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1. Introduction. In a paper (5) published in the Proceedings of the 
Cambridge Philosophical Society, Primrose obtained the formulae for the 
number of points contained in a non-degenerate quadric in PG{n, s), the 
finite projective geometry of n dimensions based on a Galois field GF(s). In 
§ 3 of the present paper the formulae for the number of p-ûats contained in 
a non-degenerate quadric in PG(n, s) are obtained. In § 4 an interesting 
property of a non-degenerate quadric in PG(2k} 2m) is proved. These properties 
of a quadric will be used in solving some combinatorial problems of statistical 
interest in a later paper. 

In finite projective geometry PG(n, s) of n dimensions based on Galois 
field GF(s), where 5 is a prime power, the points can be taken as (n + 1)-
tuples x = (x0, Xi, . . . , xn) where 

Xoi X\j . . . , Xyi are elements of GF(s) and 
the (n + 1)-tuple px = (pxo, pxi} . . . , pxn) is regarded as the same point as 
x for any non-zero element p of GF(s). The null (n + 1)-tuple (0, 0, . . . , 0) 
is not regarded as a point. The set of points x which satisfy an equation 

xC = 0 

where C is a matrix of order (n + 1 X k) with elements in GF(s) and has 
rank k, k = 1, 2, . . . n + 1, is taken as an (n — &)-flat. In what follows 
for any point x of PG(n, s) we shall use x to denote a row vector arising 
from the co-ordinates of x. A quadric Q in PG(n, s) is the set of all points x 
which satisfies an equation 

(1.1) xAx' = 0 

where A is a triangular matrix of order (n + 1 X n + 1) with elements in 
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GF(s) and x' is the transpose of the row vector x. If the characteristic of the 
field GF(s) is not equal to 2, then the equation of Q can be taken as 

(1.2) xBx' = 0 

where B is a symmetric matrix of order {n + 1 X n + 1). In this case the 
quadric Q can be regarded as the set of self-conjugate points of the polarity 
defined by the symmetric bilinear form 

(1.3) xByf = 0 

where y = (y0, y h y 2, . . . , yn)> 
However, when the characteristic of the field GF(s) is 2, the equation of 

Q cannot always be written in the form (1.2) and hence Q cannot be regarded 
as the set of self-conjugate points of a polarity defined by a symmetric bilinear 
form. For this reason we shall use (1.1) as the equation of Q. 

Any non-singular matrix B of order {n + 1 X n + 1) defines a mapping 
of the points of PG(ny s) onto itself. Under the mapping induced by B, the 
point x is mapped into the point y where 

y = xB. 

Such a mapping will be called a non-singular mapping. A quadric Q in PG{n, s) 
is said to be degenerate if there exists a non-singular mapping which takes Q 
into a quadric Qr with the following equation 

xCx' = 0 

where C is a triangular matrix with all elements in the last row and last 
column equal to zero. A quadric Q in PGin, s) is said to be non-degenerate 
if it is not degenerate. A point a is defined to be conjugate to a point fi with 
respect to (w.r.t.) Q if 

(1.4) *(A + A')& = 0. 

The relationship of conjugacy is symmetrical. The polar space T(a) of a 
point a with respect to Q is the set of all points which are conjugate to a 
w.r.t. Q. The polar of a is the [n — l)-flat determined by the equation 

(1.5) «04 +A')x' = 0. 

If the quadric Q is non-degenerate, (1.5) will determine an (n — l)-flat. The 
polar space T(EP) of a ^-flat Xp w.r.t. a quadric Q is the set of all points 
which are conjugate to every point of 2P w.r.t. Q. Two flats Sp and XQ are 
said to be mutually conjugate w.r.t. Q if every point of 2P is conjugate to 
every point of Sa w.r.t. Q. If a and f3 are two points which are mutually con­
jugate w.r.t. Q and a and /?' are images of a and /? under a non-singular 
mapping B, then a and f3' are mutually conjugate w.r.t. Q' where Q' is the 
image of Q under the mapping B. It should be noticed that with our definition 
of conjugacy, in PG(n> 2m) all points are self conjugate and in PG{n, s), s 
odd, only the points on the quadric are self conjugate. 
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It has been shown by Primrose (5) that every non-degenerate quadric 
in PG(2ky s) contains linear spaces of dimensionality (k — 1) and does not 
contain any linear space of higher dimensionality. So with respect to the 
maximum dimensionality of a linear space contained in the quadric, the non-
degenerate quadrics in PG(2k, s) belong to only one type. However, the 
non-degenerate quadrics in PG(2k — 1, s) belong to two different types, 
hyperbolic or elliptic. If a non-degenerate quadric in PG(2k — 1, s) contains 
(k — 1)-flats and does not contain any linear space of higher dimensionality, 
then the quadric is said to be a hyperbolic non-degenerate quadric. If a non-
degenerate quadric in PG(2k — 1, s) contains (k — 2)-flats and does not 
contain any linear space of higher dimensionality, then the quadric is said 
to be elliptic. Primrose (5) uses the words unruled and ruled quadric, for 
elliptic and hyperbolic quadrics. Tallini (8) uses the names elliptic and hyper­
bolic quadrics. 

2. Some results on the polar spaces are stated below in the form of lemmas 
and theorems, for convenience of reference. These results are either well 
known or can easily be proved. 

LEMMA 2.1. If a point a is conjugate to the points fiXl /32, . . . , $v w.r.t. a 
quadric Q, then a is conjugate to the linear flat determined by the points fii, /52, 

LEMMA 2.2. The polar space of a p-flat 2P is the intersection of the polar spaces 
of ao, «i, . . . , av where «o, a\, . . . , av are (p + 1) independent points in 2P. 

LEMMA 2.3. Letao, a±y . . . , av be independent points on a quadric Q in PG(n, s). 
Then the p-flat 2^ determined by these points is contained in Q if and only if the 
(p + 1)-points are pairwise conjugate w.r.t. Q. 

THEOREM 2.1. Let 2 , be a k-flat contained in a non-degenerate quadric Qn in 
PG(n, s). Let ^n-k-i be an (n — k — l)-flat not intersecting 2*. Then 

(a) T{XK) is an {n — k — l)-flat. 
(b) 7X2,) C\ 2w_,_i is an (n - 2k - 2)-flat and Qn C\ 7\2*) C\ 2W__*_1 is 

a non-degenerate quadric Qn-2k-2 on the (n — 2k — 2)-flat T(Xk) P\ 2w_fc_! which 
is elliptic or hyperbolic according as Qn is elliptic or hyperbolic. 

THEOREM 2.2. Let 2 , be a k-flat contained in a non-degenerate quadric Qn in 
PG(n, s). Let 2P be any linear flat which is contained in Qn and contains 2 , . 
Then 2P is contained in T(2k), the polar space of 2 , . 

Proof. Let 2 , be determined by the (k + 1)-independent points a0, au 

ai, . . . , oik and 2^ be determined by the (p + 1) independent points a0, «i, 
a2, . . . , oijc, oik+i, . . . , ap. Any point a of 2P can be represented as ^^o^Xz^i 
where Ao, Ai, A2, . . . , \P are elements of GF(s). 

By Lemma 2.3 at is conjugate to each of the points a0f ai, . . . , av. Therefore, 
we have 
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*(A + A')a't = ( Z *t"i). (A + A') (a'i) = 0, i = 0, 1, 2, . . . , jfe. 

So a is conjugate to every point «*, i = 0, 1, . . . , k. By Lemma 2.1 a is con­

jugate to S*, the &-flat determined by the points a0, «i , . . . , c^. Hence 

a e r ( S » ) and 

2, c r(st)-

3. A projection and its use in determining the number of p-flats 
contained in a non-degenerate quadric in PG(n,s). Let O be a point 
in PG(n, s) and w be an (n — l)-flat not passing through 0. Let P be a point 
other t han 0. T h e line O P intersects T a t a point P'. P' is called the projection 
of P on w through 0. T h e projection of a set A in PG(n, s) on it through O 
is defined to be the set of all points which are projections of the points of .1 
on 7T through O. T h e projection of A on ir through O will be denoted by 5o,7r(-l). 
If O and 7r are assumed to be fixed, So,* (A) will be wri t ten as S (A). If C is 
a set of points containing O, then the projection of the set C — {0} through O 
will be wri t ten as S(C) for convenience. 

L E M M A 3.1. Let P be a point on a non-degenerate quadric Qn in PG(n, s) and 
T be the tangent space at P and ir be an (n — I)-flat not passing through P. In 
the following any projection is on ir through P. Then 

(a) S(Qn r\ T) is Qn-2, a non-degenerate quadric on the (n — 2)-flat T C\ w. 

(b) If 2 P is a p-flat containing P and contained in Qn, then 

5(S„) = 2 ,_ i , a (p - l)-flat 

and 

5 ( 2 , ) C Qn-2. 

(c) If Sp is a p-flat not containing P and contained in Qn P \ T, then 

5(S P ) = 2 / , a p-flat 

and 

5 ( 2 , ) C Qn-2. 

(d) If 2 , is a p-flat contained in Qn but not in T, then 

5 ( 2 , ) = 2 / , a p-flat 

and 

5 ( 2 , ) (I Qn_2. 

Proof, (a) By Theorem 2.1 Qn C\ T C\ w is a non-degenerate quadric Qn-2 
in PG(n — 2, s). Hence it will be sufficient to show t h a t 

(3.1) s(Qnnr) = ftnrrw. 
(3.1) follows immediately from the definition of projection. 
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(b) Since P € 2 , and 

2 , C Q», 
by Theorem 2.2 

2 , C T. 
So we have 

2, c Qn r\ T. 
It follows that 

5(2,) C 5(Q. H D = Qn-2. 

Now to prove (b) it is sufficient to show that 

(3.2) 5(2,) = 2p_if a (£ - l)-flat. 

It is easy to check that 

5(2,) = 2„n7T. 

Hence (3.2) follows from the fact that 2P is not contained in n. 

(c) Let 2p+i be the (p + 1 )-flat determined by P and 2P and 2 / = 2p+in7r. 
It is easy to check that 

5(2 , ) = 2 / . 
Since 

2 P C r and 2p+i C Qn 

by Theorem 2.2 

2„+i C Qn C\ T. 
So 

V C & n r n i = QW_2. 
(d) Let 2p+i and 2 / be defined as in (c). In this case 2P cannot contain 

P. If possible, suppose 2^ contains P. Then 2P is a p-ûat contained in Qn 

and contains P. So by Theorem 2.2 2^ must be contained in T} the polar 
space of P. But this contradicts our hypothesis. Now, as in (c), we have 

5(2,) = 2 / 

To show that 5(2P) C Qn-ï it is sufficient to show that 

(3.3) 2 / <t T r\ IT. 

(3.3) follows immediately from the fact that 

2„<zr. 
Projection of a class of sets. Let ?l be a class of sets in PG(n, s). Let P be a 

given point and 7r be an (n — l)-flat not passing through P. The projection 
of the class §1 on IT through 0 is defined to be the class consisting of the sets 
which are the projections on T through P of the sets of §1 and is denoted 
by 5(8) . 
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LEMMA 3.2. Let % be a class of distinct p-flat s passing through a point P in 
PG(n, s) and -w be an (n — \)-flat not passing through P. Then there exists a 
one-to-one correspondence between the two classes % and 5(31). 

Proof. Let 12 be any p-ûat in the class 2Ï. Let 12 be made to correspond to 
5(12). We shall show that this correspondence is one to one. It will be sufficient 
to show that for any two different sets 12 and 0' of the class 21 

(3.4) 5(12) ^5(12') . 

If possible, suppose (3.4) is not true. Then 

5(12) = 5(120. 

Since 12 ̂  12' there exists a point R belonging to 12 but not belonging to 12'. 
Let R! = S(R), the projection of R. Then R' G 5(12'), P G 12'. So the line 
PRr is contained in 12'. Obviously R is a point on the line PR'. Hence R is a 
point of the p-fiat 12' which is a contradiction. 

THEOREM 3.1. Let P be a point of a non-degenerate quadric Qn in PG(n, s), 
T{P) be the tangent space at P and -w be an (n — \)-flat not passing through P. 
Let ^nyV denote the class of p-flats contained in Qn and passing through P and 
%UjP be the class of all p-flats of Qn. Then there exists a one-to-one correspondence 
between the classes &n>p and Hn-2,p-i and hence the number of elements in each 
class is the same. 

Proof. Since each £-flat of (STOlP passes through P, owing to Lemma 2.2, it 
will be sufficient to show that 

(3.5) S(e».*) = Hn-2iP-l. 

We shall show that (3.5) is true if for Qn-i we take the non-degenerate quadric 
Qn r\ TCP) r\ 7T in PG(n - 2, s). 
Let Sj, G &n,p and 5(SP) = 12, 12 G 5(SW,P). By part (b) of Lemma 3.1 

12 = 2 , - 1 C Qn-2. 

Hence 12 G 3L-2, P-i- It follows that 

(3.6) s(e».„) c a » - 2 i P - i . 

Conversely let 2p_i G Hw-2,p-i. Let Sp be the £-flat determined by P and 
Sp_i. Then using Lemma 1.3 it can easily be seen that 2P C Qn and 

5(SP) = 2p_i. 

Hence 

(3.7) Sp_i G £(<£».,) and 9In_2,P-i C S( <£».,). 

(3.5) follows from (3.6) and (3.7). 

THEOREM 3.2. Let N(p, n) denote the number of different p-flats contained in 
a non-degenerate quadric Qn in PG(n, s). Then 
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$ 0 , k), for n = 2k, p < k - 1, 

$i(P> *)» for n = 2k — 1, Çn elliptic and p < & — 2, 
$2(£, &), / o n i = 2& — 1, Qn hyperbolic and p < ft — 1, 

*(/>. *) = I l A73+w 7T2 , P < k - 1, 
r=0 V? "~~ -U 

p / n—2p+2r \ k-p+r—l k-p+r -j \ 

*i(p, *) = n - ±h^=r—r - P <k ~ 2-
r=0 U ~ -L 

p / n-2p+2r k-p+r—l _. fc-p+r -. \ 

**(/>, *) = n /Vi-r ^ - , / » < * - 1 . 
The expressions for iV(0, n) were obtained by Primrose (5). 

Proof. First we shall establish the following equation. 

(3.8) N(p, n) = (-v+l-
N(p- l,n-2)N(0,n)(s - 1) 

( / + 1 - 1) 

Let P be a point of Qw. From Theorem 3.1 it follows that the number of 
^-flats contained in Qn and passing through P is N(p — 1, n — 2). Let us 
count the points in the ^-flats contianed in Qn. Every £-flat contributes 
(sp+1 — l)/(s — 1) points and the number of ^-flats contained in Qn is 
N(p, n). Hence this collection of ^-flats contains 

/ + 1 - 1 
N(pin)S-Jzr^ 

points which are not all different. In this collection every point will be repeated 
as many times as there are ^-flats of Qn passing through a point. Through 
every point of Qn there pass iV(p — 1, n — 2) ^-flats and the number of 
points of Qn is iV(0, n). Hence the collection of ^-flats of Qn contains iV(0, n) 
N(p — l,n — 2) points. Hence (3.8) follows. 

Primrose (5) has obtained the following formulae: 

$(0, &) = 
s 2 * - 1 

(3.9) ^(O, k) = ^ ~ -^ 

$2(0,&) = 

5 - 1 

/ 2fc—1 Jc—l | k 

s - 1 

Applying the difference equation (3.8) repeatedly and using the formulae 
(3.9), we get the required expressions for $(£, k), $i(p, k) and <£2(£, k). 

THEOREM 3.3. The number of p-flats contained in a non-degenerate quadric 
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Qn in PG(n, s) which pass through a given k-flat 2fc contained in Qn is N(p — k — 1, 
n — 2k — 2), where N(p, n) denotes the number of p-flats contained in a non-
degenerate quadric of the type {elliptic or hyperbolic) of Qn. 

Proof. Let r(2 fc) denote the polar space of 2fc and ^n-k-i be an (n — k — 1)-
flat which does not intersect 2^. Let Ç£ktP denote the class of ^-flats contained 
in Qn and passing through 2fc. Let 33fcJ, denote the class of (p — k — 1)-flats 
contained in Qn C\ 2n(Sfc) Pi 2w_A;_i. By Theorem 2.1 it is known that 
Qn r\ T(2k) r\ 2n-k-i is a non-degenerate quadric Qn-k-i in PG(n — 2k — 2, 
s). Hence to prove the theorem it will be sufficient to show that there is a 
one-to-one correspondence between the classes d£ktP and T)k,p of ^>-flats. 

Let 2P Ç (S*.,. Then 

(3.10) 2 , C 2*. 

(3.11) 2 , C\ 2n_fc_i = $, the null set. 

From (3.10) and (3.11) it follows that 

2 P (/_ 2n_fc_i. 

So 2P P\ 2w_fc_i has dimensionality at least equal to (p — k — 1). Since 

2* r\ 2n_fc_x = $, the null set, 

the dimensionality of 2P r\ 2W_/C_i cannot exceed (p — k — 1). Hence 
2P H 2w_fc_i is a (p — k — l)-flat 2p_fc_i. Since 

2 , C 2 , C Qn, 

by Theorem 2.1 2^ C ^(2*). So 

2 P l \ 2w_fc_i C & ' ' *(2fc) I » 2w_fc_i = Qn-2k-2-

So 

2^-fc-i G xJk,P' 

Let us make 2P of SfcfP correspond to 2p_fc_i of 3\%p . It can easily be seen 
that the correspondence is one to one. 

4. Nucleus of polarity of a quadric 

LEMMA 4.1. Let a and /5 be two points of PG(2k, 2m) not lying on a non-
degenerate quadric Qn in PG(n, 2m). The line a/3 intersects the quadric in a 
single point if and only if the points a and 0 are mutually conjugate. 

Proof. Sufficiency. Assume that a and /3 are mutually conjugate. Any point 
on the line a(3, the line determined by the points a and /3, other than a, can 
be represented as fi + Xa where X is an element of GF(2m). The number of 
points at which the line a/3 intersects Qn is equal to the number of solutions 
in X of the equation. 

(4.1) (& + Xa)i4(S' + Xa') = 0 
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where the equation of Qn is 

(4.2) xAx' = 0. 

Since a and ft are mutually conjugate points not belong to Qn, we have 

foU +A')$' = 0, 
(4.3) o^o ' 4=0 and 

[(MS' + O. 

Using (4.3) and the fact that every element in GF(2m) has a unique square 
root, we can see that (4.1) has exactly one solution in X. 

Necessity. Assume that af3 intersects Qn at the single point 7!. Suppose a 
and 7i are mutually conjugate. Then 71 belongs to T(a). Also, since the 
characteristic of the field GF(2m) is 2, a is self conjugate and belongs to 
T(a). So the line cr/i belongs to T(a) and /?, being a point on the line cr/i 
belongs to 2"(a). But this contradicts our hypothesis that a and fi are not 
mutually conjugate. So a and 71 are not mutually conjugate. Since a and 71 
are not mutually conjugate, a is not a point of Qn and 71 is a point of Qn, we 
have 

iaAa' * 0, 

(4.4) JYi^Yi = 0 a n d 

|«G4 + , 4 ' ) Y l ' * 0. 

Using (4.4), we can see that the point y2 = a + X71 is a second point at 
which the line a/3 intersects Qn where 

OLAOL 
X -

«(I + ^Vi* 
But this contradicts our hypothesis. Hence a and ft must be mutually con­
jugate. 

THEOREM 4.1. For every non-degenerate quadric Qu in PG(2k, 2m) there exists 
a point S not lying on the quadric such that every line through S intersects the 
quadric Q2k in a single point. The point S is called the nucleus of polarity of Q2k> 

Proof. Let Qu be a non-degenerate quadric in PG(2k, 2m). Then according 
to Dickson (4) there exists a non-singular mapping which transforms Q2k 
to Q2fc with the equation 

Xl + XlX2 + X3X4 + . • • + *2*-l*2jfc = 0. 

Since the incidence properties in a projective geometry are invariant over 
non-singular mappings, it will be sufficient to prove the theorem for Q2Jc. Let 

S = (10 0 . . .0) . 

We shall show that 5 possesses the required properties with respect to Q2k. 
Obviously 5 is not a point of Q2Jc. Let R be any other point not in Q2k. It is 
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easily seen that 5 and R are mutually conjugate. Then by Lemma 4.1 the 
line SR intersects the quadric in a single point. Let R' be a point of the 
quadric. It is easy to see that 5 and Rf are mutually conjugate. If possible, 
suppose the line SRf intersects the quadric in another point R" of Qu. Since 
5 and Rf are mutually conjugate, the point 5 occurs in T(R'), the polar space 
at R'. Also T(R') contains Rf. So the line SR' is contained in T(R'). Hence 
R" occurs in T(Rf) and Rf and R,r are mutually conjugate. Rf and R" are 
points of the quadric and are mutually conjugate. So by Lemma 2.3 the line 
R"R' is contained in Q2k. So 5 is a point of Qu which is a contradiction. 
For the case k = 1, Theorem 4.1 was obtained by Qvist (6) and Bose (3, 
pp. 158). 
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