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A REMARK CONCERNING THE 2-ADIC NUMBER FIELD

SUSUMU SHIRAI

1. Introduction

Let @, be the 2-adic number field, 7'/Q, be a finite unramified ex-
tension, £, be a primitive 2°-th root of unity, and let K, = T({,). In a
previous paper [1, Theorem 11], we stated the following theorem with-
out its proof.

THEOREM A. Let R=T(E, + &Y, and let ¢ be a generator of the
cyclic Galois group GR/T). Assume v =3. If Nggpe=1 for ecUP,
then

¢ € (Ng,zKX) 1,
where UY denotes the i-th unit group of R.

The aim of the present paper is to prove this theorem, which is a
detailed version of Hilbert’s theorem 90 in the 2-adic number field.

2. Preliminaries
Let 6 =¢, + g2, Since 1 — ¢, is a prime element of K,,
N1 —-0)=0A-0)A-Y=2—-14

is a prime element of R. Set 7 = 2 — § and denote by v, the normalized
exponential valuation of R. The Galois group G(X,/T) is isomorphic
to the group of prime residue classes mod 2, and hence we can choose
the generator ¢ of G(R/T) such that

=C+)y=0+°=60—56+ 50,
without loss of generality. Then
(1) 7° = r* — 102* 4+ 35z° — 507° 4 25x .
LEMMA 1. Notation being as above, if v = 3, then
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v(n° — ) =3.
Proof. Immediate from (1).
LEMMA 2. If v =3, then

=2 when n is odd ,

vz — 1){

=>4 when n is even .
Proof. By Lemma 1, we have
vt —1) =2,
and hence we can write
7 '=1+4 an?, (a,m) =1.
Therefore, for n > 1,
@)t —1=7r(na + n(n — 1)/2-0*2° + --+) .

We have v ((z*)° ! — 1) =2 if n is odd. Since »,(2) = 2% = 2, we have
v ((@")°' —1) =4 if n is even. For n £ —1, according as n is odd or
even, we obtain

@™ 'eUP —UP or eUY.
This completes the proof.
LEMMA 3. If v =38, then
v, (gt —=1) =4 for peUP .
Proof. We may write
B=1+ ar*, a € Op, the ring of integers of R.
Then
ft—1=(a"(z?) — axd)/B .

Since R/T is totally ramified, {1,r,---,7*7*"'} is an integral basis for
R/T. Set

a = a, + o + a7t + mod =*, a;€ Oy .
Then
0’ = a, + o, 1° + a)(z°)? + a(z’) mod =* .

By (1) and »,(50) = 2-2 = 2, we have
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7’ = 8b5x° + 257 mod =t .
Hence

a’(z°)* — an* = 624a,x* + 15624a,7°
= 2¢.3.13q,n? + 2°-3%.7.31a,n*
=0 mod z* .

Next, let [T:Q,] = f, and let & be a primitive (27 — 1)st root of
unity. It is well-known that T = Q,(¢) and {1,&, ---,£&/7'} is an integral
basis for T/Q, and moreover UP/U® ~ R =T is a module of type
@, -+,2), where R, T stand for the residue class fields of R and T,

—_———
I

respectively. As a complete system of representatives for U®/U®, we
can choose

r=0+o™A+ &)™ ... A4 & Dv;m,=0o0r 1,i=0,1,---,f —1}.
LEMMA 4. Notation being as above, if v =3 and y # 1, then
v =1 =38.

Proof. Since
r=Q 4 noA + ngr) - A+ n,8 '),
we have

rr—r=@ —om + g+ - +n 8

From Lemma 1, we obtain
v(n’ — ) =3, v((@)}? —r) =4, .
Thus it suffices to show that

Ny + Mg+ - +n,,81£0 mod « .

I

Suppose = O0mod~=. Then we have
Mo+ ME+ -+ + 0,81 =0 mod 77 ,

zr being a prime element of T. Since {¢'modz,;;¢=0,1,---,f — 1}
is a basis of the residue class field extension T/@, we conclude all
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n; = 0, a contradiction.

3. Proof of Theorem A
We first note that
r=2—0=Ng,s(1 —8)eNg K}, &eNg,; K}, UP C Ng, K},

in which the second follows from that the order 2/ — 1 of & is prime
to [R*:Ng, 2Kl =2 and the third from that the r-exponent of the
conductor of K,/R is two. Now, let ¢ be an element in U$ such that
Npgye = 1. Then we can write, by Hilbert’s theorem 90,

e=a’"!, ac R*.

Since R* = (x> X (&) x UY (a direct product) and U D U, we may
set

a=za"-&m-r-f, peUP ,

here 7 is as in Lemma 4. By virtue of the above remark, it completes
the proof that we obtain y = 1. Assume y #+ 1. Then we have

e = (nn)a—l.ra—l.ﬁa-l ,

in which Lemmas 3,4 give p'e U® and " 'e U — UP, respectively.
If n is even, then we have, by Lemma 2, (z*)° e U®, a contradiction.
If n is odd, then we have, by Lemma 2, (z*)° e U — U® from which
follows (z™)*~'-yte UP — U, a contradiction, and the proof is complete.
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