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Abstract

In the era of the SKA precursors, telescopes are producing deeper, larger images of the sky on increasingly small time-
scales. The greater size and volume of images place an increased demand on the software that we use to create catalogues,
and so our source finding algorithms need to evolve accordingly. In this paper, we discuss some of the logistical and
technical challenges that result from the increased size and volume of images that are to be analysed, and demonstrate
how the AEGEAN source finding package has evolved to address these challenges. In particular, we address the issues of
source finding on spatially correlated data, and on images in which the background, noise, and point spread function vary
across the sky. We also introduce the concept of forced or prioritised fitting.
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1 INTRODUCTION

The primary goal of any source finding programme is the ac-
curacy of the resulting catalogues. However, sensitive, wide-
field telescopes with fast imaging capabilities, mean that ad-
ditional requirements are being placed on the software that
supports these instruments. Thus, source finding programmes
need to evolve with the data which they are processing.
Source finding programmes are increasingly being required
to make effective use of hardware in order to run in near-real
time, integrate with a range of software ecosystems, and have
the flexibility to support a range of science goals. We group
these demands into three categories: correctness, hardware
utilisation, and interoperability.

Time domain astronomy places demands on each of these
categories and is thus a good exemplar case. Time do-
main astronomy is an area of great interest to many of
the new radio telescopes either in operation [MWA (Tin-
gay et al. 2013), LOFAR (Röttgering 2003)], in commis-
sioning [ASKAP (Johnston et al. 2008)], under construction
[MeerKAT (Jonas 2009)], or in planning (SKA1). Studies of
variable and transient events are almost entirely focused on
variations of source flux density with time. For example, the
VAST project (Murphy et al. 2013; Banyer, Murphy, & VAST
Collaboration 2012) and the LOFAR Transients key science
project (Swinbank et al. 2015) have both created analysis
pipelines to detect variable and transient objects from light

1 www.skatelescope.org

curve data. The critical question for such work is then given a
sequence of flux densities and associated 1σ error estimates,
what is the degree of variability exhibited by each source, and
how confident are we that each source is varying or not. The
process of creating light curves from catalogue data involves
cross-matching sources between different epochs. Accurate
cross-matching requires that sources positions and uncertain-
ties are correctly measured and reported. Since false positives
in the detection process appear as single epoch transients, the
reliability of a source finding programme is of great impor-
tance. Determining the degree and confidence of variability
depends critically on the uncertainty associated with each flux
measurement in a light curve, and thus the accurate reporting
of uncertainties is a priority. In short, detecting variable and
transient sources requires that the underlying source-finding
process can be relied upon. This in turn requires that the
image background and noise, the synthesised beam, and the
degree to which the data are correlated, are all important in
the source-finding and characterisation process. Time domain
astronomy is thus limited by the correctness of the catalogues
which are extracted from images.

In order to trigger useful follow-up observations of tran-
sients, the time between observation and detection needs to
be minimised. This means that the speed of a source find-
ing programme can be critical, and so the ability to utilise
multiple CPU or GPU cores becomes important.

Finally, a source finding programme will always comprise
only a single component in a larger processing pipeline, and
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so the ease with which the programme can be incorporated
into this environment can be the difference between a practi-
cal and impractical solution.

AEGEAN 2.0 aims to address the issues of correctness,
hardware utilisation, and interoperability. Hardware utilisa-
tion for AEGEAN has been improved by using multiple pro-
cesses for the fitting stage. Interoperability has been improved
by exposing the core AEGEAN functionality in a library called
AegeanTools, and by allowing for a greater variety of input
and output catalogue formats. These two topics are important
but their development is not novel and so we do not discuss
them in detail. In this paper, we focus on issues of correctness
of the output catalogue.

2 WHY 2.0?

AEGEAN (Hancock et al. 2012b) was developed to tackle
some of the shortcomings of the software that was in common
use among radio astronomers in c. 2010. AEGEAN has been
upgraded and improved upon since 2012, thanks to input from
work such as Huynh et al. (2012) and Hopkins et al. (2015);
however, these works focus on simulated images of modest
sizes. Running AEGEAN on data from SKA pathfinders such
as MWA/LOFAR/ASKAP, embedded within scientific work-
flows, a number of issues have come to light that have needed
to be addressed. These issues are related to practical and theo-
retical requirements inherent in wide-field radio images, and
are invisible to the end user of a radio source catalogue. The
requirements include the ability to

1. correctly fit a model to data which are spatially corre-
lated,

2. work on large fields of view where many parameters vary
across the image,

3. spread processing across multiple cores/nodes in a high
performance computing (HPC) environment, and

4. integrate into a variety of work-flows.

Whilst some source finding packages address a subset
of these issues, prior to AEGEAN 2.0, no one package
was able to address all four at the same time. This paper
serves as a point of reference for the many developments of
AEGEAN as well as a more formal description of the new
capabilities.

During the production of the GaLactic and Extragalactic
All-sky Murchison Widefield Array (GLEAM) survey cata-
logue (Hurley-Walker et al. 2017), all four of the above issues
came to bear, and thus AEGEAN was updated accordingly.

In the sections that follow, we focus on the effects of
correlated data, estimating bias and uncertainty (Section 4),
estimation of background and noise properties (Section 5),
incorporating a variable point spread function (PSF) (Section
6), the process of prioritised fitting (Section 7), extended
source models (Section 8), and subimage searching (Section
9). We conclude with a summary (Section 10) and future
development plans (Section 11).

The three programmes discussed in this paper (AEGEAN,
BANE, and MIMAS) are part of the AegeanTools software
suite. AegeanTools is available for download from GitHub,2

along with a user guide and application programming inter-
face (API).

3 TEST DATA

Throughout this work, we rely on two test data sets: simulated
data and observational data.

A simulated test image was created with the following
properties:

• The image centre is at (α = 180°, δ = −45°) (the as-
sumed zenith).

• The image size is 10k × 10k pixels, comparable to the
mosaics generated for the GLEAM survey.

• Pixel area is 0.738 arcmin × 0.738 arcmin at the image
centre.

• Projection is zenithal equal area (ZEA) in order to accu-
rately represent the large area of sky covered.

• Pixels below δ = −84° are masked (blank).
• The PSF of the image changes with sky coordinates,

being circular at the image centre and elongating with
increasing zenith angle.

• The image noise varies from 0.1 to 0.2 Jy beam−1.
• A large scale smooth background varies from −0.5 to

0.5 Jy beam−1.
• A population of point sources were injected with a

peak flux distribution ranging from 0.1 to 1000 Jy, a
source count distribution of N(S)∝S3/2, and sky density
of 14.5 deg−2.

• The source population is uniformly distributed
in (α, δ).

The simulated image can be downloaded from Zenodo (Han-
cock 2017), and the code to generate the test image and all
figures used in this paper can be found on the AegeanPa-
per2.0Plots GitHub repository.3

The observational data are taken from Hancock et al.
(2016a, b). We use just the 1997 epoch of observations orig-
inally observed as part of the Phoenix project (Hopkins et al.
1998). These data represent real observations, and include
calibration errors, uncleaned side-lobes, and a background
and noise that changes throughout the image. This data set
will allow us to test the performance of AEGEAN in good
but non-ideal conditions. The simulated and observational
images are shown in Figure 1.

2 https://github.com/PaulHancock/Aegean
3 https://github.com/PaulHancock/AegeanPaper2.0Plots
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Figure 1. Test data used in this paper. Upper: The simulated test image.
The colour scale has been chosen to exaggerate the large-scale background
emission. The injected sources appear as black points. Lower: An image
from the Phoenix deep field, epoch of 1997.

4 LEAST-SQUARES FITTING

The aim of least-squares minimisation is to minimise the
following target function:

T = (model − data)T (model − data) . (1)

Ordinary least squares is the best linear unbiased estima-
tor for data in which the errors have zero expectation and
the data are uncorrelated. Radio images have spatially cor-
related pixels and thus ordinary least squares is no longer
unbiased. The source models that are typically fit (elliptical
Gaussians) are non-linear models, and thus iterative methods
are required to perform the fit. Even with uncorrelated data,
fitting non-linear models results in parameters being biased
and correlated.

Knowing the degree to which the data are correlated, we
can alter the target function in Equation (1) to be

T ′ = (model − data)T C−1 (model − data) , (2)

where the matrix C is the covariance matrix. This expression
is unbiased for data distributed as a generalised multivariate
Gaussian. Equation (1) is correct when C = σ 2I, where I is
the identity matrix and σ 2 is the variance of the data. This
modification of the target function will remove the bias in-
troduced by having correlated data, but will not affect the
bias due to non-linear models. We will first discuss how a
covariance matrix can be incorporated into current minimi-
sation libraries (4.1), and then discuss ways to estimate the
uncertainty and bias in the resulting parameters (4.2.1).

4.1. Including the covariance matrix

One of most commonly used fitting libraries is MINPACK
(Moré et al. 1984). The MINPACK program LMFIT uses the
Lavenburg–Marquardt algorithm to perform non-linear least
squares fitting, with the target function as per Euation (1).
There is no functionality within the MINPACK library to
include a modified version of the target function as per Equa-
tion (2). The LMFIT function requires a pointer to a user-
generated function which must return the vector (model −
data), and it is the Euclidean norm of this vector that is then
minimised.

The problem that we are faced with is constructing a vector
X such that ||X|| = XTX = T′. With this modified vector, it is
then possible to use pre-compiled, debugged, optimised, and
well-tested code to fit our data.

4.1.1. Calculating the covariance matrix

The covariance of the data in a radio image is due to one
of two effects depending on the type of instrument used. A
single dish map will have pixels that are correlated due to the
primary beam of the instrument, whilst a map made from an
interferometer will have pixels that are correlated due to the
synthesised beam. In either case, the covariance matrix can
be easily calculated using knowledge of the primary and/or
synthesised beam. A typical single dish telescope has a pri-
mary beam that is well approximated locally by a Gaussian.
An interferometer will have a synthesised beam that is some
combination of sinc functions, depending on the (u, v) sam-
pling and weighting functions. Ideally, the inverse covariance
matrix would match the synthesised or primary beam, pro-
jected onto the pixel coordinates in the image. In many cases,
the synthesised beam can be approximated locally by an ellip-
tical Gaussian. For a Gaussian beam with shape parameters
of (σ x, σ y, θ ), we have a covariance matrix which is

Ci, j = exp
[− (δx sin θ + δy cos θ )2 /2σ 2

x

]
× exp

[ − (δx cos θ − δy sin θ )2 /2σ 2
y

]
,

δx = xi − x j,

δy = yi − y j . (3)
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The covariance matrix is thus real valued and symmetric.
The inverse of this matrix exists for all values of (σ x, σ y, θ );
however for large (σ x, σ y), the inverse matrix is numerically
unstable. In radio astronomy applications, common practice
is to use a restoring beam that has a full width half maxi-
mum of between 3–5 pixels, corresponding to a σ of between
∼1.5–2.2. For these values of σ , the covariance matrix is eas-
ily inverted.

In order to incorporate the inverse covariance matrix into
the LMFIT routine, we seek a matrix B such that (BX)TBX =
XTC−1X. This is true if BTB = C−1.

4.1.2. Calculating the matrix B

The required matrix B is a root of the matrix C−1, however
many such roots exist. For computational reasons, we also re-
quire that B is real valued. Since C−1 is real valued, then one of
its roots must also be real valued. Using eigen-decomposition,
we can construct a matrix Q of the eigen-vectors of C and a
diagonal matrix � of the eigen-values of C, such that

(Q�)−1Q� = C. (4)

The eigen-values of C are all positive so that we can create a
new matrix � such that

�i,i = 1√
�i,i

. (5)

This then gives the identity (Q�)−1Q� = C−1, which means
that B = Q� is a positive square root of the matrix C−1 as
required. The matrix B is unitary and real so that BT = B−1.
This choice of B then gives

(BX )T BX = X T BT BX = X T (Q�)−1Q�X = X T C−1X

as required.
In practice, the matrix C may have small negative eigen-

values, when the synthesised beam is large compared to the
pixel size, or when the number of pixels being fit is large. In
either case, the matrix � is modified to be

�i,i = 1√|�i,i|
. (6)

4.2. Parameter uncertainty and bias

The minimisation functions provided by MINPACK will re-
turn the parameter estimates that minimise the sum of the
squares of the vector X, as well as a variance matrix. If we
provide the matrix BX as described in the previous sections,
then the parameter estimates will not be biased by the corre-
lation in the input data. However, the returned variance (or
1σ error) estimates will not incorporate the effects of the cor-
related data. Here we discuss the additional uncertainty and
bias that is caused by having a non-linear model and corre-
lated data.

4.2.1. Uncertainty

The variance of the resulting fitted parameters is related to
the Fisher Information Matrix by σ 2

i = (
F−1

)
i,i. The Fisher

Information Matrix for a real-valued generalised Gaussian is
given by Van Trees (1947):

Fi, j = ∂G

∂xi
C−1 ∂G

∂x j
+ 1

2
tr

(
C−1 ∂C

∂xi
C−1 ∂C

∂x j

)
, (7)

where G is the model of interest (an elliptical Gaussian) and
C is the covariance matrix. If the covariance of the data is
independent of the model parameters xi, as is the case for
radio images, the above equation can be reduced to

Fi, j = ∂G

∂xi
C−1 ∂G

∂x j
= (

JT C−1J
)

i, j
, (8)

where J is the Jacobian. Thus, the new variance matrix is
related to the original variance matrix but with a contribution
from the (data) covariance matrix C. Correct estimation of
the error on each parameter means that we must replace the
variance matrix returned by MINPACK, with the modified
matrix (JTC−1J)−1. AEGEAN uses the covariance matrix to
estimate the uncertainties according to Equation (8).

We use the simulated test data (Section 3) to compare the
reported uncertainties with the deviation between the mea-
sured and true parameter values. For a population of mea-
surements, the z-score, defined as

	

σ
≡ measured − true

uncertainty
, (9)

will have mean of 0 and variance of 1 if the reported un-
certainties are accurately and precisely estimated. With the
simulated data, we have access to the true value of each pa-
rameter that is being fit for each source and thus it is possible
to determine the z-score distribution The z-score distribution
can then be used to determine the accuracy to which the un-
certainties are being reported.

We explore three methods of calculating errors: using the
Fisher information matrix [Equation (8)] with covariance ma-
trix, using the Fisher information matrix without the covari-
ance matrix (i.e. C = I), and the semi-analytic uncertainties
derived by Condon (1997). AEGEAN fits a model to the data in
pixel coordinates, which is then transformed into world (sky)
coordinates using the world coordinates system (WCS) mod-
ule from AstroPy (The Astropy Collaboration et al. 2013).
In the cases where the Equation (8) is used, the uncertainties
are calculated in pixel coordinates, and then transformed into
world (sky) coordinates. Condon (1997) describes the uncer-
tainties in both coordinates, and here we use their Equations
(21) and (41) to calculate the uncertainties in the world coor-
dinates directly, with a correction for the correlation between
data points. Figure 2 shows histograms of 	/σ for the posi-
tion, peak flux, and shape parameters for the three methods.

Figure 2 shows that the uncertainties in the shape parame-
ters are not well reported in any of the three methods explored.
For the position angle, this can be partially explained by the
fact that the position angle has a 2π ambiguity, and is also
not defined for circular sources. It is not yet understood why
the uncertainties for the semi-major and semi-minor axes are
not well described by any of the methods explored. For the
position and peak flux, the best method for estimating the
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Figure 2. A comparison of the accuracy to which the uncertainties are re-
ported by three different methods. Blue/orange distributions represent un-
certainties derived from the FIM using Equation (8) with or without the
inverse covariance matrix. The green distribution uses the method described
by Condon (1997). The black box indicates a standard deviation of units,
which occurs when the uncertainties are accurately reported. Distributions
narrower than the black box indicate that the reported uncertainties are too
large.

uncertainties is to use the covariance matrix, whilst not us-
ing the covariance matrix will underestimate the uncertainty,
and the description of Condon (1997) will overestimate the
uncertainty.

4.2.2. Parameter bias

Refregier et al. (2012) derive the expected covariance and bias
that occurs when using a least-squares algorithm to fit data
with a (non-linear) elliptical Gaussian model. They report a
parameter variance that is consistent with Equation (8), and
additionally report a parameter bias of

b[xi] = −1

2

(
F−1

)
i j

(
F−1

)
kl

B jkl + O (
SNR−4

)
, (10)

where Bijk is the bias tensor given by

Bi jk =
∑

p

∂G

∂xi

∂2G

∂x j∂xk
, (11)

where the subscript p indicates summation over all pixels.
Refregier et al. (2012) show that even in the case of uncor-
related data, to second order in SNR, the best fit position
parameters are covariant to a degree determined by the shape
parameters, the position and position angle are not biased,
the amplitude and major axis are biased high, and the minor
axis is biased low.

In an earlier work, Refregier & Brown (1998) outline a
calculation for the variance and bias of parameters of a non-
linear model in the presence of correlated noise. The expected
bias is due to two factors: the correlated nature of the data
and the non-linear nature of the model being fitted to the data.

Figure 3. The bias in fitting each of the six parameters as a function of mea-
sured signal-to-noise ratio. The peak flux density (Sp) has a small negative
bias above about 1 Jy representing an underestimate of the true flux by about
1%. The major axis is biased high as low SNR and then low at higher SNR,
whilst the minor axis is always biased high. The RA, Dec, and position angle
do not show any consistent biases. The inclusion of the inverse covariance
matrix reduces the bias for the major and minor axes at low SNR, but not by
a significant amount.

The inclusion of the inverse covariance matrix into the fitting
process should remove the bias due to the correlated nature
of the data, however the bias introduced by the non-linearity
of the source model will remain.

In Figure 3, we measure the bias in five of the model
parameters using the simulated data for both fitting methods.
The position angle bias is not shown. The bias is calculated
as a fraction of the measured value and as a function of the
measured SNR for the peak flux, semi-major, and semi-
minor axes. For the RA and Dec, the bias is reported as a
fraction of the fitted semi-major axis. We make the following
observations:

• The position of the sources shows no bias in either RA
or Dec to within 1% of the semi-major axis.

• The peak flux and the semi-major and semi-minor axes
all show a positive bias of 2–5% at SNR < 10. This bias
is not related to the fitting process and is an example of
the Eddington bias (Eddington 1913).

• The peak flux density has a negative bias that is seen
at a SNR of 102, representing a fractional difference of
<0.1%.

• The semi-minor axis shows no bias aside from the Ed-
dington bias, whilst the semi-major axis shows a residual
1% bias that persists to high SNR.
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• The 1% bias in the semi-major axis will mean that the
source area is also biased high, and that the calculated
integrated flux will be biased.

• The bias in the integrated flux (not shown) is also high
at low SNR but asymptotes to 0 bias at high SNR,
indicating that the peak flux and semi-major axis biases
cancel out at high SNR.

Figure 3 distinguishes between two fitting methods, with
and without the inverse covariance matrix. None of the pa-
rameters show significant difference in the bias when using
or not using the inverse covariance matrix. As noted previ-
ously, the bias due to the non-linearity of our source model
cannot be recovered by using the inverse covariance matrix,
whilst the bias due to correlated data can be. Thus, we con-
clude that the cause of bias in the non-linear least squares
fitting is dominated by the effects of the non-linear source
model. This example demonstrates the asymptotic behaviour
of maximum likelihood estimators: The Cramér–Rao bound
is met, and the estimator is unbiased, at high SNR but not
necessarily at low SNR. At low SNR, the Eddington bias is
dominant. The ability to calculate and apply a correction for
the bias induced by the spatial covariance of the data has been
included in AEGEAN but is not enabled by default.

5 BACKGROUND AND NOISE
ESTIMATION—BANE

Here we compare the background and noise estimation that
is performed by AEGEAN, and that by BANE. We denote the
two algorithms as zones (used by AEGEAN) and grid (used
by BANE).

The two algorithms described below share a number of
design choices. First, the size of the zone in the zones al-
gorithm and the box in the grid algorithm, are chosen to
have width and height that is 30 times the size of the syn-
thesised beam. This choice has been shown by Huynh et al.
(2012) to optimise the completeness and reliability of the
extracted compact source catalgoues. Second, the pixel dis-
tribution within a region is assumed to contain a contribution
from a large-scale background emission, a variance due to
noise (a zero mean Gaussian distribution), and real sources
(a roughly Poissonian distribution with a very long positive
tail). The background and noise properties are typically calcu-
lated as the mean and standard deviation of the pixel distribu-
tion, however this neglects the contribution from astrophys-
ical sources. Each of these three components are assumed
to vary across the image of interest. The goal of the zone
and grid algorithms is to estimate the slowly varying back-
ground component, the stochastic noise component, without
knowledge of, or contamination from, the sources of inter-
est. In the presence of real sources, efforts need to be made
to prevent the background and noise parameters from being
biased.

5.1. Zones algorithm

The background and noise estimation process that is per-
formed by AEGEAN is based on a zones algorithm. The zones
algorithm divides an image into some number of zones and
then computes the background and noise properties of each
zone. The pixels within a given zone are used to calculate the
25th, 50th, and 75th percentiles of the flux distribution. The
background is taken to be equal to the 50th percentile (the
median), whilst the noise is taken to be equal to the inter-
quartile range (IQR; 75th–25th percentile) divided by 1.349
(corresponding to 1σ if the pixels follow a Gaussian distri-
bution). Calculating the RMS from the IQR range reduces
the bias introduced by source pixels. These background and
noise properties are assumed to be constant over a zone, but
can vary from zone to zone. This approach is fast to compute,
is simple to implement, but will not capture noise and back-
ground variations that vary on spatial scales smaller than the
size of each zone.

5.2. Grid algorithm

An alternative algorithm is implemented by BANE and it
is similar to zones except that it takes a sliding box-car ap-
proach. The grid algorithm works on two spatial scales: an
inner (grid) scale and an outer (box) scale. The grid algorithm
calculates the background and noise properties of all pixels
within a box centred on a given grid point. The pixels within
a given box are subject to sigma clipping, whereby the mean
and standard deviation are calculated, values that are more
than 3σ from the calculated mean are masked, and the pro-
cess is repeated two times. Such sigma-clipping reduces the
bias introduced by source pixels, beyond that afforded by the
IQR approach. This is similar to the background calculation
that is used by SExtractor (Bertin & Arnouts 1996). The next
grid point is then selected and the process is repeated. Since
the grid points are separated by less than the size of the box,
the process naturally provides a somewhat smoothed version
of the zones algorithm. Once the background and noise prop-
erties have been calculated over a grid of points in the image,
a linear interpolation is used to fill in the remainder of the
pixel values. If the grid size is set to 1×1 pixels, then this al-
gorithm is equivalent to a box-car filter with sigma clipping.
Since radio images are spatially correlated on scales of the
synthesised beam, there is little loss of accuracy by increas-
ing the grid size to be 4×4 pixels (a typical synthesised beam
size. This small loss of accuracy will then reduce the number
of computations required by a factor of 16—greatly increas-
ing the speed of operation. The grid algorithm is slower but
more accurate than the zones algorithm, the speed and ac-
curacy can be balanced by adjusting the grid and box sizes.
In the case that the background is changing on spatial scales
smaller than the box size, the background and noise prop-
erties cannot be calculated accurately in a single pass. In
such cases, the background must first be calculated, and then
the noise can be calculated from the background subtracted
data.
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Figure 4. A demonstration of the difference between the AEGEAN and
BANE background and noise maps on the resulting detection threshold.
The figure shows a cross-section through an image along one of the pixel
axes: flux density as a function of location within the image. The blue line
represents the image data. The green and red lines represent the detection
threshold (background + 5σ ) as calculated using AEGEAN and BANE char-
acterisations of the background and noise. The difference in the two thresh-
olding techniques results in a false positive when using the AEGEAN method,
but no false positives when using the BANE method.

The background and noise maps can be stored in a com-
pressed format (not interpolated) and are automatically in-
terpolated at load time by AEGEAN. This compressed format
saves a large amount of storage space at a modest computa-
tion cost on load time.

5.3. Algorithm comparison

The zones and grid algorithms are compared in Figure 4 using
observational data. The example in question demonstrates
that the zones algorithm is, at best, only accurate in the centre
of each zone, and that towards the edge of the zone both the
background and noise become incorrect. The result of this
error is to admit false detections at a rate that is in excess
of what could be reasonably expected from simple Gaussian
statistics.

In Figure 5, we demonstrate the false detections that are
due simply to the inadequacies of the zones algorithm, using
the observational test real data taken from a single epoch of
the Phoenix deep field (Hopkins et al. 1998) studied by Han-
cock et al. (2016b). Figure 5 shows that the false detections
occur preferentially towards the edge of the image where the
sensitivity is decreasing rapidly due to primary beam effects.
In this area, the zones algorithm makes mistakes of the type
depicted in Figure 4, and close examination will show that the
false detections are indeed at the boundaries of a zone. The
background and noise can also be misrepresented in interior
image regions near to a bright sources or sources that are not
able to be well CLEANed. Since this local increase in noise is
much smaller than the box over which the noise properties are
calculated, there is an increased chance that side-lobes and

Figure 5. A comparison of two methods for calculating the RMS of an
image. Upper: The noise map calculated using the zones algorithm. Lower:
The noise map calculated using the grid algorithm. The red X’s represent the
location of spurious detections (false positives) due to inaccurate calculation
of the background and noise characteristics of the image. The yellow circle
denotes the false positive that is depicted in Figure 4.

clean artefacts will rise above the calculated local rms. In a
region approximately the size of the calculation box the local
rms will be artificially high, meaning that even away from the
troublesome source the completeness of the extracted cata-
logue will be reduced. A typical approach to avoiding the
problems of quickly increasing noise is to reduce the area
of interest to exclude the outer regions of an image such as
shown in Figure 5. Mitigating the effects of the false posi-
tives near bright sources in the interior of the image can be
achieved with better (u, v) coverage, more careful cleaning,
or simply be excising a small area around the problematic
sources. These approaches are effective, however they re-
duce the sky area surveyed. For a given amount of telescope
observing time, a reduction in the sky area covered is equiva-
lent to a reduction in sensitivity. Better background and noise
estimation is therefore equivalent to an increase in observ-
ing sensitivity. For studies interested in detecting transient
sources in the image domain, the reduction of false positives
translates to a smaller number of false transient candidates,
an increased confidence in the transients that are found, and
reduced load on the research team.

5.4. Caveats and future work

In the GLEAM survey paper (Hurley-Walker et al. 2017),
it was noted that BANE was not correctly representing the
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noise properties of the images, and that this was due to the
sigma clipping that BANE implements. Whilst this is true, it
is not the whole story. The GLEAM survey is sensitivity lim-
ited by a combination of side-lobe and classical confusion,
resulting in a pixel distribution which is skewed towards
positive values. Even after sigma clipping, this skewed
distribution means that the standard deviation that BANE
calculates is not just the image noise, but a combination of
the thermal noise plus a contribution from confusion. The
effects of confusion are reproduced in the simulated test
image, where the number of sources per synthesised beam
increase towards the south celestial pole. In this region of
the test image, BANE is not able to accurately reproduce the
background and noise properties due to confusion. Currently,
BANE makes little use of the WCS header information
beyond determining the number of pixels per synthesised
beam. The grid/box size that is chosen by BANE is appro-
priate for the ‘centre’ of the image. For sinusoidal (SIN)
projected images, this choice need not change as the beam
sampling is typically constant over the entire image, however
for large images and other projections this is no longer the
case. Indeed the simulated image that was described in
Section 3 has a PSF that varies over the image, and so the
beam sampling changes accordingly. The result is that the
grid/box size is not well chosen for the entire image, and
there is a possibility that the spatial filtering will break down,
and the separation of background, noise, and signal, can
degrade. This is an issue that is currently under development
and will be addressed in future versions of BANE.

6 VARIABLE POINT SPREAD FUNCTION

A typical radio image has a PSF which is equal to the synthe-
sised beam, and which is constant across the field of view. At
frequencies below ∼150 MHz, the ionosphere can induce a
lensing effect which can decouple the PSF from the synthe-
sised beam in a manner similar to seeing in optical images (as
seen by Loi et al. 2016). Additionally, stacking or mosaicking
of images which are taken under different ionospheric condi-
tions can introduce a blurring effect, due to uncorrected iono-
spheric shifts (as seen by Hurley-Walker et al. 2017). A radio
interferometer will have a synthesised beam that changes with
elevation angle. In a SIN projection with the observing phase
centre at the projection centre, the sky to pixel mapping and
the synthesised beam will both transform in the same way,
at the same rate, and thus the synthesised beam will remain
constant in pixel coordinates. For small fields of view, the syn-
thesised beam can be approximated as constant. However, for
large fields of view, one or more of the above effects will re-
sult in a position-dependent PSF that must be accounted for.
Failure to account for a direction-dependent PSF will result
in a biased integrated or peak flux measurement, depending
on how the flux calibration is calculated. In order to achieve
a proper accounting of the peak flux and shape (and thus in-
tegrated flux) of a source over the full field of view, source
characterisation must be able to use a variable PSF.

Figure 6. An example PSF map demonstrating the variation of semi-major
axis size as a function of position on the sky. The observations contributing
to this image are meridian drift scans and thus the semi-minor axis of the
synthesised beam should not change with zenith angle. The variations that
are seen here are due to differing ionospheric conditions and a blurring
effect that is introduced in the mosaicking process. These data drawn from
Hurley-Walker et al. (2017).

In order to allow AEGEAN to incorporate a variable PSF,
we have implemented a PSF model that works in one of two
ways. For images that do not suffer from ionospheric blurring,
the shape of the synthesised beam can be calculated from the
zenith angle, which in turn can be calculated from the latitude
of the array. In this case, a user only needs to indicate either
the telescope being used or its latitude. AEGEAN ‘knows’
the latitude of many radio interferometers and so the user
can for example use the option ––telescope=MWA. For
images that have a position-dependent PSF that is not simply
zenith angle dependent, AEGEAN can be supplied with an
auxiliary map that gives the semi-major/semi-minor axes and
position angles over the sky. The PSF map is a FITS format
image, with three dimensions. The first two dimensions are
position (RA/Dec), and the final dimension represents the
shape of the PSF in degrees (semi-major, semi-minor, PA).
There is no need for the PSF map to be in the same projection
or resolution as the input image. Figure 6 shows the PSF
map for one week of the GLEAM survey. The AegeanTools
package currently does not provide any mechanism by which
a PSF map can be produced, however see Hurley-Walker et al.
(2017) for an example of how this can be done.

To the best of our knowledge, AEGEAN is currently the
only source finding software that is capable of implementing
this feature, despite the fact that it will be critically important
for source characterisation with the SKA-Low.
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Figure 7. An example of the source regrouping that is performed by
AEGEAN to ensure that overlapping sources are jointly fit. An ellipse repre-
sents the location and shape of each component. Three components in the
red/lower island are jointly fit in both the blind and prioritised fitting method.
The yellow/upper component is fit separately.

7 PRIORITISED FITTING

Fitting uncertainties are significantly reduced when the num-
ber of free parameters are also reduced. If a source is known to
exist at a given location, then a user may want to ask ‘What
flux is consistent with a source with a given location and
shape?’ The traditional approach of recording an upper limit
makes statistical analysis difficult, and does not use all of the
available data. A new method has been implemented that will
allow source characterisation to be achieved independent of
the source finding stage. This process is analogous to aper-
ture photometry in optical images, and since it relies on prior
information, we use the term prioritised fitting. Prioritised
fitting will result in measurements with associated uncertain-
ties, rather than a mix of measurements and limits, making it
possible to use a greater variety of statistical methods when
analysing the data.

When two or more sources are near to each other, they
can become blended. When fitting for the flux of a source
that is near to another source, the fitted flux will be biased.
In order to avoid this blending bias, sources which are near
enough to become blended are grouped and jointly fit. By
default, sources which overlap each other at the half power
point (have overlapping ellipses) are put into the same group.
The model that is fit contains all the sources within a group.
Figure 7 shows an example of the regrouping and prioritised
fitting.

The pixels that are included in the fit are selected based
on their distance from the source to be fit and the size of
said source. The selection of pixels for prioritised fitting is
thus different from that which occurs during the normal blind
find/characterise operation of AEGEAN. This choice of pixels
allows for sources that are below a nominal 5σ detection

Figure 8. A comparison of the peak flux as measured by AEGEAN in the
blind source finding mode SB or the prioritised fitting mode SP, using the sim-
ulated test image. The fluxes agree to within their respective uncertainties,
with a variance of just 2%.

threshold to be measured. For this reason, it is possible for
the prioritised fitting routine to return a negative flux value.
Sources that are poorly fit initially, or not well described by an
elliptical Gaussian will be poorly measured by a prioritised
fit. Due to the possibility that different pixels may be used in
the blind and prioritised fitting, the resulting fluxes may differ.
However, our tests show that sources that are initially well
fit have a prioritised peak flux that is identical to within the
reported errors. Figure 8 compares the flux that is measured
by AEGEAN in a blind source finding mode (the default), as
compared to that measured with the prioritised fitting mode
where only the flux is fit.

Prioritised fits are treated in the same way as the regular
(blind) detections. This means that by default the inverse co-
variance matrix is used in the fitting, the errors are measured
according to Section 4.2.1, and the results are reported in
the same tabular formats. AEGEAN generates a universally
unique identifier (UUID) for each source in the blind source
finding stage, and then copies this UUID during the priori-
tised fitting. Thus, the light curves or spectral energy distri-
butions can be easily reconstructed by doing an exact match
on the UUID key. Matching on UUID instead of position will
avoid the many problems and uncertainties associated with
cross-matching catalogues.

Since prioritised fitting is a two-step process (find and then
remeasure), it is now possible for AEGEAN to use one image
as a detection image, and use a separate image as a measure-
ment image. The following use cases come immediately to
mind: variability, spectral studies, and polarisation work. In
searching for radio variability, a deep image can be created
with all the available data from which a master catalogue
can be created. Producing light curves for all the sources
present in the deep image is then simply a matter of doing
a prioritised fit on each image from each epoch, using the
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master catalogue as an input. A similar approach can be taken
when working with images at multiple frequencies: a single
image is chosen as the reference image, and then source fluxes
are measured in each of the other images, producing a con-
tinuous spectral energy distribution for every source. This is
the approach taken for the GLEAM survey (Hurley-Walker
et al. 2017). Finally, even for a single epoch and frequency,
prioritised fitting can be used to measure polarised intensity
in stokes Q, U, and V images, for sources detected in a stokes
I image.

In each of the use cases outlined above, the advantage of
prioritised fitting is that every source of interest is assigned
a measurement and uncertainty. This means that the result-
ing light curves, spectral energy distributions, or polarisation
states, do not contain limits or censored data. The measure-
ment of source flux may become negative in the low SNR
regime, and while this may not be physically meaningful, it
is statistically meaningful, and such measurements should be
included, for example, when fitting a model spectral energy
distribution (Callingham et al. 2017).

Chhetri et al. (2017) recently used AEGEAN to find sources
in an image representing the standard deviation of a data
cube. These variable sources were then characterised by us-
ing prioritised fitting to extract their mean fluxes from an
image formed from the mean of the data cube. In this way,
the modulation index of the scintillating component was able
to be separated from non-scintillating components in sources
which may have arcminute scale structure.

8 OTHER SOURCE MODELS

AEGEAN was designed to find and characterise compact
sources. AEGEAN identifies islands of pixels using a signal
to noise threshold. This threshold is applied on the absolute
value of the SNR, and thus both positive and negative sources
are identified in the source finding phase. By default, only
sources with positive SNR are characterised and reported, but
AEGEAN is also able to characterise negative sources. The
option ––negativewill turn on this feature and allow, for
example, both left and right circularly polarised sources to
be identified in Stokes V images, in a single pass.

AEGEAN finds sources based on islands of pixels (Han-
cock et al. 2012b), fitting one or more components to each of
these islands. Diffuse or resolved sources are not well fit by
AEGEAN, however the islands that are identified can be char-
acterised in terms of their position, area, angular extent, and
integrated flux. The option ––island will cause AEGEAN

to also report the parameters of pixel islands, both positive
and negative. Island properties are written to a separate cata-
logue, which can be linked to the source catalogue using the
island column. For both island and component catalogues,
AEGEAN can write a DS9 region file that identifies exactly
which pixels within the image contributed to each island.
Figure 9 shows an example of a DS9 visualisation of an is-
land that was characterised by AEGEAN.

Figure 9. Example of the island characterisation that is available in
AEGEAN. DS9 is used to visualise the extent and location of the island.
The red ellipses show the components that were fit with (island, component)
labels. The green borders show the pixels that were included in each island
with label of the island number. The island number in the islands catalogue
can be used to identify which components were fit to this island from the
components catalogue. The yellow line indicates the largest angular extent
of the island.

9 SUBIMAGE SEARCHING WITH MIMAS

AEGEAN suffers from a defect that occurs when a large re-
gion of an image is included in a single island. The covariance
matrix grows as the square of the number of pixels within
an island, and the number of sources also increase. Both of
these effects cause the fitting of an island to take a very large
amount of time, and can cause a crash. There are two solu-
tions to this problem. The first solution is to mask the pixels in
an image which would cause a large island to be found. This
is typically in regions towards the edge of an image where
the noise becomes high, near bright sources that are not able
to be CLEANed completely, or around extended or resolved
sources such as within the Galactic plane. A second solution
is to leave the image untouched, but to provide a masking
file to AEGEAN. The masking file will cause AEGEAN to ig-
nore any islands whose pixels do not fall within the masking
region. The second method has the advantage that these re-
gions can be calculated in advance, and a single such mask
can be used for many images. By separating the image from
the mask, it also means that users no longer need to have
masked and unmasked versions of their data on disk. This
is the method used by Meyers et al. (2017) to avoid finding
sources near the edge of their survey images. The format of
the mask file is a pickle of a python object that is created
using the Multi-resolution Image Masking tool for AEGEAN

Software (MIMAS). Figure 10 shows an example of the use
of such a mask region to exclude the high noise regions from
the observational test image.

MIMAS uses a Hierarchical Equal Area isoLatitude Pix-
elization of a sphere (HEALPix,4 Gorski et al. 2004), to rep-
resent the sky as a set of pixels. Storing sky areas as sets

4 healpix.sourceforge.net
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Figure 10. Example use of a region mask to constrain the area over which
source finding will be performed. The background image is an rms map
generated by BANE, with a linear colour scale from 0.1 to 1 mJy beam−1.
The black diamonds show the masking region, which are represented by
HEALPix pixels of different order. Only islands of sources which overlap
the mask region are fit by AEGEAN.

of HEALPix pixels make is possible to combine regions us-
ing binary set operations. Currently, MIMAS supports union
and difference operations from the command line, but the
underlying module (AEGEANTOOLS.REGIONS) is able to
support all the set operations provided by the built in SET

class. Python pickle files are not amenable to easy visuali-
sation, so MIMAS provides two methods for visualisation.
First is a Multi-Order Coverage map (MOC5) as a .FITS file.
These MOC files can be easily visualised and manipulated by
the Aladin viewer (Bonnarel et al. 2000). A second method
of visualisation is a region file that is readable by DS9.

10 SUMMARY

We have addressed the issue of fitting non-linear models to
correlated data as it applies to radio astronomy images. We
have developed a method that accounts for the correlated na-
ture of the data in the fitting process, but found that the result-
ing fit parameters were not significantly different as a result.
The reported parameter uncertainties and calculated biases
were presented. We find that including the data covariance
matrix in the Fisher information matrix gives the best esti-
mate of the uncertainty in position and peak flux, whilst none
of the three methods investigated were able to accurately re-
port uncertainties for the shape parameters. The parameter
biases that we detect are dominated by the non-linear nature
of the source model and not the data covariance. AEGEAN

has been modified to use the data covariance matrix in the
reporting of parameter uncertainties.

5 www.ivoa.net/documents/MOC

We presented an algorithm for estimating the background
and noise properties of an image and compared it with more
simplistic methods currently in use. We find that the back-
ground and noise images created by BANE result in a lower
false detection rate, especially in the case where the back-
ground or noise properties are changing quickly within an
image.

We presented a method of prioritised fitting that allows for
a more statistically robust estimate of the flux of a source
even when the source is below the classical detection thresh-
old. This prioritised fitting simplifies the analysis of light
curves and spectral energy distributions by replacing upper
limits with a statistically meaningful measurement and un-
certainty. AEGEAN is able to perform prioritised fitting with
a choice of the number of degrees of freedom, and includes
a regrouping algorithm that ensures that overlapping sources
and components are fit jointly.

Wide-field imaging requires that the local PSF be allowed
to vary across the image in a possibly arbitrary manner. We
have provided description of how to create a FITS format
image that will describe the changing PSF, and AEGEAN is
able to use such an image to correctly characterise sources.

We have developed a method for describing regions of sky
of arbitrary complexity, based on the HEALPix projection of
the sphere. This method is made available via the MIMAS
program, and the region files that it can produce can be used
to constrain the area of sky over which AEGEAN will find
sources.

The overall development path for AEGEAN and BANE
has been driven by the current needs of radio astronomers
and the anticipated future needs of astronomers working on
the SKA.

11 FUTURE DEVELOPMENT PLANS

In order to make better use of the multiple cores available on
desktop and HPC machines, AEGEAN has been modified to
spread the process of fitting across multiple cores. BANE was
created with a parallel-processing capability from the outset.
The multi-processing for both AEGEAN and BANE is cur-
rently made possible via the PPROCESS module6. Spreading
the processing across multiple cores is done by forking, and
thus the memory usage is multiplied by the number of pro-
cesses, and there is no capability for spreading across multiple
computing nodes within an HPC environment. Work is under-
way to migrate to an OpenMPI7-based approach which will
reduce the total memory usage, and allow the processing to
be spread across multiple nodes within an HPC environment.
With the many new HPC facilities offering GPU nodes as
well as CPU nodes, there is significant motivation for a GPU
implementation of both AEGEAN and BANE and expertise
is being sought for such an implementation.

6 pypi.python.org/pypi/pprocess
7 www.open-mpi.org
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BANE currently works with a square grid that is constant
over an image. The ideal grid size is dependent on the image
PSF (Huynh et al. 2012) and so we are working on a method
by which the grid and box size that is used by BANE will
be able to also scale with the image PSF. This development
will further improve the performance of AEGEAN via more
accurate background and noise models.

The intended use of AEGEAN is for continuum images and
thus works only on a single image at a time. Source finding
and source characterisation are two distinct tasks, and can
be performed on separate images. We plan to develop such
a capability for AEGEAN such that source finding can be
completed on a detection image, and then characterisation on
a separate image, or sequence of images. This will be a hybrid
of the current blind finding/characterisation and prioritised
fitting that AEGEAN is able to achieve.

The current ideology that is adopted by AEGEAN and
BANE is that the background, noise, and sources are all in-
dependent of each other. This is true of compact continuum
images which have been well cleaned. However, image of po-
larised emission are inherently positive definite, and have a
non-Gaussian noise distribution, whereby the noise and sig-
nal are not combined linearly, but in quadrature. Thus, the
true estimation of the image noise requires knowledge of
the sources within the image. This suggests that the back-
ground and noise estimation needs to be performed before or
in conjunction with the source finding and characterisation
process.

A common user request is for AEGEAN to be able to find
sources in image cubes similar to the capability of Duchamp
(Whiting & Humphreys 2012). An adjustment to the source
model to include a spectral index, and possibly spectral cur-
vature is a first step towards meeting this goal. Image cubes
that have a PSF that changes significantly with frequency are
now being produced by instruments such as the MWA, which
have a large fractional bandwidth. A PSF that changes with
frequency can be characterised in a manner similar to that
described in Section 6, by adding an additional dimension to
the data.
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Additional Software provided by AegeanTools

AEGEAN, BANE, and MIMAS, are all part of the AegeanTools
library. There are additional scripts available as part of this library
that are useful and are discussed briefly below.

A AERES

AERES is a program that will compute the a residual map when
given an input image and a catalogue of sources. AERES was cre-
ated to help test and verify the performance of AEGEAN but has
been found to be useful for other purposes, and has thus been made
available as part of the AegeanTools package. The intention is that
the input catalogue was created by AEGEAN on the input image. In
order to reduce the computational cost of modelling sources, source
models are only computed over a small subset of the entire image.
The sources can be modelled down to either a given fraction of

their peak flux, or to a given SNR (default is SNR = 4), a choice
which can be controlled by the user with the ––frac or ––sigma
options.

Alternative uses for AeRes include the ability to insert model
sources into an image using the ––add option. The simulated test
image discussed in Section 3, was constructed in this manner. Alter-
natively, sources can be masked (pixels set to blank) from an input
image using the ––mask option.

Not all of the columns from the AEGEAN catalogue format are
used by AERES. For users wishing to create their own catalogue
outside of AEGEAN, the following columns are required:

• ra (°)
• dec (°)
• local_rms (Jy)
• peak_flux (Jy)
• a (arcsec)
• b (arcsec)
• PA (°)

All other columns may be ignored or set to Null values.

B SR6

As mentioned in Section 5, BANE is able to output compressed
versions of the background and noise maps. These maps are sig-
nificantly smaller than the normal output maps, and differ only in
the fact that the final interpolation has not been performed. SR6
(Shrink Ray 6) is a helper tool that was initially created to enable a
user to take a background or noise map created by BANE and con-
vert between the compressed and non-compressed versions. The
decompression of an already compressed file is done using linear
interpolation between pixels on a grid. The compression of a map
is implemented as decimation, where by every Nth pixel in a grid
is saved. The parameters of the initial image and the compression
state are stored in the FITS header with custom keywords of the
form BN_XXXX. These same keywords are used when BANE is in-
structed to write a compressed output. AEGEAN is able to recognise
these keywords upon loading a file and, when present, the interpo-
lation of a background or noise image will be done at load time.
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