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Abstract

In this paper we study the moment generating function order and the new better than used
in the moment generating function order (NBUmg) life distributions. A closure property
of this order under an independent random sum is deduced, and stochastic comparisons
among the block replacement policy, the age replacement policy, the complete repair
policy, and the minimal repair policy of an NBUmg component are investigated.
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1. Introduction and preliminaries

Stochastic orders and ageing properties play an important role in reliability theory, survival
analysis, and other fields. Lots of stochastic orders and ageing properties have been studied in
the literature; see, e.g. Shaked and Shanthikumar (2007), Marshall and Olkin (2007), Lai and
Xie (2006), Müller and Stoyan (2002), and Barlow and Proschan (1981) for comprehensive
discussions.

As is well known, Laplace transforms as well as Laplace transform orders are widely applied
in engineering, economics, actuarial science, etc. In reliability theory, they are utilized to define
ageing concepts; for example, Wang (1996), Belzunce et al (1999), and Yue and Cao (2001)
independently studied NBULt (new better than used in the Laplace transform order), which is
characterized as a Laplace transform order between the residual lifetime and the total lifetime,
and forms a nice extension to the NBU (new better than used) order. Klefsjö (1983) proposed
the L class, which is characterized as the Laplace transform order between the lifetime and the
exponential life with equal expectation, and yields an extension to the class HNBUE (harmonic
new better than used in expectation). However, through an example of a life with failure rate
tending to 0 as time goes to ∞, Klar (2002) showed that the L class may not be a reasonable
notion for positive ageing. Subsequently, Klar and Müller (2003) introduced the moment
generating function (MGF) order and studied the M class, which was proved there to be a more
reasonable class of life distributions with positive ageing. Recently, Li (2004) further proved
that the NBUmg class was closed under the increasing star-shaped transformations, and that the
M class was closed under both convex linear combination and geometric compounding.
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In this paper we will make a further study along this line of research. In Section 2 we
investigate the closure property of the MGF order under a random sum of independent random
lifetimes, which generalizes that of the independent and identical lifetimes in Klar and Müller
(2003). In Section 3 we conduct stochastic comparisons among the block replacement policy,
the age replacement policy, the complete repair policy, and the minimal repair policy of a
component with NBUmg lifetime, and find that both the block replacement policy and the age
replacement policy diminish the number of failures of the unit in the MGF order sense.

For ease of reference, let us recall some important concepts of stochastic orders and ageing
properties, which will be discussed in the sequel. Throughout this paper, all random variables
are implicitly assumed to be nonnegative with common left endpoint 0 and expectations are
always assumed to be finite when used.

For two random variables X and Y with respective distributions F and G and survival
functions F̄ = 1 − F and Ḡ = 1 − G, their respective MGFs are defined as, for all s ≥ 0,

�X(s) =
∫ ∞

0
esx dF(x), �Y (s) =

∫ ∞

0
esy dG(y).

Based on the MGF, a stochastic order may be defined as follows.

Definition 1.1. (Klar and Müller (2003).) A random variable Y is said to be larger than X in
the MGF order (denoted by X ≤mgf Y ) if E[esY ] is finite for some s > 0 and �X(s) ≤ �Y (s)

for all s ≥ 0.

Let Xt = [X − t | X > t] be the residual life of a unit with life X at age t ≥ 0. Then, it
has the survival function F̄t (x) = F̄ (t + x)/F̄ (t) for x, t ≥ 0. By a comparison between the
residual life and the total lifetime, quite a lot of ageing notions may be introduced based on
various stochastic orders. In this paper we pay attention to the ageing notion based on the MGF
order.

Definition 1.2. (Klar and Müller (2003), Li (2004).) A random variable X belongs to the class
M if there exists some exponential random variable Y such that E X = E Y and X ≤mgf Y ; X

is said to be in the class NBUmg if Xt ≤mgf X for all t ≥ 0.

Both M̄ and NWUmg (new worse than used in the MGF order) may be defined by reversing
the corresponding inequalities above. It is easy to verify that X is NBUmg if and only if∫ ∞

0
esxF̄ (x + t) dx ≤ F̄ (t)

∫ ∞

0
esxF̄ (x) dx for all t, s ≥ 0, (1.1)

or, equivalently,

(1 − est F̄ (t))

∫ ∞

0
esuF̄ (u) du ≤

∫ t

0
esuF̄ (u) du for all t, s ≥ 0. (1.2)

2. Closure under a random sum

Let M be the random number of shocks that occur up to time t , and let Xi be the random
damage inflicted by the ith shock. Then

∑M
i=1 Xi is the total damage that has accumulated

by time t . Klar and Müller (2003) noted that the MGF order was closed under both the sum
of independent components and the random sum of independent and identically distributed
components. Theorem 2.1 below presents the closure property of this order under a random
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sum of independent but nonidentically distributed components; it asserts that, in the sense of
MGF order, increasing either the number of shocks or the damage inflicted by each shock will
increase the total damage accumulated.

Theorem 2.1. Suppose that {Xi}∞i=1 and {Yi}∞i=1 are mutually independent random variables,
and that M and N are integer-valued random variables independent of {Xi}∞i=1 and {Yi}∞i=1. If
M ≤mgf N and there exists a sequence of independent and identical random variables {Zi}∞i=1
such that Xi ≤mgf Zi ≤mgf Yi for i ≥ 1, then

∑M
i=1 Xi ≤mgf

∑N
i=1 Yi .

Proof. Define �M(z) = E[zM ] and �N(z) = E[zN ] with z ≥ 1. Since Xi ≤mgf Zi for all
i ≥ 1, it holds that �Xi

(s) ≤ �Zi
(s) for all s ≥ 0, and, thus,

E

[
exp

(
s

M∑
i=1

Xi

)]
=

∞∑
n=0

P(M = n) E

[
exp

(
s

M∑
i=1

Xi

) ∣∣∣∣ M = n

]

=
∞∑

n=0

P(M = n) E

[
exp

(
s

n∑
i=1

Xi

)]

=
∞∑

n=0

P(M = n)

n∏
i=1

�Xi
(s)

≤
∞∑

n=0

P(M = n)

n∏
i=1

�Zi
(s)

=
∞∑

n=0

P(M = n)�n
Z1

(s)

= �M(�Z1(s)). (2.1)

Similarly, Zi ≤mgf Yi for all i ≥ 1 implies that, for all s ≥ 0,

�N(�Z1(s)) ≤ E

[
exp

(
s

N∑
i=1

Yi

)]
. (2.2)

On the other hand, it is evident that M ≤mgf N if and only if �N(z) ≥ �M(z) for all z ≥ 1.
Combining (2.1) and (2.2), we have, for all s ≥ 0,

E

[
exp

(
s

M∑
i=1

Xi

)]
≤ E

[
exp

(
s

N∑
i=1

Yi

)]
.

This is just
∑M

i=1 Xi ≤mgf
∑N

i=1 Yi , completing the proof.

Example 2.1 below shows that the condition Xi ≤mgf Zi ≤mgf Yi in Theorem 2.1 cannot be
relaxed to Xi ≤mgf Yi .

Example 2.1. Suppose that M and N have distributions

P(M = 1) = 0.1, P(M = 2) = 0.3, P(M = 3) = 0.6,

P(N = 1) = 0.2, P(N = 2) = 0.1, P(N = 3) = 0.7.
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It is easy to evaluate

�M(z) = 0.1z + 0.3z2 + 0.6z3 and �N(z) = 0.2z + 0.1z2 + 0.7z3 for z ≥ 1,

and, therefore, �N(z)−�M(z) = 0.1z(z2−2z+1) ≥ 0 for any z ≥ 1. Hence, �M(z) ≤ �N(z)

for any z ≥ 1. That is, M ≤mgf N .
Consider two independent binary sequences {Xi}∞i=1 and {Yi}∞i=1 with

P(Xi = 1) = pi = 1 − P(Xi = 0) and P(Yi = 1) = qi = 1 − P(Yi = 0)

such that 0 ≤ pi ≤ qi ≤ 1 for i = 1, 2, . . .. It is easy to verify that

�Xi
(z) = (z − 1)pi + 1 ≤ (z − 1)qi + 1 = �Yi

(z) for z ≥ 1,

which reduces to Xi ≤mgf Yi for i = 1, 2, . . .. It is obvious that, for p1 = q1 = 0.9,
p2 = q2 = 0.8, p3 = 0.1, and q3 = 0.11, there are no independent and identical Z1, Z2, and
Z3 such that Xi ≤mgf Zi ≤mgf Yi for i = 1, 2, 3.

On the other hand, for z ≥ 1,

E[z
∑M

i=1 Xi ] =
3∑

n=1

P(M = n) E[z
∑M

i=1 Xi | M = n]

=
3∑

n=1

P(M = n) E[z
∑n

i=1 Xi ]

=
3∑

n=1

P(M = n)

n∏
i=1

�Xi
(z)

= 0.1�X1(z) + 0.3�X1(z)�X2(z) + 0.6�X1(z)�X2(z)�X3(z).

Similarly, for z ≥ 1,

E[z
∑N

i=1 Yi ] = 0.2�Y1(z) + 0.1�Y1(z)�Y2(z) + 0.7�Y1(z)�Y2(z)�Y3(z).

Thus, we have

E[z
∑M

i=1 Xi ]|z=2 = 3.4732 > 3.379 34 = E[z
∑N

i=1 Yi ]|z=2.

This invalidates
∑M

i=1 Xi ≤mgf
∑N

i=1 Yi .

To end this section, let us present an interesting application of Theorem 2.1.
Consider a device subject to a sequence of shocks arriving at random according to a counting

process with either interarrivals {Xi}∞i=1 or interarrivals {Yi}∞i=1 with E Xi = E Yi for i =
1, 2, . . .. Let N1 and N2 be the corresponding random numbers of shocks from which the
device may survive. Note that N1 and N2 are assumed to be independent of the interarrival
times of the shocks. Then the corresponding lifetimes of the device are L1 = ∑N1

i=1 Xi and
L2 = ∑N2

i=1 Yi .

Corollary 2.1. Suppose that Xi ∈ M and Yi ∈ M̄ for i = 1, 2, . . .. If N1 ≤mgf N2 then
L1 ≤mgf L2.

Proof. Since Xi ∈ M, Yi ∈ M̄, and E Xi = E Yi = µ for i = 1, 2, . . ., it holds that
Xi ≤mgf Zi ≤mgf Yi ; here the independent and identical Zis have exponential distribution
with mean µ. Thus, the desired result follows immediately from Theorem 2.1.

https://doi.org/10.1239/jap/1294170509 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1294170509


The moment generating function order 927

3. Repair and replacement policies

In this section we present stochastic comparisons among the block replacement policy,
the age replacement policy, the complete repair policy, and the minimal repair policy of a
component with NBUmg life distribution. In what follows, the distribution of that component
will be denoted by F .

In the complete repair policy, a failed unit is replaced with a new identical unit, and, thus,
a complete repair policy is characterized as a renewal process {N(t), t ≥ 0} with the time of
interarrivals being the random lifetime of the component. We denote by N(t), τi, and Ti the
number of renewals in [0, t], the time interval between the (i − 1)th and ith renewals, and the
arrival time of the ith renewal, respectively. In the minimal repair policy, a failed unit is repaired
to its condition just prior to failure. For a minimal repair policy, denote by N(m)(t), τ

(m)
i , and

T
(m)
i the number of minimal repairs up to time t , the time interval between the (i − 1)th and

ith minimal repair, and the arrival time of the ith minimal repair, respectively. It is well known
that {N(m)(t), t ≥ 0} is a nonhomogeneous Poisson process.

Under a block replacement policy, a replacement is made whenever a failure occurs at
specified times k� with � ≥ 0 and k = 1, 2, . . .. Let {N(b)(t, �), t ≥ 0} be the counting process
related to the number of failures under a block replacement policy with planned replacement
times k�, k = 1, 2, . . .. Denote by N(b)(t, �), τ

(b)
i , and T

(b)
i the number of failures in [0, t],

the time interval between the (i − 1)th and ith failures, and the arrival time of the ith failure
under a block replacement policy, respectively. In the context of an age replacement policy,
a unit is either replaced upon failure or upon reaching a specified age �, depending on which
event occurs first. In a similar way, denote by N(a)(t, �), τ

(a)
i , and T

(a)
i the number of failures

in [0, t], the time interval between the (i − 1)th and ith failure, and the arrival time of the ith
failure under an age replacement policy, respectively. It should be noted here that the quantities
N(b)(t, �) and N(a)(t, �) do not count planned replacements, only replacements due to failures.

In the literature, some stochastic orders have been employed to compare counting processes.
For example,Yue and Cao (2001) compared counting processes in the Laplace transform order,
and Belzunce et al. (2005) compared counting processes in terms of the increasing convex
order. Here, we focus on comparing counting processes in terms of the MGF order.

Definition 3.1. Let {N1(t), t ≥ 0} and {N2(t), t ≥ 0} be two counting processes, with arrival
times {Rn, n ≥ 1} and {Sn, n ≥ 1}, respectively. If Rn ≥mgf Sn for all n ≥ 1, or, equivalently,∫ ∞

0
est P(Rn > t) dt ≥

∫ ∞

0
est P(Sn > t) dt, s > 0, n = 1, 2, . . . , (3.1)

then {N1(t), t ≥ 0} is said to be smaller than {N2(t), t ≥ 0} in the MGF order, denoted as
N1(t) ≤mgf N2(t).

In light of the equivalence between {Rn > t} and {N1(t) < n}, (3.1) may be rephrased as∫ ∞

0
est P(N1(t) < n) dt ≥

∫ ∞

0
est P(N2(t) < n) dt for all s > 0 and n = 1, 2, . . ..

When comparing between the complete repair policy and the minimal repair policy, Block
et al. (1990) proved that N(t) ≤st N(m)(t) for t ≥ 0 if the underlying life distribution F is
NBU. Here, we present a parallel version for NBUmg life distributions.

Theorem 3.1. If the underlying distribution F is NBUMG then N(t) ≤mgf N(m)(t) for all t ≥ 0.
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Proof. By Definition 3.1, we only need to prove that Tn ≥mgf T
(m)
n , or, equivalently,∑n

i=1 τi ≥mgf
∑n

i=1 τ
(m)
i for n = 1, 2, . . .. In view of Theorem 2.2 of Klar and Müller (2003),

it suffices to show that τi ≥mgf τ
(m)
i for all i = 1, 2, . . ..

Let us denote by Gj(t), t ≥ 0, the distribution function of τ
(m)
j , j = 1, 2, . . .. Obviously,

G1 = F . When i > 1, the following recurrent relations are valid for t ≥ 0:

Gi(t) = P(τ
(m)
i > t)

=
∫ ∞

0
· · ·

∫ ∞

0
P(τ

(m)
i > t | τ

(m)
1 = t1, . . . , τ

(m)
i−1 = ti−1) dG1(t1) · · · dGi−1(ti−1)

=
∫ ∞

0
· · ·

∫ ∞

0

F̄ (t + ∑i−1
j=1 tj )

F̄ (
∑i−1

j=1 tj )
dG1(t1) · · · dGi−1(ti−1).

Since F is NBUmg, by (1.1), we have, for all s ≥ 0,

∫ ∞

0
est P(τ

(m)
i > t | τ

(m)
1 = t1, . . . , τ

(m)
i−1 = ti−1) dt =

∫ ∞

0
est

F̄ (t + ∑i−1
j=1 tj )

F̄ (
∑i−1

j=1 tj )
dt

≤
∫ ∞

0
est F̄ (t) dt.

Consequently,∫ ∞

0
estGi(t) dt =

∫ ∞

0
· · ·

∫ ∞

0

∫ ∞

0
est P(τ

(m)
i > t | τ

(m)
1 = t1, . . . , τ

(m)
i−1 = ti−1)

× dt dG1(t1) · · · dGi−1(ti−1)

≤
∫ ∞

0
· · ·

∫ ∞

0

∫ ∞

0
est F̄ (t) dt dG1(t1) · · · dGi−1(ti−1)

=
∫ ∞

0
est F̄ (t) dt.

That is, τ
(m)
i ≤mgf τi, i = 1, . . . , n. This completes the proof.

In the literature, there are several related results for comparing between the block replacement
policy and the corresponding renewal process. For example, Marshall and Proschan (1972)
showed that F is NBU if and only if N(t) ≥st N(b)(t, �) for t ≥ 0 and � ≥ 0. Yue and Cao
(2001) proved that F is NBULt if and only if N(t) ≥Lt N(b)(t, �) for t ≥ 0 and � ≥ 0. Belzunce
et al. (2005) proved that if F is NBUC (new better than used in the increasing convex order)
then N(t) ≤icx N(b)(t, �) for t ≥ 0 and � ≥ 0. Recently, Belzunce et al. (2006) proved that
if F is NBUE (new better than used in expectation) then E Ti ≤ E T

(b)
i for i = 1, 2, . . .. The

forementioned ‘≤st’, ‘≤Lt’, and ‘≤icx’ denote the usual stochastic order, the Laplace transform
order, and the increasing convex order, respectively. For more on stochastic orders, the reader is
referred to Shaked and Shanthikumar (2007). A parallel version for NBUmg life distributions is
presented in Theorem 3.2 below, which states that, when the underlying distribution is NBUmg,
the block replacement policy reduces the number of failures of the unit in any particular time
interval [0, t], 0 < t < ∞, in the sense of the MGF order.

Theorem 3.2. The underlying distribution F is NBUMG if and only if N(t) ≥mgf N(b)(t, �) for
all t, � ≥ 0.
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Proof. Necessity. Similarly to the proof of Theorem 3.1, it suffices to show that τi ≤mgf τ
(b)
i

for all i = 1, 2, . . ..
Denote by Hj(t), t ≥ 0, the distribution function of τ

(b)
j , j = 1, 2, . . .. Obviously, when

i = 1,
H1(t) = F̄ k(�)F̄ (t − k�) for k� ≤ t < (k + 1)� and k = 0, 1, 2, . . ..

Thus, we have, for any s ≥ 0,

∫ ∞

0
estH1(t) dt =

∞∑
k=0

∫ (k+1)�

k�

est [F̄ (�)]kF̄ (t − k�) dt =
∞∑

k=0

[es�F̄ (�)]k
∫ �

0
est F̄ (t) dt.

If es�F̄ (�) ≥ 1, it is obviously true that

∞∑
k=0

[es�F̄ (�)]k
∫ �

0
est F̄ (t) dt ≥

∫ ∞

0
est F̄ (t) dt.

If es�F̄ (�) < 1, from (1.2), it follows that

∞∑
k=0

[es�F̄ (�)]k
∫ �

0
est F̄ (t) dt = 1

1 − es�F̄ (�)

∫ �

0
est F̄ (t) dt

≥ 1

1 − es�F̄ (�)
(1 − es�F̄ (�))

∫ ∞

0
est F̄ (t) dt

=
∫ ∞

0
est F̄ (t) dt.

Therefore, we have τ1 ≤mgf τ
(b)
1 .

When i > 1, it holds that, for any t ≥ 0,

Hi(t) =
∫ ∞

0
· · ·

∫ ∞

0
P(τ

(b)
i > t | τ

(b)
1 = t1, . . . , τ

(b)
i−1 = ti−1) dH1(t1) · · · dHi−1(ti−1).

Note that τi
st= τ1 and (τ

(b)
i | τ

(b)
1 = t1, . . . , τ

(b)
i−1 = ti−1)

st= τ
(b′)
1 (here ‘

st=’ means that both
sides have the same distribution), the first unplanned replacement time of the block replacement
counting process with planned replacement times {k� − ∑i−1

j=1 tj , k� >
∑i−1

j=1 tj } (see Block
et al. (1990)). We have, for any s ≥ 0,∫ ∞

0
estHi(t) dt =

∫ ∞

0
· · ·

∫ ∞

0

∫ ∞

0
est P(τ

(b′)
1 > t) dt dH1(t1) · · · dHi−1(ti−1)

≥
∫ ∞

0
· · ·

∫ ∞

0

∫ ∞

0
est P(τ1 > t) dt dH1(t1) · · · dHi−1(ti−1)

=
∫ ∞

0
est P(τi > t) dt.

That is, τi ≤mgf τ
(b)
i for any i > 1.

Sufficiency. Suppose that N(t) ≥mgf N(b)(t, �) for all t ≥ 0. By (1.2), we only need to
prove that

(1 − es�F̄ (�))

∫ ∞

0
est F̄ (t) dt ≤

∫ �

0
est F̄ (t) dt for all s, � ≥ 0. (3.2)

https://doi.org/10.1239/jap/1294170509 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1294170509


930 S. ZHANG AND X. LI

The proof is straightforward for the case in which es�F̄ (�) ≥ 1, and so we focus on the case in
which es�F̄ (�) < 1.

Since N(t) ≥mgf N(b)(t, �) for any t ≥ 0, we have, for any s ≥ 0,∫ ∞

0
est P(N(t) < 1) dt ≤

∫ ∞

0
est P(N(b)(t, �) < 1) dt,

which is equivalent to∫ ∞

0
est P(N(t) = 0) dt ≤

∫ ∞

0
est P(N(b)(t, �) = 0) dt.

Since P(N(t) = 0) = F̄ (t) for any t ≥ 0 and

P(N(b)(t, �) = 0) = F̄ k(�)F̄ (t − k�)

for k� ≤ t < (k + 1)� and k = 0, 1, 2, . . ., it follows that∫ ∞

0
est P(N(t) = 0) dt =

∫ ∞

0
est F̄ (t) dt

and ∫ ∞

0
est P(N(b)(t, �) = 0) dt =

∞∑
k=0

[es�F̄ (�)]k
∫ �

0
est F̄ (t) dt

= 1

1 − es�F̄ (�)

∫ �

0
est F̄ (t) dt.

As a result, we have∫ ∞

0
est F̄ (t) dt ≤ 1

1 − es�F̄ (�)

∫ �

0
est F̄ (t) dt, s, � ≥ 0.

Therefore, (3.2) is validated and F is NBUmg.

Block et al. (1990) proved thatN(m)(t) ≥st N(b)(t, �) for all t ≥ 0 and � ≥ 0 if the underlying
distribution is NBU. Block et al. (1993) further showed that the underlying distribution is NBU
if and only if N(m)(t) ≥st N(b)(t, �) for all t ≥ 0 and � ≥ 0. In combination with Theorem 3.1
and Theorem 3.2, we immediately reach the following corollary. It is still an open problem
whether this conclusion may be strengthened as an equivalent characterization of NBUmg.

Corollary 3.1. If the underlying distribution F is NBUMG then N(m)(t) ≥mgf N(b)(t, �) for all
t, � ≥ 0.

A block replacement policy N(b)(t, �) is said to be a refinement of another replacement
policy N(b)(t, �′) if {k�}∞k=1 ⊃ {k�′}∞k=1. When one block replacement policy is a refinement
of another replacement policy, it is of interest to compare these two block replacement policies.
Block et al. (1990) proved that N(b)(t, �) ≤st N(b)(t, �′) for {k�}∞k=1 ⊃ {k�′}∞k=1 if and only if
F is NBU. In the following theorem, we propose a parallel version for NBUmg.

Theorem 3.3. Let Ni(t, �) be the total number of failures accumulated in [0, t] under the
policy to replace at k�, k = 0, 1, . . . , i. If the underlying distribution F is NBUMG then
Ni(t, �) ≥mgf Nj(t, �) for any integers j ≥ i ≥ 1.
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Proof. It is evident that we only need to prove that Ni(t, �) ≥mgf Ni+1(t, �), or, equivalently,
for any s ≥ 0 and n = 1, 2, . . .,∫ ∞

0
est P(Ni(t, �) < n) dt ≤

∫ ∞

0
est P(Ni+1(t, �) < n) dt. (3.3)

Note that Ni(t, �)
st= Ni+1(t, �) for t ≤ (i + 1)�. To obtain (3.3), it suffices to prove that∫ ∞

(i+1)�

est P(Ni(t, �) < n) dt ≤
∫ ∞

(i+1)�

est P(Ni+1(t, �) < n) dt. (3.4)

Let Ti,n be the nth failure time corresponding to Ni(t, �). Given Ni((i +1)�, �) = j , denote
by Uj+1, j = 0, 1, . . . , n − 1, the interval between (i + 1)� and Ti,j+1, i.e.

Uj+1 = [Ti,j+1 − (i + 1)� | Ni((i + 1)�, �) = j ].
For t > (i + 1)�, Ni+1(t, �) − Ni+1((i + 1)�, �) is just a renewal process with (i + 1)� unit
time shifted from the origin. We have∫ ∞

(i+1)�

est P(Ni+1(t, �) < n | Ni+1((i + 1)�, �) = j) dt

=
∫ ∞

(i+1)�

est P(τj+1 + · · · + τn > t − (i + 1)�) dt

= es(i+1)�

∫ ∞

0
est P(τj+1 + · · · + τn > t) dt.

Furthermore, by conditioning on Ni((i + 1)�, �) = Ni+1((i + 1)�, �), it holds that∫ ∞

(i+1)�

est P(Ni+1(t, �) < n) dt

=
n−1∑
j=0

P(Ni+1((i + 1)�, �) = j)es(i+1)�

∫ ∞

0
est P(τj+1 + · · · + τn > t) dt.

Similarly, ∫ ∞

(i+1)�

est P(Ni(t, �) < n | Ni((i + 1)�, �) = j) dt

=
∫ ∞

(i+1)�

est P((i + 1)� + Uj+1 + τj+2 + · · · + τn > t) dt

= es(i+1)�

∫ ∞

0
est P(Uj+1 + τj+2 + · · · + τn > t) dt

and∫ ∞

(i+1)�

est P(Ni(t, �) < n) dt

=
n−1∑
j=0

P(Ni((i + 1)�, �) = j)es(i+1)�

∫ ∞

0
est P(Uj+1 + τj+2 + · · · + τn > t) dt.
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Now, it is evident that (3.4) is equivalent to∫ ∞

0
est P(Uj+1 + τj+2 + · · · + τn > t) dt ≤

∫ ∞

0
est P(τj+1 + · · · + τn > t) dt.

That is,
Uj+1 + τj+2 + · · · + τn ≤mgf τj+1 + τj+2 + · · · + τn. (3.5)

Owing to Theorem 2.2 of Klar and Müller (2003) again, to prove (3.5), it suffices to prove that
Uj+1 ≤mgf τj+1, which is equivalent to

∫ (i+1)�

0

[∫ ∞

0
est P(Uj+1 ≥ t | Ti,j = u) dt

]
dP(Ti,j ≤ u | Ni((i + 1)�, �) = j)

≤
∫ (i+1)�

0

[∫ ∞

0
est P(X ≥ t | Ti,j = u) dt

]
dP(Ti,j ≤ u | Ni((i + 1)�, �) = j).

(3.6)

Note that

(Uj+1 | Ti,j = u)
st=

{
X� = (X − � | X ≥ �) if u ≤ i�,

X(i+1)�−u if i� < u ≤ (i + 1)�.

By the NBUmg property of X, we immediately have

(Uj+1 | Ti,j = u) ≤mgf X.

This validates (3.6) and, hence, Uj+1 ≤mgf τj+1. Thus, we reach the desired conclusion.

In the literature, some authors have investigated the comparison between the age replacement
policy and the corresponding renewal process. For example, Marshall and Proschan (1972)
showed that F is NBU if and only if N(t) ≥st N(a)(t, �) for any t ≥ 0 and � ≥ 0. Yue and
Cao (2001) proved that F is NBULt if and only if τi ≤Lt τ

(a)
i for i = 0, 1, 2, . . .. Belzunce et

al (2005) deduced that N(t) ≤icx N(a)(t, �) for any t ≥ 0 and � ≥ 0 if F is NBUC. Recently,
Belzunce et al. (2006) proved that F is NBUE if and only if E Ti ≤ E T

(a)
i for i = 1, 2, . . ..

A parallel version for NBUmg life distributions is presented as Theorem 3.4 below, which states
that the age replacement policy reduces the number of failures of an NBUmg unit in the sense
of the MGF order.

Theorem 3.4. The underlying life distribution F is NBUMG if and only if N(t) ≥mgf N(a)(t, �)

for all t, � ≥ 0.

Proof. Necessity. Suppose that F is NBUmg. By Definition 3.1 we need to prove that

n∑
i=1

τi = Tn ≤mgf T (a)
n =

n∑
i=1

τ
(a)
i for n = 1, 2, . . ..

Owing to Theorem 2.2 of Klar and Müller (2003), this boils down to τi ≤mgf τ
(a)
i for all

i = 1, 2, . . .. In view of the fact that

P(τ
(a)
i > t) = F̄ k(�)F̄ (t − k�) for k� ≤ t < (k + 1)� and k = 0, 1, 2, . . . ,
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we can prove that τi ≤mgf τ
(a)
i for all i = 1, 2, . . . following the same lines as in the proof of

Theorem 3.2.
Sufficiency. Suppose that N(t) ≥mgf N(a)(t, �) for any t ≥ 0. Then, for any s ≥ 0,∫ ∞

0
est P(N(t) = 0) dt ≤

∫ ∞

0
est P(N(a)(t, �) = 0) dt.

Note that P(N(t) = 0) = F̄ (t) for any t ≥ 0 and

P(N(a)(t, �) = 0) = F̄ k(�)F̄ (t − k�) for k� ≤ t < (k + 1)� and k = 0, 1, 2, . . ..

Following the same lines as in the proof of Theorem 3.2, we can prove that F is NBUmg.

Combining Theorem 3.1 with Theorem 3.4, we immediately establish the following relation
between the age replacement policy and the minimal repair policy.

Corollary 3.2. If the underlying distribution F is NBUMG then N(m)(t) ≥mgf N(a)(t, �) for all
t, � ≥ 0.
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