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Sharp Inequalities for Differentially
Subordinate Harmonic Functions
and Martingales

Adam Osȩkowski

Abstract. We determine the best constants C p,∞ and C1,p , 1 < p < ∞, for which the following

holds. If u, v are orthogonal harmonic functions on a Euclidean domain such that v is differentially

subordinate to u, then

‖v‖p ≤ C p,∞‖u‖∞, ‖v‖1 ≤ C1,p‖u‖p.

In particular, the inequalities are still sharp for the conjugate harmonic functions on the unit disc of

R
2. Sharp probabilistic versions of these estimates are also studied. As an application, we establish a

sharp version of the classical logarithmic inequality of Zygmund.

1 Introduction

The objective of this paper is to study some sharp inequalities for orthogonal har-

monic functions. Let us introduce the necessary background. Suppose that N is a

fixed positive integer, D is an open connected subset of R
N and let u and v be real-

valued harmonic functions on D. Following Burkholder [5], we say that v is differ-

entially subordinate to u if for all x ∈ D we have

(1.1) |∇v(x)| ≤ |∇u(x)|.

The functions u, v are said to be orthogonal if

(1.2) ∇u · ∇v = 0 on D,

where the dot · stands for the standard scalar product in R
N . As an example for

which (1.1) and (1.2) are valid, take N = 2, D equal to the unit disc of R
2 and u, v

satisfying the Cauchy–Riemann equations.

Fix a point ξ ∈ D and let D0 be a bounded connected subdomain of D, satisfying

ξ ∈ D0 ⊂ D0 ∪ ∂D0 ⊂ D. We will consider those u, v for which

(1.3) |v(ξ)| ≤ |u(ξ)|.
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The conditions (1.1), (1.2), and (1.3) imply many interesting estimates involving u

and v. Denote by µξ
D0

the harmonic measure on ∂D0 with respect to ξ. If 1 ≤ p < ∞,

define p-th norm and weak p-th norm of u by

‖u‖p =

[

sup
D0

∫

∂D0

|u(x)|p dµξ
D0

(x)
] 1/p

,

‖u‖p,∞ = sup
λ>0

λ
[

sup
D0

µξ
D0

({x ∈ ∂D0 : |u(x)| ≥ λ})
] 1/p

,

where the supremum is taken over all D0 as above. If D is the unit disc of R
2, ξ =

(0, 0) and v is assumed to be the harmonic conjugate of u with v(ξ) = u(ξ), the

problem of comparing the p-th norms of u and v goes back the work by M. Riesz [14],

who showed that for some universal cp, 1 < p < ∞, we have

(1.4) ‖v‖p ≤ cp‖u‖p.

Then it was shown by Pichorides [12] and Cole (see Gamelin [10]) that the optimal

constant cp above is equal to cot(π/2p∗), where p∗
= max{p, p/(p − 1)}. Finally,

Bañuelos and Wang [1] proved the following.

Theorem 1.1 Suppose that u, v satisfy (1.1), (1.2), and (1.3). Then for 1 < p < ∞
the inequality (1.4) is valid, with cp equal to the Pichorides–Cole constant.

If one drops the orthogonality assumption, inequality (1.4) remains true, with

some different constant cp. Precisely, we have the following result of Burkholder [5].

Theorem 1.2 Let u, v satisfy (1.1) and (1.3). Then for 1 < p < ∞,

‖v‖p ≤ (p∗ − 1)‖u‖p.

It is not known whether the constant p∗ − 1 is the best possible (except for the

case p = 2, when the inequality is sharp).

It is natural to question what happens in the case p = 1. Let us first consider the

setting of conjugate harmonic functions on the unit disc. It turns out that the p-th

norms of u and v are not comparable, but, as proved by Kolmogorov, the following

weak-type estimate is valid: for some universal c1,∞ < ∞,

(1.5) ‖v‖1,∞ ≤ c1,∞‖u‖1.

Then it was shown by Davis [7], that the optimal c1,∞ above equals

1 + 1
32 + 1

52 + · · ·
1 − 1

32 + 1
52 − · · · .

Finally, the paper [6] by Choi contains the proof of the following result for orthogonal

harmonic functions.
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Theorem 1.3 If u, v satisfy (1.1), (1.2), and (1.3), then inequality (1.5) is valid with

c1,∞ equal to the Davis constant.

Without the orthogonality assumption, we have the following fact, proved by

Burkholder [5].

Theorem 1.4 Let u, v satisfy (1.1) and (1.3). Then ‖v‖1,∞ ≤ 2‖u‖1, and the constant

2 is the best possible.

All the inequalities discussed above have their counterparts in martingale the-

ory. Let (Ω,F,P) be a complete probability space filtered by a nondecreasing family

(Ft )t≥0 of sub-σ-algebras of F. Assume, in addition, that F0 contains all the events

of probability 0. Let X = (Xt ), Y = (Yt ) be two real valued martingales adapted to

(Ft ). Let [X,Y ] denote the quadratic covariance process between X and Y (see [8]).

Following [1, 16], we say that Y is differentially subordinate to X if the process

[X,X] − [Y,Y ] is nondecreasing and nonnegative as a function of t . In particular, if

this is the case, then we have |Y0| ≤ |X0| which can be obtained simply by comparing

[X,X]0 and [Y,Y ]0.

Here is the martingale version of Theorem 1.2 and Theorem 1.4 taken from [16]

(see also [4]). We write ‖X‖p = supt ‖Xt‖p and ‖X‖1,∞ = supt supλ λP(|Xt | ≥ λ).

Theorem 1.5 Let X and Y be two martingales such that Y is differentially subordinate

to X. Then for 1 < p < ∞, we have

‖Y‖p ≤ (p∗ − 1)‖X‖p.

Furthermore, ‖Y‖1,∞ ≤ 2‖X‖1. Both inequalities are sharp.

We say that X and Y are orthogonal if the process [X,Y ] is constant. Under the as-

sumption of differential subordination and orthogonality, Bañuelos and Wang [1–3]

proved the following fact.

Theorem 1.6 Let X and Y be two continuous-time orthogonal martingales such that

Y is differentially subordinate to X. Then for 1 < p < ∞,

‖Y‖p ≤ cot(π/2p∗)‖X‖p.

Furthermore,

‖Y‖1,∞ ≤ 1 + 1
32 + 1

52 + · · ·
1 − 1

32 + 1
52 − · · ·‖X‖1.

Both inequalities are sharp.

In the present paper we continue the research in this direction and find the opti-

mal constants in related inequalities for orthogonal harmonic functions and martin-

gales. Let

C p,∞ =















1 if 1 < p ≤ 2,

[ 2p+2

πp+1
Γ(p + 1)

∞
∑

k=0

(−1)k

(2k + 1)p+1

] 1/p

if p > 2,

and for 1 < p < ∞, C1,p = C p/(p−1),∞.
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Theorem 1.7 Let u, v satisfy (1.1), (1.2), and (1.3). Then for 1 < p < ∞,

‖v‖1 ≤ C1,p‖u‖p,(1.6)

‖v‖p ≤ C p,∞‖u‖∞.(1.7)

Both inequalities are sharp, even if D is a unit disc in R
2, ξ = (0, 0), and u, v are

assumed to satisfy the Cauchy–Riemann equations.

Theorem 1.8 Let X and Y be two continuous-time orthogonal martingales such that

Y is differentially subordinate to X. Then for 1 < p < ∞,

‖Y‖1 ≤ C1,p‖X‖p,(1.8)

‖Y‖p ≤ C p,∞‖X‖∞.(1.9)

Both inequalities are sharp.

As an application, we present sharp versions of some classical inequalities for con-

jugate harmonic functions on the unit disc which may seem more natural in our

context. Let Φ,Ψ : [0,∞) → R be the Young functions given by Φ(t) = et − t − 1

and Ψ(t) = (t + 1) log(t + 1) − t .

Theorem 1.9 Let u, v be conjugate harmonic functions on the unit disc.

(i) If ‖u‖∞ ≤ 1, then for γ < π/2,

(1.10) sup
0<r<1

∫ π

−π

Φ
(

γ|v(reiθ)|
)

dθ ≤ 8

∫ ∞

1

t2γ/π − 2γ
π log t − 1

t2 + 1
dt.

(ii) For K > 2/π,

sup
0<r<1

∫ π

−π

|u(reiθ)| dθ ≤ sup
0<r<1

∫ π

−π

Ψ
(

K|u(reiθ)|
)

dθ + 8

∫ ∞

1

t2/(Kπ) − 2 log t
Kπ − 1

t2 + 1
dt.

Both inequalities are sharp.

The logarithmic estimate above is related to the classical inequality of Zygmund

[17] (‖v‖1 ≤ A
∫ π

−π
u log+ u + B for some A, B > 0). This should also be compared

to the results of Pichorides [12] and Essen, Shea, and Stanton [9]. Pichorides showed

that there is L = L(K) < ∞ such that

‖v‖1 ≤ K sup
0<r<1

∫ π

−π

|u(reiθ)| log |u(reiθ)| dθ

2π
+ L(K)

if and only if K > 2/π. He also determined the sharp version of this estimate under

an additional assumption that the function u is nonnegative. Essen, Shea, and Stan-

ton studied the limit case K = 2/π, and showed that for some absolute constants C1
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and C2,

‖v‖1 ≤ 2

π
sup

0<r<1

∫ π

−π

|u(reiθ)| log(e + |u(reiθ)|) dθ

2π

+
4

π
sup

0<r<1

∫ π

−π

|u(reiθ)| log log(e + |u(reiθ)|) dθ

2π
+ C1‖u‖1 + C2.

In addition, the constant 2/π is the best, and 4/π cannot be replaced by a constant

smaller than 2/π. See [9] for details and for other related results.

The paper is organized as follows. The proofs of the announced estimates are

based on the existence of certain special superharmonic functions. We study (1.7)

and (1.9) in the next section, while (1.6) and (1.8) are established in Section 3. The

final section is devoted to the proof of Theorem 1.9.

2 On Inequalities (1.7) and (1.9)

If 1 ≤ p ≤ 2, the estimates (1.7) and (1.9) are straightforward. Indeed, we have

‖v‖p ≤ ‖v‖2 ≤ ‖u‖2 ≤ ‖u‖∞,

and a similar chain of inequalities yields the martingale inequality. Obviously, the

constant 1 is the best possible. Therefore, we may restrict ourselves to the case when

p lies in the interval (2,∞).

Let H = R × (0,∞) denote the upper half-plane and let U = Up : H → R be

given by the Poisson integral

U(α, β) =
1

π

∫ ∞

−∞

β
∣

∣

∣

2
π log |t|

∣

∣

∣

p

(α− t)2 + β2
dt.

The function U is harmonic on H and satisfies

(2.1) lim
(α,β)→(z,0)

U(α, β) =
( 2

π

) p

| log |z‖p, z 6= 0.

Let S denote the strip (−1, 1)×R and consider a conformal mapping ϕ(z) = ie−iπz/2,

or

ϕ(x, y) =
(

eπy/2 sin
( π

2
x
)

, eπy/2 cos
( π

2
x
))

, (x, y) ∈ R
2.

One easily verifies that ϕ maps S onto H. Define U = U p on S by

U (x, y) = U(ϕ(x, y)).

The function U is harmonic on S and by (2.1) can be extended to the continuous

function on the closure S of S by U (±1, y) = |y|p.

Further properties of U are investigated in the lemma below.
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Lemma 2.1 (i) The function U satisfies U (x, y) = U (−x, y) on S.

(ii) We have U (x, y) ≥ |y|p for all (x, y) ∈ S.

(iii) For any (x, y) ∈ S we have Uxx(x, y) ≤ 0 and U y y(x, y) ≥ 0.

(iv) If (x, y) ∈ S and y > 0, then U y y y(x, y) ≥ 0.

(v) For any (x, y) ∈ S such that |y| ≤ |x|, we have U (x, y) ≤ C
p
p,∞.

(vi) For any (x, y) ∈ S we have U (x, y) ≤ 2p−1|y|p + 2p−1C
p
p,∞.

Proof (i) This is a consequence of the equality U(α, β) = U(−α, β), (α, β) ∈ H:

simply substitute s = −t in the integral defining U.

(ii) This follows from Jensen’s inequality: we get, after a change of variables t =

s exp(πy/2),

(2.2) U (x, y) =

∫ ∞

−∞

∣

∣

∣

2

π
log |s| + y

∣

∣

∣

p

· 1

π

cos( π
2

x)

(s − sin( π
2

x))2 + cos2( π
2

x)
ds

≥
∣

∣

∣

1

π

∫ ∞

−∞

cos( π
2

x)
(

2
π log |s| + y

)

(s − sin( π
2

x))2 + cos2( π
2

x)
ds
∣

∣

∣

p

= |y|p.

(iii) In view of the harmonicity of U , it suffices to deal with the second estimate.

Using Fubini’s theorem we verify that

U y y(x, y) =
p(p − 1)

π

∫ ∞

−∞

cos( π
2

x)
∣

∣

2
π log |s| + y

∣

∣

p−2

(s − sin( π
2

x))2 + cos2( π
2

x)
ds,

and it is evident that the expression on the right is nonnegative.

(iv) We have

U y(x, y) =
p

π

∫ ∞

−∞

cos( π
2

x)
∣

∣

2
π log |s| + y

∣

∣

p−2 ( 2
π log |s| + y

)

(s − sin( π
2

x))2 + cos2( π
2

x)
ds.

Therefore, for ε ∈ (0, y) we have

2U y(x, y)−U y(x, y −ε)−U y(x, y +ε) =
p

π

∫ ∞

−∞

fy,ε

(

2
π log |s|

)

cos( π
2

x)

(s − sin( π
2

x))2 + cos2( π
2

x)
ds = I,

where

fy,ε(h) = 2|y + h|p−2(y + h) − |y − ε + h|p−2(y − ε + h) − |y + ε + h|p−2(y + ε + h).

The expression I, after being split into integrals over the nonpositive and nonnegative

half-line and substituting s = ±er, can be written in the form

I =
p

π

∫ ∞

−∞

fy,ε

( 2

π
r
)

gx(r) dr,

where

gx(r) =
cos( π

2
x)er

(er − sin( π
2

x))2 + cos2( π
2

x)
+

cos( π
2

x)er

(er + sin( π
2

x))2 + cos2( π
2

x)
.
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Observe that fy,ε(h) ≤ 0 for h ≥ −y and that we have fy,ε(−y + h) = − fy,ε(−y − h)

for all h. Furthermore, gx is even and for r > 0,

(gx) ′(r) =
cos( π

2
x)er(1 − er)

[(er − sin( π
2

x))2 + cos2( π
2

x)]2
+

cos( π
2

x)er(1 − er)

[(er + sin( π
2

x))2 + cos2( π
2

x)]2
≤ 0.

This implies I ≤ 0 and, since ε ∈ (0, x) was arbitrary, the function U (x, · ) : y 7→
U y(x, y) is convex on (0,∞).

(v) First we show that

(2.3) Uxy(x, y) ≤ 0 for x ∈ (0, 1), y > 0.

Since U is harmonic on S, so is U y and hence we have Uxxy(x, y) = −U y y y(x, y) ≤ 0

for x ∈ (0, 1) and y > 0. Since Ux(0, y) = 0, which is a consequence of (i), we see

that Uxy(0, y) = 0 and therefore (2.3) follows.

Let 0 ≤ y ≤ x ≤ 1 and consider a function Φ(t) = U (tx, t y), t ∈ [−1, 1]. Then

Φ is even and by (iii) and (2.3),

Φ
′ ′(t) = x2Uxx(tx, t y) + 2xyUxy(tx, t y) + y2U y y(tx, t y)

≤ x2
∆U (tx, t y) + 2xyUxy(tx, t y) ≤ 0

for t ∈ (−1, 1). This implies

U (x, y) = Φ(1) ≤ Φ(0) = U (0, 0) = U(0, 1) =
2p+1

πp+1

∫ ∞

0

| log t|p

t2 + 1
dt

=
2p+1

πp+1

∫ ∞

−∞

|s|pes

e2s + 1
ds =

2p+2

πp+1

∫ ∞

0

spe−s

∞
∑

k=0

(−e−2s)k ds

=
2p+2

πp+1
Γ(p + 1)

∞
∑

k=0

(−1)k

(2k + 1)p+1
= C

p
p,∞.

(vi) It is clear from the formula for U appearing in (2.2) that

U (x, y) ≤ 2p−1|y|p + 2p−1

∫ ∞

−∞

∣

∣

∣

∣

2

π
log |s|

∣

∣

∣

∣

p

· 1

π

cos( π
2

x)

(s − sin( π
2

x))2 + cos2( π
2

x)
ds

= 2p−1|y|p + 2p−1U (x, 0) ≤ 2p−1|y|p + 2p−1U (0, 0).

Here in the last passage we have used (i) and (iii). Now use part (v) to complete the

proof.

To establish the martingale inequalities (1.7) and (1.9), we will need the following

auxiliary facts. Recall that for any semi-martingale X there exists a unique continuous

local martingale part Xc of X satisfying

[X,X]t = |X0|2 + [Xc,Xc]t +
∑

0<s≤t

|△Xs|2
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for all t ≥ 0. Here △Xs = Xs − Xs− denotes the jump of X at time s. Furthermore,

we have that [Xc,Xc] = [X,X]c, the pathwise continuous part of [X,X]. Here is

[3, Lemma 2.1].

Lemma 2.2 If X and Y are semi-martingales, then Y is differentially subordinate

and orthogonal to X if and only if Y c is differentially subordinate and orthogonal to Xc,

|Y0| ≤ |X0|, and Y has continuous paths.

Now we are ready to prove the martingale inequality.

Proof of (1.9) With no loss of generality, we may assume that ‖X‖∞ = 1. Let t ∈
(0,∞). Since U is of class C∞ on S, we may apply Itô’s formula to obtain

U (Xt ,Yt ) = U (X0,Y0) + I1 +
1

2
I2 +

1

2
I3 + I4,

where

(2.4) I1 =

∫ t

0+

Ux(Xs−,Ys) dXs +

∫ t

0+

U y(Xs−,Ys) dYs,

I2 = 2

∫ t

0+

Uxy(Xs−,Ys) d[Xc,Y ]s,

I3 =

∫ t

0+

Uxx(Xs−,Ys) d[Xc,Xc]s +

∫ t

0+

U y y(Xs−,Ys) d[Y,Y ]s,

I4 =

∑

0<s≤t

[

U (Xs,Ys) −U (Xs−,Ys) −Ux(Xs−,Ys)∆Xs

]

.

Note that we have used above the equalities Ys− = Ys and Y = Y c which are

due to the continuity of paths of Y . By Lemma 2.1(v) and Lemma 2.2 we have

U (X0,Y0) ≤ C
p
p,∞. The term I1 has zero expectation, as the stochastic integrals are

martingales. We have I2 = 0 in view of the orthogonality of X and Y . The differential

subordination together with Lemma 2.1(iii) give

I3 ≤
∫ t

0

Uxx(Xs,Ys) d[Xc,Xc]s +

∫ t

0

U y y(Xs,Ys) d[Xc,Xc]s = 0.

Finally, we have that I4 ≤ 0 by the concavity of U ( · , y) for any fixed y ∈ R (see

Lemma 2.1 (iii)). Therefore, by Lemma 2.1(ii), E|Yt |p ≤ EU (Xt ,Yt ) ≤ C
p
p,∞, and it

suffices to take the supremum over t to obtain (1.8).

Proof of the inequality (1.7) It suffices to show that for any bounded subdomain D0

of D satisfying ξ ∈ D0 ⊂ D0 ∪ ∂D0 ⊂ D we have

∫

∂D0

|v(x)|p dµξ
D0

(x) ≤ C
p
p,∞‖u‖p

∞.
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Let B = (Bt )t≥0 be an N-dimensional Brownian motion starting from ξ and let τ
denote the first moment B hits the boundary of D0. Consider martingales X, Y given

by Xt = u(Bτ∧t ) and Yt = v(Bτ∧t ), t ≥ 0. We have

[X,X]t = u2(ξ) +

∫ τ∧t

0

|∇u(Bs)|2 ds,

[Y,Y ]t = v2(ξ) +

∫ τ∧t

0

|∇v(Bs)|2 ds,

[X,Y ]t = u(ξ)v(ξ) +

∫ τ∧t

0

∇u(Bs) · ∇v(Bs) ds,

and we see that the assumptions on u and v imply that Y is differentially subordinate

to X and that X, Y are orthogonal. Therefore, by (1.9),
∫

∂D0

|v(x)|p dµξ
D0

(x) = ‖Y‖p
p ≤ C

p
p,∞‖X‖p

∞ ≤ C
p
p,∞‖u‖p

∞.

Sharpness It suffices to prove the optimality of C p,∞ in (1.7). First we provide an

example for D equal to the strip S and ξ = (0, 0); to treat the case when D is the

unit disc of R
2, we will use a conformal mapping from the disc to S (see below). Let

u(x, y) = x and v(x, y) = y for (x, y) ∈ S. We have that ‖u‖∞ ≤ 1 and u, v satisfy

the Cauchy–Riemann equations. Let B = (B(1),B(2)) be a two-dimensional Brownian

motion starting from (0, 0). For n ≥ 2, let Dn = (−1 + 1/n, 1 − 1/n) × (−n, n) and

τn = inf{t : Bt /∈ Dn}, τ = inf{t : Bt /∈ D}. We will show that

‖v‖p ≥ ‖B(2)
τ ‖p = C

p
p,∞.

The inequality above is a consequence of

‖v‖p
p ≥

∫

∂Dn

|v(x, y)|p dµξ
Dn

(x, y) = E|B(2)
τn
|p,

the almost sure convergence Bτn
→ Bτ , and Fatou’s lemma. To prove ‖B(2)

τ ‖p = C
p
p,∞,

note that by the harmonicity of U , Itô’s formula yields

C
p
p,∞ = U (0, 0) = EU (Bτ∧t ), t ≥ 0.

By Burkholder–Davis–Gundy inequalities, we have, for some universal cp and c ′p,

sup
t

‖B(2)
τ∧t‖p ≤ cp‖τ 1/2‖p ≤ c ′p sup

t
‖B(1)

τ∧t‖p = c ′p.

Therefore the martingale (B(2)
τ∧t )t≥0 converges in Lp and hence, by Lemma 2.1(vi) and

Lebesgue’s dominated convergence theorem,

C
p
p,∞ = lim

t→∞
EU (Bτ∧t ) = EU (Bτ ) = ‖B(2)

τ ‖p
p.

This proves the optimality of (1.7) for D = S. If D is the unit disc of R
2, let F =

F1 + iF2, F(0) = 0, be a conformal mapping from D onto S and let u = u ◦ F = F1,

v = v ◦ F = F2. Then u, v satisfy the Cauchy–Riemann equations, ‖u‖∞ ≤ 1, and

‖v‖p
p = ‖v‖p

p ≥ C
p
p,∞.
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3 On Inequalities (1.6) and (1.8)

We start with the observation that for p ≥ 2 the inequalities are trivial. For example,

(1.6) follows from

‖v‖1 ≤ ‖v‖2 ≤ ‖u‖2 ≤ ‖u‖p,

and, clearly, the inequality is sharp. Therefore, we assume that 1 < p < 2 throughout

this section.

As we have seen, the crucial role in the proof of (1.7) and (1.9) was played by the

special function U . Here we will also need such an object. However, things are more

complicated. First, we will not work with (1.6) and (1.8) directly, but rather with the

following modifications of these estimates:

∫

∂D0

|v(x)| dµξ
D0

(x) ≤
∫

∂D0

|u(x)|p dµξ
D0

(x) + L,

where D0 is as before, and ‖Y‖1 ≤ ‖X‖p
p + L. Here L is a fixed positive number.

In order to establish these inequalities, we will use the value function of the follow-

ing optimal stopping problem. Let B = (B(1),B(2)) be a two-dimensional Brownian

motion starting from (0, 0) and introduce V : R
2 → (−∞,∞] by

(3.1) V (x, y) = sup EG(x + B(1)
τ , y + B(2)

τ ),

where G(x, y) = |y| − |x|p and the supremum is taken over all stopping times of B

satisfying Eτ p/2 < ∞.

The key properties of V are listed in the lemma below.

Lemma 3.1 (i) The function V is finite on R
2.

(ii) The function V is a superharmonic majorant of G.

(iii) For any fixed x ∈ R, the function V (x, · ) : y 7→ V (x, y) is convex.

(iv) If |y| ≤ |x|, we have

(3.2) V (x, y) ≤
( C p/(p−1),∞

p

) p/(p−1)

· (p − 1).

Proof (i) Take a stopping time τ ∈ Lp/2 and note that the process (B(2)
τ∧t ) is differen-

tially subordinate and orthogonal to (x + B(1)
τ∧t ). Therefore, by a theorem of Bañuelos

and Wang, for any t ,

E|y + B(2)
τ∧t | ≤ |y| + E|B(2)

τ∧t | ≤ |y| + c + [cot(π/2p∗)]−p‖B(2)
τ∧t‖p

p

≤ |y| + c + ‖x + B(1)
τ∧t‖p

p,

where c = [cot(π/2p∗)/p]p/(p−1) · (p − 1). Since τ ∈ Lp/2, the Burkholder–Davis–

Gundy inequality implies that the martingales (B(1)
τ∧t ), (B(2)

τ∧t ) converge in Lp to B(1)
τ

and B(2)
τ , respectively. Thus, letting t → ∞ yields V (x, y) ≤ |y| + c.
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(ii) The inequality V ≥ G follows immediately by considering in (3.1) the stop-

ping time τ ≡ 0. The superharmonicity can be established using standard Markovian

arguments (see [13, Chapter I]).

(iii) Fix x, y1, y2 ∈ R and λ ∈ (0, 1). For any τ ∈ Lp/2, by the triangle inequality,

EG
(

x + B(1)
τ , λy1 + (1 − λ)y2 + B(2)

τ

)

≤ λEG(x + B(1)
τ , y1 + B(2)

τ )

+ (1 − λ)EG(x + B(1)
τ , y2 + B(2)

τ )

≤ λV (x, y1) + (1 − λ)V (x, y2).

It remains to take the supremum over τ to get the claim.

(iv) Fix a stopping time τ ∈ Lp/2 and t > 0. We have

E|y + B(2)
τ∧t | = E(y + B(2)

τ∧t ) sgn(y + B(2)
τ∧t ).

Consider a martingale ζt
= (ζt

r )r≥0 given by ζt
r = E[sgn(y + B(2)

τ∧t )|Fτ∧r]. There

exists an R
2-valued predictable process A = (A(1)

r ,A(2)
r )r such that for all r,

ζt
r = Eζt

t +

∫ τ∧r

0

As dBs = E sgn(y + B(2)
τ∧t ) +

∫ τ∧r

0

As dBs

(see [15, Chapter V]). Therefore, using the properties of stochastic integrals, we may

write

E|y + B(2)
τ∧t | = yE sgn(y + B(2)

τ∧t ) + EB(2)
τ∧t

∫ τ∧t

0

As dBs

= yE sgn(y + B(2)
τ∧t ) + E

∫ τ∧t

0

(0, 1) dBs

∫ τ∧t

0

As dBs

= yE sgn(y + B(2)
τ∧t ) + E

∫ τ∧t

0

A(2)
s ds

= yE sgn(y + B(2)
τ∧t ) + E

∫ τ∧t

0

(1, 0) dBs

∫ τ∧t

0

(A(2)
s ,−A(1)

s ) dBs

≤ |x||E sgn(y + B(2)
τ∧t )| + EB(1)

τ∧t

∫ τ∧t

0

(A(2)
s ,−A(1)

s ) dBs

= E(x + B(1)
τ∧t )

[

sgn x|E sgn(y + B(2)
τ∧t )| +

∫ τ∧t

0

(A(2)
s ,−A(1)

s ) dBs

]

≤ ‖x + B(1)
τ∧t‖p

∥

∥

∥
sgn x|E sgn(y + B(2)

τ∧t )| +

∫ τ∧t

0

(A(2)
s ,−A(1)

s ) dBs

∥

∥

∥

p
p−1

.

Observe that the martingale

(ηt
r)r≥0 =

(

sgn x|E sgn(y + B(2)
τ∧t )| +

∫ τ∧r

0

(A(2)
s ,−A(1)

s ) dBs

)

r≥0
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is differentially subordinate and orthogonal to ζt . Furthermore, we have ‖ζt‖∞ =

‖ sgn(y + B(2)
τ∧t )‖∞ = 1, so by (1.9) we see that ‖ηt‖p/(p−1) ≤ C p/(p−1),∞. In conse-

quence,

E|y +B(2)
τ∧t | ≤ C p/(p−1),∞‖x +B(1)

τ∧t‖p ≤ E|x +B(1)
τ∧t |p +

( C p/(p−1),∞

p

) p/(p−1)

·(p−1),

and it suffices to let t → ∞ to obtain (3.2), using the argument with the Burkholder–

Davis–Gundy inequality .

Proof of (1.8) Fix δ > 0, ε > δ
√

2, and convolve G and V with a nonnegative

C∞ function gδ , supported on the ball with center (0, 0) and radius δ, satisfying

‖gδ‖1 = 1. As the result, we obtain C∞ functions Gδ and V δ , such that Gδ ≤ V δ

and V δ is superharmonic. Furthermore, by Lemma 3.1(iii), we have V δ
y y ≥ 0 and, by

superharmonicity, V δ
xx ≤ 0. Let ε > 0, t ≥ 0 and apply Itô’s formula to obtain

V δ(ε + Xt ,Yt ) = V δ(ε + X0,Y0) + I1 +
1

2
I2 +

1

2
I3 + I4,

where I1, I2, I3 and I4 are as in (2.4) (just replace U by V δ and X by ε+ X there). Now

we may repeat the arguments from the proof of (1.9) and thus obtain that EI1 = 0

and I2, I3, I4 are nonpositive. Furthermore, since ε > δ/2, the assumption on the

support of gδ , together with |Y0| ≤ |X0| and (3.2), imply

V δ(ε + X0,Y0) ≤
( C p/(p−1),∞

p

) p/(p−1)

· (p − 1).

Therefore we have proved that

EGδ(ε + Xτ∧t ,Yτ∧t ) ≤
( C p/(p−1),∞

p

) p/(p−1)

· (p − 1).

Obviously, we have |Gδ(x, y)| ≤ |x|+‖y|+δ|p ≤ 2p−1(|y|p+δp). Hence, by Lebesgue’s

dominated convergence theorem, if we let ε → 0 and δ → 0, we get

E|Yτ∧t | ≤ E|Xτ∧t |p +
( C p/(p−1),∞

p

) p/(p−1)

· (p − 1).

By Burkholder-Davis-Gundy inequalities, we may replace τ ∧ t by τ in the above

estimate. Applying it to the pair (X ′,Y ′) = (X/λ,Y/λ) with

λ =
‖X‖p p1/(p−1)

C
1/(p−1)

p/(p−1),∞

(clearly, the differential subordination and orthogonality remain valid) yields (1.8).
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Sharpness We may restrict ourselves to the unit disc of R
2 and u, v satisfying the

Cauchy–Riemann equations. Then the claim follows immediately by duality.

4 Proof of Theorem 1.9

Proof (i) This is straightforward. For any k = 2, 3, . . . we have by (1.7),

(4.1) ‖v‖k
k ≤ Ck

k,∞ =
2k+1

πk+1

∫ ∞

0

| log |t‖k

t2 + 1
dt =

4

π

∫ ∞

1

(

2
π log t

)k

t2 + 1
dt,

so for γ < π/2,

sup
0<r<1

∫ π

−π

Φ(γ|v(reiθ)|) dθ

2π
=

∞
∑

k=2

γk‖v‖k
k

k!
≤ 4

π

∫ ∞

1

t2γ/π − 2γ
π log t − 1

t2 + 1
dt

as desired. To see that the bound on the right is the best possible, consider the pair

(u, v) studied at the end of Section 2. Then we have equality in (4.1) for all k ≥ 2 and

hence also (1.10) is sharp.

(ii) This follows from (i) by standard duality arguments, since the functions Φ and

Ψ are conjugate to each other (in the sense that Φ ′ is the inverse to Ψ
′ on (0,∞)).

We omit the details.
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