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Political Analysis 8:1

Postestimation Uncertainty in
Limited Dependent Variable Models

Michael C. Herron
Northwestern University

Many political science research articles that use limited dependent variable models re-
port estimated quantities, in particular, fitted probabilities, predicted probabilities, and
functions of such probabilities, without indicating that such estimates are subject to un-
certainty. This practice, along with the reporting of “percentage correctly predicted,” can
overstate the precision of reported results. In light of this, the present article describes
a variety of measures of uncertainty that authors can include alongside estimates gener-
ated by limited dependent variable models. It also proposes an alternative to “percentage
correctly predicted” and illustrates its calculations with congressional cosponsorship data
from Krehbiel (1995).

1 Introduction

It is the contention of this article that estimates from limited dependent variable models
should never be reported without some indication that they are subject to uncertainty. It i
common, however, for political science research articles that use limited dependent variab
models to report estimated quantities, in particular fitted probabilities, predicted probabil-
ities, and functions of such probabilities, without measures of uncertainty. Consequently
these estimates appear to be more precise than they actually are. Atbest, model estimates
ported without measures of uncertainty leave readers agnostic over matters of interpretatio
at worst, such estimates overstate precision and can unintentionally mislead.

This article consists of two parts, each of which is motivated by the importance of mea-
sures of uncertainty insofar as they pertain to estimates produced by limited dependel
variable models. The first part describes how to calculate standard errors and confidenc
intervals for fitted probabilities, predicted probabilities, and functions of these probabili-
ties. The second argues that a common statistic, “percentage correctly predicted,” that
frequently used to assess the fit of limited dependent variable models is almost alway
reported in a way that makes it appear more precise than it actually is. In place of “percent
age correctly predicted,” this article proposes and justifies an alternative statistic which i
theoretically grounded and does not overstate precision.

Limited dependent variable models, such as probit, logit, multinomial probit, and so
forth, are used by quantitative researchers when a dependent variable of interest can take
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only one of several possible values. There is a vast body of literature on different types c
limited dependent variable models, also known as categorical data models (Maddala 198
Greene 1997; Agresti 1996). Within the political science literature, the most common
limited dependent variable model is probably the logit although the probit is becoming
increasingly popular. While political science research has also used other models in tf
limited dependent variable class (e.g., Alvarez and Brehm 1995, 1998; Alvarez and Nagle
1997; Bailey and Brady 1998; Lacy and Burden 1999), for ease of exposition this article’s
technical discussion focuses solely on the probit model. Similarly, the article’s discussiol
of, critique of, and suggested replacement for “percentage correctly predicted” is base
on the probit framework. However, the article’s general points about uncertainty, estimat
precision, and problems associated with “percentage correctly predicted” apply to all type
of limited dependent variable modéls.

The remainder of this article is organized as follows. The next section describes the bas
probit model and highlights probit-based quantities that are typically of interest to quanti-
tative political researchers. The article then discusses fitted and predicted probabilities |
probit models, explains how they should be reported, and describes how standard errc
and confidence intervals for such probabilities can be constructed. The subsequent secti
elaborates on the model fit statistic known as “percentage correctly predicted,” explain
how the statistic can overstate the accuracy of probit results, and proposes an alternati
statistic that does not overstate precision. After briefly describing how the probit result:
presented in this article can be generalized to multinomial models and commenting on th
difference between in-sample and out-of-sample estimates, the calculations discussed h
are illustrated using data from Krehbiel (1995). The last section summarizes and conclude

2 The Basic Probit Model

Let y* denote an unobserved, latent variable indexed by obseniatioml lety; represent
an observed, dichotomous dependent variable whose value, either 0 or 1, depghdsion
accordance with standard usage, assumeythatl if and only ify* > 0 andy; = 0 other-
wise. Suppose thaf* = xi 3 + ¢;, wherex; is a covariate vector unique to observatiof3

is a parameter vector common to all observations caisia standard normal disturbante.
Given the set of assumptions, the probabifitythaty; = 1 is

p=P(y’>0)=PXB+¢ >0)=P(6 > —XB) =1- &(—x3) 1

where®(-) denotes the standard normal distribution function.
Based on the fact that is a Bernoulli random variable, the following loglikelihood
function can be used to estimate

L(B) = 2:((1 = ¥i) In[@(=xB)] + ¥i In[1 — ©(—x; B)]) )

3 is chosen as the unigue maximizer of the expression in Eq. (2), ard tisnote the

1The article’s comments about precision and measures of uncertainty apply to statistical models in generz
However, for reasons that are unclear, political science research that relies on limited dependent variable mod
is particularly problematic with respect to its frequent reporting of estimates without measures of uncertainty.

2|t is the standard normal distributional assumptiorepthat characterizes a probit model. Had it been assumed
thate; had a logistic distribution, the resulting model would be a logit.
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resulting covariance matrik Under standard regularity conditions, it follows that
(B-B)~NO.%) (3)

There are two interpretations of the asymptotic result in Eq. (3). The frequentist inter-
pretation is thag is fixed, the estimat@ is random, and reflects uncertainty abomi
To Bayesians and what Tanner (1993, p. 16) calls likelihoodisisfixed and the posterior
distribution of 3 is approximately normal with mean vect,érand covariance matri.
This article adopts the latter perspectlve and considets be a random variable whose
posterior distribution is characterized Byv N(3, ). The importance of this expression
becomes apparent when it is explained how functions of probit estimates can be calculate
by sampling from the normal distribution with mean veqﬁ)and covariance matrig.
See King et al. (1998) on the interpretation of Eq. (3).

Substituting the estimai@ for 3 in Eq. (1) yields fitted probabilitieq). This “plug-in”
notion is the same idea used to calculate fitted values in ordinary least squares models.
particular,

b =1— o(—x 3) (4)

At this point, the basic probit model and its likelihood function have been set up, and
three estimated quantitie8, 3, and p;, have been described. In the following sections
of the article, it is argued that the way in which many political science research articles
report values ofy and functions of these values can be misleading with respect to estimate
precision.

3 Consequences of Postestimation Uncertainty

After probit estimation3 is a random variable. This is noted in Eq. (3), which indicates
that residual or postestimation uncertainty surrounging captured by the posterior mean
vector3 and covariance matrix. Consequently, a statement suchdas 3 would over-
state the precision with whicf8 is known. Moreover, if3 is a random variable after
estimation, then functions ¢ are random as well. In particular, randomnesg iimplies
that the values of such functions cannot be known with complete certainty even after probi
estimation. Therefore, when researchers estimate probit models and report functions
estimated vectors, itis incumbent on them to identify residual uncertainty by also reporting
standard errors and/or confidence intervals for the estimated function values.

From Eq. (4), it can be seen thgt, the estimate ofy;, is a function of3 where the
estimated has been substituted for the parameter ve@tdPerhaps the most common way
to derive a confidence interval f@x is, first, to use the delta method to estimate its standard
error and, second, to specify the confidence interval based on the standard error. The de
method is a general approximation procedure for calculating the standard error of a possib
nonlinear function of a vector of random variables, and from Eqg. (4) it can be seefy that
is indeed a nonlinear function gf (when substituted for by). The mathematics of the
delta method can be seen via the following simple exarhple.

33} can be estimated in a variety of fashions, and the details of these calculations are beyond the scope of tF
article. See, for example, Greene (1997, Chap. 4).

4The theory behind the delta method is explained in most textbooks on statistics. See, for example, Rice (198
pp. 142-147) and Greene (1997, p. 124).
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Let y denote a scalar random variable with mgaand variances? and let f(-) be a
differentiable function. A first-order Taylor-series approximatiorf ¢f) aboutu yields

fr)~ f() + ' (w)(y — ) (5)

Therefore,

Var[ f(y)] ~ Var[f'(u)(y — w)]

~ [/ (w)?0? ©
Eq. (6) illustrates the well-known result that the variance of a funcfiéi of a random
variabley can be approximated based on its first derivafig) and the variance? of the
underlying random variable. Extensions of Eq. (6) to vector-valued random variables ar
straightforward. Rather than containing a single first derivative as in Eq. (6), as illustrate
below such vector-valued extensions include a matrix of first partial derivatives.

Suppose that there akeovariates in each observatiowjsvector so thas, the posterior
mean of3 (or the estimate 0f3), is ak vector. This means thdy is a function of a
k-dimensional random vector. Lef; denote the (scalar) value of thj¢h covariate for
observation, where 1< j < k. Similarly, IetBi denote thegjth element oté andG; the
row vector of first derivatives ofy with respect tq@. SinceB hask elementsG; hask
elements as well, and |&;; denote theth element ofG;. Then,

_ 0P _ 01— o(=x)]

M M = Xijp(—x; ) (7)

ij

whereg(-) is the standard normal density function and the right-hand side of Eq. (4) sub-
stitutes forp;. According to the delta method as generalized kovactor, the approximate
variance offy is G; fJGi’. Whenk = 1, G; andX are scalars, and this expression simplifies
to that in Eq. (6). In general, thoug8; isa 1x k vector,3 is ak x k matrix, andG; is a

k x 1 vector, sd3; £G/ is a scalar.

Note the presence i6;=G; of £, the covariance matrix generated from maximizing
the probit loglikelihood function in Eq. (2). The presence3bimplies that covariances
between the individual elements of tﬁbvector are internalized into the delta method'’s
variance calculation.

A researcher seeking a 95% confidence intervalffowould use @i — 1.964;, pi +
1.964), whereo; = (G; EG{)%. If, say, such a confidence interval didt contain 0.5, the
null hypothesisp; = 0.5 could be rejected at the 0.05 level. Similarly, statistic for p;
could be calculated by dividing; by its estimated standard errqr. 1f the t statistic were
greater in magnitude than 1.96, one could argue ghatas significantly different from
zero at the 0.05 level. See Bailey and Brady (1998) for an example of these calcutations.

SMany computer packages automatically implement the delta method when asked to evaluate the variance
a function of estimated parameters, and these packages allow users to avoid the potentially tedious derivati
calculations akin to those in Eq. (7). In Stata version 6, the comrtesidlimplements the delta method. In
TSP, the appropriate commandiisalyz For example, to usiestnlin Stata a researcher would estimate a probit
regression using thgrobit command, define an equation usegyand then usgestnlon the equation. The Stata
commandiprobitautomatically uses the delta method to calculate the standard errors of fitted probabilities. To
useanalyzfrom within TSP, a researcher would estimate a probit model using either the TSP corpolaitdr
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A confidence interval fof; can also be generated with a simulation where such an ap-
proach involves drawing random vectors from the normal distribution in Eq. (3) and then
computingp; repeatedly. The main reason that a researcher might want to use a simulation
as opposed to the delta method is because derivatives, for example, those in Eq. (7), C
ten necessitate tedious calculations. Furthermore, the delta method requires a linearizati
[see Eq. (5)] which can resultininaccuracies. On the other hand, a drawback to simulation
is that replication becomes troublesome; namely, simulating the same confidence interv:
twice will generate two slightly different intervals. Moreover, accurate simulations often
require a great number of iterations. Choosing between the delta method and a simul:
tion therefore involves a trade-off among accuracy, computing speed, and importance c
replicability.

Steps for a simulation that can be used to estimate a confidence intenfaldoe as
follows.

1. Estimate3 andX: using the loglikelihood function in Eq. (2).
2. Repeat the following stefstimes (e.g.S = 5000), indexing each iteration lhy

(a) Draw a vectop from a multivariate normal distribution with mean vecfpand
covariance matrix. _
(b) Calculatepl = 1 — &(—x/3)
3. Use the percentiles of the histogranpbfl = 1, ..., S, to form a confidence interval
for fy.

For example, to construct a 95% confidence intervalffora researcher would determine
the 0.025 and the 0.975 percentiles of the distributiofJi' oMore generally, forr € (0, 1),
a (1— «) confidence interval could be derived using th& and (1— «)/2 percentiles of
the distribution ofpl,1 = 1,..., S7

In the brief discussion of the delta method presented earlier, it was pointed out that th
delta method variance calculation internalizes the covariances of the individual element
of the 3 vector. The same is true of the aforementioned simulation procedure. In partic-
ular, in each iteration of the simulation procedyseis drawn from a multivariate normal
distribution with covariance matriX. This implies that covariance between the elements
of the estimate@ vector are not ignored when using the simulation procedure to derive a
variance estimate fop; .

Consequences fd@y; of changes in the covariate vectgrshould also be accompanied
by standard errors or confidence intervals. For example, when studying legislative voting
a researcher might consider the impactpmof a change in’s political party membership.
Whereas(; denotes observatidrs original covariate vector, le¢* be a modification ok; .
To ascertain the impact ofy of a change fronx; to x, the following simulation could be
used.

1. Estimate3 and> using the loglikelihood function in Eq. (2).
2. Repeat the following proceduftimes, indexing each iteration by

ml and would then define a function with the commadimdl. The function would be the probability of interest,
that is, a function of estimated parameters. Thealyzwould be used on the defined formula and a standard
error for the probability would be produced.
6Similar simulations and a discussion of them are given by Katz and King (1997) and King et al. (1998).
“Increasing the number of simulations beyo®d= 5000 did not appreciably change the results in the latter
section of this article. There may be situations, though, in which a greater number of simulations is necessary
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(a) Draw a vectop from a multivariate normal distribution with mean vectdand
covariance matri:. ~

(b) Calculatep, =1—®(—x3)andpl* = 1 — o(—x*B).

(c) Lets' = pI — f)I' * Whereé' is the d|fference between the probability basegdon
andx; and the probablllty based qﬁhand the modified covariate vectjr.

3. After calculatingS values ofs', percentiles of its distribution can be used to form a
confidence interval for the impact dn of a change fronx; to x*.

For example, does a percentile-based 95% confidence intenildontain 0? If so, then
it follows that a researcher could not reject the null hypothesis that a change;ftorr
has no impact offy; .

Finally, researchers often wish to estim@iefor the average observation. What is fre-
quently done is to calculate a covariate vegtbased on averaging across all observations
i. Then, define

p=1- (X3 (8)

Reports ofp, an estimate that depends Bn(whose estimated or posterior mearfi}s
should always be accompanied by standard errors or confidence intervals.

A 95% confidence interval fop can be generated using the same simulation process
described forfy. Similarly, to assess the impact @of changes irx, a researcher would
create a modified average covariate vectoysampleS times from a multivariate normal
distribution with mean vectgs and covariance matriX, repeatedly calculate— p* based
on Srandom draws, and then form a confidence intervaffer p* using the percentiles of
the simulated distribution. If, for example, the confidence interval did not contain 0, then
the null hypothesi$ = p* could be rejected.

In addition, the delta method can be used to approximate the standard eprer pf,
and then aresearcher could calculatstatistic based op— p* divided by its approximate
standard error. If, say, the magnitude of thetatistic were greater than the critical value of
1.96, then the researcher could reject at the 0.05 level the null hypothesis=that . R

In particular, letG represent th& vector of first derivatives op — p* with respect tg3.

The appropriate delta method equation is

AP =) _ A=S(KB) + o(KB) _ S
Gi= =55 7 — % 6(—XB) - Go(-X"B) ()

wherex; isthejth element ok, X} isthejth e element ok*, Gj is the jth element ofG, and

1 < j < k. The approximate varlancce2 ofp—p'is GXG/, and the relevartstatistic is
(p— p)/6. Note that Eq. (9) is very similar to Eq. (7): the only difference between the
two is the function being differentiated.

4 Fitted Probabilities and “Percentage Correctly Predicted”

Researchers who estimate probit models often seek a one-number summary of model
something akin to thé’? value frequently reported alongside linear regression results.
Within political science, probably the most common and popular one-number summar
of probit model fit is the statistic known as “percentage correctly predicted” (PCP). This
article now addresses PCP, critiques the statistic on precision grounds, and then presents
alternative to it.
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The use of one-number model fit statistics like PCP has advantages as well as drawbacl
The most advantageous feature of such succinct summaries is simply that they reduce t
complexity of a statistical model to a single number. This can lead to one-number model fi
statistics that are comparable across different models, although not all such statistics can |
compared in this fashion. On the other hand, the primary drawback of one-number mode
fit summaries like PCP is that their concise nature leads them to ignore the many facets
model fit. Namely, as illustrated in the following discussion of PCP, any statistic that boils
down a model based on a large number of observations and covariates to a single number
practically bound to discard useful information. Beyond PCP, various other one-number fi
statistics for limited dependent variable models are discussed by Train (1986) and Menar
(1995). The use of model deviance as a fit statistic is discussed by McCullagh and Nelde
(1989, Chap. 4).

In a probit model with excellent fify; values close to 1 should have associatedhlues
of 1. This is becaus; is an estimate ofy, the probability thaty, = 1. Similarly,
values close to 0 should be associated witke= 0. In a loose sense, when there are many
observations that have eith@r close to 1 and;, = 1 or f close to 0 and;, = O, it is
logical to conclude that the associated probit model provides a good fit for the data bein
studied.

Let §i denote observatioiis fitted category. Asy; is 0 or 1, the same applies §p.
Assuming for the moment tha® = 3 (this strong assumption is relaxed shortly), the
probability thaty;, = 1 is p and the probability tha§s = 0is 1— p. The expectation of
Vi is

EG)=1xp+0xA—-P)=h (10)

Note thaty; is the realization of a random variable whose distribution depends on the fitted
probability p. In other words, whilef); describes the distribution gk, there is no way

to calculatey; directly without additional assumptions that relate fitted probabiliiet®

fitted categorie§;. And, as can be seen from Eq. (10), the meaf @ not a permissible
value of§; sincep; must be 0 or £.

As defined in traditional usage, PCP for a probit model is the percentage of cases fc
which §; = y;. Broadly speaking, the reason that researchers report PCP is bexzass,
paribus models with high PCP are preferable to those with low PSRce the calcula-
tion of PCP requires assessing whetkiee= ; for all observations, it follows that the
value of PCP cannot be calculated without specify§ngThis is a problem becaugg re-
mains unknown even with knowledge @f Articles seeking to report PCP must somehow
manipulate knowledge of the distribution afinto knowledge ofy; itself.

PCP is typically defined by the following procedure.

1. Estimatefa' using the probit loglikelihood function in Eq. (2), and for each observation
i, calculatepy using Eq. (4).
2. For those observations wiffa > 0.5, sety; = 1; otherwise sef; = 0.

8In ordinary least squares models, fitted values are calculated as expectations. The permissibility problem th
arises in probit models is not an issue in ordinary least squares models since in the latter there are no restrictio
on dependent variable values.

9The argument here is not that researchers use PCP to discriminate between competing models. Typicall
likelihood-ratio or Wald tests would be employed in this capacity. Researchers do, however, use PCP as
measure of model accuracy or fit, and they have been known to trumpet high values of PCP as evidence of
good model fit.
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3. Call each observationwith y; = §; a correct prediction. PCP is defined as the
percentage of observations that are correctly predicted.

PCP is a classification algorithm that depends on the estiﬁlamd also depends on
a classifying rule based opy > 0.5.1% However, there are two problems associated with
the statistic. The first problem is somewhat minor and it pertains to PCP’s use of the wor
“predicted.” In particular, PCP is an in-sample statistic because it is based on observatior
with known values ofy;. Therefore, use of the word “predicted” in PCP is slightly inappro-
priate, as PCP does not attempt to assess the quality of out-of-sample predictions. Whi
it is arguable that PCP should actually be known as “percentage correctly classified”, fo
compatibility with the existing statistical terminology, this article retains the PCP acronym.

The second problem with PCP is that its assignment rul§;foan make PCP classifi-
cations appear more precise than they actually are. Again, consider the situation in whic
B is assumed to be known exactly. fif > 0.5, it is appropriate to conclude that itrisore
likely that§; = 1 than itis thaty; = 0. But it is potentially misleading to say that > 0.5
impliesy; = 1. In fact, such an implication can be false. Evefyif= 0.99, there is still a
1% chance tha§;, = 0. This subtlety is hidden by PCP, which makes it appear that probit
models are capable of assigning fitted categories, when, based on the estimate or postel
meang of 3, they can only assign distributions over such categdties.

Broadly speaking, the reason that PCP can overstate probit model precision is that
conflates dest guessf §; with knowledgeof §;. PCP disregards the possibility of errors
in best guesses when it assumes fhat- 0.5 impliesy;, = 1. Furthermore, PCP treats
pi = 0.51 andp; = 0.99 in the same fashion, this despite the fact that the former value of
P says much less than the latter. Since a valug afose to% indicates greater uncertainty
abouty; compared to a value dj; thatis close to 1, it follows that PCP'’s classification rule
can overstate precision.

Given PCP’s problem with precision, should research articles that use probit model
even report PCP? Because the classification rule that defines PCP can cover up mo
uncertainty by treating fitted categories as known without error, it is the contention of
this article that researchers should not report the statistic. As described shortly, this artic
proposes a modification of PCP that takes into consideration the randomness inhgrent in
This modification should be reported in lieu of standard PCP.

Before delving into the article’s proposed alternative to PCP, first consider the model fi
statistic known as “percentage reduction in error” (PRE). See Hagle and Mitchell (1992) an
Menard (1995) for details. Given a dichotomous dependent variable and a probit analys
of it, PRE is based on a comparison of PCP with PMC, the percentage of observationsin tt
modal category of the observed data. For example, if a probit data set has 100 observatic
andy; = 1 for 60 of them, then PMG= 0.6. PMC is a known quantity since it does not
depend on any estimated quantities.

Again, assuming tha® = 3, PRE is defined as

PCP— PMC
PRE= T Pmc -

1O\Maximizing the probit loglikelihood in Eq. (2) will not necessarily lead to an estirfiaimt maximizes correct
classifications or predictions.

11This problem is even worse for multinomial models such as ordered probits. In such models, a fitted categor
that comes from a process similar to PCP may not even reflect the category with the highest fitted probability.


https://doi.org/10.1093/oxfordjournals.pan.a029806

https://doi.org/10.1093/oxfordjournals.pan.a029806 Published online by Cambridge University Press

Postestimation Uncertainty in Limited Dependent Variable Models 91

PRE seeks to compare the information provided by probit fitted categories with the clas
sification errors a researcher would make if she naively assigned all fitted categories t
the modal category. If PCP is less than PMC, then the PCP-based classification errors a
actually greater than the classification errors a researcher would generate if she eschew
probit estimation and classified observations based only on modal category.

However, since PRE is a function of PCP, the former carries with it the same precisior
problems that accompany the latter statistic. In particular, PRE relies on calculations o
fitted categories that ignore randomnes$;irand PRE can therefore understate the extent
of uncertainty surrounding probit results. Nonetheless, if a researcher reports PCP cor
trary to the recommendations of this article, PMC or PRE should always be reported a
well.

In lieu of reporting PCP, this article proposes that researchers report ePCP where “e
stands for expected. ePCP is calculated in a manner which reflects the fag tisat
a probability and that researchers never know the valug @xactly. In addition, the
derivation of ePCP recognizes that best guesses §poah be mistaken. Therefore, rather
thanassumingthdt > 0.5impliesy; = 1, ePCP is defined as the sum over all observations
i of the probability thaf, = y;. Given a data set of sizd,

ePCP= %(Z P+ Zj(l - tx)) (12)
yi=1 yi=0

Suppose thaN = 3,y; = 0,y, = 1, andy; = 1, and in addition, suppose that =

0.6, p, = 0.6, andps = 0.8. Then, ePCP i§(0.4+ 0.6+ 0.8) = 0.6. PCP in this example

has a value of two-thirds, which, clearly, is greater than ePCP. This is not a general resul
however. It is possible that a given data set may have ePCP greater than PCP.

ePCP can be justified in two ways. First, suppose that one were to assign vajyes of
for all observations by assuming thay; = 1 if f > 0.5 and§; = 0 otherwise. As noted
earlier, this is a logical way to proceed, given tpat> 0.5 implies that the probability that
¥i = 1is at least as great as the probability that= 0. Were one to assign fitted valugs
in such a manner, ePCP is tegpected percentage of correct predictiohs other words,
ePCP is the expected percentage of correct predictions given that one uses the assignm
rule that defines PCP.

A second justification for ePCP is based on long-run frequencies. Suppose that a re
searcher were to iterate repeatedly the assignment process for fitted categories in the f
lowing manner. On iteration, for each observationassume tha§; = 1 with probability
p andy; = O with probability 1— . Then, let CP be the percentage of correct pre-
dictions on iterationj, and letCP, = 1/n Z?=1CF} be the average number of correct
predictions oven iterations (“CP” is used here to distinguish it from PCP). Since F(EP
ePCP for eaclj and since CPis bounded, it follows from the strong law of large numbers
thatCP, — ePCP almost surely as— oo. Importantly, the average number of correct
predictionsCP, will not in the long run equal PCP. By itself, this suggests that PCP may
be a problematic statistic with respect to model fit.

Note that ePCP, in contrast to PCP, distinguishes between large and small vaiues of
Suppose for a given observatibthaty; = 1 and thafyy = 0.99. In this scenario, guessing
that§; = 1 will be correct 99% of the time. Therefories contribution to ePCP would be

12This is based on holding fixed at its estimate oB. Thisis why the expectation of PCP, need not be concerned
with the nonlinearity of the normal distribution function.
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0.99, a number close to 1. However, wgie= 0.51, only 51% of the time would; be
correct. In this case;s contribution to ePCP would be 0.53. A

While the formula for ePCP in Eq. (12) relies on the estimate or posterior gitranugh
pi, it does not allow for the fact that uncertainty oyg@remains after probit estimation.
Recall the numerous caveats abBut 3 in the previous section. These caveats should be
taken into consideration when calculating a statistic based on fitted categories because fitt
categories are themselves a functiorBofa random variable. Rather than calculating and
reporting ePCP as a single number between 0 and 1, a researcher could use the followi
procedure to report a simulation-based confidence interval around ePCP.

1. Estimate3 ands: using the loglikelihood function in Eq. (2).
2. Repeat the following stef3times indexing each iteration by

(@) Draw a vectofB from a multivariate normal distribution with mean vectdand
covariance matrig.

(b) For each observatidn define; as the value o wheref is used in place of
3. See Eq. (1).

(c) Using Eq. (12), calculate ePCP basedmpn .

(d) Set ePCpas the value of ePCP given the draw®f

3. Examine a histogram of ePCP = 1,..., S, and form a confidence interval for
ePCP based on the percentiles of this distribution.

After estimating a probit model, a valid way to describe the relation between observer
categories and fitted categories is with a confidence interval around ePCP. This is becau
analysis of fitted categories requires consideration of two distinct levels of randomness. 2
the top,¥; is random and its distribution is determined by fitted probabilifiesBut, due
to the fact thap3 is a random variable even after probit estimatipnremains uncertain as
well. Both these sources of randomness are internalized in the ePCP confidence interv.
but both are ignored in PCP.

5 Extending ePCP Beyond Probit

To maintain a sense of continuity throughout the article, the discussion of fitted probabili-
ties i, PCP, and ePCP has focused on the two-category probit model. This section brief]
describes how to extend the article’s calculations beyond two-category probit models. E»
tension to logit models is straightforward, as the only difference between probit and logi
is the presence of a logistically distributed error term.

For a multinomial limited dependent variable model, one would calculate ePCP based o
the number of categories in one’s model. For example, suppose that a researcher has a tht
category model, an estimated parameter vegBtoand three relevant fitted probabilities,
fi.0, Pi.1, andpy 2 such that o + Pi.1 + Pi2 = 1. Note the additional subscripts on fitted

13In a manner akin to PCP, PRE could be adjusted so that it reflects the fact that fitted categories are not knov
without error. Furthermore, the denominator of PRE [see Eq. (11)] can be similarly adjusted. ERM@en
with probabilitya each observation would be classified as falling in the modal category. This would provide an
ePCP-like framework for PRE and PMC.

14A similar one-number model fit statistic is pseuB3-as defined by McFadden (1974). The latter statistic is
automatically calculated by Stata when a user estimates a probit model. The prefix “pseudo” indicates that tt
pseudoR? statistic used to evaluate probit model fit is in some sense similar to the faiRfliaommon in
ordinary least squares regressions. PseR#lis by no means the only formulation of &?-like fit statistic for
probit models, and various other measures are discussed by Maddala (1983, Chap. 2).
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probabilities when dealing with a model with more than two categories. If, for instance,
observation were truly in categorg for ¢ € {0, 1, 2}, the contribution to the multinomial
ePCP from observatiarwould be the value o .. A confidence interval for the multinomial
ePCP could be generated by sampling from a multivariate normal distribution and repeated|
calculating multinomial ePCP.

Similarly, extending the delta method to multinomial models requires only that the
function being differentiated in Eq. (7) or (9) be replaced by whatever probability ex-
pression is appropriate. Using simulations to generate confidence intervals for estimate
probabilities or changes in estimated probabilities is likewise straightforward. One would
repeatedly dravB from a multivariate normal distribution and compute probabilities based
on 8. These steps follow logically and directly from the probit instructions described
earlier.

6 Out-of-Sample Predictions and Postestimation Uncertainty

Suppose that a researcher estimates a probit model for a graNpobEervations based

on covariate datx; and a categorical dependent varialle This produces@, 3, and

fi,i =1,..., N. Now consider how this researcher can predict or forecast the categories
for T new observations for which neithgr nor y* is observed. In particular, suppose that
the researcher wants to predict the fractiérof the T observations that havg = 1,
i=N+1,...,N+T. This example, in contrast to the standard nomenclature for PCP,
reflects a logical use of the word “prediction.” The fractibnof interest pertains to an
out-of-sample group of observations that was not used to dérive

There is a variety of situations in which out-of-sample predictions may be useful. One
such situation occurs when a researcher seeks to predict the voting behavior of individua
who abstained in an election. Or a researcher might want to predict how members o
Congress who abstained from voting on a given bill would have cast their ballots conditiona
on voting.

Another situation where out-of-sample predictions are used is cross-validation. A re-
searcher using cross-validation in a probit problem would divide a sample in half, estimate
B based on the first half of the data set, and then “predict” the categories of the secon
half of the observations based @grfrom the first half. In this case, “predict” is in quotes
because, in truth, the researcher actually knows the categories for the second half of t
observations. However, the notion of cross-validation is that the predicted categories fo
the second half of the dataset should be as accurate as the correctly classified categories
the first half. A

For each of theél additional observations not used in estimatifiglet §* denote the
predicted value of;* based on the estima® Thatis,§* =x/3,i=N+1,...,N+T.
Based on Eqg. (1), it might be tempting to posit tiat> 0 impliesy; = 1. ThenF would
be defined as the fraction of tleobservations that havig > 0.

Defining and reportindg= using they* > 0 classification rule, however, would lead to
a prediction that overstates precision. Namely, this type of definition would disguise the
fact that3 is only an estimate o8 and thaty; is the realization of a random variable
whose distribution is characterized §y. That is, P(}i = 1) = ®(¥), but it is not true
that§* > 0 implies§; = 1. ConsequentlyF should be estimated and reported using a
simulation similar to that used to characterize the ePCP confidence interval.

In particular, after dejivin@ and% usingx; andyi,i =1,..., N, aresearcher would
repeatedly draw a vectgt from a multivariate normal distribution with mean vectdand
covariance matrix.. For each observatiani = N+1, ..., N+ T, definep; as the value
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of pj whereg is used in place oB. Then

1 N+T
F=22 B (13)
i=N+1
whereF; is the expected fraction of observations in category one. A histogrefp gf=
1,..., Scan then be used to form a confidence intervalFdpased on the percentiles of
this distribution. The long-run interpretation of ePCP also applies to calculatidfs of

The average of th& versions ofF is the point estimate of the fraction of observations
that are in category one, whereas the confidence interval arBuedognizes that there
will always be uncertainty as to the fraction’s magnitude. Eq. (13) can be generalized in
straightforward way to models with polychotomous dependent variables.

Within the political science literature, published predictions for category totals—this is
what F represents—are often not accompanied by measures of uncertainty. For exampl
Alvarez and Nagler's (1995) analysis of the 1992 American presidential election estimate
how Perot voters would have allocated themselves had Perot not run in 1992. Alvarez ar
Nagler conclude that in such an instance 49.5% of actual Perot voters would have sided wi
Bush and 50.5% would have opted for Clinton. These two predictions—49.5 and 50.5%—
are estimated quantities and therefore should be accompanied by confidence intervals
standard errors.

7 Postestimation Uncertainty: Another Look at “A to Z”

A number of the calculations described in this article are now illustrated using data from
“Cosponsors and Wafflers from A to Z,” an article by Keith Krehbiel (1995) on the “A to
Z Spending Plan®® Table 2 of Krehbiel's article reports probit estimates for an analysis
of the House members who chose to cosponsor this bill, formally known as H.R. 3266
Of the 434 House members analyzed in Krehbiel's article, 228 cosponsored the resolutio
Therefore, since 22834~ 0.525 > 0.5, the modal category of House members consists
of cosponsors (i.e., PM& 52.5%).

The independent variables that were used in Krehbiel's analysis of H.R. 3266 cospor
sors are a constant, a measure of House member liberalism published by Americans f
Democratic Action (ADA), a measure of fiscal conservatism published by the National
Taxpayers’ Union (NTU), an indicator variable for Democratic Party membership, a mea-
sure of Congressional seniority, the previous electoral margin, an indicator variable fo
membership on the House Appropriations Committee, and an indicator variable for mem
bership on the House Budget Committee. As specified in the Krehbiel article, the av
erage House member has average seniority, average electoral margin, median ADA a
NTU scores, is nonpartisan, and is a member of neither the Appropriations nor the Budge
Committeet®

In his discussion of who cosponsored H.R. 3266, Krehbiel estimates five probit model:
using different combinations of independent variables. For each model Krehbiel's coeffi
cient estimates were replicated, subject to a few minor coding errors, and this discussic

15Krehbiel was requested by the editor of #umerican Journal of Political Sciende include PCP in his article.
Krehbiel's (1995) data are also the subject of Binder et al. (1998).

18Nonpartisan means that the indicator variable for Democratic Party membership is set to the average value (t
fraction of individuals who are Democrats) from the sample of 434 House members. See page 912 and, |
particular, footnote 8, of Krehbiel's (1995) article.
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Table1 PCP, ePCP, and 95% ePCP confidence intervals

Model
1 2 3 4 5
PCP 82.7 90.8 90.8 90.3 90.6
ePCP 77.6 85.4 85.4 85.9 86.9

ePCP interval (75.5,79.1) (83.4,86.7) (83.3,86.7) (83.9,87.1) (84.8,87.9)

focuses on values of PCP and ePCP rather than on coefficient estimates thefiselves
Krehbiel used analytic second derivatives when estimating his five different covariance
matrices, and this article therefore does the same.

Table 1 lists by model number PCP as reported in Table 2 of Krehbiel's article. In
addition, the table reports for each model ePCP and a 95% confidence interval folfePCP.
The ePCP confidence intervals are based on the 0.025 and 0.975 percentiles of 5000-dr:
simulations. All figures in Table 1 are percentages.

As noted in Table 1, ePCP is less that PCP for all five models, and this indicates that PC
overstates the correct predictions of the models that appear in Krehbiel's article. In othe
words, once it is recognized that probit estimates generate only a distribution over fittec
categories rather than fitted categories themselves, model classifications or predictions tu
out to be less accurate than suggested by the traditional PCP statistic. The latter point
accentuated by the ePCP values in the table. Furthermore, it follows from the fact that th
five 95% confidence intervals for ePCP in Table 1 do not include the five respective value:
for PCP* The ePCP confidence intervals reported in Table 1 are based on a simulatior
and Fig. 1 plots a histogram of the simulated values of ePCP for Krehbiel's Model 5.

Using the estimates from Krehbiel's Model 5 (which includes all independent variables
used in Krehbiel’s article), the probability of cosponsorship for the average House membe
is 0.318, with an estimated standard error of 0.0615. Therefore, using the delta method,
95% confidence interval for this probability is (0.197, 0.439). Moreover, as described in
the body of this article another useful way to calculate confidence intervals for estimatec

Table 2 Estimated changes in cosponsorship probability for Model 5

Variable Probability change SE t
ADA score —0.0883 0.0589 —-1.50
NTU score 0.646 0.0685 9.43
Party membership 0.315 0.131 2.40

17Four ADA scores using Krehbiel's (1995) original article were corrected by Binder et al. (1998). This article’s
use of data on the “A to Z Spending Plan” is for illustrative purposes only. In particular, the intent of the
analysis here is not to enter into the debate on the House bill, a focus of Krehbiel (1995), Binder et al. (1999),
and Krehbiel (1999).

18pMC is the same for each model in Table 1 because each model considers the same set of House member:
52.5% of whom cosponsored H.R. 3266.

19Based on Model 5, one might argue that 86.9% is reasonably close to 90.6% and therefore that PCP is just
as good as ePCP. Such an assertion would be troubling for two reasons. First, 8800%%, and if
guantitative political science is going to be meaningful, then numbers matter. In other words, statistics that
overstate precision should be considered dubious regardless of the extent to which they do so. Second, PCF
of Model 5 is outside the 95% confidence interval for ePCP.


https://doi.org/10.1093/oxfordjournals.pan.a029806

https://doi.org/10.1093/oxfordjournals.pan.a029806 Published online by Cambridge University Press

96 Michael C. Herron

20 30 40 50

10

082 084 086 088 090 0.92
Fig. 1 Histogram of simulated ePCP (Krehbiel's Model 5).

probabilities is via simulation. Simulated cosponsorship probabilities are pictured in Fig. 2
and the 0.025 and 0.975 percentiles of the histogram in the figure lead to a 95% confiden
interval of (0.206, 0.447). This is very close to the previously described confidence interva
as calculated by the delta method.

The delta method of Eq. (9) can also be used to estimate the impact on cosponsorsf
probability of changes in ADA score, NTU score, and party membership. For each indeper
dent variable change, the new probability of cosponsorship is calculated and compared tc
base probability. The base probability is 0.318 for the ADA and NTU changes, and for the
party affiliation change the probability of cosponsorship for a Democratic House membe
with otherwise average characteristics is compared to the probability of cosponsorship fc
a Republican with otherwise average characteristics. Results are given in Table 2.

For the average House member, the hypothesis that a one standard deviation increase
the ADA score would not have impacted the cosponsorship probability cannot be rejected :

0

<

o

: I I

ol _-lI 1 III.- —
0.2 03 0.4 05

Fig. 2 Simulated cosponsorship probabilities for the average
House member.
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the 0.05 level. This is because the probability changgtatistic,—1.50, is less in magnitude
than 1.96, the 0.05 critical value. Statistical insignificance of this probability change would
not be apparent in a hypothetical results table that reported neither standard errors nor co
fidence intervals for estimated probability changes. In other words, this example illustrate:
precisely why estimated probability changes should always be reported with measures ¢
uncertainty.

It is important to recognize thap values for significance tests on estimated probit
coefficients donot inherently specifyp values for tests on related probability changes.
This is because the normal distribution function that constitutes part of the probit model
is nonlinear in its parameters. In linear least squares models, however, significance tes
on regression coefficients are equivalent to tests for whether changes in regressors ha
nonzero impacts on an outcome variable. Thus, results generated by probit models ar
limited dependent variable models in general require measures of estimate uncertain
that go beyond those that should be reported alongside results from ordinary least squar
models.

Overall, this article’s reanalysis of Krehbiel's study of the “A to Z Spending Plan”
illustrates two main points. First, the extent to which the various cosponsorship model:
in the article fit the H.R. 3266 cosponsorship data was not as good as that described t
the common and popular fit statistic PCP. Within Krehbiel's sequence of five models, the
difference between PCP and ePCP hovered around 5 percentage points. Although in «
arbitrary probit regression model the degree to which PCP will differ from ePCP is model-
specific, the discussion of H.R. 3266 cosponsorship illustrates precisely the type of precisio
problems that can affect PCP.

Second, the use of standard errors and confidence intervals highlights the difference
in various estimated probabilities associated with H.R. 3266 cosponsorship probabilities
Of the three probability changes reported in Table 2, only two are individually statistically
significant at the 0.05 level. Had these estimated probability changes been reported i
the fashion very common for political science research articles, this lack of statistical
significance would not have been apparent.

8 Conclusion

This article has focused on estimated quantities produced by limited dependent variabl
models, a class of statistical models that is very common in quantitative political science
research. The technical discussion revolved around probit models, but the points regardir
precision and uncertainty apply to limited dependent variable models in general.

The article had three objectives. The first was to emphasize the importance of supplyin
standard errors and/or confidence intervals when reporting fitted and predicted probabilitie
generated by probit models. The second was to argue that a particular model fit statisti
“percentage correctly predicted” (PCP), that often accompanies limited dependent variabl
models is, first, inappropriately named—it really has little to do with prediction—and,
second, can overstate the accuracy of reported results. The third objective of the articl
was to suggest a replacement for PCP. Thus, a measure denoted “expected percent:
correctly predicted” (ePCP) was presented, the theory behind it was explained, and stej
of a simulation for generating ePCP confidence intervals were detailed.

Accordingly, this article offers the following two recommendations. First, researchers
should always include measures of uncertainty when reporting estimated probabilities an
probability changes that are produced by limited dependent variable models. In particula
probabilities generated by such models should be accompanied by confidence intervals
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standard errors generated by either the delta method or a simulation. Second, research
should not report the common and popular model fit statistic known as PCP. Instead, the
should report what this paper has labeled ePCP and they should include with it a suitab
confidence interval.
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