
13 

Quantizing the Abraham model 

Classical theories must emerge from quantum mechanics and there is no reason to 
expect a simple recipe which would yield the physically correct quantum theory 
from the classical input. On the other hand, at least in the nonrelativistic domain, 
the rules of canonical quantization have served well and it is natural to apply them 
to the Abraham model. There is one immediate difficulty. Canonical quantization 
starts from identifying the canonical variables of the classical theory. Thus we first 
have to rewrite the equations of motion for the Abraham model in Hamiltonian 
form. For this purpose we adopt the Coulomb gauge, as usual, so as to eliminate 
the constraints. In the quantized version we thereby obtain the Pauli-Pierz Hamil­
tonian which has an obvious extension to include spin. 

We have to ensure that the Pauli-Pierz Hamiltonian generates a unitary time 
evolution on the appropriate Hilbert space of physical states. Mathematically this 
means that we have to specify conditions under which the Pauli-Pierz Hamiltonian 
is a self-adjoint operator, an issue which can be satisfactorily resolved. Still, the 
true physical situation is more subtle and in fact not so well understood. It is related 
to the abundance of very low-energy photons, i.e the infrared problem, and to the 
arbitrariness of the cutoff at high energies, i.e. the ultraviolet problem. There are 
many items of interest before these, and it will take us a while to start discussing 
these subtleties. 

Some words on our notation: In the beginning we keep c, n, and later set them 
equal to one, mostly without notice. The vector notation, like x, tends to be a little 
heavy, in particular since some of the objects become either operators or random 
variables. Therefore we stick with x, whose vector character has to be inferred 
from the context. 

149 
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150 Quantizing the Abraham model 

13.1 Lagrangian and Hamiltonian rewriting of the Abraham model 

We consider N charges coupled to the Maxwell field. Their motion is governed by 
(11.1), (11.2), which we repeat with the only difference that the relativistic kinetic 

energy is replaced by its Galilean cousin. 

(Inhomogeneous Maxwell-Lorentz equations) 

c - 1 Ot B = - V x E , c - 1 Ot E = V x B - c - 1 j , 

Y'·E=p, Y'·B=O, 

where the charge and current density are given by 

N N 

(13.1) 

(13.2) 

p(x,t) = LeJCP(X -qj(t)), j(x,t) = Lejcp(x -qj(t))vj(t) (13.3) 
j=l j=l 

satisfying charge conservation by fiat. 

(Newton's equations ofmotion) 

(13.4) 

j = I, ... , N. cp is the charge distribution. It satisfies Condition (C), Eq. (2.38). 

The Lagrangian for a charge subject to external potentials is discussed in every 
text on classical mechanics. The Lagrangian of the coupled system, charges plus 
Maxwell field, can almost be guessed on that basis. We introduce the electromag­
netic potentials through 

E = -c- 1otA- V¢, B = V x A, (13.5) 

hence guaranteeing V · B = 0 and the first half of (13.1), and regard as position­
like variables {qj, j = 1, ... , N, ¢ (x ), A(x ), x E .!Pi.3}. Let us define the Lagrange 
density 

1 
Lo(x) = - (E(x) 2 - B(x)2) + c- 1 j (x) · A(x) - p(x)rp(x), 

2 
(13.6) 

where, according to (13.3), p, j depend on the positions and velocities of the 
charges. The Lagrangian of the Abraham model is then 

~ 1 ·2 f 3 L = L..,; -miqi + d·x£o(x). 
j=1 2 

(13.7) 

https://doi.org/10.1017/9781009402286.014 Published online by Cambridge University Press

https://doi.org/10.1017/9781009402286.014


13.1 Lagrangian and Hamiltonian rewriting ofthe Abraham model 151 

We only have to verify that the Euler-Lagrange equations for the action obtained 
from L yield (13.1), (13.2), and (13.4). Indeed 

d aL aL 
----=0 
dt oilj oqj 

(13.8) 

are Newton's equations of motion. Using '·' for at as concise notation, variation 

with respect to <P yields 

d 8L 8L 
-----0 
dt 8¢ 8¢ - ' 

(13.9) 

which is equivalent to 

(13.10) 

and which we recognize as the first half of (13.2). Finally 

d 8L 8L 
--. --=0 
dt 8A 8A 

(13.11) 

amounts to 

(13.12) 

which is nothing but the second half of (13.1). 
Since (13.9) represents only a constraint and is not an equation of motion, 

clearly we are using a redundant set of dynamical variables. Let us do the counting. 
We split the electromagnetic fields into longitudinal and transverse components, 

(13.13) 

Since \7 · B = 0, we have B11 = 0. From \7 · E = p we conclude 

(13.14) 

E 1_ and B 1_ satisfy a first -order evolution equation. Thus, in the sense of 
Lagrangian mechanics, there are two independent field degrees of freedom at every 
space point, while in (13.6) we employed four degrees of freedom. 

We first eliminate <P through (13.10), i.e. 

(13.15) 
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152 Quantizing the Abraham model 

Then, using Fourier transforms and Parseval's identity, (13.7) transforms to 

N 

L = L ~mA] +~I d3k[c-2JG · A_1_ + k-2p*p- (k x A~). (k x A_1_)] 
j=1 2 2 

+~I d3k[c- 1}* ·A+ c- 1). A*- 2k-2p*p 

. - 1 k-2 (~*k A.-:._ ~k A~)] - Ic P . II - P . II · (13.16) 

The term p-*p depends only on the qj 'sand is recognized as the Coulomb potential, 

N 
1 I 1 2~*~ 1 " I 3 3 I I 1 I - d- kk- p p =- ~ eiej d yd y <;?(y)(4rrlqi- qj- y + y 1)- <P(Y) 
2 2 .. I 

l,j= 

= Vrpcou!(q1, ... , qN). (13.I7) 

The Coulomb potential is smeared by <fl, which as before is indicated by the sub­
script. <P appears twice, since both the i -th and the j -th particle carry a charge 
distribution. To simplify the last term of (13.16) we use the conservation law 

p + ik · } = 0. Then 

~ 1 ·2 1 I 3 [ -2~ -=- 2~* ~] L = ~ -m jqj - Vrpcoul +- d k c A _1_ • A_1_- k A _1_ • A_1_ 
j=l 2 2 

I I ~ I~ ~ I~ ~ +2 d-ok[c- j*·A_!_+C- }·A~] 

-I d (I ld1klki- 1 '[~A~* ~*A~ J) + c dt 2 - t p II - p II . (13.I8) 

Since A 11 appears only inside a total time derivative, we have identified A II as the 
second redundant field. To drop the redundant degrees of freedom, the simplest 

choice is to set A 11 = 0 by exploiting the gauge freedom, which means selecting 
the Coulomb gauge defined by 

Y'·A=O. (13.I9) 

The vector potential is purely transverse and we henceforth drop the subscript ..l. 
Transforming back to real space, the Lagrangian of the Abraham model reads 

N 

L = L ~mjl}J- Vrpcoul + ld3x.C(x) 
j=1 2 

with the Lagrange density 

.c =~[ee-l A)2 - (\7 X A)2] + c- 1 j. A. 
2 

(13.20) 

(13.21) 
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The transverse vector field A(x ), x E JR3, should be regarded as position-like vari­
ables. 

The step from Lagrange to Hamilton is standard. One introduces the momentum 
Pi canonically conjugate to qi by 

Pi= m /Ii + c- 1eiArp(qi). (13.22) 

For the momentum field canonically conjugate to A we obtain 

8L 2. I 
-. = c- A = -c- E1_. 
8A 

(13.23) 

Then the Hamiltonian corresponding to L reads 

~ 1 ( -I )2 H = L.,; -- Pi-C ejArp(qj) + Vrpcoul 
i=l 2m J 

+ ~ J d3x[E1_(x)2 + (V x A(x))2] (13.24) 

with the canonically conjugate pairs qi, Pi and A(x), -c- 1 E1_(x). 

13.2 The Pauli-Fierz Hamiltonian 

In the form (13.24) we are ready to apply the rules of canonical quantization. The 
position and momentum of the j -th particle are elevated to algebraic objects (linear 
operators) which satisfy the commutation relations 

(13.25) 

a, f3 = 1, 2, 3, i, j = 1, ... ,N. In the Schrodinger representation, which will be 
used throughout, the Hilbert space of wave functions is 

(13.26) 

restricted to either the symmetric or antisymmetric subspace depending on whether 
the particles are bosons or fermions. Positions and momenta become 

(13.27) 

as linear operators on Hp, i.e. if 1/f(xJ, ... ,xN) E L 2(JR3N) is the wave function 
for the particles, then qiljf(x1, ... ,xN) = xiljf(x1, ... , XN), Pil/f(xl, ... , XN) = 
-inY'x ljf(x1, ... , xN). 

J 

For the fields A(x), -c1 E1_(x) one is tempted to postulate commutation rela-
tions analogous to (13.25). The difficulty is that the quantization has to satisfy the 
transversality constraint (13.19) which is nonlocal. Fortunately it is linear and it 
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becomes local in Fourier space as k · A= 0. We thus introduce at each k E IR3 the 
standard dreibein 

k = kflkl, e1 (k), e2(k), (13.28) 

which satisfies k · ei (k) = 0, i = 1, 2, q (k) · e2 (k) = 0. There is some freedom 
of how to choose e1, e2, but the transverse projection Ql_(k) = 1- k 0 k = 1-
lkl-21k)(kl is unique. The two transverse components e1(k) · A(k), e2(k) · A(k) 

are regarded as independent variables, correspondingly for -c1 E1_. Since A is 
real, we have A(k)* = A( -k). Ther~ore one has to restrict k to a half-space and 
take the real and imaginary parts of A (k) as independent variables which are sub­
ject to the rules of canonical quantization. To achieve this goal it is helpful to 
introduce two standard Bose fields with creation and annihilation operators 

a*(k,A.), a(k,A.), kEIR3 , A-=1,2, (13.29) 

satisfying the canonical commutation relations 

[a(k, A.), a*(k', A.')] = ou,o(k- k'), 

[a(k, A.), a(k', A.')] = 0, [a*(k, A.), a*(k', A.')] = 0. (13.30) 

<)For a linear operator A, the adjoint operator is denoted by A*. <) 

In terms of these Bose fields we set 

A(k) = L cJnf2w(eJc(k)a(k, A.)+ eJc( -k)a*( -k, A.)), (13.31) 
A=l,2 

E1_(k) = L Jn,wf2(ieJc(k)a(k, A.)- ieJc(-k)a*(-k, A.)) (13.32) 
Jc=L2 

with 

w(k) = clkl. (13.33) 

Then indeed A, E1_ are transverse, A(k)* =A( -k), E(k)* = E( -k), and 

(13.34) 

which should be understood in analogy to (13.25). 
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In physical space (13.31), (13.32) become 

A(x) = L J d3kcJnj2we;,.(k)(2n)-312 (eik·xa(k, A.)+ e-ik-xa*(k, A.)), 
A.=l,2 

(13.35) 

Ej_(x) = L J d3kJnwj2e;,.(k)(2n)-312i(eik-xa(k, A.)- e-ik-xa*(k, A.)). 
A.=l,2 

(13.36) 

Clearly A *(x) = A (x ), Ef (x) = E j_ (x ). The commutator (13.34) translates into 

(13.37) 

with the transverse delta function 

j_ ( )-3! d3k ik·X ~k ~k ) 2 ( 1 ~ ~ 8afJ x) = (2rr e (OafJ- a fJ = -OafJO x)- --3 (OafJ - 3xaXfJ), 
3 4rrlxl-

(13.38) 

where Xa = Xa/lx 1. 
At this p~nt w~ have left the classical world. A (x), E j_ (x) and their Fourier 

transforms A(k), Ej_(k) will now always stand for operator-valued fields. In the 
atomic and solid state physics literature by tradition one uses at as the boson 
creation operator adjoint to the annihilation operator a. We try to avoid such a 
profileration of symbols. 

Next on the agenda should be the Fock representation of the Bose fields a(k, A.) 
and the definition of A(x), Ej_(X) as operator-valued fields acting on Fock space. 
But let us keep this for the beginning of the next section and proceed immedi­
ately to our goal, namely the Hamiltonian of the quantized Abraham model. All 
we have to do is to insert (13.35), (13.36) into the classical Hamiltonian. This re­
sults, after omitting the zero-point energy of photons, in the (spinless) Pauli-Fierz 
Hamiltonian 

(13.39) 

with the field Hamiltonian 

Hf = L J d3krUJJ(k)a*(k, A.)a(k, A.). 
A.=l.2 

(13.40) 

There is no ambiguity in the operator ordering, since Pi· A<p(qi) = A<p(qi) ·Pi 
by the transversality condition (13.19). We recall that the spherically symmetric 
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form factor (ii cuts couplings to the field, more explicitly 

A'P(q) = L J d3kc)n/2weA.(k)(cp(k)eik·qa(k, A)+ (/J*(k)e-ik·qa*(k, A)). 
A.=l.2 

(13.41) 

To simplify notation, (ii will be assumed to be real, which can always be achieved 
through a suitable canonical transformation of the form a(k, A)---+ eil!(k)a(k, A). 

Two immediate generalizations are noted. First of all it is convenient to add 
external potentials <Pex, Aex, where the abbreviation e</Jex(x) = V(x) will be em­
ployed frequently. This should be thought of as a limiting case of (13.39): we 
imagine that some charges are nailed down by letting their masses m ---+ oo; then 
their kinetic term in (13.39) disappears and V<pcoul splits into an external potential 
plus an interaction potential for the movable charges. Similarly one can produce 
an external current which then generates Aex· Thus the external potentials are not 
quantized and are added into the Hamiltonian as in the classical theory which 
yields 

N 

+ V<pcoul + L e j</Jex (qj) + Hf. 
j=l 

(13.42) 

Secondly, particles have spin. Of course, an electron has spin 1· In our approxima­
tion nuclei are modeled as structureless particles carrying a nuclear spin, ranging 
from 0 to 9/2 according to experimental evidence. The classical theory is now of 
little help. The natural guess is to include spin as in the nonrelativistic one-particle 
Schrodinger theory. For a single electron in infinite space, no external potentials, 
the Hamiltonian then becomes 

1 ( 1 )2 H =- CJ • (p- c- ejA<p(q)) + Hf, 
2m 

(13.43) 

where CJ = (CJI, CJ2, CJ3) is the vector of Pauli spin-1 matrices. If necessary, one 
could include higher terms in (13.43) as they emerge from the Foldy-Wouthuysen 
expansion of the Dirac equation. 

Having introduced the Pauli-Pierz Hamiltonian as the major player of the quan­
tum part of the treatise, we pause for a while with a few general remarks. 

Zero-point energy. In the Pauli-Pierz Hamiltonian we have omitted the zero-point 
energy J d3 krUJJ, which is infinite. The Heisenberg equations of motion remain un­
altered by this reset in the zero of energy. However, one has to be careful. If one 
wants to compute the change in energy of the quantized Maxwell field through the 
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insertion of a pair of perfectly conducting plates, then in this energy difference the 
zero-point energy has to be properly handled; compare with section 13.6. A further 
change in the zero of the energy scale comes from the Coulomb self-interaction, 
namely the diagonal part 

(13.44) 

in the sum (13.17), which is finite only because the form factor cuts off the high­
frequency modes. 
Range of validity, limiting cases. The claimed range of validity of the Pauli-Pierz 
Hamiltonian is flabbergasting. To be sure, on the high-energy side, nuclear physics 
and high-energy physics are omitted. On the long-distance side, we could phe­
nomenologically include gravity on the Newtonian level, but anything beyond that 
is ignored. As the bold claim goes, any physical phenomenon in between, includ­
ing life on Earth, is accurately described through the Pauli-Pierz Hamiltonian 
(13.39) (and a suitably chosen initial wave function). There have been specula­
tions that quantum mechanics is modified roughly at the w-5 m scale. But so far 
there seems to be no evidence in this direction. On the contrary, whenever a de­
tailed comparison with the theory can be made, it reassuringly seems to work well. 
Of course, our trust is not based on strict mathematical deductions from the Pauli­
Pierz Hamiltonian. This is too difficult a program. Our confidence comes from 
well-studied limit cases. In the static limit we imagine turning off the interaction 
to the quantized part of the Maxwell field. This clearly results in Schrodinger parti­
cles interacting through a purely Coulombic potential, for which many predictions 
are accessible to experimental verification. But beware, even there apparently sim­
ple questions remain to be better understood. For example, the size of atoms as 
we see them in nature remains mysterious if only the Coulomb interaction and the 
Pauli exclusion principle are allowed. Another limiting case is a region completely 
free of charges. At standard field strengths there are sufficiently many photons per 
unit volume for the predictions from the quantized Maxwell field to match with 
the ones of the classical Maxwell field. As will be discussed, radiation phenomena 
are well grasped by the Pauli-Pierz Hamiltonian. These and many other limiting 
cases are the reason for regarding (13.39) as an accurate description of low-energy 
phenomena. 
Model parameters, renormalization. If we focus our attention on (13.43), there are 
four model parameters: the mass m, the charge e, the gyromagnetic ratio g = 2, 
and the form factor cp. c and It, which also appear, are constants of nature. As dis­
cussed at length for the classical theory, what is observed experimentally is always 
the compound object consisting of the particle and its photon cloud. Thus m, e, g 
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have to be regarded as bare parameters and their observed value must be computed 
from the theory. The bare values are renormalized through the interaction with the 
Maxwell field. As will be shown below, the charge e is not renormalized, since 
there is no vacuum polarization. One way to argue is to imagine two charged par­
ticles with a very large mass separated by a distance R. According to (13.39) their 
mutual force is then e1 e2/4rr R2 with the bare charges e1, e2. Further support is the 
response of a particle to slowly varying external potentials. In this adiabatic limit, 
e enters in the effective equation with its bare value while m and g are renormal­
ized. The Pauli-Pierz model is not in a position to predict the experimental value 
of the mass, since the bare mass is unaccessible, in principle. The renormalized 
(effective) mass has to be given as an empirical input, to which the bare mass is 
correspondingly adjusted. On the other hand, the dimensionless gyromagnetic ra­
tio g is a definite (though empirically slightly inaccurate) prediction ofthe theory; 
compare with sections 16.6 and 19.3.5. Perhaps the most unwanted feature of the 
Pauli-Pierz Hamiltonian is the form factor cp. The pragmatic attitude is to choose 
cp with some taste. On the classical level we concluded that the form factor cannot 
be removed. In the limit cp (x) --+ 8 (x) the particle-like objects become infinitely 
heavy. The simple structure of the energy-momentum relation ( 4.11) does not al­
low for compensation, since in a stable theory the bare mass has to be positive. 
The quantum theory has a richer structure and it seems that one can carry out the 
limit cp(x)--+ 8(x) and at the same time take m--+ 0 such that the observed mass 
remains fixed. We will come back to this point in due course. 

The quest for a closed physical theory. We have commented on this point already. 
But let us expand on it in the present context. The static limit of the Pauli-Pierz 
Hamiltonian, i.e. Schrodinger particles interacting through the static Coulomb po­
tential, is a closed theory for electrons and nuclei. The Hamiltonian is a self-adjoint 
linear operator and generates a unitary time evolution. This is also the case for the 
quantized Maxwell field without charges. Of course, this does not mean that we 
have solved any physical problem. It just assures us of a definite mathematical 
framework within which consequences can be explored. One would hope to have 
such a secure foundation also for the Pauli-Pierz model and it remains to be seen 
how much of this program can be realized. 

We still have to complete the story of the Pauli-Pierz model. One defines the 
time-evolved linear operator A(t) through 

A(t) = eiHtfn Ae-iHtfn (l3.45) 

in the Heisenberg picture. Then 

:t A(t) = ~[H, eiHt/n Ae-iHtfn] = ~[H, A](t). (13.46) 
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On this level, so to speak, as a control of the quantization prescription, we use 
the commutation relations (13.25) and (13.37) to verify that the operator-valued 
fields indeed satisfy the Maxwell equations and that the particles satisfy Newton's 
equations of motion. Computing the commutators as in (13.46) one obtains 

where now 

c - 1 Ot B = - V' X E ' c - 1 Ot E = V' X B - c - 1 j ' 

Y'·E=p, Y'·B=O, 

N 

p(x, t) = I>j<P(x- qj(t)), 
j=1 

(13.47) 

N 1 
j(x, t) = L -ej(vJ(t)<;?(x- qj(t)) + <;?(x- qj(t))vj(t)) (13.48) 

j=l 2 

with the velocity operator 

(13.49) 

Similarly, one obtains the symmetrized Lorentz force as 

If there are external fields, E'P, B'P is to be replaced by E'P + Eex, B'P + Bex· In 
(13.47)-(13.49), qj(t), PJ(t), respectively A(t), -c- 1 Ej_(t), are operators satis­
fying the commutation relations (13.25), respectively (13.37), at all times. 

Also of interest is to record the Heisenberg equations of motion for the Pauli­
Pierz Hamiltonian (13.43) including spin. The Maxwell equations are as before. 
However, in the case of a single charged particle, the current density is now 

1 ( ) eft j (x) = -e V<j?(X- q) +<;?(X- q)v +-a X Y'q<;?(X- q) 
2 2m 

(13.51) 

with the velocity operator v = (p- c 1eA'P(q))jm. The Schrodinger equation 
reads 

1 en 
mq = e(E'P(q, t) + -(v x B'P(q, t)- B'P(q, t) x v)) +-a· Y'qB<p(q, t), 

~ ~c 
(13.52) 
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consistent with the general rule that the magnetic force equals c -I J d3 x j (x) x 
B(x), and the Pauli equation for the spin reads 

. e 
a= --B'P(q, t) x a. 

me 
(13.53) 

If one compares (13.52), (13.53) with the classical equations of motion of a 
spinning charge, cf. section 1 0.2, then one observes that in quantum mechanics 
the spin degrees of freedom couple somewhat differently to the Maxwell field than 
the classical internal angular momentum. Since cp is radial, in fact Y'x({Jr(lxl) = 
cp~(lx l)x and the spin part of the current (13.51) has the effective charge distribution 
cp;(lxl)/lxl. However, the evolution equation for a has only superficial similarity 
with Eq. (10.20) for w. 

13.3 Fock space, self-adjointness 

To define the Pauli-Pierz Hamiltonian as a linear operator, one has to introduce a 
suitable Hilbert space of wave functions. Provisionally we assume that the number 
of photons, either virtual or real in the usual parlance, is finite, though necessar­
ily arbitrary, since H does not conserve the number of photons. This means that 
we will have to work in the Fock representation of the Bose fields a(k, A). We 
introduce the one-particle Hilbert space 

(13.54) 

~ consists of wave functions 1/f(k, A), with the photon wave number 
k E JR3 and the helicity A = 1, 2. The inner product in ~ is (cp, 1/f}Q = 
~A= I 2 J d3kcp*(k, A)ljf(k, A). Out of~ we construct the Fock space Fin the usual 
way 

(X) 

F = E9 (~Q9n)sym' (13.55) 
n=O 

where ~Q9n denotes then-fold tensor product and where "sym" means that were­
strict to the subspace of wave functions symmetric under interchange of labels, i.e. 

(13.56) 

for an arbitrary permutation n. By definition an element 1/f E F is of the form 
( 1/fo, 1/JI, ... ) and 

(X) 

(cp, 1/J):F = L(({Jn, 1/Jn)[J0n. (13.57) 
n=O 

The Fock vacuum, 1/fo, will be denoted by Q. 
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<) As the reader will have noticed, for the inner product in a Hilbert space we 
use the notation ( cp, 1/f), which is linear in the second and antilinear in the first 
argument. The standard physics notation would be the Dirac bracket (cplo/), which 
is also linear in the second argument. (A further widespread convention is a scalar 
product linear in the first argument.) The subscript in (cp, 1/f):F is used to indicate 
the Hilbert space under consideration: it will be omitted if it is obvious from the 
context. The length of a vector is II 1/f II = ( 1/f, 1jf) 112 . <) 

For f E ~ one defines the smeared creation and annihilation operators 

a(f) = L I d3kj*(k, A)a(k, A), 
A=l,2 

a*(f) = L I d3kj(k, A)a*(k, A). 
A=l,2 

As operators in :F they act through 

(a(f)o/)n(kJ, A], ... , kn, An)=~ L I d3kj*(k, A) 
A=l,2 

x 1/fn+l(kl, AJ, ... , kn, An, k, A), 
1 n 

(a*(f)o/)n(kJ, A], ... , kn, An)= r;:; L f(kj, Aj) 
vn j=l 

(13.58) 

(13.59) 

x 1/fn-l(kJ, AJ, ... , ki, Aj, ... , kn, An), (13.60) 

where ~ means that this variable is to be omitted. The field Hamiltonian 

Hf = L I d3knw(k)a*(k, A)a(k, A) 
A=L2 

(13.61) 

acts as multiplication by LJ=l !tw(kj) on then-particle subspace ~®n. With all 
these definitions we see that the Pauli-Pierz Hamiltonian operates on the Hilbert 
space 

(13.62) 

with Hp = L 2 (l~3N) and Hf = :F. Physically the particle Hilbert space Hp is too 
large, since in nature only symmetric, respectively antisymmetric, wave functions 
are realized. Still mathematically it is convenient to work with all of L 2 (1Pi.3N). 

In any dynamical theory, usually the first step is to establish the existence of 
solutions of the evolution equations. In our case this means to prove that H is a 
self-adjoint operator on a suitable domain of functions, where for concreteness we 
consider the Pauli-Pierz operator of (13.43) for a single electron. If not even the 
self-adjointness question can be resolved, there is little hope of rigorously handling 
qualitative properties of interest. 
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We observe that ( 1/f, H 1/f hi 2::: 0, clearly. This means that H has equal defect 
indices and therefore at least one self-adjoint extension. Amongst those there is a 
distinguished extension, called the Friedrichs extension, which is obtained through 
the closure of the quadratic form ( 1/f, H 1/f hi with smooth wave functions of a finite 
number of photons. The Friedrichs extension gives no information on the domain 
of self-adjointness and, in principle, there could be other extensions. A more con­
crete approach is to prove that, for the purpose of the existence of dynamics, the 
interaction can be regarded as small. We decompose H as 

H = Ho + H1 (13.63) 

1 2 e ( ) = 2mp +Hf- 2mc p·Acp(x)+Acp(x)·p 

e2 en 
+--A (x) 2 --CY·B (x), 

2mc2 cp 2mc cp 

Bcp(x) = V' x Acp(x), Pl = p for the momentum, and q1 = x for the position of 
the particle, and want to prove that H1 is small compared to Ho, Ho = (p2 /2m)+ 

Hf. 
Abstractly one uses the Kato-Rellich theorem. We consider the densely defined 

linear operators A, B on a Hilbert space H with inner product ( ·, ·) and suppose 
that 
(i) for the domains D(B) ::J D(A), 
(ii) for some constants a, band allljf E D(A) 

IIBl/fll ::: aiiAl/f II+ blll/fll. (13.64) 

Then B is said to be A-bounded. The smallest a is called the relative bound. Usu­
ally a can be made smaller at the expense of b. 

Theorem 13.1 (Kato-Rellich theorem). Suppose A is self-adjoint, B is symmet­
ric, and B is A-bounded with relative bound a < 1. Then A+ B is self-adjoint on 
D(A) and essentially self-adjoint on any core of A. 

For multi particle Schrodinger operators of the form - ~ ~ + V the Kato-Rellich 
theorem is a standard technique and yields the existence of dynamics for a very 
large class of potentials V including the Coulomb potential. For the Pauli-Pierz 
operator the form version of Theorem 13.1 is more convenient. 

Theorem 13.2 (KLMN theorem). Let A be a positive self-adjoint operator. Let 

f3( 1/f, cp) = (1/f, Bcp) be a symmetric quadratic form defined for allljf, cp E D(A 112) 

such that for some constants a < I, b < oo 

1(1/f, Bl/f)l :S a(l/f, Aljf) + b(ljf, 1/f) (13.65) 

for all 1/f E D(A 112). Then there exists a unique self-adjoint operator C with 
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13.3 Fock space, self-adjointness 163 

D(C) C D(A 112) such that 

(1/f, Co/)= (1/f, Ao/) + (1/f, B1/f). (13.66) 

Moreover, Cis bounded from below by -b. 

Let us see how the KLMN theorem works in the case of the Pauli-Pierz 
Hamiltonian H, which means that one has to establish 

(13.67) 

with a < 1. We set It = c = m = 1 and, following the convention (13.58), put 

Acp(x) = a(fx) + a*(fx) (13.68) 

with 

(13.69) 

The creation and annihilation operators are bounded through (Hf) 112 as 

lla*(f)o/IIF::: IIJ/v'wiiiJII(Hf) 112o/IIF+ IIJIIIJIIo/IIF, 
lla(f)o/IIF :S IIJ/v'wiiiJII(Hf) 112o/IIF 

and by the Schwarz inequality 

1(1/f, (a(f) + a*(f))21/f).FI :S 2(1/f, a*(f)a(f)o/).F + 11!11~111/fll} 
+ 21(1/f, a*(f)a*(f)o/).FI 

(13.70) 

:S 511J/-JWII~(1/f, Hfo/).F + 311!11~111/fll}. 
(13.71) 

Therefore the A~-term has a relative bound less than 1 only if e is sufficiently 
small. 

We do not attempt to optimize the constants and thus write 

1 2 1 . 2 1(1/f, p · Acp(x)o/hil :S 2(1/f, p o/hi + 2(1/f, Acp(x) o/hi, (13.72) 

1 2 3 2 
1(1/f, a· Bcp(x)o/hil :S 2(1/f, Bcp(x) 1/Jhi + 2111/JIIH. (13.73) 

Also, by using (13.69), (13.71), 

(1/f, Acp(x)21/f)H :S 511$/wll~(o/, Hfo/)H + 311$/-JWII~IIo/11~, (13.74) 

(1/f, Bcp(x)21/f)H :S 5111kl$/wll~ ( 1/f, Hf1/f)H + 3111kl$/ -JWII~IIo/11~. (13.75) 
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Thus if 

J d3kl$(k)l 2(w-2 + w) < oo, (13.76) 

one can find a constant eo such that for lei _:::: eo the operator H1 is Ho form­
bounded with a bound less than I. By a similar reasoning form-bounded can be 
replaced by bounded. From Theorem 13.2 we conclude 

Theorem 13.3 (Self-adjointness, Kato-Rellich). If lei _:::: eo with suitable eo and 
if the form factor$ satisfies the condition ( 13. 76), then the Pauli-Fierz operator 
H of(I3.63) is self-adjoint on the domain D( 2~7 p2 + Hf). 

Since $(0) = (2n) - 312 , the condition (13. 76) is satisfied if, as assumed, $cuts off 

ultraviolet wave numbers. 

<) We denote constants by co, q, ... , eo, etc., depending on the context. The nu­
merical value of these constants may change from equation to equation. Since 
we always work with computable bounds, in principle these constants can be ex­
pressed through the parameters of the Pauli-Pierz Hamiltonian. To do so actually 
would overburden the notation. <) 

The restriction one is intrinsic to the method, since only then is e2 Arp(x) 2 small 
compared to Hf. To go beyond one needs a completely different technique which 
is based on functional integration, as will be explained in chapter 14. 

Theorem 13.4 (Self-adjointness, functional integration). If ( 13. 76) holds, then 
the N -particle Pauli-Fierz Hamiltonian H of ( 13.39) is self-adjoint on the domain 

DC'f:.f=l (PJ/2m j) + Ht} Furthermore His bounded from below. 

Proof Hiroshima (2002). 

Theorem 13.4 remains valid under the inclusion of spin and the addition of external 
potentials with very mild conditions on their regularity. 

In summary, the Pauli-Pierz Hamiltonian uniquely generates the unitary time 
evolution e-iHt/n on 1-i provided the condition (13.76) holds. Under a suitable 

ultraviolet cutoff the quantum dynamics of charges and photons is well defined. 

13.4 Energy and length scales 

The characteristic energy and length scales will depend on the physical situation. 

In our context two distinct cases are of particular importance. For the point-charge 
( = ultraviolet) limit relativistic units are used, which means that lengths are mea­
sured in units of the Compton wavelength 

(13.77) 
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and energies in units of the rest energy mec2 of the electron. For applications in 
atomic physics and quantum optics, atomic units are more appropriate, where the 
size of an atom is set by the Bohr radius 

4rrn2 _ 1 It 
113 = --2 = (){ --

mee mec 

and the energy scale is set by the ionization energy 

with 

4 e me 2 2 
------,------o- - a (m c ) 
(4rr)2ft2 - e 

e2 
a=--

4rrnc' 

(13.78) 

(13.79) 

(13.80) 

the Sommerfeld fine-structure constant written in Heaviside-Lorentz units. The 
ionization energy corresponds to the length a-1113 which approximately equals 
the wavelength of the Lyman alpha line. The scales compare as 

ionization rest 

(){ 

length [nj mec] 1 

Lyman alpha Bohr radius Compton 

Since a :::::: 1 j 137 in nature, the scales are well separated. 
These scales necessarily reappear in the Pauli-Fierz Hamiltonian with the cru­

cial difference that the physical mass me of the electron is replaced by its bare 
mass m. To have a concrete example let us discuss the hydrogen atom as the sim­
plest two-particle case. We assume that the nucleus is infinitely heavy. Then the 
Pauli-Fierz Hamiltonian reads 

1 ( 1 . )2 2 H = - CJ • (p + c- eArp(x)) + Hf- e Vrpcou!(x), 
2m 

(13.81) 

where -e is the charge of the electron and for the purpose of this subsection only 
we set 

(13.82) 
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166 Quantizing the Abraham model 

We transform to dimensionless form, such that the energy unit is a 2 (mc2), the 
length scale for the electron is rB = n/ a me, and that for the photons is a-1 rB. 

This is achieved through the canonical transformation U defined through 

U*a(k, A)U = (a-2Ac)312a(a-2Ack, A), 

U*xU = a- 1 Ax U*pU = aA -lp 
c ' c ' (13.83) 

where now the Compton wavelength 

Ac = njmc (13.84) 

depends on the bare mass rather than the physical mass as in (13.77). Then 

U* HU = a2mc2 (~(rr · ( -iY'x- ~aA<P(ax)) )2 

+ L J d3klkla*(k, A)a(k, A)- 4nV<pacoul(x)) (13.85) 
A=l.2 

with 

Acji(x) = L J d3kfj(a2A~ 1 k) ~lkl e;_(k)(eik·xa(k, A)+ e-ik·xa*(k, A)) 
A=l,2 V ~1/\,1 

(13.86) 

and (/Ja(k) = cp(ak/Ac). We infer from (13.85) that the Maxwell field is weakly 
coupled to the electron. Thus, cum grano salis, perturbation theory around a = 0 
should provide a qualitatively correct picture. In particular, spectral lines should 
be rather sharp. In addition, since A<P varies only on the scale a- 1 ~, the dipole 
approximation Acji(ax) ~ Acji(O) will suffice as long as the electron remains bound 
to the nucleus. 

The dimensionless form (13.85) teaches us also how to choose the wave number 
cutofff;. Thus, iff;= (2n)-312 for lkl <A, fi= 0 for lkl 2::: A, then A» 1/rB 

to have a negligible smearing of the Coulomb potential. On the other hand, at the 
scale of the rest energy of the electron, the Pauli-Pierz model cannot be expected 
to describe the physics correctly. Thus the cutoff should satisfy 

1 «A~ « a- 1 . (13.87) 

It is instructive to compare the atomic units with relativistic units. In the latter 
case the scale transformation U reads 

U*a(k, A)U = A~12a(Ack, A), U*xU = Acx, U* pU = A~ 1 p. (13.88) 
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Then 

U*HU = mc2 (~(0' · (-iY'x- ~A'PAc(x)))2 

+ L J d3klkla*(k, A)a(k, A)- 4naV'P>-ccoui(x)) (13.89) 
A=l.2 

with the form factor in units of the Compton wavelength, fP;,_c = cp(k/Ac). Note that 
the cutoff depends through the Compton wavelength on the bare electron mass. 

13.5 Conservation laws 

The Pauli-Pierz Hamiltonian (13.42) is invariant under translations and rotations. 
Therefore the total momentum and the total angular momentum will be conserved. 
One only has to identify the generators of these symmetries. The generator for the 
translations of the j -th particle is its momentum p J, which means 

(13.90) 

Similarly the field translations are generated by the momentum of the Maxwell 
field 

Pf = L J d3knka*(k, A)a(k, A) 
A=l.2 

with the property that 

eia·Pt!na(k, A)e-ia·Pt/n = e-ia·ka(k, A). 

Thus the total momentum 

must be conserved and indeed 

N 

p = LPi + pf 
}=1 

[H, P] = 0. 

(13.91) 

(13.92) 

(13.93) 

(13.94) 

Next we consider a rotation R by an angle e relative to the axis of rotation n 
through the origin. For position and momentum we have 

eiefi.(qixPi)/nq1e-iefi.(qjXPj)/n = RqJ, eilin·(qixPi)/nPJe-ien·(qixPi)/n = RpJ. 

(13.95) 

For the Maxwell field we define the angular momentum relative to the origin 

Jf =- L J d3ka*(k, A)(k x inY'k)a(k, A) 
A=l,2 

(13.96) 
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and the helicity 

sf= c-1 f d3 xE(x) X A(x) =in f d3kk(a*(k, 2)a(k, 1)- a*(k, 1)a(k, 2)) 

(13.97) 

with k = k/lkl. Their sum rotates the vector potential as 

ei!!n·Ut+St)/11 A(x)e-i!!n-(Jt+St)/11 = RA(R-1x) (13.98) 

and correspondingly for the transverse electric field E 1_ (x). We conclude that the 
total angular momentum 

is conserved and indeed 

N 

1 = L_)q 1 x p 1) + Jf + sf 
j=l 

[H, J] = 0. 

If the j -th particle carries spin Oj, then 

N N 1 
1 = 2_)q1 x PJ) + L -na1 + Jf +sf 

. 1 . 1 2 
]= ]= 

is the conserved total angular momentum. 

(13.99) 

(13.IOO) 

(13.101) 

The helicity Sf is diagonalized through transforming to circularly polarized pho­
tons. We define the left-circularly and right-circularly polarized annihilation oper-
a tors 

I I 
a+(k) = ~(a(k, I)- ia(k, 2)), a_(k) = ~(a(k, I)+ ia(k, 2)). (13.I02) 

Then 

sf= f d3kk(a~(k)a+(k)- a':_(k)a_(k))' (13.103) 

which establishes that the photon has spin I. However, only two helicity states 
are admissible, +I for left and -I for right polarization. The corresponding one­
photon states are 

e±(k)(2n)-312ei(k·x=r=wt), e±(k) = ~(e1 (k) ± ie2(k)). (13.I04) 

For the + index the photon state represents a plane wave whose polarization vector 
rotates in a right-handed sense about k and thus appears to an observer facing the 
incoming wave as left polarized. 
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13.6 Boundary conditions and the Casimir effect 

So far we took for granted that the Maxwell field lives in infinite space. In many 
applications one has a macroscopically finite geometry, like a cavity or a wave 
guide, and it is necessary to include it as a boundary condition into the Hamilto­
nian. For concreteness, let us assume then some bounded region A whose surface 
a A is defined through a perfect, grounded conductor. Momentarily there are no 
charges inside A. Then the Maxwell equations are 

e- 1atB = -\7 X E' e- 1atE = \7 X B' \7 ° E = 0, \7 ° B = 0. (13.105) 

Ifn(x) denotes the outward normal at x E a A, the boundary conditions for a per­
fect conductor are 

n ° B(x) = 0' n X E(x) = 0 at X E a A 0 (13.106) 

The rules of canonical quantization apply as before, only the final expressions 
are less explicit, since (13.105) together with the boundary conditions (13.106) 
cannot be solved through simple Fourier transformation. Let L 2 (A, JR3) be the 
space of (complex valued) vector fields on A. A E L 2 is divergence free if 
\7 · A = 0 and we denote by Q* the projection onto all such fields. The quan­
tum mechanical Fock space is built up from Q* L 2 as one-particle Hilbert space. 
Notationally it is slightly more convenient to start from L 2(A, JR3) and incorpo­
rate the projection into the definition of the quantized fields. We introduce then the 
three-component Bose field a(x ), a* (x) satisfying 

(13.107) 

with all other commutators vanishing. The quantized Maxwell field will depend 

only on Q*a and Q*a*. 
As before the vector potential A satisfies the Coulomb gauge, which implies 

(13.108) 

with boundary conditions 

n ° (\7 X A) = 0' n X A= 0 at X E a A 0 (13.109) 

Since E1_ = -e-1atA, one can write the solution to (13.108), (13.109) on Q*L2 

as in (13.108) 

( A(t)) (cosQt -en-1 sinru)(A) 
E1_(t) = c 1Q sin Qt cos Qt E1_ ' 

(13.110) 

where, as a linear operator, Q = e(- ,6. Q9 11) 112 restricted to Q* L 2 and with 
the mixed Dirichlet-Neumann boundary condition (13.1 09). Q is a positive 
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self-adjoint operator. In analogy to (13.35), (13.36) the canonically quantized 
fields are obtained as 

A(x) = cjfifi Q- 112 Q*(a(x) + a*(x)), 

Ej_(x) = jfif2Q 112 Q*i(a(x)- a*(x)). 

Clearly their commutation relations are 

(13.111) 

(13.112) 

(13.113) 

with the right-hand side denoting the integral kernel of Q* in L 2 (A, IPi.3). The field 
energy is a sum over the energy in each mode, which in position space becomes 

Hf = n i d3xa*(x) · QQ*a(x). (13.114) 

In case there are charges enclosed in the cavity, their mutual Coulomb interac­
tion has to respect the perfect conductor boundary condition (13.106). For exam­
ple, since E11 is not quantized, for a single charge at q the potential ¢A satisfies the 
Poisson equation 

f..r/JA(X) = ecp(x- q), r/JA(X) = 0 for X E oA (13.115) 

and the potential acting on the particle is given by 

er/JArp(q) = e J d3xcp(q- x)¢A (x). (13.116) 

Close to the surface ¢A (x) is determined by the image charge and looks like an 
attractive Coulomb potential. Thus we have to add phenomenologically to the 
Hamiltonian a surface potential Vsur which keeps the particle confined to the cavity 
A. Altogether the Pauli-Pierz Hamiltonian for a single charge enclosed in a cavity 
IS 

(13.117) 

To return to the charge-free situation, according to (13.114) we calibrated the 
ground state energy of the cavity at zero, which is an acceptable choice for a closed 
cavity. If, however, the cavity is open, as for example two plane parallel, grounded 
metal plates, then the natural zero of energy refers to the energy of the field vacuum 
in infinite space. In the presence of the plates this vacuum energy is lowered by 
an amount which depends on the separation of the plates. Therefore there is an 
effective attractive force between the plates - the famous Casimir effect. Together 
with the spectrum of the black-body radiation it provides the most direct evidence 
for the quantum nature of the Maxwell field. 
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If one adopts the boundary conditions as in (13.109), the energy difference­
with and without plates- diverges because of high-frequency modes, which re­
flects the fact that the metal plates cannot be perfect conductors up to arbitrarily 
high frequencies. We therefore choose a cutoff function g with g ( w) = 1 for small 
w and rapidly decreasing at infinity. The plates are parallel to each other, have a 
distanced, and an area £2 which is taken to be very large. Then the energy differ­
ence per unit area is given by 

1 rr 2nc(1 00 100 
) 2!::.E(d) = --3 -G(O) + L G(n)- dKG(K) , 

e 4d- 2 n=l 0 
(13.118) 

where 

G(K) = 2100 
duu 2g(rrujd). (13.119) 

For analytic gone can use in (13.118) the Euler-MacLaurin summation formula, 

1 ~ 100 1 I 1 Ill -F(O) + ~ F(n)- dKF(K) = --F (0) + -F (0) 
2 n=l 0 12 720 

+higher derivatives, (13.120) 

and note that F 1 (0) = 0, F"1 (0) = -4, since g(O) = 1, whereas every extra deriva­
tive carries a factor 1 I d. Thus to leading order 

1 rr 2nc _4 
£2 !::.E(d) = -720d3 + O(d ) ' (13.121) 

independently of the choice of the cutoff function g, and the force per unit area 
between the conducting plates is given by 

1 rr 2 ftc -5 
£2 F(d) =- 240d4 + O(d ) . (13.122) 

13.7 Dipole and single-photon approximation 

Even for a single charge the Pauli-Pierz Hamiltonian resists exact diagonalization 
and one has to rely on approximations. As suggested by (13.85), since the coupling 
to the photon field is weak, an obvious strategy is to expand in a. Such a perturba­
tive treatment is covered extensively in standard texts and there is no need to repeat 
it here. Since one of our aims is to explain why perturbation theory works so well, 
we will make contact with the conventional results later on. Another strategy is to 
truncate the Hamiltonian to taste, so as not to throw out the physics. In essence 
there are only two such schemes, the dipole approximation and the single-photon 
approximation. 
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(i) Dipole approximation 

We consider a single charge confined by an external potential er/Jex, centered at the 
origin. Since the potential inhibits large excursions, one loses little by evaluating 
the vector potential at the origin instead of at q, the true position of the charged 
particle. This leads to the dipole Hamiltonian 

1 ( 1 )2 H = - p- c- eArp(O) + e¢ex(q) + Hf. 
2m 

(13.123) 

The interaction p · Arp (0) couples p to the fluctuating vector potential at the origin. 
We can transform it to a fluctuating electric field coupled to the position q through 
the unitary operator 

u = exp[ic- 1 eq . Arp (0) In,]. (13.124) 

Then 

U*pU=p+c- 1eArp(O), U*qU=q, 

U*a(k, A.)U = a(k, A.)+ iq · e;,.(k)ecp(k)j1j2nw, (13.125) 

which imply 

U*HU = -1 p 2 + e¢ex(q) + Hf- eq · E_irp(O) + ~(~ f d3ke2 1cp(k)1 2)q2 . 
2m 2 3 

(13.126) 

The extra harmonic potential balances q · E _irp so as to make the sum of the last 
three terms positive. 

Even in the form (13.123), respectively (13.126), H is not tractable and in a 
second approximation one assumes the external potential to be harmonic. Then 
the dipole Hamiltonian reads 

H = - 1-(p- c- 1eArp(O) )2 + ~mw5l + Hf. 
2m 2 

(13.127) 

Clearly, the Hamiltonian is quadratic in the dynamical variables and consequently 
the Heisenberg equations of motion are linear, 

1 
q(t) = -(p(t)- c- 1eArp(O, t)), p(t) = -mw5q(t), 

m 

c-2a; A(x, t) = ,0.A(x, t) + (ejc)8~(x)q(t) (13.128) 

with 8_1_ the transverse 8-function of (13.38). As before the index cp denotes con­
volution with the form factor cp. At this point (13.128) can be solved as classical 
equations of motion. One obtains the exact line shape, the Lamb shift, and the 
Rayleigh scattering of light from a bound charge. It should be noted that, since the 
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energy levels of the harmonic oscillator are equidistant, several emitted photons 
will interfere, which makes the emission spectrum distinct from, say, the hydrogen 
atom; compare with section 17.4. 

Even though the equations of motion (13.128) are linear, their solution is not 
a back of the envelope computation and one often resorts to yet another approx­
imation, the rotating wave approximation. One starts from (13.126) with the har­
monic potential !mw§q2, which already includes the last summand in (13.126), 
and rewrites the harmonic oscillator in terms of its creation and annihilation oper­
ator b, b*. Then 

H = nwob*b- iJn/2mwo(b- b*) · eE_Lp(O) + Hf. (13.129) 

In the coupling, one ignores the counter-rotating terms ba and b* a*, which results 
in 

Hrw = (b, a) · h(b, a)t. (13.130) 

Our notation emphasizes that the rotating wave Hamiltonian Hrw is quadratic in 
( b, a) and should be regarded as the second quantization of the one-particle Hamil­
tonian h. The one-particle space is JC = CC3 EB (L2 (1Pi.3) Q9 CC2), the CC3 subspace 
corresponding to b, b*. A wave function in JC is of the form (x, 1/f(k, A)), x the 
one-particle amplitude for the oscillator and 1/f(k, A) the one-particle photon am­
plitude. h acting on a pair (X, 1/f) is defined by 

h( x ) = (!twox-! L;_= 1•2 f d3kerp*n,Jwjmw0e;_(k)l/f(k, A)) 
1/f(k, A) -~e(/Jn,Jwjmwoe;_(k) ·X+ rUJJljf(k, A) ' 

(13.131) 

cp= cp(k), w = w(k). h will reappear as the Friedrichs-Lee Hamiltonian. For 
e = 0, the eigenvalue nwo is embedded in the continuous spectrum [0, oo). The 
coupling turns this eigenvalue into a resonance; compare with section 17.3. 

A further popular variant is to set wo = 0 in (13.127) and to regard the Hamil­
tonian as describing a freely propagating charge. One finds that the mass of the 
particle is increased due to the coupling with the field. However, quantitatively 
such a result cannot be trusted, since the dipole approximation is based on the as­
sumption that the electron remains close to the origin. There is no such mechanism 
for a free particle. 

(ii) Single-photon approximation 

We restrict the Fock space to CC EB ~- Then the wave functions 1/f are pairs 
(1/fo(x), 1/JJ (x, k, A)). 1/fo(x) is the wave function for an electron and no photon 
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present, while 1/f 1 (x, k, A) is the wave function for the electron plus one photon 
with momentum nk and helicity A.. The correspondingly restricted Pauli-Pierz 
Hamiltonian is denoted by H1. From (13.39), setting N = I, n = I = c, one infers 

I 2 """' f 3 ~ I ik·x I (HI o/)o(x) = -p o/o(x) + L.,; d· keep ~e -eA.· Po/1 (x, k, A.), 
2m A.=l. 2 v 2w m 

( I 2 ) ~ I ik X I (HI o/)1 (x, k, A.)= -p + w o/1 (x, k, A.)+ ecp ~e- · -eA.· po/o(x), 
2m v2w m 

(13.132) 

where the A~ contribution has been neglected. H1 is a two-particle problem with a 

translation-invariant interaction. The electron has kinetic energy 2~7 p2 . The photon 
can be either "dead" (o/o) or "alive" (o/J). The kinetic energy is zero in the dead 
state and rUJJ in the alive state. Through the interaction a photon is either created or 
annihilated, which corresponds to a transition between dead and alive. Because of 
the I I y'w-factor, this interaction has a long range and decays only as r-312 in the 
relative distance between the electron and the photon. 

Notes and references 

Section 13.1 

The Hamiltonian form of the Abraham model in the Coulomb gauge is standard 
and explained in Cohen-Tannoudji et al. ( 1989) and Sakurai (1986), for example. 

Section 13.2 

The name "Pauli-Pierz" is not accurate historically. The Hamiltonian (13.42) ap­
pears at the beginning of paragraph two of Pauli and Pierz (I938) as a matter of 
fact, without citation. Pauli and Pierz study the generation of infrared photons in 
Compton scattering. Cohen-Tannoudij et al. (1989) call (13.42) "of basic impor­
tance" and Milonni (I994) refers to (13.42) simply as "the Hamiltonian". Thus 
despite its fundamental nature the Hamiltonian (13.42) carries no specific name in 
the literature. Lately, "nonrelativistic quantum electrodynamics" and "Pauli-Pierz" 
have become common usage in some quarters. We stick to the latter convention, 
which is certainly better than to be speechless. 

The quantization of the electromagnetic field as a system of harmonic oscilla­
tors was common knowledge right after the advent of quantum mechanics through 
the work of Dirac (1927), Landau (I927), Jordan and Pauli (1928), Fermi (1930), 
and Landau and Peierls (1930), and was immediately applied to atomic radiation 

https://doi.org/10.1017/9781009402286.014 Published online by Cambridge University Press

https://doi.org/10.1017/9781009402286.014


Notes and references 175 

by many quantum theorists. The systematic derivation of the Hamiltonian (13.42) 
is not so well documented and was presumably regarded as more or less obvious, 
although the advantage of the Coulomb gauge was only slowly realized. The re­
view articles by Breit (1932) and by Fermi (1932) and the research monograph by 
Beitler (1936, 1958) explain the quantization in its modern form, in essence. Since 
"one cannot comb the hair on a sphere", the polarization vectors eA. (k) are necessar­
ily discontinuous ink, which causes poor decay in their Fourier transform. We refer 
to Lieb and Loss (2004) for a formulation using only the transverse projection. 

The size of atoms as based exclusively on the Coulomb Hamiltonian is a long­
standing open problem. We refer to Lieb (1990, 2001). 

Textbooks on nonrelativistic quantum electrodynamics are listed in Notes and 
References to section 3.2. 

Section 13.3 

Criteria for self-adjointness are given in Reed and Simon ( 1980, 197 5). In our con­
text the Kato-Rellich theorem has been applied by Nelson (1964b) and Frohlich 
(1974), amongst others. Self-adjointness without restriction on the magnitude of 
the charge is proved by Hiroshima (2000b, 2002). A review is Hiroshima (2001 ). 

Section 13.5 

A more detailed treatment of conservation laws is Huang (1998). 

Section 13.6 

Casimir (1948) discovered the attraction of two conducting plates through vacuum 
fluctuations. Casimir and Polder (1948) compute the attractive force between two 
atoms, the retarded van der Waals force, and the force between an atom and a wall. 
The forces are minute and direct experimental evidence had to wait for a while. We 
refer to Sparnaay (1958) and Lamoreaux (1997). On the theoretical side a complete 
coverage is Milloni (1994), Huang (1998), with the finite-temperature corrections 
discussed by Schwinger et al. (1978), Bordag et al. (2000), and Feinberg et al. 
(2000). 

Section 13.7 

Apparently the first systematic study of the dipole approximation with a harmonic 
external potential is Kramers (1948) and van Kampen (1951 ). Various aspects are 
covered by Senitzky (1960), Schwab] and Thirring (1964), Ford, Kac and Mazur 
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(1965), Ullersma (1966), Ford, Lewis and O'Connell (1988a, 1988b), Grabert, 
Schramm and Ingold (1988), Unruh and Zurek (1989). A mathematical study is the 
series by Arai (1981, 1983a, 1983b, 1990, 1991). Since the dipole approximation 
provides a reasonable description of radiation processes, one might regard the har­
monic potential as the lowest-order approximation and expand in the anharmonic­
ity. This program has been carried through in Maassen (1984 ), Spohn (1997), 
Maassen, Guta and Botvich (1999), and Fidaleo and Liverani (1999). If the an­
harmonicity is small, in fact so small that the external potential remains convex 
and grows as ~mw5q2 for large q, then the convergence of the time-dependent 
Dyson series can be controlled uniformly in t. With such a strong estimate one can 
show that qualitatively the properties of the damped harmonic oscillator persist 
into the nonlinear regime. 

The dipole approximation is not restricted to a single particle. For example one 
may consider two harmonically bound charges with their center of charge at r1 and 
r2 . Then the kinetic energies are approximated by (p J - c-1 e J Arp (r J) )2 j2m J, j = 

I, 2. Denoting R = lr1- r2l, one is interested in the ground state energy, E(R), 
as a function of the separation. Because of retardation E (R) ~ - R-7 for large R 
and E(R) ~ -R-6 in an intermediate regime. 

If c/Jex = 0, then the Hamiltonian (13.123) can be unitarily transformed to H' = 
(p2 j2meti) + Hf. meff agrees with the effective mass of the Abraham model to 
lowest order in lvlfc; compare with section 4.1. 

The single-photon approximation was already used in disguise by Dirac (I927) 
and Weisskopf and Wigner (1930). It is instructive to extend this approximation 
by cutting Fock space at N photons (Hubner and Spohn, unpublished manuscript; 
Skibsted 1998). If one artificially adds to the space of single-photon wave functions 
a one-dimensional subspace for a "dead" photon, then the theory has a structure 
very similar to an (N + I)-particle SchrOdinger equation. The photons interact 
only indirectly through the atom. The cluster decomposition consists of n free 
photons and N - n photons bound by the atom, n = 0, I, ... , N. 
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