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Abstract

A perturbation method is developed, and is used to obtain approximate
expressions for the expectation values of one-particle and two particle
operators in the quasi-chemical equilibrium (pair correlation) approximation
to statistical mechanics, for the case of non-extreme Bose-Einstein conden-
sation of the correlated pairs. To lowest order, the approximate results
reproduce the results obtained previously for the case of extreme Bose-
Einstein condensation.

1. Introduction

It has been shown [1,2], that under certain conditions the quasi-chemical
equilibrium approximation exhibits a transition phenomenon closely anala-
gous to a Bose-Einstein condensation of the quasi-molecules. Furthermore,
if the particles in question are electrons in a metal, it is reasonable to expect
that the transition is one to a superconducting state, since it is well known
[3] that the condensed ideal Bose-Einstein gas exhibits a Meissner effect.

In order to carry out self consistent calculations with the quasi-chemical
equilibrium formalism, it is necessary to have simple expressions for the
expectation values of one-particle and two-particle operators. This was done
in [4] for the special case of extreme Bose-Einstein condensation, i.e. only
one pair state is occupied. Surprisingly enough, this suffices to get a
workable theory of superconductivity — there is actually Bose-Einstein
condensation [5], and thus this apparently extreme assumption is none-
theless physically reasonable. However, to carry out more detailed calcula-
tions on the theory of superconductivity (in particular, calculations for
finite temperatures), we require expectation values for the case of non-
extreme Bose-Einstein condensation, i.e. there is an infinite number of pair
states, of which only one is highly occupied.

In [6], general expressions for the expectation values of one-particle and
two-particle operators were obtained, and in sections 3 and 4 of this paper,
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we evaluate approximate expressions for these formulae using the pertur-
bation method developed in section 2.

Throughout this paper, we shall:
(a) Ignore spins,
(b) restrict the pair wavefunctions q>a(k1, k2) to be real, "simple pair"

wavefunctions (C.1.2):

(1.1) Tai^l' ^2) = <Ĥ 1 H~ ̂ 2 —

and (c) assume that wa(klt kz) = w_a(klt k2) and wa = v_a, where t»a are
the eigenvalues of the "pair correlation matrix".

Assumptions (a) and (c) are reasonable but the restriction to simple
pairs requires justification; a discussion on this restriction is given in
section 5.

2. The trace of the statistical matrix

The statistical matrix % [7], in the quasi-chemical equilibrium theory
has trace (Q3.10):

(2.1) Tr(^) = Tr^XOIe^e-^+IO)

The value of Tr(i^) is well known, so we confine our attention to (C.2.5):

(2.2) e-fiO" = <0|^e^+|0> = <0|exp{|Tr ln(l — M)} exp{#+}|0>

where:

(2.3a) M =

and

(2.3b) /

The Aa and the Ba are operators operating in disjoint Hilbert spaces,
and both sets of operators obey Bose-commutation rules:

(2.4) [Aa, A+] = [Ba, fl+] = dafi, all others zero

and the qfi
a are defined by (C.2.9):

(2.5a) <*|^|A'> = 2 Mk> n<P*(k", k').
*"

Under restriction (b), to simple pairs, this reduces to the form:

(2.5b) <*|sf|A'> = - d ( k + Ka - [V + Kfi])w0{k-%Kfi)wa(k-Kf + \Ka).

Equation (2.2) has been evaluated for some simple cases in paper C,
namely, the case of extreme Bose-Einstein condensation, and the case of
two quantum states only. In this section we evaluate e~fiQ" approximately
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[3] A perturbation approach to Bose-condensed pairs 309

by neglecting all but a few terms in the expansion of Trln(l— M). The
final result is expressed as an integral.

First, we take "state number 0" to be the ground state, (i.e. v0 is the
largest eigenvalue of the pair correlation matrix, corresponding to the con-
densed state) and separate out from M:

(2.6a) Mo = 2<fovoAoBo

(2.6b) M1 = 2 2 Vvova(q5AoBa + q°aAaB0)
<t#0

(2.6c) M2 = 2 2 &Vvjr,AaBt

so that

(2.6d) M = M0 + M'

where

(2.6e) Af' = Mx + M2.
We now expand ln(l — (Mo + M')) (formally) in a power series (Mo and
M' do not commute) thus:

l n ( l - ( M 0

(2.7)

Taking the trace of (2.7) and using Tr(^4B) = Tr(BA) we obtain:

T r l n ( l - ( M 0 + M'))

-Mo--|» - ^ - • •.) -

(2.8) - 4

We now neglect terms in (2.8) of degree higher than the first in va (e.g.
vavficc, p ^ 0 is of order 1, \/vova a ^ 0 is of order ^ etc.) and substitute into
(2.2):

(2.9) <0|*
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By (2.5) (k\ql\k'y = — dkk,u%(k), so Mo is diagonal, therefore:

(2.10) Tr ( — L - M\ = 2 . * .. .

where *)

<*|M1|A> = 22' V^~a

(^.11) a

= 0 by (2.5b).

Also,

< 2 1 2 ) T

where

(2.13) = - 2

since by assumption (a) Ka = Kfi implies a = p. So,

(214)( 2-1 4 )

next,

(2.15)

The Aa and Ba all commute so:

2 1 6 )

Mil*> = 4i,0 2
(2.17)

= I + II + III + IV
1 The primed sum means summation over all a except a = 0.
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I. II, III, and IV are defined by:

(2.18a)

11 = o 2 a
(2.18b)

= 4 v o 2 ' vaw0{
a

III = 4t,0 2 ' va<k\<f0\k -Ka} <k -
(2.18c)

2' ^ ( * ) J ( *

IV -
(2.18d)

where we have used: (1) equation (2.5b); (2) assumption (c); and (3)
Ka= — Kft implies a = — /3 and Ka = Kfi implies a = /? (since we are
ignoring spins).

By substituting (2.17) into (2.16) and shifting the ̂ -origins of the terms
corresponding to I and III to k + Ka, the contributions from I and II,
and from III and IV combine and we obtain:

(2.19)

Before continuing we establish a useful notation; hk,yk,na, oa, xa and ra

being defined by:

(2.20a) hk=
l + 2voAoBowl(k)

(2.20b) i»i =
l + 2v0A0B0wl(k)

(2.20c) na = ?.{l-hk)wl{k-lKa)
*
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(2.20d) aa = 2 Ml - K+KJwl(k + \Ka)
k

(2.20e) ra =

and

f. =f .

Combining (2.20), (2.19), (2.14), (2.11) and (2.9) we have:

<0|«*e*+|0> ~ <0 |exp[ jTr ln( l -M 0 ) + r (na-aa)vaAaBa

(2.21) a

If tca = ze»_a and va = v_a (which we are assuming), then:

(2.22) «>o

a>0

a>0

The Aa and Ba satisfy the commutation relations (2.4), so we consider the
(a, — a) terms in (2.22) separately and expand:

Noting that the first term of (2.22) involves Aa, A_a, Ba and £_* only in
the products AaBa and A_aB_a, only equal powers in the expansions of the
above exponentials can give non-zero contribution to (2.21); thus:

<z>0

(2 23) ' e x P ^

where f(x) is defined by:

(2.24)

Using:

(2.25)

where the Aa and Ba are as in (2.4) [(2.25) will be called the "/-trick"
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henceforth: see § 3 of paper C]; we can now replace each of the (a, — a)
terms in (2.23) by an integral, thus:

rr dta r
(2.26) Jo Jo

= / \ (aM 0 B 0 )

where /i(a, A0B0) is defined by:

(2.27) / > , A0B0) = {(1 - v a [ n a - a . ] ) « -
Substituting (2.26) into (2.23) and using the '7-trick" on the A0B0 term,
we have:
(2.28) <0|e*V+|0> s f°° ̂ «-V4S,h(n*H,«b1»l) J J rt(a, to)

o>0

or finally, taking the product over all a ^ 0 instead of a > 0:

(2.29)
•exp -

Equation (2.29) is the final expression which can be reduced further only
if more details are known about the va and the wa. It should be noted that
na, aa and ra are functions of t0 and the S' is itself an integral, thus the
evaluation of e~fi°M is not trivial. However,"for the purpose of making a self
consistent calculation, what we really need are expectation values of the
one-particle and two-particle operators which occur in the Hamiltonian,
and Tr(<2fln<80 :e-0°M is contained in the definitions of the expectation
values, but in the derivations below, an explicit evaluation of e~fi°M is not
needed.

3. Expectation values of one-particle operators

The expectation value of the one-particle operator

(3-1) 2
is given by Ex 2.8:

(32)(3-2) _ _ _ _ _

where nk is the average number of unpaired particles in the single particle
state k, and J is the "quenched" form of / (see § 2 of paper E^.

A reduction of the numerator of the second term in (3.2) was carried out
in paper E n , the final result being (En 2.32):
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(3.3) <0|«*J«*+|0> = <0|exp{|Tr ln(l - M ) } T r ( j ^ « j ) exp(K+)|0>.

Using the results of section 2, this becomes:

(3-4)

As before, we require an expansion of — (Mo + M')/l — (Mo + M') to
first order in va. To do this, we first expand 1/1 — (Mo + M'):

- = 1 + (Mo + M') + (Ml + M0M' + M'M0 + M'»)
1-(M

(3.5)

1-MO ' 1 - M O 1 - M O

+ M ' M '

Then

_ (M 4- M'\
= 1 —1-(M

(3.6) ^
l-M0 1-MO 1-MO

1-MO 1-MO \-M0

Neglecting terms in (3.6) of degree higher than the first in va we obtain for
the trace of — M/(l — M)J:

< 3 7 )
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[9] A perturbation approach to Bose-condensed pairs 315

We now note that in the exponent in (3.4) the operators Aa and Ba occur
only in the products:

(3.8) vaAaBa,vaB
2

0AaA_a, and vaA\BaB_a

Thus, except for Tr( —Afo/(1 —MQ)J) which equals ^,khkJkk, only terms of
type (3.8) in (3.7) can give non-zero contribution to (3.4).

Mt contains A0Ba and AaB0 linearly, so the second term in (3.7) contri-
butes nothing.

In the third term, only the « = fi term of M2 can possibly give rise to
anything non-zero, thus the "effective" form of — Tr((l/1 — MO)MZ

(1/1— M0)J) equals:

I T 1M ,hs 2<k\qa\k>vaAaBa

= - 2 ' 2 (-2dkik,wl(k
a h,k'

( 3 < 9 )

a k

r2
a k

where nak is defined by:

(3.10a) nak = 2(1 - *»)•«£(*

Also:

(3 11)

and by (3.8), the "effective" form of ^lAf^'XtflAfjl*") (compare with
(2.17)) equals:

(3-12) bk>v\\ + II + HI + IV)

where I, II, III, and IV are defined by (2.18).
Substituting (3.12) into (3.11) we obtain the "effective" form of
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1 1 L ( 1( 1 + 2voAoBowl(k)) (1 + 2v0A0B0u%(k-Ka)) (1 + 2v0A0B0w*(k))\

-Ka)wl(k - \Ka) AoBovaAaBtt

+ wo(k)wo(k-Ka)wl(k-%Ka)vaA*BaB_a]

2voAoBowl(k)) (1 + 2v0A0B0w*(k + Ka)) (1 + 2i;o,4o

Combining (3.13), (3.9), and (3.7) we have finally the "effective" form of
Tr{-M/(l-M)J):

(3.14) *

where 5aJ(., T ^ and T ^ are defined by:

(3.10b) 5ak = 2(l-

(3.10c) T&> = ̂ ( I

(3.10d) ri1', = 4»o(

We substitute (3.14) into (3.4) and observe that the "Mrick" will not work
directly: we must first rewrite the a-terms as (a, — a)-terms, as before.

The contribution from ^khkJkk follows directly from (2.28): it is just

kk n
a>0

(3.15) 2 fM^oe-'.+iS*i-(i+2Vo».'<*>>hj
ft Jo

To obtain the contribution to (3.4) of the vaAaBa term in (3.14) we use
exactly the same procedure as we did before in going from (2.21) to (2.23)
and obtain:

2 (».*-ff.*)JP

a > 0
(3 1Q) P&<*
K • F[OL, A0B0)F(p, A0B0)

where F(x, A0B0) is defined by:

(a, A0B0) = expffo, - a.) {vaAaBa + v_aA_aB_a)}

The relevant integral for the (a, — a) term in (3.16) is:
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[11] A perturbation approach to Bose-condensed pairs 317

dt-'e~t-~t-(Vata + V-J-a)

(3.18) • exp{(jra - aa) {vata + f_a*_a)}/(T>a*aw_aLa)

= 2va{l-va[na-oa])r*(x,A0B0)

and the relevant integral for the (/?, — /S) term in (3.16) is just (2.26).
For the vaAlBaB_a(vaBlAaA_a) term in (3.14) we use a similar proce-

dure, but now in the expansion of

exp{- 1aAlvaBaB_a}exp{- iaB%vaAaA_a)

the nxh(n + 1th) term in the expansion of the first exponential combines
with the (n-\- l ) t h («*) term in the expansion of the second exponential,
and we obtain the contribution to (3.4):

2 - T S ? J»*(-T5J»J**) I I <O|exp[£Tr ln(l -M o )]
(3.19) a > 0 ^

• 2/f. • i ^ a , 40i?0) F(/S, ̂ 0 S 0 ) exp [^J5+]|O>

where ^ ( a , A0B0) is defined by:

(3.20) ' 2 " a

and

(3.2i) /,(*) = - j ;

and the relevant integrals are

dtA
o

(3-22)

for the (a, — a) term, and (2.26):

(3-23) rx{fi, A0B0)

for the (0, — 0) term.
Combining the results obtained so far and then applying the '7-trick" on

the A0B0 term, we have:
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~ 2 f°
k Jo

• [hjkk IT A(«. to) + 2 [(».* - *«*)
„,% I a>0 <*>ol-

' ' • 2va(l-va[na-oa])r*(«, to)Jkkk
-i

IIAGM
J /J>00>O

where rak is defined by:

\.o.4O) Xak — Tak - f T_ak .

In our expression for </> ((3.2)), we require the ratio of the integrals
(3.24) and (2.28). "State 0" is the condensed state with v0 > 1, so both
integrals can be evaluated approximately by the saddle point method.
A(«> h) t m (2-28)], and the terms in the curly brackets [in (3.24)] are
functions of t0; however, compared with the exponential factor, these terms
are slowly varying functions of t0; therefore, to a first approximation, the
saddle point for both integrals is *0max

2) (called t0 henceforth). With this
approximation </> is given approximately by (taking the sum over all
a =£ 0 instead of a > 0):

(3.26) </> ~ 2 »*/** + Tr(*'J) + Tr{h"J)

where h' and h" are defined by:

(3.27a) <k\h'\k'y = dktk,h

and

(3.27b) <A|*"|*'> = K*> 2'
a

where

(3.27c) hak = {nak - 5ak)r(*. t0) +

and
.. . rlvl

The terms ~2knkJkk, Tr(A'J) and Ti(h" J) in (3.26) can be interpreted as

* {$E*ln(l + 2i>0/0ui0
t(A)) — <„} takes its maximum value at to = t<tnMX = No, where 2V0

is the number of Bose-condensed pairs and Nv is proportional to the volume of the box
(see paper C).

https://doi.org/10.1017/S1446788700028342 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700028342


[13] A perturbation approach to Bose-condensed pairs 319

the contributions from: (1) the unpaired particles, (2) the condensed
pairs (i.e. the pairs occupying 'state 0'), and (3) the non-condensed pairs
(i.e. the pairs occupying the 'states a' a # 0), respectively.

We note that since a macroscopic number of particles occupy the ground
state (footnote 2), we expect that the contribution from any one non-
condensed state should be negligible compared with the contribution from
the condensed state. A simple volume dependence check in fact shows that
hk ~ 1 and hak ~ 1/F, where V is the volume of the container. However,
a large number of non-condensed states (~ V) contribute, so that finally
the two contributions Tr(A'J) and Tr(A"J) are comparable.

Finally, for extreme condensation (i.e. all pairs occupy 'state 0'), Tr(A" J )
vanishes and (3.26) reduces to Ej 4.24.

4. Expectation values of two-particle operators

The expectation value of the two-particle operator

= 2
I, m, I', m'

is given by Ej 2.12:

(4.2)

where the quantities R and J?(1» are as in Et (^(1) is a one-particle operator,
so it is under control).

A reduction of the numerator of the last term in (4.2) was carried out in
paper E n , the final result being (En3.26):

(4.3)

where

(4.4a)

(4.4b)

= <0|exp{£ Tr ln(l -M)} [T

2 (

= 2 Qm\j>\l'm'yRVm.ln
iml'm'

<J,m\p\l'm'y = (I
-M

1 - M
- M

1 - M

-M

m'}(m

1-M

-M

m'}

1-M
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(4.4c)

and

(4.4d)

Colin J. Thompson and John M. Blatt

= 2 v*[i,
Iml'm'

[W]

ky<pa(k,m) —
1 - M

Using the results of section 2 (4.3) becomes:

1-M

(4.5)

2 (V-.

In keeping with our approximation we desire an expansion of:

(4.6)

to first order in va, where again, only terms of type (3.8) in (4.6) contribute
to (4.5).

For the first term in (4.6) we use the expansion (3.6) for — Af/1 — M,
and (3.14); and obtain the "effective" form

2
Iml'm'

(4.7)
1

1-M« 11-M,

(m
\-Ma

 Xl-M(
m > — |

where, ^a, is defined by:

(4.8) hal = {nal-8al)vaAaBa-T$vaAlBatB_a-T*}cl

and it is understood that the second term in (4.7) in its final form will
contain only terms of type (3.8).

For the second term in (4.6) we use the expansion (3.5) for 1/1 — M in
(4.4d) and obtain:

Wa(l, m) = 2-*[(l -*,)?.(*. m) - (l-hm)Va{m, I)]

+ 2"* 2 [(1 -* i )<Wil*>(l -K)?a(k, tn)

(4.9) - (1 - a . K w I M ^ X l -hk)Va{k, I)]

= rf} (I, tn) + V-L11 (1. tn)
where v40) contains no terms in va, y>™ contains only term linear in v\,
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contains only terms linear in va, etc The "effective"' form of the
second term in (4.6) is then:

(4.10)

where it is again understood that the last seven terms in (4.10) in their
final forms will contain only terms of type (3.8).

We then substitute (4.7) and (4.10) into (4.5) and using the methods
developed in section 3, we obtain finally, after an extremely tedious calcula-
tion:

( + 2'

where we have used the following definitions:

(4.12a) <fm\p'\l'm">= (<5ir«5w-<5lm,«5

(4.12b) <fm\p"\l'm'> = 2 ' (A.^. , ' . - -

(4.12c) + {r(a, to)top$fiV +A (a,

*.)«,,'««,.' 3)

(4.12d) pw = 2V^(1 -A,) (1 - A ^ J w o C -

(4.12e) ^ = 2V^(1 - A,) (1 - hl+KJ wo(l) w

(4.12f) y,<<»(/, m) = <5Jf_m2-i(l -ht)w0(l)

(4.12g) VW» (/, m) = dm^_t 2"i{(l - A,) + (1 - h

(4.12h) qffi{l, m) = p™<pa(k, m)dk>l+Kii-p™<pa(k, l)8K

J S ( / , m) = p%9a(k, m)8Kl_Kl)-p%l<pa{k, l)8k>m_K

m+Ki>

i>

• />_a is obtained from pa by replacing Ka by —Ka, and j ^ , - a is obtained from
by replacing pa by />_„ and Ka by —Ka.
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1, m) = halm6fiia + Wl (I, t»)/>, 'o) Vo
(4.12J)

(*, / = 1, 2 : /? = 0, a)

(4.12k) hxlm = v0t0{(£al - H a l ) r ( « , t0) + TalA(a, *„)&,_»

(4.121) Zal = r*(3al + 5a,-,)u>0(l)

(4.12m) 77«, = 2-*(wBl+ ».,_>„(/)

(4.12n) 2t«i = 2-*(fal + fa>_IK(Z)

(4.12o) 0 " (/, m) = »o<o{7i2(^ «»)^(«. ^ ' o + ffSIU^ **)*{*. h)} 3)
(*. 7 = 1. 2)

The terms of (4.11) can be interpreted as follows (E:): The first term is
the conventional Hartree-Fock expectation value over the single particle
distribution; the second and fifth terms arise from the interactions between
single particles and particles within condensed correlated pairs, and between
single particles and particles within non-condensed correlated pairs respec-
tively; the third and fourth, and the sixth and seventh terms arise from the
interaction between particles, both of which are members of, condensed
correlated pairs, and non-condensed correlated pairs respectively.

Again, a simple volume dependence check shows that the contribution
from any one non-condensed state is negligible compared with the contri-
bution from the condensed state, but that finally, all terms in (4.11) are
comparable.

Further, for extreme condensation, the fifth, sixth and seventh terms of
(4.11) vanish and we are left with Er 5.27 4) as required.

5. Discussion

We start by considering a special case of (3.1), namely, Jkk> = dkW: i.e.
the number operator:

(5.1) ^" = 24«*
k

(3.26) then gives the expectation value:

(5-2) <^> = 2hk + 2'lKk
k a k

and we can interpret

3 See footnote on the preceding page.
* y> in paper E! (E, S.19) is related to y£" through y> = Vi;0<((y>|1°

1.
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(5.3) #. = 2*.*
k

as the number of non-condensed pairs in state a. We point out that

(5.4) Nx^2va^(~pQM), «)

in disagreement with remarks made in paper E n . However, the disagree-
ment is not the result of any error in calculation but is, rather, an immediate
consequence of the fact that v0 was treated differently from va in our approx-
imation procedure. The interpretation (5.3) is nonetheless reasonable
— there is still condensation and each non-condensed pair state still contri-
butes an amount of relative order l/V (see the remarks following (3.26)
and (4.11)) as required.

Interpreting our results within the framework of Bogoliubov's theory [8]
we observe that the non-condensed pairs are different from Bogoliubov's
"elementary excitations" (which are similar to our unpaired particles),
but are analogous to his "collective excitations". The "collective excitations"
in Bogoliubov's original theory were found necessary to establish a gauge-
invariant Meissner effect ([9]); in the quasi-chemical equilibrium theory,
as well as in a later version of Bogoliubov's theory, the condensed pairs
alone suffice ([10]).

The assumption of complete condensation is applicable only in the limit
of zero temperature. At any finite temperature, we expect to find some
'normal' pairs, as well as some unpaired particles. This paper is a step to-
wards the practical evaluation of the formalism for non-zero temperatures.
The most restrictive assumption in the present paper is that of "simple
pairs", (1.1). Although this assumption is awkward, it now turns out to be
less seriously restrictive than was supposed earlier ([10]). Zumino [11]
has proved a theorem to the effect that an arbitrary pair wave function
<f>(klt k2) can be transformed into a "simple pair" form by introducing trans-
formed single-particle states |w) which are linear combinations of the states
\k}. If the same transformation can also be used for the unpaired particles,
simple pairing becomes an acceptable assumption. In particular, a simple
pairing calculation can be gauge-invariant, provided we make the appro-
priate gauge transformation on the single-particle states \k).

The practical evaluation of the formalism for non-zero temperatures must
be done in a self-consistent fashion, and for this we require not only expecta-

• It is easy to show that

within our approximation.

https://doi.org/10.1017/S1446788700028342 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700028342


324 Colin J. Thompson and John M. Blatt [18]

tion values of one-particle and two-particle operators over the density
matrix %, but also the value of T r ( ^ In tft). The former have been evaluated
for the general case in paper E n , and more specific expressions have been
obtained in the present paper. But the calculation of Tr(<^ In 'il) has not yet
been completed. It is hoped that we will be able to report on this problem
at a later date.
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