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Three Problems on Exponential Bases

Laura De Carli, Alberto Mizrahi, and Alexander Tepper

Abstract. We consider three special and signiûcant cases of the following problem. Let D ⊂ Rd be
a (possibly unbounded) set of ûnite Lebesguemeasure. Let E(Zd) = {e2πix ⋅n

}n∈Zd be the standard
exponential basis on the unit cube of Rd . Find conditions on D for which E(Zd) is a frame, a Riesz
sequence, or a Riesz basis for L2

(D).

1 Introduction

We are interested in the following problem. Let D ⊂ Rd be a set of Lebesguemeasure
∣D∣ < ∞. Let E(Zd) = {e2πin⋅x}n∈Zd be the standard exponential basis for the unit
cube Qd = [− 1

2 ,
1
2 ]
d . Can E(Zd) be a frame, a Riesz sequence, or a Riesz basis for

L2(D)?
We have recalled deûnitions and general facts about frames, Riesz sequences and

Riesz bases in Section 2.
Our investigation was motivated by the following problems,

Problem 1 (_e broken interval) Let J = [0, α) ∪ [α + r, L + r), with 0 < α < L
and r > 0. For which values of the parameters is the set E(Z) a Riesz basis, a Riesz
sequence, or a frame in L2(J)?

It is easy to verify that E(Z) is a frame on J when L+r ≤ 1, and it is aRiesz sequence
when either α ≥ 1 of L − α ≥ 1 (see also Lemma 2.2). It is proved in [24] that E(Z) is
an orthonormal basis for J if and only if themeasure of J is L = 1 and the “gap” r is a
non-negative integer.

Problem 2 (_e rotated square) Let Qh = [− h
2 ,

h
2 ] × [− h

2 ,
h
2 ] be a square with side

h > 0. For θ ∈ [0, 2π), we let ρθ ∶R2 → R2 be the rotation

ρθ(x , y) = (x cos θ − y sin θ , x sin θ + y cos θ).

Forwhich values of θ is E(Z2) a Riesz basis, a Riesz sequence, or a frame on ρθ(Qh)?

_e solution to this problem is trivial only for certain values of the parameters (for
example, when θ is an integer multiple of π

2 ).
_e next problem was kindly suggested by Chun Kit Lai.
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Problem 3 (_e translated parallelepiped) Let P ⊂ Rd be a parallelepipedwith sides
parallel to the vectors v1 , . . . , vd ∈ Rd . Find conditions on these vectors for which the
set E(Zd) is a Riesz basis, a Riesz sequence, or a frame in L2(P).

We recall that a lattice is the image of Zd by a linear invertible transformation
B∶Rd → Rd and we observe that Problem 3 is equivalent to the following: for which
lattices Λ = BZd is the set E(BZd) = {e2πiBn⋅x}n∈Zd aRiesz basis, or aRiesz sequence,
or a frame in L2(Qd)?

Problem 3 is related to certain optimization problems on lattices that have deep
applications in computer sciences and in cryptography. See Section 7.1 for details and
references.

We ûrst prove necessary and suõcient conditions for which E(Zd) is a Riesz se-
quence or a frame on a given domain D ⊂ Rd , and then we completely solve Prob-
lems 1, 2, and 3.

We let

(1.1) Φ(x) = ∑
m∈Zd

χD(x +m),

where χD denotes the characteristic function of D. Note that Φ(x) only takes non-
negative integer values. Our ûrst result is the following theorem.

_eorem 1.1 E(Zd) is a Riesz sequence in L2(D) if and only if there exist constants
0 < A ≤ B <∞ for which A ≤ Φ(x) ≤ B for a.e. x ∈ Qd .

_at is, we prove that E(Zd) is a Riesz sequence in L2(D) if and only if the integer
translates of D (i.e., the sets D + n = {x + n, x ∈ D}, with n ∈ Zd ) cover Rd with the
possible exception of a set ofmeasure zero.

It is interesting to compare_eorem 1.1with results in [5,17,21]. In these papers the
authors consider domains thatmulti-tile Rd , i.e., boundedmeasurable sets S ⊂ Rd for
which there exist a set of translationsΛ and an integer h > 0 such that∑λ∈Λ χS+λ(x) ≡
h a.e.; if h = 1, we say that S tiles Rd . It is proved in [17, _eorem 1] and in [21,
_eorem 1] that bounded domains that multi-tileRd with a lattice of translation have
an exponential basis; in the recent [5, _eorem 4.4], the converse of [21, _eorem 1]
is proved.

IfΦ is as in (1.1) andΦ(x) ≡ k a.e., thenDmulti-tilesRd with lattice of translations
Zd . By _eorem 1.1, E(Zd) is a Riesz sequence on L2(D); when D is bounded, it is
shown in [21, _eorem 1] that E(Zd) can be completed to an exponential basis for
L2(D), but when D is not bounded an example in [5] shows that that may not be
possible.

Next, we investigate conditions for which E(Zd) is a frame on D. _e following
result is proved in [16, Lemma 2.10]. See also the recent [7,_eorem 2].

_eorem 1.2 E(Zd) is a frame on L2(D) if and only if for every m, s ∈ Zd , with
m /= s, we have that

(1.2) ∣(D +m) ∩ (D + s)∣ = 0.
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In other words, E(Zd) is a frame in L2(D) if and only if the integer translates of
D only overlap on sets of measure zero. Equivalently, E(Zd) is a frame on L2(D) if
and only if Φ(x) ≤ 1 for a.e. x ∈ Rd .

We ûnally prove the following theorem.

_eorem 1.3 Assume that ∣D∣ = 1. _e following are equivalent in L2(D):
(i) E(Zd) is a frame.
(ii) E(Zd) is a complete.
(iii) _e integer translates of D tile Rd .
(iv) E(Zd) is an orthonormal Riesz basis.
(v) E(Zd) is a Riesz sequence.

We recall that a set {w i}i∈I is complete in a Hilbert space (H, ⟨ ⋅ , ⋅ ⟩H) if and only
if ⟨u,w i⟩H = 0 for every i ∈ I implies u = 0. A frame is complete, but the converse is
not necessarily true.
B. Fuglede proved in [15] that if Λ = AZd is a lattice in Rd , the set E(AZd) is an

orthogonal exponential basis in L2(D) if and only if {D+ µ}µ∈(At)−1Zd tilesRd . Here,
(At)−1 denotes the inverse of the transpose of A. _us, the equivalence of (iii) and (iv)
in _eorem 1.3 is a special case of Fuglede’s theorem. _e connections between tiling
and exponential bases are deep and interesting and have been intensely investigated.
We refer the reader to the introduction and to the references cited in [7]. See also [22].

_is paper is organized as follows: in Section 2 we present preliminary deûnitions
and known results. We prove_eorems 1.1, 1.2, and 1.3 in Sections 3 and 4. We solve
Problems 1, 2, and 3 in Sections 5, 6, and 7.

2 Preliminaries and Notation

We denote by x ⋅ y = x1 y1 + ⋅ ⋅ ⋅ + xd yd the inner product of x = (x1 , . . . , xd), y =
(y1 , . . . , yd) ∈ Rd .

We let ∥ f ∥2 = (∫Rd ∣ f (x)∣2dx)
1
2 be the standard norm in L2(Rd); we let c =

{c j} j∈Zd , and we denote by ∥c∥ℓ2 = (∑ j∈Zd ∣c j ∣2)
1
2 the standard norm in ℓ2(Zd). We

denote by ⟨ f , g⟩2 = ∫Rd f (x)ḡ(x)dx the inner product in L2(Rd). When there is no
ambiguity, we will also use the same notation for the inner product in ℓ2(Zd).

_e Fourier transform of a function f ∈ L2(Rd) ∩ L1(Rd) is

f̂ (x) = ∫
Rd
f (t)e−2πix ⋅tdt.

We will o�en say that a family of sets {Dλ}λ∈Λ covers Rd with the understanding
that Rd −⋃λ∈Λ Dλ may be a nonempty set ofmeasure zero.

We use the notation τw to denote the translation operator g → g( ⋅ +w).

2.1 Frames and Riesz Bases

We have used the excellent textbooks [11, 19] for most of the deûnitions and prelimi-
nary results presented in this section.
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Let H be a separable Hilbert space with inner product ⟨ ⋅ , ⋅ ⟩ and norm ∥ ⋅ ∥ =√
⟨ ⋅ , ⋅ ⟩. A sequence of vectors V = {v j} j∈Z ⊂ H is a frame if there exist constants

0 < A, B <∞ such that the following inequality holds for every w ∈ H:

(2.1) A∥w∥2 ≤∑
j∈Z

∣⟨w , v j⟩∣2 ≤ B∥w∥2 .

We say that V is a tight frame if A = B and a Parseval frame if A = B = 1.
_e le� inequality in (2.1) implies thatV is complete in H but itmay not be linearly

independent. A Riesz basis is a linearly independent frame.
An equivalent deûnition ofRiesz basis is the following: the setV is a Riesz sequence

if there exists constants 0 < A ≤ B < ∞ such that, for every ûnite set of coeõcients
{a j} j∈J ⊂ C, we have that

(2.2) A∑
j∈J

∣a j ∣2 ≤ ∥∑
j∈J
a jv j∥

2
≤ B∑

j∈J
∣a j ∣2 ,

and it is Riesz basis if it also satisûes (2.1). If V is a Riesz basis, the constants A and B
in (2.1) and (2.2) are the same (see [11, Proposition 3.5.5]).
An orthonormal basis is a Riesz basis; we can write w = ∑ j∈Z⟨v j ,w⟩v j for every

v ∈ H, and this representation formula yields the following important identities. For
every w , z ∈ H,

(2.3) ∥w∥2 = ∑
n∈Z

∣⟨vn ,w⟩∣2 , ⟨w , z⟩ = ∑
n∈Z

⟨vn ,w⟩⟨vn , z⟩.

_e following useful proposition can be found in [11, Prop. 3.2.8].

Proposition 2.1 A sequence of unit vectors in H is a Parseval frame if and only if it is
an orthonormal Riesz basis.

Let D ⊂ Rd be a measurable set, with ∣D∣ < ∞. An exponential basis of L2(D) is
a Riesz basis made of functions in the form of e2πix ⋅λ , where λ ∈ Rd . Exponential
bases are important in the applications, because they allow one to represent functions
in L2(D) in a stablemanner, with coeõcients that are easy to calculate.

_e following lemma is easy to prove (see e.g., [14, Prop. 2.1]).

Lemma 2.2 Let D1 ⊂ D ⊂ D2 be measurable sets of Rd , with ∣D2∣ < ∞. Let V =
{e2πix ⋅λn}n∈Z be Riesz basis of L2(D) with frame constants 0 < A ≤ B <∞; then V is a
Riesz sequence on L2(D2) and a frame on L2(D1) with the same frame constants.

2.2 The Beurling Density

In [8,9] A. Beurling characterized sampling sets by means of their density.
For h > 0 and x ∈ Rd , we let Qh(x) denote the closed cube centered at x with side

length h. Let Λ = {λ j} j∈Z ⊂ Rd be uniformly discrete; i.e., we assume that ∣λ j − λk ∣ ≥
δ > 0 whenever λ j /= λk . Following [12] we denote by

D+(Λ) = lim sup
h→∞

supx∈Rd ∣Λ ∩ Qh(x)∣
hd

and D−(Λ) = lim inf
h→∞

inf x∈Rd ∣Λ ∩ Qh(x)∣
hd
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the upper and lower density of Λ. If D−(Λ) = D+(Λ) we say that Λ has uniform
Beurling densityD(Λ).

_eorem 2.3 is a generalization of theorems of Landau and Beurling [8, 25] in di-
mension d ≥ 1. See also [26] and [27, Sect. 2].

_eorem 2.3 If E(Λ) = {e2πiλ j ⋅x} j∈Z is a frame in L2(D), then D−(Λ) ≥ ∣D∣. If
E(Λ) is a Riesz sequence in L2(D), then D+(Λ) ≤ ∣D∣.

_us, a necessary condition for E(Λ) to be a Riesz basis in L2(D) is that D(Λ) =
∣D∣. In the special case where Λ = Zd , we have the following corollary.

Corollary 2.4 If E(Zd) is a frame in L2(D), then ∣D∣ ≤ 1; if E(Zd) is aRiesz sequence
in L2(D), then ∣D∣ ≥ 1.

2.3 Shift Invariant Spaces

We let

V 2(φ) ∶= span{τkφ}k∈Zd ,

where φ ∈ L2(Rd) and “bar” denotes the closure in L2(Rd). _e space V 2(φ) is
shi�-invariant, i.e., if f ∈ V 2(φ), then also τm f ∈ V 2(φ) for every m ∈ Zd . Shi�-
invariant spaces of functions appear naturally in signal theory and in other branches
of applied sciences. Following [4, 10, 13], we say that the translates {τkφ}k∈Zd form a
Riesz basis in V 2(φ) if there exist constants 0 < A, B <∞ such that, for every ûnite
set of coeõcients d = {d j} ⊂ C, we have that

(2.4) A∥d∥2
ℓ2 ≤ ∥∑

j
d jτ jφ∥

2

2
≤ B∥d∥2

ℓ2 .

If (2.4) holds, then V 2(φ) = { f = ∑k∈Zd dkτkφ, d ∈ ℓ2}, and the sequence {dk}k∈Zd

is uniquely determined by f .
_e following theorem is well known; see e.g., [23] or [3, Prop. 1.1].

_eorem 2.5 _e set {τmφ}m∈Zd is a Riesz basis in V 2(φ) with frame constants
0 < A, B <∞ if and only if

A = inf
y∈Qd

∑
m∈Zd

∣φ̂(y +m)∣2 ≤ sup
y∈Qd

∑
m∈Zd

∣φ̂(y +m)∣2 = B.

3 Proof of Theorem 1.1

Let ℓ20(Zd) ⊂ ℓ2(Zd) be the set of sequences a = (an)n∈Zd such that an = 0 whenever
∣n∣ ≥ N , with N = N(a) ≥ 0. Let S(a) = ∑n∈Zd ane2πin⋅x . Recall that E(Zd) is a Riesz
sequence in L2(D) if and only if there exists constants 0 < A, B <∞ such that

(3.1) A∥a∥2
2 ≤ ∥S(a)∥2

L2(D) ≤ B∥a∥2
2
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for every a ∈ ℓ20(Zd). We conclude that

(3.2) ∥S(a)∥2
L2(D) = ∫D ∣ ∑

n∈Zd

ane2πin⋅x ∣
2
dx = ∫

D
( ∑

n ,m∈Zd

aname2πi(n−m)⋅x)dx

= ∑
n ,m∈Zd

anam ∫
D
e2πi(n−m)⋅xdx = ∑

n ,m∈Zd

anam χ̂D(n −m).

Let TD be the operator, initially deûned in ℓ20(Zd), as
(3.3) TD(a)m = ∑

n∈Zd

an χ̂D(n −m), m ∈ Zd .

_e calculation above shows that ∥S(a)∥2
L2(D) = ⟨TD(a), a⟩2 , where ⟨ ⋅ , ⋅ ⟩2 denotes

the inner product in ℓ2(Zd). We can easily verify that TD(a) is self-adjoint and, in
view of (3.2), that ⟨TD(a), a⟩2 ≥ 0 for every a ∈ ℓ20(Zd); thus, (3.1) holds if and only if

(3.4) A∥a∥2
2 ≤ ⟨TD(a), a⟩2 ≤ B∥a∥2

2 , a ∈ ℓ20(Zd).
To prove (3.4) we need the following lemma.

Lemma 3.1 Assume that ∥TD∥ℓ2→ℓ2 = sup∥a∥2=1 ∥TD(a)∥2 <∞. _e inequality below
holds for every a ∈ ℓ20(Zd) such that ∥a∥2 = 1:

(3.5)
∥TD(a)∥2

2

∥TD∥ℓ2→ℓ2
≤ ⟨TD(a), a⟩2 ≤ ∥TD∥ℓ2→ℓ2 .

Proof of_eorem 1.1 Let Φ(x) be as in (1.1). We show that if there exist constants
0 < A′ ≤ B′ <∞ such that A′ ≤ Φ(x) ≤ B′ a.e. in Qd , then E(Zd) is a Riesz sequence
in L2(D). Since Φ(x) = ∑m∈Zd χD(x + m) = ∑m∈Zd ∣χD(x + m)∣2, by _eorem 2.5
the set {τm χ̂D}m∈Zd is a Riesz basis of V 2( χ̂D) with frame constants 0 < A′ , B′ <∞.
In view of (2.4) and (3.3), the inequality

A′∥a∥2
2 ≤ ∥TDa∥2

2 ≤ B′∥a∥2
2

holds for every a ∈ ℓ20(Zd). By Lemma 3.1, we have (3.4), as required.
If E(Zd) is a Riesz sequence on D, we argue as in the proof of [6, _eorem 3.1].

Using Plancherel’s identity and the Poisson summation formula, from (3.2)we obtain

(3.6) ∥S(a)∥2
L2(D) =∑

m
∣ ∑
n∈Zd

an χ̂D(n −m)∣
2

= ∫
Qd

∣ ∑
m∈Zd

∑
n∈Zd

an χ̂D(n −m)e2πix ⋅m ∣
2
dx

= ∫
Qd

∣ ( ∑
n∈Zd

ane2πix ⋅n) ∑
m∈Zd

χ̂D(n −m)e2πix ⋅(m−n)∣
2
dx

= ∫
Qd

∣ ∑
n∈Zd

ane2πin⋅x ∣
2
∣Φ(x)∣2dx .

By assumption, the integral in (3.6) is ûnite and so Φ(x) < ∞ a.e.. To show that
Φ(x) > 0 a.e., we argue by contradiction. Suppose that there exists Ω ⊂ D, with
∣Ω∣ > 0, where Φ(x) ≡ 0. We can assume that Ω ⊂ Qd . Since E(Zd) is a Riesz
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basis in L2(Qd), we can write χQd−Ω(x) = ∑n∈Zd bne2πin⋅x , with b⃗ ∈ ℓ2(Zd). _us,
∫Qd

∣Φ(x)∣2∣∑n∈Zd bne2πin⋅x ∣2dx = 0, which, together with (3.6), contradicts (3.1).

Proof of Lemma 3.1 _e right-hand inequality in (3.5) is [18, _eorem 13.8], so we
only need to prove the le�-hand inequality. Let α = sup∥a∥2=1∣⟨TD(a), a⟩∣ and U =
αI−TD ,where I is the identity operator in ℓ2(Zd). It is easy to verify thatU is positive
and that

(3.7) TDUTD +UTDU = α2TD − αT2
D .

_e operators TDUTD and UTDU are positive too; indeed, for every a ∈ ℓ2, we have
that ⟨TDUTDa, a⟩2 = ⟨U(TDa), TDa⟩2 ≥ 0 and ⟨UTDUa, a⟩2 = ⟨TD(Ua), Ua⟩2 ≥ 0,
because TD and U are both positive. By (3.7), the operator αTD − T2

D is also positive.
For every a ∈ ℓ2 with ∥a∥2 = 1, we have that

⟨(αTD − T2
D)a, a⟩ 2 = α⟨TDa, a⟩2 − ⟨T2

Da, a⟩2 = α⟨TDa, a⟩2 − ∥TDa∥2
2 ≥ 0,

and the le� inequality in (3.5) is proved.

Remark From the identity (3.6), it follows that the constants A and B in (3.1) are the
minimum andmaximum of Φ(x) on the unit square Qd . _us, A and B are integers.

When ∣D∣ = 1, _eorem 1.3 shows that E(Zd) is a Riesz sequence if and only the
integer translates of D tile Rd , and so A = B = 1. In general, if k ≤ ∣D∣ < k + 1 for
some positive integer k, we can easily verify that the integer translates of D cover Rd
k times but not k + 1 times. _us, A ≤ ∣D∣ and B ≥ ∣D∣.

4 Proof of Theorem 1.2

Let D ⊂ Rd be measurable, with ∣D∣ ≤ 1. By Lemma 2.2, the theorem is trivial when
D ⊂ Qd , so we assume that D − Qd has positive measure. Let D1 , . . . ,DN , . . . be a
(possibly inûnite) family of disjoint sets of positivemeasure such thatD−Qd = ⋃ j D j .
We can choose theD j in suchway that, for certain vectors v1 , . . . , vN , ⋅ ⋅ ⋅ ∈ Zd ,we have
that D j + v j ⊂ Qd . Let D0 = D ∩Qd and v0 = 0. We prove the following lemma.

Lemma 4.1 E(Zd) is frame for L2(D) if and only, for every v ∈ Zd and every k /= j,

(4.1) ∣(v + D j) ∩ Dk ∣ = 0.

It is easy to verify that (4.1) is equivalent to (1.2), and so _eorem 1.2 is equivalent
to Lemma 4.1.

Proof Assume that ∣(D1 + v) ∩ D0∣ > 0 for some v ∈ Zd (the proof is similar in the
other cases). We can assumewithout loss of generality that D1 +v ⊂ Qd (see Figure 1);
otherwise, we let D1 = D′1 ∪ D′′1 , with D′1 + v ⊂ Qd , and we replace D1 with D′1. We
show that E(Zd) is not a frame on L2(D).
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v

D0

D1

D1+v

Qd

Figure 1:

Every f ∈ L2(D) can be written as f = f0 + f1, where f0 = f χD−D1 and f1 = f χD1 .
Recall that τw g(x) = g(x +w). It follows that

(4.2) ∣⟨e2πin⋅x , f ⟩L2(D)∣2 = ∣⟨e2πin⋅x , f0⟩L2(D−D1) + ⟨e2πin⋅x , f1⟩L2(D1)∣2

= ∣⟨e2πin⋅x , f0⟩L2(D−D1) + ⟨e2πin⋅(x−v) , τ−v f1⟩L2(D1+v))∣2

= ∣⟨e2πin⋅x , f0⟩L2(Qd) + ⟨e2πin⋅x , τ−v f1⟩L2(Qd)∣
2

= ∣⟨e2πin⋅x , f0⟩L2(Qd)∣
2 + ∣⟨e2πin⋅x , τ−v f1⟩(Qd)∣

2

+ 2Re (⟨e2πin⋅x , f0⟩L2(Qd)⟨e2πin⋅x , τ−v f1⟩L2(Qd) ) .
We have used the change of variables x → x − v in the second inner product in (4.2)
and the fact that e2πin⋅v = 1. Since E(Zd) is an orthonormal basis in Qd , the identities
(2.3) and the calculation above yield

(4.3) ∑
n∈Zd

∣⟨e2πin⋅x , f ⟩L2(D)∣2 = ∥ f0∥2
L2(Qd)

+ ∥τ−v f1∥2
L2(Qd)

+ 2Re ⟨ f0 , τ−v f1⟩L2(Qd) .

If we let B = (D − D1) ∩ (D1 + v), we can choose f = f1 + f0, with f1(x) = χB(x + v)
and f0(x) = −χB(x); from (4.3) it readily follows that ∑n∈Zd ∣⟨e2πin⋅x , f ⟩L2(D)∣2 = 0,
which contradicts (2.1).

We now assume that ∣(w + D j) ∩ Dk ∣ = 0 for every k /= j and every w ∈ Zd ; we
prove that E(Zd) is a tight frame in L2(D). We assume for simplicity that D1+v ⊂ Qd
for some v ∈ Zd . Let f = f0 + f1 be as in the ûrst part of the proof. By assumption,
∣(D1 + v) ∩ (D − D1)∣ = 0, and so (4.3) yields

∑
n∈Zd

∣⟨e2πin⋅x , f ⟩L2(D)∣2 = ∥ f0∥2
L2(Qd)

+ ∥τ−v f1∥2
L2(Qd)

= ∥ f χD−D1∥
2
L2(Qd)

+ ∥ f χD1+v∥
2
L2(Qd)

= ∥ f ∥L2(D) .

_us, E(Zd) is a tight frame in L2(D), as required.

_e proof of_eorem 1.2 shows that if (4.1) is not satisûed,we can produce a func-
tion f ∈ L2(D) for which ⟨ f , e2πix ⋅n⟩L2(D) = 0 for every n ∈ Zd , and so E(Zd) is not
complete. _is observation proves the following corollary.
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Corollary 4.2 E(Zd) is complete in L2(D) if and only if the integer translates of D
intersect on sets ofmeasure 0.

Proof of_eorem 1.3 We have proved that (i)⇔ (ii); we show that (ii)⇔ (iii). By
Corollary 4.2, E(Zd) is complete in L2(D) if and only if the integer translates of D
overlap only on sets ofmeasure zero. _us, (iii)⇒ (ii). Let us prove that (ii)⇒ (iii);
let D0 ,D1 , . . . ,DN , . . . and v0 , v1 , . . . , vN , . . . be as in the proof of Lemma 4.1. Since
∣(D j + v j) ∩ (Dk + vk)∣ = 0 when k /= j, and

(4.4) 1 = ∣Qd ∣ = ∣D∣ = ∣D0∣ +∑
j
∣D j + v j ∣

necessarily ⋃ j(D j + v j) = Qd and the integer translates of D tile Rd .
By Fuglede’s theorem, (iii)⇔ (iv). Clearly (iv) ⇒ (v); to ûnish the proof of the

theorem we show that (v)⇒ (iii). By _eorem 1.1, the integer translates of D cover
Rd ; thus,⋃ j(D j+v j) = Qd and from (4.4) it follows that theD j+v j ’s can only intersect
on sets ofmeasure zero. _us, the integer translates of D can only intersect on sets of
measure zero, and (iii) is proved.

5 The Broken Interval

In this sectionwe solve Problem 1. We let J = [0, α)∪[α+r, L+r) ⊂ R,with 0 < α < L
and r > 0.
By Lemma 4.1 and_eorem 1.1, E(Z) is a frame on L2(J) if and only if the integer

translates of J do not overlap in [0, 1], and it is a Riesz sequence if and only if the
integer translates of J cover R.

Let [r] be the integer part of r, i.e., the largest integer n ≤ r; let {r} = r − [r] be the
fractional part of r.

_eorem 5.1 (i) E(Z) is a frame on J if and only if L + {r} ≤ 1.
(ii) E(Z) is a Riesz sequence on J if and only if one of the following is true:

(a) α ≥ 1 or L − α ≥ 1i;
(b) {r} = 0 and L ≥ 1;
(c) 1 ≤ L < 2 and L + {r} ≥ 2.

To prove (ii) we will need the following lemma.

Lemma 5.2 _e integer translates of J cover R if and only if the integer translates of
J′ = [0, α) ∪ [α + {r}, L + {r}) cover R.

Proof If the integer translates of J coverR, then for x ∈ R, there is an integer m such
that either x ∈ (m, α+m) or x ∈ (α+r+m, L+r+m). If x ∈ (m, α+m), then clearly x ∈
J′+m aswell. If x ∈ (α+r+m, L+r+m), then x ∈ (α+{r}+[r]+m, L+{r}+[r]+m),
i.e., x is in the translation of J′ by [r] +m. _e converse is similar.

Proof of_eorem 5.1 By _eorem 1.2 and Lemma 5.2, E(Z) is a frame on J if and
only if the integer translates of [0, α) ∪ [α + {r}, L + {r}) do not intersect in [0, 1],
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that is, if and only if (0, α)∩(α+{r}− 1, L+{r}− 1) = ∅. _is is equivalent to having
either α ≤ α + {r} − 1, which is impossible, or L + {r} ≤ 1. _at proves part (i).

Let us prove part (ii). By Lemma 5.2we can assume that r = {r}, i.e., that 0 ≤ r < 1.
By _eorem 1.1, E(Z) is a Riesz sequence on J if and only if the integer translates

of J cover R. If one of the connected components [0, α) or [α + r, L + r) covers R by
integer translations, we have that either α ≥ 1 or L − α ≥ 1, and (a) is proved.

If neither component covers R by integer translations, i.e., if α < 1 and L − α < 1
both hold, we can consider 2 sub-cases:
● If r = 0, we have that J = [0, L), and the integer translates of J coverR if and only if

L ≥ 1; this proves (b).
● Suppose next that r > 0. _e integer translates of J cover R if and only if the “gap”

(α, α+r) is covered by integer translatesof J. _is ispossible if andonly if (1, α + 1)∪
(α + r − 1, L + r − 1) ⊃ (α, α + r) (see Figure 2).

0

J

α r + α r + L

J + 1

1

Figure 2:

We have (1, α + 1) ∩ (α, α + r) = (1, α + r), because α, r < 1. _us, J covers R
if and only if (α + r − 1, L + r − 1) ∩ (α, α + r) ⊃ (α, 1). _is is equivalent to the
conditions

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

r − 1 ≤ 0
L + r − 1 ≥ 1
α + r ≥ 1

⇐⇒
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

r ≤ 1
L + r ≥ 2
α + r ≥ 1

.

Since α < 1 and L− α < 1 by assumption, and recalling that r < 1, we can see at once
that the condition L + r ≥ 2 implies α + r ≥ 1. Indeed, if α + r < 1, then

L + r = L − α + α + r < L − α + 1 < 2.

_us, the integer translates of J covers R if and only if L + r ≥ 2, and we have (c).
_e theorem is proved.

6 The Rotated Square

Let Qh = Qh(0) = [− h
2 ,

h
2 ] × [− h

2 ,
h
2 ] be the square in R2 centered at the origin with

sides of length h. Let Aθ = [ cos (θ) sin (θ)
− sin (θ) cos (θ) ] be the matrix of a rotation by an angle

θ, and let Qh ,θ = AθQh(0) be the square obtained from the rotation of Qh(0). _e
following theorem oòers a complete solution to Problem 2.

_eorem 6.1
(i) E(Z2) is a Riesz sequence on L2(Qh ,θ) if and only if h ≥ 1 − sin(2θ).
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(ii) E(Z2) is a frame on L2(Qh ,θ) if and only if h ≤ 1
sin θ+cos θ .

Proof We ûrst prove part (i). Let P1 = ( 1
2 ,

1
2 ), P2 = (− 1

2 ,
1
2 ), P3 = (− 1

2 ,−
1
2 ), P4 =

( 1
2 ,−

1
2 ) be the vertices ofQ2. We ûrst ûnd conditions on h and θ forwhich the points

P1 , . . . , P4 lie on the sides of Qh ,θ .

Qh ,θ

P4

P1P2

P3

Q3 Q1

Q4

Q2

Q l(θ),θ

Figure 3:

Let ℓ1 ∶ y − 1
2 = tan(θ)(x − 1

2 ), ℓ2 ∶ y −
1
2 = − 1

tan(θ)(x +
1
2 ), and ℓ3 ∶ y + 1

2 =
tan(θ)(x + 1

2 ) be the equations of the sides of Qh ,θ that contain the points P1, P2 and
P3, respectively. It is easy to verify that ℓ2 intersects ℓ1 and ℓ3 at the points

Q2 = (− 1
2
cos(2θ), 1

2
( 1−sin(2θ))) and Q3 = (− 1

2
( 1−sin(2θ)) ,− 1

2
cos(2θ)) ,

and that the length of the segment that join Q2 and Q3 equals to l(θ) = 1 − sin(2θ).
_us, when h ≥ l(θ), the set E(Z2) is a Riesz sequence on L2(Qh ,θ).

We show that when h < l(θ), the integer translates of Qh ,θ do not cover the plane
anymore. Indeed, if h < l(θ), the four vertices of Q2 are outside the square Q l(θ),θ
and have positive distance from the boundary of Qh ,θ . We can ûnd a small rectangle
R with sides parallel to the sides of Q2 for which R + Pj ⊂ Q2 − Qh ,θ for every j (see
Figure 3). _e integer translates of Qh ,θ cannot cover the rectangles R+Pj , and so the
condition of_eorem 1.1 is not veriûed.

Let us prove part (ii). _e vertices Q1 , . . . ,Q4 of Qh ,θ lie on the sides of Q2 if and
only if there exists 0 < t ≤ 1 for which Q1 = (t − 1

2 ,
1
2 ), Q2 = (− 1

2 , t −
1
2 ), Q3 =

( 1
2 − t,− 1

2 ), and Q4 = ( 1
2 ,

1
2 − t). If we let tan(θ) be the slope of the line that joins Q3
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Q2

R Q1

Q2

Q3

Q4Qs(θ),θ

Figure 4:

and Q4, we can see at once that tan(θ) = 1−t
t ; thus, t = 1

1+tan(θ) =
cos(θ)

sin(θ)+cos(θ) . _e
length of the segment [Q3Q4] is then:

s(θ) =
√

t2 + (1 − t)2 = 1
sin(θ) + cos(θ)

and E(Z2) is a frame on Qh ,θ whenever h ≤ s(θ).
Let us show that E(Z2) is not a frame on Qh ,θ whenever h > s(θ). Indeed, if

h > s(θ), the set Qh ,θ −Q2 has positivemeasure; we can ûnd a small rectangle R with
sides parallel to the sides ofQ2 and vectors n1 , . . . , n4 ∈ Z2 such that R+n j ⊂ Qh ,θ−Q2
(see Figure 3). _us, the integers translates of Qh ,θ overlap on the rectangles R + n j
and by _eorem 1.2, E(Z2) is not a frame on L2(Qh ,θ).

7 The Translated Parallelepiped

In this section we solve Problem 3.
Let P ⊂ Rd be a parallelepiped with sides parallel to vectors v1 , . . . , vd . We let A =

{a i , j}1≤i , j≤d be the matrix whose columns are v1 , . . . , vd ; we let A−1 = {b i , j}1≤i , j≤d .
We prove the following theorem.

_eorem 7.1 (i) _e set E(Zd) is a frame on L2(P) if and only if

det(A) ≤ 1 and max
1≤i ,k , j≤d

j/=k

∣a i , j ∣ + ∣a i ,k ∣ ≤ 1.
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(ii) _e set E(Zd) is a Riesz sequence on L2(P) if and only if

det(A) ≥ 1 and max
1≤i , j≤d

∣b i , j ∣ ≤ 1.

v1 1

P

P + (1, 1)

1

v2

Figure 5:

Proof Observe that if ∣P∣ = det(A) > 1, the set E(Zd) cannot be a frame on L2(P),
so in part (i) we assume det(A) ≤ 1. Similarly, for part (ii) we assume that det(A) ≥ 1.

We prove part (i) by induction on the dimension d.
By_eorem 1.2, the set E(Zd) is a frame on L2(P) if and only if the integer trans-

lates of P overlap only on sets of zero measure. In dimension d = 2, we let v1 =
(a1,1 , a2,1) and v2 = (a1,2 , a2,2) be the vectors that are parallel to the sides of P. When
the components of v1 and v2 are non-negative, we can easily verify that P overlaps
with P + (1, 1) if and only if the sum of the projections of v1 and v2 on the x1 and
x2 axes has measure ≥ 1 (see Figure 4). _us, P overlaps with P + (1, 1) if and only
if a1,1 + a1,2 ≥ 1 and a2,1 + a2,2 ≥ 1. _ese conditions imply that no pair of integer
translates of P intersect. For general v1 and v2 we can similarly verify that the integer
translates of P do not intersect if and only if ∣a1,1∣ + ∣a1,2∣ ≥ 1 and ∣a2,1∣ + ∣a2,2∣ ≥ 1.

We now assume that part (i) of the theorem is valid in dimension d ≥ 2. We prove
that is is valid also in dimension d + 1.

Let P be a parallelepiped in Rd+1. _e integer translates of P overlap on sets of
positivemeasure in Rd+1 if and only if the integer translates of the faces of P overlap
on sets of positive measure in Rd . Let Ph be the face of P spanned by the vectors
v1 , . . . , vh−1 , vh+1 , . . . , vd+1.

Let e1 = (1, 0, . . . , 0), . . . , ed+1 = (0, . . . , 0, 1) be the standard orthonormal basis in
Rd+1 and let H j be the orthogonal complement of e j . Clearly, the integer translates of
Ph overlap if and only if the integer translates of the orthogonal projections of Ph on
the H j ’s overlap.
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_e projection of Ph on Hk is a parallelepiped in Rd spanned by the vectors
w1 , . . . ,wh−1, wh+1 , . . . , wd+1, where w j is the projection of v j on Hk , i.e., it is the
vector v j with the k-th component removed. By assumptions,

max
1≤i ,k , j≤d+1

i /=k
k/= j/=h

{∣a i , j ∣ + ∣a i ,k ∣} ≤ 1.

_is inequality is valid for every face of P and for every projection, and so we have
that

max
1≤i , j,k≤d+1

k/= j

{∣a i ,k ∣ + ∣a i , j ∣} ≤ 1,

as required.
We now prove part (ii). By _eorem 1.1, the integer translates of P must cover Rd .

Since P is the image of the unit cube [0, 1]d via the linear transformation A(x) = Ax,
we can write P = A([0, 1]d). _us, E(Zd) is a Riesz sequence in L2(P) if and only if
⋃n∈Zd (A([0, 1]d) + n) = Rd , or

A−1( ⋃
n∈Zd

(A([0, 1]d) + n)) = ⋃
n∈Zd

([0, 1]d + A−1n) = Rd .

_e translates of the unit cube [0, 1]d cover Rd if and only if the components of the
vectors A−1ek are all ≤ 1, i.e., if and only ifmax1≤i , j≤d ∣b i , j ∣ ≤ 1.

7.1 The Shortest Vector Problem

Let A∶Rd → Rd be linear and invertible; consider the parallelepiped P = A(Q),where
Q = [0, 1]d . _e sides of P are parallel to the columns of thematrix that represents A.
By Corollary 4.2, the set E(Zd) is complete in L2(A(Q)) if and only if the integer

translates of A(Q) do not intersect. _e integer translates of A(Q) intersect if and
only if there are x , y ∈ Q such that Ax = Ay + n, for some nonzero n ∈ Zd . We
can also say that the translates of A(Qd) intersect if and only if there exist x , y ∈ Q
and n ∈ Zd such that A−1n = x − y, i.e., if and only if there exists n ∈ Zd such that
A−1n ∈ D = {w ∣ ∥w∥∞ < 1}.

_ese considerations show that Problem 3 is related to the so-called shortest vector
problems (SVP). Given a lattice L and a norm ∥ ⋅ ∥ on Rd , ûnd the minimum length
λ = min0/=v∈L ∥v∥ of a nonzero lattice point. _e SVP is known to be NP-hard (see
[1]).

_e conjectured intractability of the SVP and of other optimization problems on
lattices is central in the construction of secure lattice-based cryptosystems. For more
information on this problem, see, e.g., [2,20] and the references cited in those papers.
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