and scoping constructs
of a language via A-abstraction in an abstract syntax and providing an equality
theory over terms in the syntax that includes o, f and n-conversion, we can specify
syntactically many of the ‘non context-free’ aspects of a programming language such
as scoping of identifiers. Not all such aspects can be enforced by our abstract syntax,
however. For instance, the linearity restriction imposed on variables occurring in
pattern expressions in Standard ML cannot naturally be expressed in this syntax
without explicitly axiomatizing the notion of linearity. But this is no worse than
traditional first-order representations. Similarly, a higher-order abstract syntax can
be unsuitable for language definitions in which programs are not generally equiv-
alent up to a renaming of variables. For example, dynamically scoped variables,
available in Lisp, could not easily be described using this syntax. The binding of a
variable in this language is determined dynamically by considering the most recently
(temporally) defined variable of the same name. Higher-order syntax seems best
suited to statically scoped languages.

The ability to use hypothetical reasoning (via implications) provides a way of
eliminating explicit environments in semantic specifications. While the two formu-
lations (sequents with explicit open assumptions and traditional natural deduction
with implicit open assumptions) are equivalent, reasoning about the latter seems
easier as the relationship between assumption and conclusion is directly represented
in the logic (as an implication), while with natural semantics and sequents, the
relationship is encoded and relies on the proper use of environments by other rules.
This difference becomes significant when dealing with proofs as objects, such as
in the LF logical framework (Harper et al., to appear) and the EIf programming
language (Pfenning, 1991). In these settings a proof of 4 = B is given as a function
which, when applied to a term representing a proof of A, produces a proof of
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B. Reasoning about operational semantics by manipulating proofs in this setting
provides a means for mechanically verifying properties of the semantics. A general
treatment of this subject can be found in Michaylov and Pfenning (1992). A specific
example considering compiler verification can be found in Hannan and Pfenning
(1992).
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