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THE HOLOMORPHY CONJECTURE FOR
NONDEGENERATE SURFACE SINGULARITIES

WOUTER CASTRYCK, DENIS IBADULA and ANN LEMAHIEU

Abstract. The holomorphy conjecture roughly states that Igusa’s zeta func-

tion associated to a hypersurface and a character is holomorphic on C whenever

the order of the character does not divide the order of any eigenvalue of the

local monodromy of the hypersurface. In this article, we prove the holomorphy

conjecture for surface singularities that are nondegenerate over C with respect

to their Newton polyhedron. In order to provide relevant eigenvalues of

monodromy, we first show a relation between the normalized volumes (which

appear in the formula of Varchenko for the zeta function of monodromy) of the

faces in a simplex in arbitrary dimension. We then study some specific character

sums that show up when dealing with false poles. In contrast to the context of

the trivial character, we here need to show fakeness of certain candidate poles

other than those contributed by B1-facets.

§1. Introduction

Let K be a finite extension of the field of p-adic numbers Qp. Let R be

the valuation ring of K, and let P be its maximal ideal. Suppose that the

residue field R/P has cardinality q. For z ∈K, let ord(z) ∈ Z ∪ {∞} denote

its valuation, let |z|= q−ord(z) be its absolute value, and let ac(z) = zπ−ord(z)

be its angular component, where π is a fixed uniformizing parameter for R.

Let f(x), x := (x1, . . . , xn), be a nonconstant polynomial over K, and let

χ :R×→ C× be a multiplicative character of R×; that is, a homomorphism

with finite image. We formally put χ(0) = 0. Let Zf,0(χ, K, s), respectively

Zf (χ, K, s), be the corresponding local Igusa zeta function, respectively

global Igusa zeta function; that is, the meromorphic continuation to C of
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the integral function

Z0(s) =

∫
Pn

χ (ac(f(x))) |f(x)|s|d(x)|,

respectively Z(s) =

∫
Rn

χ (ac(f(x))) |f(x)|s|d(x)|,

for s ∈ C, with Re(s)> 0, where |d(x)|= |dx1 ∧ · · · ∧ dxn| denotes the Haar

measure on Kn normalized such that the measure of Rn is 1.

For f a polynomial over R, the local and global Igusa zeta function can be

described in terms of solutions of congruences. For i ∈ N>0 and u ∈R/P i,
let M0,i(u) and Mi(u) be the number of solutions of f(x)≡ u mod P i in

(P/P i)n and (R/P i)n respectively. Let c be the conductor of χ; that is, the

smallest a ∈ N>0 such that χ is trivial on 1 + P a. Then,

Z0(s) =
∞∑
i=0

∑
u∈(R/P c)×

χ(u)M0,i+c(π
iu)q−n(i+c)q−is, and

Z(s) =

∞∑
i=0

∑
u∈(R/P c)×

χ(u)Mi+c(π
iu)q−n(i+c)q−is.

Igusa showed that these functions are rational functions in q−s, and he

gave a formula for Zf,0(χ, K, s) and Zf (χ, K, s) in terms of an embedded

resolution (Y, h) of f−1{0} over K (see [I]). Let Ej , j ∈ T , be the (reduced)

irreducible components of h−1(f−1 {0}), and let Nj , respectively νj − 1, be

the multiplicity of Ej in the divisor of f ◦ h, respectively h∗(dx1 ∧ · · · ∧ dxn)

on Y . Then, the poles of Zf,0(χ, K, s) and Zf (χ, K, s) are among the values

s=
−νj
Nj

+
2kπi

Nj log(q)
, k ∈ Z, j ∈ T,(1)

for which the order of χ divides Nj .

Let now f ∈ F [x], with F ⊂ C a number field, and let K be a nonar-

chimedean completion of F ; that is, a completion with respect to a finite

prime. Let R be its valuation ring, and let χ :R×→ C× be a multiplicative

character. Then, the poles of Zf,0(χ, K, s) and Zf (χ, K, s) seem to be

related to various invariants in singularity theory, such as the eigenvalues

of monodromy and the roots of the Bernstein–Sato polynomial (see, for

example, [D2]) and such as the jumping numbers (see, for example, [ST]).

In this article, we explore another connection conjectured by Denef, called
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the holomorphy conjecture. It follows from (1) that when the order of χ

divides no Nj at all, then the zeta functions Zf,0(χ, K, s) and Zf (χ, K, s)

are holomorphic on C. Now, the Nj are not intrinsically associated to

f−1 {0}; however, the order (as root of unity) of any eigenvalue of the

local monodromy on f−1 {0} divides some Nj , and those eigenvalues are

intrinsic invariants of f−1 {0}. This observation inspired Denef to propose

the following [D2, Conjecture 4.4.2].

Conjecture 1. (Holomorphy conjecture) For almost all nonarchimed-

ean completions K of F (i.e., for all except a finite number) and all

characters χ, the local (resp. global) Igusa zeta function Zf,0(χ, K, s) (resp.

Zf (χ, K, s)) is holomorphic, unless the order of χ divides the order of some

eigenvalue of the local monodromy of f at some complex point of f−1 {0}.

This conjecture was proved by Veys in [Ve, Theorem 3.1] for plane curves,

and in [DV], Denef and Veys obtained a Thom–Sebastiani-type result. In

[RV], Rodrigues and Veys make progress on the holomorphy conjecture for

homogeneous polynomials. Veys and Lemahieu confirmed the conjecture for

surfaces that are general for a toric idealistic cluster (see [LV, Theorem

24]). In [LVP1], the holomorphy conjecture was introduced for ideals and

was proved for ideals in dimension two.

In this article, we prove the holomorphy conjecture for surface singulari-

ties that are nondegenerate over C with respect to their Newton polyhedron

at the origin. In Section 2, we recall this notion, along with explicit formulas

for the zeta functions in this context. By a formula of Varchenko, the

normalized volume of a face gets a key role in the search for eigenvalues

of monodromy for nondegenerate singularities. In Section 3, we prove some

properties on the normalized volume of faces in a simplex of arbitrary

dimension. These properties might be of independent interest. We can use

them in Section 5.1 to obtain a set of eigenvalues that is relevant for the

holomorphy conjecture. Furthermore, we prove that some candidate poles

of Zf,0(χ, K, s), respectively Zf (χ, K, s), are not actual poles. This mainly

concerns candidate poles contributed by so-called B1-facets, which were

formally introduced in [LVP2] in the context of the topological zeta function.

In our context of the Igusa zeta function associated to a nontrivial character,

some configurations of B1-facets that give rise to false poles have been

treated in [BV, Section 9]. It actually turns out that almost all configurations

of B1-facets give rise to fake poles (see Section 5.2.3 for the exact statement).

We also find a configuration without B1-facets where we need to show that
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the candidate pole is a false pole. Our computations rely on the study of

some specific character sums (see Section 4). We can then complete our

proof using a nondegeneracy argument (see Lemma 2), which was used for

the first time in [LVP2].

As a preliminary remark, we note that for the purpose of proving the

holomorphy conjecture one can assume the following.

• f has coefficients in the ring of integers OF of F . Indeed, multiplying

f by a constant a ∈ F affects Zf,0(χ, K, s) and Zf (χ, K, s) only for the

completions K in which ord(a) 6= 0, of which there are finitely many.

• χ is a nontrivial character with conductor equal to 1. Indeed, Denef proved

that for almost all nonarchimedean completions K of F , if χ :R×→ C× is

a multiplicative character that is nontrivial on 1 + P , then Zf,0(χ, K, s)

and Zf (χ, K, s) are constant on C (see [D2, Theorem 3.3]).

From now on we just write Zf,0(χ, s) (resp. Zf (χ, s)) for Zf,0(χ, K, s)

(resp. Zf (χ, K, s)).

§2. Nondegenerate singularities and their zeta functions

2.1 Nondegenerate singularities

Assume that f(x) ∈ OF [x] is a nonconstant polynomial satisfying f(0) =

0. Write

f(x) =
∑
k∈Zn>0

ckx
k,

where k = (k1, . . . , kn) and xk = xk11 · . . . · xknn . The support of f is

supp f = {k ∈ Zn>0

∣∣ ck 6= 0}.

The Newton polyhedron Γ0 of f at the origin is the convex hull in Rn>0 of⋃
k∈supp f

k + Rn>0.

A facet of the Newton polyhedron is a face of dimension n− 1. For a face

τ of Γ0, one defines the polynomial fτ (x) :=
∑

k∈Zn∩τ ckx
k.

We say that the polynomial f is nondegenerate over C with respect to the

compact faces of Γ0 (resp. nondegenerate over C with respect to the faces of

Γ0), if for every compact face τ (resp. for every face τ) of Γ0, the zero locus of

fτ has no singularities in (C×)n. For a fixed Newton polyhedron Γ, almost
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all polynomials having Γ as their Newton polyhedron are nondegenerate

with respect to the faces of Γ (see [AVG, page 157]).

Let K be a nonarchimedean completion of F with valuation ring R and

maximal ideal P , whose residue field we denote by Fq. Note that OF ⊂R,

so it makes sense to consider f̄ , the polynomial over Fq obtained from f by

reducing each of its coefficients modulo P . We say that f̄ is nondegenerate

over Fq with respect to the compact faces of Γ0 (resp. nondegenerate over

Fq with respect to the faces of Γ0) if for every compact face τ (resp. for

every face τ) of Γ0, the zero locus of f̄τ has no singularities in (F×q )n. If f is

nondegenerate over C with respect to the compact faces (resp. the faces) of

its Newton polyhedron Γ0, then recall that f̄ is nondegenerate over Fq with

respect to the compact faces (resp. the faces) of Γ0 for almost all choices of

K. Thus, in order to prove the holomorphy conjecture for polynomials that

are nondegenerate over C, it suffices to restrict to completions K for which,

moreover, f̄ is nondegenerate over the residue field Fq.
Further on, we use the following property of nondegeneracy [LVP2,

Lemma 9].

Lemma 2. If a complex polynomial f(x, y, z) is nondegenerate with

respect to the compact faces of its Newton polyhedron at the origin, then for

almost all k ∈ C, the polynomial f(x, y, z − k) is nondegenerate with respect

to the compact faces of its Newton polyhedron at the origin. (Analogously

for the variables x and y.)

2.2 Some combinatorial data associated to the Newton

polyhedron

Let Γ0 be as above. For a= (a1, . . . , an) ∈ Rn>0, we put

N(a) := inf
x∈Γ0

a · x, ν(a) :=
n∑
i=1

ai, F (a) := {x ∈ Γ0

∣∣ a · x=N(a)}.

All F (a), a 6= 0, are faces of Γ0. To a face τ of Γ0 we associate its dual cone

∆τ = {a ∈ Rn>0

∣∣ F (a) = τ}. It is a rational polyhedral cone of dimension

n− dim τ . In particular, if τ is a facet then ∆τ is a ray, say ∆τ = aR>0 for

some nonzero a ∈ Zn>0, and then the equation of the hyperplane through τ is

a · x=N(a). If we demand that a is primitive, that is, that

gcd(a1, . . . , an) = 1, then this a is uniquely defined. For a facet τ , we also

use the notation N(τ), called the lattice distance of τ , and ν(τ), meaning

respectively N(a) and ν(a) for this associated a ∈ Zn>0. For a general proper
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face τ , the dual cone ∆τ is strictly positively spanned by the dual cones of

the facets containing τ .

For a set of linearly independent vectors a1, . . . , ar ∈ Zn, we define the

multiplicity mult(a1, . . . , ar) as the index of the lattice Za1 + · · ·+ Zar
in the group of the points with integral coordinates of the subspace of

Rn generated by a1, . . . , ar. Alternatively, mult(a1, . . . , ar) is equal to

the greatest common divisor of the determinants of the (r × r)-matrixes

obtained by omitting columns from the matrix with rows a1, . . . , ar. If ∆τ

is a simplicial cone, then by mult(∆τ ) we mean the multiplicity of its set

of primitive generators. For a simplicial face τ , we write mult(τ) for the

multiplicity of its set of vertexes.

2.3 The Igusa zeta function with character for nondegenerate

singularities

In the case where f ∈R[x] is nondegenerate over Fq with respect to

the compact faces (resp. the faces) of its Newton polyhedron at the origin

Γ0, Hoornaert gave a formula [H, Theorem 3.4] for the local (resp. global)

Igusa zeta function associated to f and χ in terms of Γ0, which we recall.

Hoornaert states the formula for R= Zp only, but her proof generalizes word

by word to our more general setting.

Recall that we assume χ :R×→ C× to be nontrivial of conductor 1. Let

pr :R×→ F×q ∼=R×/(1 + P ) be the natural surjective homomorphism. As χ

is trivial on 1 + P , there exists a unique homomorphism χ̄ : F×q → C× such

that χ= χ̄ ◦ pr. One formally puts χ̄(0) = 0. Note that the order of χ divides

the order of χ̄. Let f be a nonzero polynomial over R satisfying f(0) = 0,

and let f̄ be nondegenerate over Fq with respect to all the compact faces

(resp. all the faces) of its Newton polyhedron Γ0. Let

Lτ := q−n
∑

x∈(F×q )n

χ̄(f̄τ (x)), and let S(∆τ )(s) :=
∑

a∈Zn∩∆τ

q−ν(a)−N(a)s.

Then, Hoornaert proved that the local, respectively global, Igusa zeta

function associated to f and the nontrivial character χ can be computed as

Zf,0(χ, s) =
∑

τ compact
face of Γ0

LτS(∆τ )(s), respectively

Zf (χ, s) =
∑
τ face
of Γ0

LτS(∆τ )(s).
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In the last summation, also the face τ = Γ0 is included, and S(∆Γ0) = 1.

If ∆τ is simplicial, say (strictly positively) spanned by primitive linearly

independent vectors a1, . . . , ar ∈ Zn>0, then

S(∆τ )(s) =

∑
h q

ν(h)+N(h)s∏
i(q

ν(ai)+N(ai)s − 1)
,

where the sum runs over Zn ∩ {λ1a1 + · · ·+ λrar
∣∣ 0 6 λi < 1}. In partic-

ular, if mult(∆τ ) = 1, then the numerator is 1. In the nonsimplicial case,

S(∆τ )(s) is a sum of such expressions (obtained by subdividing ∆τ into

simplicial cones).

We clearly see that the real parts of a set of candidate poles (containing

all poles) of the local and global Igusa zeta function are given by the rational

numbers −ν(a)/N(a) for a orthogonal to a facet of the Newton polyhedron

at the origin. Moreover, we can restrict to the facets τ for which the order

of χ̄ divides N(a), because otherwise Lτ = 0. This follows from Lemma 7

below. A fortiori we can restrict to those for which the order of χ divides

N(a). We say that such a facet contributes a candidate pole to Zf,0(χ, s),

respectively Zf (χ, s).

We finally remark that if f is nondegenerate over C with respect to the

compact faces of Γ0, then the couples (ν(a), N(a)) are part of the numerical

data (νj , Nj) associated to a very explicit (namely, toric) embedded reso-

lution of f−1{0} over F , which was first described by Varchenko in [Va].

Thus, the fact that we can restrict to the case where the order of χ divides

N(a) also follows from Igusa’s seminal work.

2.4 The formula of Varchenko for the zeta function of mon-

odromy of f in the origin

Let f : (Cn, 0)→ (C, 0) be a germ of a holomorphic function. Let F be

the Milnor fiber of the Milnor fibration at the origin associated with f , and

write hi∗ :H i(F , C)→H i(F , C), i> 0, for the monodromy transformations.

The zeta function of monodromy at the origin associated to f is

ζf,0(t) :=
∏
i>0

(det(idi − thi∗;H i(F , C)))(−1)(i+1)
,

where idi is the identical transformation on H i(F , C). One calls α an

eigenvalue of monodromy of f at the origin if α is an eigenvalue for

some hi∗ :H i(F , C)→H i(F , C). Denef proved that every eigenvalue of
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monodromy of f is a zero or a pole of the zeta function of monodromy at

some point of {f = 0} (see [D3]). Varchenko gave in [Va] a formula for ζf,0
in terms of Γ0 if f is nondegenerate with respect to the compact faces of its

Newton polyhedron at the origin Γ0. He defines a function ζτ (t) for every

compact face τ of Γ0 for which there exists a subset I ⊂ {1, . . . , n} with

#I = dim(τ) + 1 such that τ ⊂ LI := {x ∈ Rn
∣∣ ∀i 6∈ I : xi = 0}. We call such

faces V-faces, and we denote the index set (resp. linear space) corresponding

to a V-face τ by Iτ (resp. LIτ ). If a V-face is a simplex, then we call it a

V-simplex.

For a face τ of dimension 0, we put Vol(τ) = 1. For every other compact

face τ , Vol(τ) is defined as the volume of τ for the volume form ωτ . This

is a volume form on Aff(τ), the affine space spanned by τ , such that the

parallelepiped spanned by a lattice basis of Zn ∩Aff(τ) has volume 1. The

product (dim τ)!Vol(τ) is also called the normalized volume of the face τ

and is denoted by NV(τ).

For a V-face τ , let
∑

i∈Iτ aixi =N(τ) be the equation of Aff(τ) in LIτ ,

where N(τ) and all ai (for i ∈ Iτ ) are positive integers, and their greatest

common divisor is equal to 1. We put

ζτ (t) :=
(

1− tN(τ)
)NV(τ)

.

In [Va], Varchenko showed that the zeta function of monodromy of f in the

origin is equal to

ζf,0(t) =
∏

ζτ (t)(−1)dim(τ)
,

where the product runs over all V-faces τ of Γ0.

For a fixed facet τ of Γ0, we say that a V-face σ in Γ0 contributes with

respect to τ if e−2πiν(τ)/N(τ) is a zero of ζσ(t).

If n= 3, the formula of Varchenko for the zeta function of monodromy

at the origin has a specific form which we describe below. We first partition

every compact facet into simplices. For each such simplex τ , we define the

factor Fτ as in [LVP2]:

Fτ := ζτ
∏
σ

ζ−1
σ

∏
p

ζp,(2)

where the first product runs over the 1-dimensional V-faces σ in τ and the

second product runs over the 0-dimensional V-faces p of τ that are intersec-

tion points of two 1-dimensional V-faces in τ . In [LVP2, Proposition 8], it
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is shown that Fτ is a polynomial. Following the formula of Varchenko, the

zeta function of monodromy in the origin can be written as

ζf,0(t) =
∏
τ

Fτ
∏
σ

ζ−1
σ

∏
p

ζp,(3)

where the first product runs over all 2-dimensional simplices τ obtained

after subdividing the compact facets, and the other products run over

1-dimensional V-faces σ and 0-dimensional V-faces p for which ζσ, respec-

tively ζp, was not used in any Fτ .

§3. Preliminary results on the normalized volume

When searching for eigenvalues of monodromy using the formula of

Varchenko, one has to compare normalized volumes of compact faces in

a facet. This is the motivation for this section. For two faces σ and σ′ in a

simplicial facet τ , we denote the smallest face containing σ and σ′ by σ + σ′.

Lemma 3. Let σ and σ′ be two nondisjoint V-faces in a simplicial facet

τ . Then, σ ∩ σ′ and σ + σ′ are also V-faces.

Proof. Let σ be a d1-dimensional V-simplex, and let σ′ be a d2-

dimensional V-simplex, having k vertexes in common. Suppose that the

vertexes of σ + σ′ have exactly s zero entries in common. Then, one has

s6 n−#(σ + σ′) = n− (d1 + 1 + d2 + 1− k),

where (abusing notation) #(σ + σ′) denotes the number of vertexes of

σ + σ′. On the other hand, the vertexes of σ ∩ σ′ have at most n− k zero

entries in common, and so

n− k > (n− d1 − 1) + (n− d2 − 1)− s.

Combining these two inequalities, one finds that they are actually equalities,

and so σ ∩ σ′ and σ + σ′ are V-simplices.

Recall that for a V-simplex τ , the normalized volume NV(τ) is equal to

its multiplicity mult(τ) divided by its lattice distance N(τ). Let

Bj = (Bj
1, . . . , B

j
n), 1 6 j 6 n,

be the vertexes of τ , and let σ be a V-face in τ with vertexes B1, . . . , Bk

and Iσ = {1, . . . , k}. Then, mult(τ) is the absolute value of the determinant
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of the matrix 

B1
1 . . . B1

k 0 . . . 0
... . . .

...
... . . .

...
Bk

1 . . . Bk
k 0 . . . 0

∗ . . . ∗ Bk+1
k+1 . . . Bk+1

n
... . . .

...
... . . .

...
∗ . . . ∗ Bn

k+1 . . . Bn
n


.

We denote the matrix

Mτ,σ :=

B
k+1
k+1 . . . Bk+1

n
... . . .

...
Bn
k+1 . . . Bn

n

 .

Then, we have that mult(τ) = mult(σ) |det(Mτ,σ)|.

Proposition 4. Let τ be a simplicial facet of a Newton polyhedron in

Rn. If σ is a V-face in τ , then NV(σ) |NV(τ).

Proof. Let us denote the equation of the affine space through τ ,

respectively through σ, by

Aff(τ)↔ a1x1 + · · ·+ anxn =N(τ),

Aff(σ)↔ a1x1 + · · ·+ akxk
gcd(a1, . . . , ak)

=N(σ),

with gcd(a1, . . . , an) = 1 and N(σ) =N(τ)/ gcd(a1, . . . , ak). Let

Bj = (Bj
1, . . . , B

j
n), 1 6 j 6 n,

be the vertexes of τ , and let Bk+1, . . . , Bn be the vertexes of τ that are not

contained in σ. Then, we find that

NV(τ) =
NV(σ) |det(Mτ,σ)|

gcd(a1, . . . , ak)
.

Let vj = (Bk+1
j , . . . , Bn

j )T , k + 1 6 j 6 n, be the jth column of the matrix

Mτ,σ, and let M̃τ,σ be the matrix obtained from Mτ,σ by replacing

the first column by ak+1vk+1 + · · ·+ anvn. For every vertex Bj of τ ,

we have that gcd(a1, . . . , ak) | ak+1B
j
k+1 + · · ·+ anB

j
n, and hence we find

that gcd(a1, . . . , ak) | det(M̃τ,σ) = ak+1 det(Mτ,σ). Analogously, we obtain

https://doi.org/10.1017/nmj.2016.51 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2016.51


170 W. CASTRYCK, D. IBADULA AND A. LEMAHIEU

that gcd(a1, . . . , ak) | aj det(Mτ,σ), for k + 1 6 j 6 n. As we suppose that

gcd(a1, . . . , an) = 1, we get that gcd(a1, . . . , ak) | det(Mτ,σ), which implies

that NV(σ) |NV(τ).

Proposition 5. Let τ be a simplicial facet of a Newton polyhedron in

Rn. If σ and σ′ are V-faces in τ such that σ ∩ σ′ 6= ∅, then

NV(τ)NV(σ ∩ σ′) = NV(σ)NV(σ′)M, for some M ∈ N.(4)

Moreover, if σ + σ′ = τ , then M = 1 if and only if

N(σ ∩ σ′) = gcd(N(σ), N(σ′)).

Proof. As σ + σ′ is also a V-face (see Lemma 3), it follows by Proposi-

tion 4 that it is sufficient to prove that

NV(σ + σ′)NV(σ ∩ σ′) = NV(σ)NV(σ′)M, for some M ∈ N.

Let B1, . . . , Bk, Bk+1, . . . , Br be the vertexes of σ, and let

B1, . . . , Bk, Br+1, . . . , Bs be the vertexes of σ′. Then, mult(σ + σ′)

is the absolute value of the determinant of the matrix

B1
1 . . . B1

k 0 . . . 0 0 . . . 0
... . . .

...
... . . .

...
... . . .

...
Bk

1 . . . Bk
k 0 . . . 0 0 . . . 0

∗ . . . ∗ Bk+1
k+1 . . . Bk+1

r 0 . . . 0
... . . .

...
... . . .

...
... . . .

...
∗ . . . ∗ Br

k+1 . . . Br
r 0 . . . 0

∗ . . . ∗ 0 . . . 0 Br+1
r+1 . . . Br+1

s
... . . .

...
... . . .

...
... . . .

...
∗ . . . ∗ 0 . . . 0 Bs

r+1 . . . Bs
s


.

We write

Aff(σ + σ′)↔ a1x1 + · · ·+ asxs =N(σ + σ′), with gcd(a1, . . . , as) = 1,

α := gcd(a1, . . . , ak),

β := gcd(ak+1, . . . , ar) and γ := gcd(ar+1, . . . , as).
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Then, we have

Aff(σ) ↔ a1x1 + · · ·+ akxk + ak+1xk+1 + · · ·+ arxr
gcd(α, β)

=
N(σ + σ′)

gcd(α, β)
=N(σ),

Aff(σ′) ↔ a1x1 + · · ·+ akxk + ar+1xr+1 + · · ·+ asxs
gcd(α, γ)

=
N(σ + σ′)

gcd(α, γ)
=N(σ′),

Aff(σ ∩ σ′) ↔ a1x1 + · · ·+ akxk
α

=
N(σ + σ′)

α
=N(σ ∩ σ′).

By using Proposition 4, we get

NV(σ + σ′)NV(σ ∩ σ′) = NV(σ)NV(σ′)
α

gcd(α, β) gcd(α, γ)
.

As gcd(α, β, γ) = 1, the quotient α/(gcd(α, β) gcd(α, γ)) is an integer.

To prove the second statement, let σ and σ′ be two V-faces in a

simplicial facet τ such that σ + σ′ = τ . Then, one easily shows that N(τ) =

lcm(N(σ), N(σ′)), and one can then write

M =
α

gcd(α, β) gcd(α, γ)
=

gcd(N(σ), N(σ′))

N(σ ∩ σ′)
.

Corollary 6. Let σ and σ′ be two V-faces in a simplicial facet τ . If σ

and σ′ contribute with respect to τ , and if σ ∩ σ′ does not, then M > 2 in

Equation (4).

§4. Some character sums

In order to prove the holomorphy conjecture, we have to show that

some candidate poles of Zf,0(χ, s) (resp. Zf (χ, s)) are false poles. These

proofs rely on the computation of certain character sums. We first recall

some well-known properties of character sums over finite fields which we

need when treating B1-facets. We then study a specific character sum

(see Proposition 10), which shows up when proving fakeness of some other

candidate pole.

Lemma 7. Let a1, . . . , an, N ∈ Z, and let χ be a multiplicative character

of F×q whose order is not a divisor of N . Let f ∈ Fq[x1, . . . , xn] be such that

each exponent (k1, . . . , kn) appearing in f satisfiesa1k1 + · · ·+ ankn =N .
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Then, ∑
(x1,...,xn)∈(F×q )n

χ(f(x1, . . . , xn)) = 0.

Proof. Pick u ∈ F×q such that χ(uN ) 6= 1. Then, the left-hand side equals∑
(x1,...,xn)∈(F×q )n

χ(f(ua1x1, . . . , u
anxn))

= χ
(
uN
) ∑

(x1,...,xn)∈(F×q )n

χ(f(x1, . . . , xn)),

from which the property follows.

Lemma 8. Let a ∈ N, and let χ be a multiplicative character of F×q whose

order is not a divisor of a, then
∑

x∈F×q χ(xa) = 0.

Proof. Take f(x) = xa in the previous lemma.

Lemma 9. Let f be a polynomial, let g be a monomial (possibly equipped

with a nonzero coefficient) over Fq in the variables x2, . . . , xn, and let χ be

a nontrivial multiplicative character of F×q . Then,∑
(x1,...,xn)∈(F×q )n

χ(f(x2, . . . , xn) + x1g(x2, . . . , xn))

=−
∑

(x2,...,xn)∈(F×q )n−1

χ(f(x2, . . . , xn)).

Proof. One can write∑
(x1,...,xn)∈(F×q )n

χ(f(x2, . . . , xn) + x1g(x2, . . . , xn))

=
∑

(x2,...,xn)∈(F×q )n−1

∑
x1∈F×q

χ(f(x2, . . . , xn) + x1g(x2, . . . , xn))

=
∑

(x2,...,xn)∈(F×q )n−1

∑
u∈Fq

χ(u)− χ(f(x2, . . . , xn))


=−

∑
(x2,...,xn)∈(F×q )n−1

χ(f(x2, . . . , xn)),

where we use Lemma 8 in the last step.
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Proposition 10. Let χ be a multiplicative character of F×q such that

its order does not divide a ∈ N. Let α, γ ∈ Fq, and let β, δ ∈ F×q be such that

γ2 − 4βδ 6= 0. Then,∑
(x,y,z)∈(F×q )3

χ(αxa + βxx2y2 + γx(x1+x2)/2yz + δxx1z2)

=−
∑

(x,y)∈(F×q )2

χ(αxa + βxx2y2)−
∑

(x,z)∈(F×q )2

χ(αxa + δxx1z2),

with x1, x2 ∈ N such that x1 ≡ x2 mod 2.

Proof. First assume that q is odd, and write ∆ = γ2 − 4βδ. Let

ε=

{
2 if ∆ is a square,
0 if ∆ is not a square.

For each c ∈ F×q , define

Lc := #{(x, y, z) ∈ (F×q )3
∣∣ αxa + βxx2y2 + γx(x1+x2)/2yz + δxx1z2 = c},

Ny,c := #{(x, y) ∈ (F×q )2
∣∣ αxa + βxx2y2 = c},

Nz,c := #{(x, z) ∈ (F×q )2
∣∣ αxa + δxx1z2 = c},

Mc := #{x ∈ F×q
∣∣ αxa = c}.

We rewrite the first equation as

(5) βxx2y2 + γx(x1+x2)/2yz + δxx1z2 = c− αxa.

For each value of x ∈ F×q , this defines a conic in the variables y and z. The

discriminant of the quadratic part equals ∆ · xx1+x2 6= 0. As we suppose

x1 ≡ x2 mod 2, we have that ∆ · xx1+x2 is a square if and only if ∆ is a

square. In the Mc cases where c− αxa = 0, the conic degenerates either

into two lines over Fq (if ∆ is a square), or into two conjugate lines over

Fq2 (if ∆ is a nonsquare). Thus, in this case it carries ε(q − 1) + 1 points

(y, z) ∈ F2
q . If c− αxa 6= 0, then one verifies using ∆ 6= 0 that Equation (5)

defines an absolutely irreducible conic. It has ε rational points at infinity, so

we conclude that the conic carries q + 1− ε points in F2
q , because every

projective nonsingular curve of genus 0 over a finite field Fq has q + 1

rational points (see [FJ]). Overall, we count

(ε(q − 1) + 1)Mc + (q + 1− ε)(q − 1−Mc)
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solutions (x, y, z) ∈ F×q × F2
q to Equation (5). This includes Mc points of the

form (x, 0, 0), Ny,c points of the form (x, y, 0) with y 6= 0, and Nz,c points

of the form (x, 0, z) with z 6= 0. Therefore,

(6) Lc = (ε(q − 1) + 1)Mc + (q + 1− ε)(q − 1−Mc)−Mc −Ny,c −Nz,c.

Summing up, for some constants λ and µ that do not depend on c, it holds

that Lc =−Ny,c −Nz,c + λMc + µ. Now note that

S1 :=
∑

(x,y,z)∈(F×q )3

χ(αxa + βxx2y2 + γx(x1+x2)/2yz + δxx1z2) =
∑
c∈F×q

Lcχ(c),

Sy :=
∑

(x,y)∈(F×q )2

χ(αxa + βxx2y2) =
∑
c∈F×q

Ny,cχ(c),

Sz :=
∑

(x,z)∈(F×q )2

χ(αxa + δxx1z2) =
∑
c∈F×q

Nz,cχ(c),

0 = χ(α)
∑
x∈F×q

χ(xa) =
∑
x∈F×q

χ(αxa) =
∑
c∈F×q

Mcχ(c).

As for the last line, the first equality follows by Lemma 8. Plugging in the

expression for Lc in S1, we find

S1 = −
∑
c∈F×q

Ny,cχ(c)−
∑
c∈F×q

Nz,cχ(c)

+ λ
∑
c∈F×q

Mcχ(c) + µ
∑
c∈F×q

χ(c) =−Sy − Sz,

as wanted.

If q is even, then our condition γ2 − 4βδ 6= 0 amounts to γ 6= 0. The above

proof still applies, except that one should now work with ∆ = βδ/γ2, and

the definition of ε should be modified to

ε=

{
2 if TrFq/F2

(∆) = 0,

0 if TrFq/F2
(∆) = 1.

For this definition of ε, one verifies that Equation (6) still holds (see [BRS,

Theorem 1]), and the remainder of the proof is exactly the same.

Note that the exponents (a, 0, 0), (x1, 0, 2), ((x1 + x2)/2, 1, 1), (x2, 2, 0)

are all contained in the hyperplane 2k1 + (a− x2)k2 + (a− x1)k3 = 2a, so

https://doi.org/10.1017/nmj.2016.51 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2016.51


THE HOLOMORPHY CONJECTURE FOR NONDEGENERATE SURFACE SINGULARITIES 175

under the stronger assumption that the order of χ does not divide 2a, or

under the additional assumption that a− x1 is even (which holds if and

only if a− x2 is even), we see from Lemma 7 that all sums in the statement

of the proposition are actually zero.

§5. A proof of the holomorphy conjecture for nondegenerate

surface singularities

Let f(x) be as in Section 2.1, and assume that it is nondegenerate over C
with respect to the compact faces (resp. the faces) of its Newton polyhedron

at the origin Γ0. Let K be a nonarchimedean completion with valuation ring

R and residue field Fq, such that f̄ is nondegenerate over Fq with respect to

the compact faces (resp. the faces) of Γ0. Let χ :R×→ C× be a nontrivial

character of conductor 1. If Zf,0(χ, s) (resp. Zf (χ, s)) is not holomorphic on

C, then by the material from Section 2.3 it has a pole with real part equal

to −ν(τ)/N(τ) for some facet τ of Γ0 for which the order of χ̄ divides N(τ).

Here, as before, χ̄ denotes the unique character of F×q associated to χ.

For some facets τ , in particular the B1-facets and the X2-facets which we

introduce below, we typically have to prove that −ν(τ)/N(τ) can not be

the real part of a pole of Zf,0(χ, s) (resp. Zf (χ, s)). For the other facets, we

prove that e−2πi/N(τ) is an eigenvalue of monodromy of f at some point of

f−1{0}, and we thus obtain that the order of χ (which, as we recall, divides

the order of χ̄) divides the order of some eigenvalue of monodromy at some

point of f−1{0}.
Let us first recall the notion of B1-facets, introduced in [LVP2]. A simpli-

cial facet of an n-dimensional Newton polyhedron (n> 2) is a B1-simplex

with respect to the variable xi if it is a simplex with n− 1 vertexes in

the coordinate hyperplane xi = 0 and one vertex at distance 1 of this

hyperplane. We say that a facet τ of an n-dimensional Newton polyhedron

is noncompact for the variable xj (1 6 j 6 n) if for every point p ∈ τ , the

point p+ (0, . . . , 0, 1, 0, . . . , 0) ∈ τ , where (0, . . . , 0, 1, 0, . . . , 0) is an n-

tuple with 1 at place j and 0 everywhere else. We define the maps

πj : Rn→ Rn−1 : (x1, . . . , xn) 7→ (x1, . . . , x̂j , . . . , xn) for j = 1, . . . , n.

A noncompact facet τ of an n-dimensional Newton polyhedron (n> 3) is a

(noncompact) B1-facet with respect to the variable xi if τ is noncompact for

exactly one variable xj and if πj(τ) is a B1-simplex in Rn−1 with respect

to xi. A B1-facet is a B1-simplex or a noncompact B1-facet with respect to

some variable.
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Here, in addition, we introduce the following.

Definition 11. A facet of type X2 in a 3-dimensional Newton polyhe-

dron is a facet whose vertexes (up to permutation of the coordinates) are

of the form p= (a, 0, 0), q = (x1, 0, 2), r = (x2, 2, 0), with a− x2 and a− x1

both odd.

Remark that an X2-facet has four lattice points: besides its three vertexes,

we have the point ((x1 + x2)/2, 1, 1). Also notice that a simplex cannot be

simultaneously B1 and X2, except when it is spanned by (1, 0, 0), (0, 0, 2),

(0, 2, 0) (up to permutation of the coordinates); that is, it is the only

compact facet of Γ0. By Lemma 14 below, this facet does not give rise

to an actual pole of Zf,0(χ, s) or Zf (χ, s).

5.1 Determination of a set of eigenvalues

As in Section 2.4, we subdivide the compact facets of Γ0 into simplices τ .

In [LVP2, Proposition 8], Van Proeyen and Lemahieu proved that whenever

τ is not a B1-facet, then the value e−2πiν(τ)/N(τ) is a root of Fτ . In this

section, we show that e−2πi/N(τ) is also a root of Fτ , except possibly if τ is

a B1-facet or an X2-facet. Contrary to [LVP2, Proposition 8], we here rely

on Proposition 5 to get a more conceptual proof.

Proposition 12. Let τ be a simplex in a subdivision of a compact facet

of some 3-dimensional Newton polyhedron. Suppose that τ is not of type B1

or of type X2, then e−2πi/N(τ) is a zero of Fτ .

Proof. Case 1. τ does not contain a segment in a coordinate plane.

By formula (2), Fτ = ζτ =
(
1− tN(τ)

)NV(τ)
, and e−2πi/N(τ) clearly is a zero

of Fτ .

Case 2. τ contains exactly one 1-dimensional V-face σ.

In this case, we have

Fτ =
ζτ
ζσ

=

(
1− tN(τ)

)NV(τ)(
1− tN(σ)

)NV(σ)
.

Then, e−2πi/N(τ) is a zero of Fτ unless N(σ) =N(τ) and NV(σ) = NV(τ).

One easily checks that then τ would be a B1-facet.

Case 3. τ contains exactly two 1-dimensional V-faces σ1 and σ2.
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In this situation,

Fτ =
ζτζp
ζσ1ζσ2

=
(1− tl)

(
1− tN(τ)

)NV(τ)(
1− tN(σ1)

)NV(σ1) (
1− tN(σ2)

)NV(σ2)
,

where, without loss of generality, {p= (l, 0, 0)}= σ1 ∩ σ2.

If N(σ1) 6=N(τ) or N(σ2) 6=N(τ), then see Cases 1 and 2. If N(τ) =

N(σ1) =N(σ2), then Fτ = (1− tl)
(
1− tN(τ)

)NV(τ)−NV(σ1)−NV(σ2)
.

Case 3.1. If N(p) =N(τ), then by Proposition 5, NV(τ) = NV(σ1)NV(σ2)

and hence Fτ =
(
1− tN(τ)

)(NV(σ1)−1)(NV(σ2)−1)
. If NV(σ1) or NV(σ2) would

be equal to 1, then it would result that NV(τ) = NV(σi), for some i ∈ {1, 2},
and again τ would be a B1-facet. Consequently, e−2πi/N(τ) is a zero of Fτ .

Case 3.2. Suppose that N(p) 6=N(τ). By Proposition 5, we have NV(τ) =

MNV(σ1)NV(σ2), with M > 2. One easily deduces that NV(τ)−NV(σ1)−
NV(σ2)> 0, unless NV(σ1) = NV(σ2) = 1. If NV(σ1) = NV(σ2) = 1, then

NV(τ)−NV(σ1)−NV(σ2)> 0 if and only if M > 2. It remains thus to

study the case NV(τ) =M = 2, NV(σ1) = NV(σ2) = 1. As we supposed that

N(τ) =N(σ1) =N(σ2), the vertexes of τ are then p= (N(τ)/2, 0, 0), q =

(x1, 0, 2), r = (x2, 2, 0), and

Aff(τ)↔ 2x+ (N(τ)/2− x2)y + (N(τ)/2− x1)z =N(τ).

From N(σ1) =N(σ2) =N(τ), it follows that N(τ)/2− x2 and N(τ)/2− x1

are odd, and hence τ is of type X2.

Case 4. τ contains three 1-dimensional V-faces σ1, σ2 and σ3.

In this situation,

Fτ =
ζτζpζqζr
ζσ1ζσ2ζσ3

,

with p= σ1 ∩ σ2, q = σ1 ∩ σ3 and r = σ2 ∩ σ3. We suppose that N(τ) =

N(σ1) =N(σ2) =N(σ3); if not, then we fall back on one of the previous

cases.

Case 4.1. If N(τ) =N(σ1 ∩ σ2) =N(σ1 ∩ σ3) =N(σ2 ∩ σ3), then, by Propo-

sition 5, NV(τ) = NV(σ1)NV(σ2) = NV(σ1)NV(σ3) = NV(σ2)NV(σ3), and

thus NV(σ1) = NV(σ2) = NV(σ3). Then, Fτ becomes

Fτ =

(
1− tN(τ)

)NV(σ1)2+3(
1− tN(τ)

)3NV(σ1)
.
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Since NV(σ1)2 + 3> 3NV(σ1), it follows that e−2πi/N(τ) is a zero of Fτ .

Case 4.2. If N(τ) =N(σ1 ∩ σ2) =N(σ2 ∩ σ3) 6=N(σ1 ∩ σ3), then Proposi-

tion 5 yields

NV(τ) = NV(σ1)NV(σ2) = NV(σ2)NV(σ3)

= MNV(σ1)NV(σ3), with M > 2.

We thus get NV(σ3) = NV(σ1) and NV(σ2) =MNV(σ1), and we find then

Aff(τ)↔ x+My + z =N(τ),

with p= (N(τ), 0, 0), q = (0, N(τ)/M, 0) and r = (0, 0, N(τ)). In this case,

e−2πi/N(τ) is a zero of Fτ if and only if NV(τ) + 2>NV(σ1) + NV(σ2) +

NV(σ3), or, equivalently, if (MNV(σ1)− 2) (NV(σ1)− 1)> 0. This is always

the case, as NV(σ1) =N(τ)/M = 1 would imply that τ is a B1-facet.

Case 4.3. IfN(τ) =N(σ1 ∩ σ2),N(τ) 6=N(σ1 ∩ σ3) andN(τ) 6=N(σ2 ∩ σ3),

then, by Proposition 5, one has

NV(τ) = NV(σ1)NV(σ2) =M1NV(σ1)NV(σ3) =M2NV(σ2)NV(σ3),

with M1 > 2 and M2 > 2. In this configuration, we have

Aff(τ)↔ x+ ky + lz =N(τ),

p= (N(τ), 0, 0), q = (0, N(τ)/k, 0) and r = (0, 0, N(τ)/l), with gcd(k, l) =

1. Then, we find that M1 = k, M2 = l, and hence NV(σ2) = kNV(σ1)/l and

NV(σ3) = NV(σ1)/l. In this case, e−2πi/N(τ) would be a zero of Fτ if and

only if NV(τ) + 1>NV(σ1) + NV(σ2) + NV(σ3), or, equivalently,

kNV(σ1)2 − (k + l + 1)NV(σ1) + l > 0.

This is true because NV(σ1) > l, while the largest real root of the polynomial

on the left-hand side is

k + l + 1 +
√

(k + l + 1)2 − 4kl

2k
< l.

The latter inequality holds because one easily rewrites it as kl > k + l, which

holds since k, l > 2, and k = l = 2 is excluded by coprimality.
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Case 4.4. IfN(τ) 6=N(σ1 ∩ σ2),N(τ) 6=N(σ1 ∩ σ3) andN(τ) 6=N(σ2 ∩ σ3),

then, by Proposition 5, one has

NV(τ) =M1NV(σ1)NV(σ2) =M2NV(σ1)NV(σ3) =M3NV(σ2)NV(σ3),

with M1 > 2, M2 > 2 and M3 > 2. In this configuration, we have

Aff(τ)↔ kx+ ly +mz =N(τ),

p= (N(τ)/k, 0, 0), q = (0, N(τ)/l, 0) and r = (0, 0, N(τ)/m), with k, l, m

pairwise coprime. Then, we find that M1 = k, M2 = l, M3 =m, and hence

NV(σ2) = lNV(σ1)/m and NV(σ3) = kNV(σ1)/m. In this case, we want

to establish that NV(τ)>NV(σ1) + NV(σ2) + NV(σ3), or equivalently

that klmNV(σ1)> k + l +m. This follows from NV(σ1) > 1 and klm>
4 max{k, l, m}> 3 max{k, l, m}> k + l +m.

The above result reduces our analysis to the study of compact facets of

Γ0, all of whose subdivisions into simplices consist purely of B1-facets or

X2-facets. In fact, these types cannot appear within the same such facet of

Γ0, because one easily verifies that a B1-facet and an X2-facet can never

share an edge.

For now, we restrict our attention to simplicial facets of Γ0 that are of

type B1 or X2. More precisely, in the next section, we prove the fakeness of

most candidate poles contributed by such facets. Notice that if two facets

only have a vertex in common, then one can subdivide the cone dual to that

vertex in such a way that the contributions of these facets to the Igusa zeta

function can be analyzed separately. This reduces our analysis to ‘clusters’

or ‘configurations’ of B1-facets or X2-facets contributing the same candidate

pole, by which we mean a collection of facets of which each member has at

least one edge in common with another member.

5.2 On false poles

5.2.1 Preliminary facts

We first make the following observations, which hold up to permutation

of the coordinates.

Fact 1. A vertex P = (1, ·, ·) does not contribute. Indeed, as χ is not the

trivial character (and so neither is χ̄ trivial), one immediately deduces from

Lemma 8 that the contribution of P is equal to 0.

Fact 2. A vertex P = (a, 0, 0) does not contribute if the order of χ̄ is not a

divisor of a (again by Lemma 8).
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Fact 3. A segment σ := PQ with P = (1, 1, b) and Q= (0, 0, a) does not

contribute if the order of χ̄ is not a divisor of a. To compute the contribution

of σ, we consider

Lσ = q−3
∑

(x,y,z)∈(F×q )3

χ̄(c0,0,az
a + c1,1,bxyz

b).

By using Lemma 9, this expression simplifies to

− q−3χ̄(c0,0,a)
∑

(y,z)∈(F×q )2

χ̄(za).

If the order of χ̄ is not a divisor of a, then it follows from Lemma 8 that

the contribution of σ is equal to 0.

Fact 4. Let σ := PQ, with P = (·, ·, 0) and Q= (·, ·, 0), and let τ := PQR

withR= (·, ·, 1) be the facet not contained in {z = 0} that contains σ, then σ

and τ cancel each other out. Indeed, by Lemma 9 with f = fσ, it follows that

Lσ = (1− q)Lτ . As mult(∆σ) = 1, we find that LσS(∆σ) + LτS(∆τ ) = 0.

Fact 5. Let σ := PQ, with P = (·, ·, 0) and Q= (·, ·, 1), then, again by

Lemma 9, one finds LP = (1− q)Lσ. Now, let τ1 and τ2 be the facets

containing σ, and let τ0 be the facet in {z = 0} containing the vertex P .

With δP the cone (strictly positively) spanned by ∆τ0 ,∆τ1 and ∆τ2 , we

then find that LσS(∆σ) + LPS(δP ) = 0.

Fact 6. Let σ := PQ, with P = (·, ·, 0) and Q= (·, ·, 1), and let τ1 be

a noncompact B1-facet containing σ. Let τ2 be the noncompact facet

containing the vertex Q and sharing a half line with τ1. Lemma 8 implies

that τ1 ∩ τ2 does not contribute in the formula for Zf (χ, s).

Fact 7. Let σ := PQ, with P = (·, ·, 0) and Q= (·, ·, 1), and let τ1 be

a noncompact B1-facet containing σ. Let τ0 be the noncompact facet

containing the vertex P and sharing a half line σ1 with τ1. As Lσ1 =

(1− q)Lτ1 and mult(∆σ1) = 1, it follows that the contributions of τ1 and

σ1 cancel each other out.

5.2.2 On false poles contributed by X2-facets

Case 1. The candidate pole is contributed by an isolated X2-facet.
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Lemma 13. Let τ be a facet with vertexes p= (N(τ)/2, 0, 0), q =

(x1, 0, 2) and r = (x2, 2, 0), where N(τ)/2− x1 and N(τ)/2− x2 are odd. If

the order of χ̄ does not divide N(τ)/2 and is different from 2, then τ does

not contribute an actual pole to Zf,0(χ, s) and Zf (χ, s).

Proof. It follows immediately from Fact 2 that the vertexes p, q and r

do not contribute. Using Lemma 7, one also verifies that the edge qr does

not contribute. We now show that the contributions of σ1 := pq, σ2 := pr

and the facet τ cancel each other. As N(σ1) =N(σ2) =N(τ), we have that

mult(∆σ1) = mult(∆σ2) = 1, and thus

S(∆σi) =
1

(q − 1)(qN(τ)s+ν(τ) − 1)
, 1 6 i6 2.

One gets

Lσ1S(∆σ1) + Lσ2S(∆σ2) + LτS(∆τ ) = 0

m

(q − 1)Lτ =−Lσ1 − Lσ2 .

The equality between these character sums is proved in Proposition 10.

There, γ = 0 if the point ((x1 + x2)/2, 1, 1) is not in the support of f . Note

that the condition γ2 − 4βδ 6= 0 in the statement of Proposition 10 follows

from the nondegeneracy of f with respect to the edge qr.

If x1 = x2 = 0 (in which case the X2-facet is the only compact facet of

Γ0), then we can prove something slightly stronger.

Lemma 14. Let τ be a facet with vertexes p= (N(τ)/2, 0, 0), q = (0, 0, 2)

and r = (0, 2, 0), where N(τ)/2 is odd. If the order of χ̄ does not divide

N(τ)/2, then τ does not contribute an actual pole to Zf,0(χ, s) and Zf (χ, s).

Proof. The previous proof remains valid, except for the conclusions that

q, r and σ3 := qr do not contribute, where we used that the order of χ̄ is

not 2. We show that the contributions cancel. Indeed, since mult(∆q) =

mult(∆r) = mult(∆σ3) =N(τ)/2, we have

S(∆σ3) =
N

(q − 1)(qN(τ)s+ν(τ) − 1)
,

S(∆q) = S(∆r) =
N

(q − 1)2(qN(τ)s+ν(τ) − 1)
,
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Figure 1.

Two X2-facets with 1-dimensional common face.

for some common numerator N . One gets

LqS(∆q) + LrS(∆r) + Lσ3S(∆σ3) = 0

m

(q − 1)Lσ3 =−Lq − Lr.

This again follows from Proposition 10 (with α= 0).

Case 2. The candidate pole is contributed by two X2-facets sharing a 1-

dimensional face.

Two different X2-facets τ and τ ′ can appear in a cluster in one way only,

and this determines the entire Newton polyhedron, as shown in Figure 1. As

in the proof of Lemma 13, we see that q, r, qr do not contribute. Therefore,

the lemma also applies to this joint configuration.

5.2.3 On false poles contributed by B1-facets

In [BV, Proposition 9.6], it is shown that if a candidate pole contributed

only by B1-facets is an actual pole of Zf,0(χ, s), then it is contributed by

two B1-facets with respect to different variables having a 1-dimensional

intersection. We revisit and extend this analysis, and show that even in

that situation the candidate pole is almost always a false pole of Zf,0(χ, s).

We need this strengthening here, because for the holomorphy conjecture we

want to verify whether or not 1/Nj gives rise to an eigenvalue of monodromy,
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Figure 2.

Two compact B1-facets with respect to different variables, sharing a line

segment.

rather than the quotient νj/Nj (which is potentially simplifiable). We also

study when candidate poles of the global Igusa zeta function Zf (χ, s)

corresponding to B1-facets are false poles.

From the preliminary work in Section 5.2.1, one can derive the contribu-

tions of all possible clusters of B1-facets. We begin with the configuration

studied (in the local case over Qp) in [BV, Proposition 9.6], which we

mentioned at the beginning of this section.

Case 1. The candidate pole is contributed by a configuration of B1-facets in

which no two facets that share a 1-dimensional face are B1 only for different

variables.

For the contributions to the local Igusa zeta function, one can derive from

Facts 1, 4 and 5 that the candidate pole is a false pole. For the global Igusa

zeta function, one in addition uses Facts 6 and 7.

Case 2. The candidate pole is contributed by exactly two compact B1-facets

with respect to different variables, having a line segment in common.

If the common line segment is compact, then the configuration is as in

Figure 2, with A= (. , 0, .), B = (1, 1, b), C = (0, . , .) and D = (0, 0, a). If

the order of χ̄ is not a divisor of a, then it follows from Facts 1–5 that the

candidate pole is a false pole of Zf,0(χ, s) and Zf (χ, s).

Case 3. The candidate pole is contributed by two noncompact B1-facets with

respect to different variables, having a line segment in common.

If the common line segment is noncompact, then the configuration is

as in Figure 3, with A= (. , 0, .), B = (0, . , .) and C = (1, 1, .). For the
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Figure 3.

Two noncompact B1-facets with respect to different variables, sharing a

noncompact line segment.

contributions to the local Igusa zeta function, one deduces from Facts 1,

4 and 5 that the candidate pole is a false pole. For the global Igusa zeta

function, one also has to use Facts 6 and 7.

If the common line segment is compact, then its vertexes are given by

A= (0, 0, a) and B = (1, 1, b). If the order of χ̄ is not a divisor of a, then by

Facts 1–7, it follows again that the candidate pole is not an actual pole of

Zf,0(χ, s) and Zf (χ, s).

Case 4. The candidate pole is contributed by one compact B1-facet and

one noncompact B1-facet with respect to different variables, having a line

segment in common.

Again, using Facts 1–7, one finds that the candidate pole is a false pole

of Zf,0(χ, s) and Zf (χ, s) when the order of χ̄ is not a divisor of a.

Case 5. The candidate pole is contributed by at least two B1-facets with

respect to different variables, having a line segment in common.

As in Case 2 the contributions of τ1 :=ABD, τ2 :=BCD and τ1 ∩ τ2 :=

BD are all equal to 0, one can deduce the fakeness of the candidate pole also

when there are other B1-facets having a 1-dimensional intersection with τ1

or τ2.

5.3 Holomorphy conjecture for nondegenerate surface

singularities

We are now ready to prove the main result of this article.

Theorem 15. Let F be a number field, and let f(x, y, z) ∈ OF [x, y, z]

be a polynomial that is nondegenerate over C with respect to the compact
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faces (resp. the faces) of its Newton polyhedron at the origin Γ0. Let K be a

nonarchimedean completion of F with valuation ring R (with maximal ideal

P ) and residue field Fq, and suppose that f̄ := f mod P is nondegenerate

over Fq with respect to the compact faces (resp. the faces) of Γ0. Let χ be a

nontrivial character of R× which is trivial on 1 + P . Let τ be a facet of Γ0.

If −ν(τ)/N(τ) is the real part of a pole of Zf,0(χ, s) (resp. Zf (χ, s)), then

the order of χ divides the order of an eigenvalue of monodromy at some

point of f−1{0}.

Proof. We first suppose that τ is a compact facet. If every 1-dimensional

V-face of Γ0 is contained in a compact facet, then we know from Formula

(3) that the zeta function of monodromy at the origin is a product of

polynomials. If τ is not a union of simplices of type B1 or X2, then

Proposition 12 implies that the order of χ divides the order of an eigenvalue

of monodromy of f−1{0} at the origin.

If τ is of type B1, then we found in Section 5.2.3 that there is a point p=

(0, 0, a) in the configuration that is not the intersection of two 1-dimensional

V-faces in the same compact facet, and second that the order of χ̄ divides

this a. This means that the factor 1− ta appears in ζf,0(t), and so one finds

that the order of χ divides the order of some eigenvalue of monodromy of

f−1{0} at the origin.

If τ is not a simplicial facet but a union of simplices of type B1, then, up

to permutation of the coordinates, the facet τ should have as vertexes A=

(a, 0, 0), B = (c, d, 0), C = (b, 1, 1) and D = (e, 0, f) for a, . . . , f ∈ Z>0, and

so one has τ = τ1 ∪ τ2, with τ1 :=ABD and τ2 :=ACD two B1-simplices.

Notice that the factor 1− ta appears in ζf,0(t). If the order of χ divides a,

then one finds indeed that the order of χ divides the order of some eigenvalue

of monodromy of f−1{0} at the origin.

Therefore, suppose now that the order of χ does not divide a. The facet

τ is also the union of the simplices ABC and BCD. The simplex BCD is

never of type X2. If one of these simplices is not of type B1, then it follows

by Proposition 12 that the order of χ divides the order of some eigenvalue

of monodromy of f−1{0} at the origin. If ABC and BCD are both of type

B1, then one then easily checks that d or f should be equal to 1; hence,

gcd(d, f) = 1. We have

Aff(τ1)↔ dx+ y(a− c) + z (c− a− d(b− a)) = ad and

Aff(τ2)↔ fx+ y (f(a− b) + e− a) + z (a− e) = af.
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As Aff(τ1) = Aff(τ2), we have that N(τ) divides a · gcd(d, f) = a. As we

suppose that τ contributes a pole, it follows that the order of χ divides

N(τ), and so again the order of χ divides the order of some eigenvalue of

monodromy of f−1{0} at the origin.

If τ is of type X2, say with vertexes p= (N(τ)/2, 0, 0), q = (x1, 0, 2) and

r = (x2, 2, 0), then Fτ = 1− tN(τ)/2, and hence e−2πi/(N(τ)/2) is an eigenvalue

of monodromy of f−1{0} at the origin. Thus, if the order of χ̄ divides

N(τ)/2, then we are done. If the order of χ̄ does not divide N(τ)/2, then

by Lemma 13, the order of χ̄ should be equal to 2. In this situation, N(τ)/2

is odd and x1 and x2 are even, while by Lemma 14, we can assume that

0 6= x1 > x2. Let τ ′ be the other facet that contains the segment qr. Notice

that τ ′ is not of type B1 and that N(τ ′) is even.

We first suppose that τ ′ is compact. If τ ′ is not of type X2, then it follows

from Proposition 12 that e−2πi/N(τ ′) is a zero of Fτ ′ , and so the order of χ

divides the order of some eigenvalue of monodromy of f−1{0} at the origin.

If τ ′ is of type X2, then the configuration is as in Figure 1. In this situation,

we get

ζf,0(t) = (1− tN(τ)/2)(1− tN(τ ′)/2)(1− t2),

and so again the order of χ divides the order of an eigenvalue of monodromy

of f−1{0} at the origin.

Suppose now that τ ′ is not compact. Then, necessarily, x1 > x2, and

Aff(τ ′)↔ x+
x1 − x2

2
y = x1.

At a generic point (0, 0, c) of the hypersurface, the polynomial g(x, y, z) :=

f(x, y, z − c) is still nondegenerate with respect to the compact faces of its

Newton polyhedron at the origin (see Lemma 2), and its Newton polyhedron

is the projection onto {z = 0} of the Newton polyhedron of f times R+.

From Varchenko’s formula, one sees that this projected polyhedron fully

determines ζg,0(t). Using [LVP2, Proposition 5], it follows that ζg,0(t)

contains the factor 1/(1− tx1). We thus have that the order of χ divides

the order of an eigenvalue of monodromy at a point of the hypersurface in

the neighborhood of the origin.

It is easy to check that a nonsimplicial facet cannot decompose into a

union of X2-facets.

Suppose now that there is a 1-dimensional V-face σ, say in the coordinate

plane z = 0, which is not contained in a compact facet. If e−2πi/N(τ) is a zero

of Fσ (we use the notation Fσ as if σ was a facet of a two-dimensional Newton
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polyhedron in the plane z = 0), then we choose c ∈ C close to zero such that

g(x, y, z) := f(x, y, z − c) is still nondegenerate with respect to its Newton

polyhedron at the origin (see Lemma 2). Then, we have

ζg,0(t) =
∏

σ compact facet

Fσ,

with Fσ = 1/polynomial (except in the case where σ contains two vertexes

on coordinate axes, but in this case the same conclusion holds), and so we

find that e−2πi/N(τ) is an eigenvalue of monodromy of f at (0, 0, c).

Finally, let τ be noncompact. Again, by the nondegeneracy argument

(Lemma 2), we can reduce the dimension and conclude that e−2πi/N(τ) is

an eigenvalue of monodromy of f at a point in the neighborhood of the

origin.
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et modifications analytiques, J. Amer. Math. Soc. 5(4) (1992), 705–720.

[DV] J. Denef and W. Veys, On the holomorphy conjecture for Igusa’s local zeta
function, Proc. Amer. Math. Soc. 123 (1995), 2981–2988.

[FJ] M. Fried and M. Jarden, Field Arithmetic, 3rd ed., Ergebnisse der Mathematik
und ihrer Grenzgebiete 3. Folge 11, Springer, Berlin, Heidelberg, 2008.

[H] K. Hoornaert, Newton polyhedra and the poles of Igusa’s local zeta function, Bull.
Belg. Math. Soc. Simon Stevin 9(4) (2002), 589–606.

[I] J. Igusa, Complex powers and asymptotic expansions I, J. Reine Angew. Math.
268/269 (1974), 110–130; II, J. Reine Angew. Math. 278/279 (1975), 307–321.

[LVP1] A. Lemahieu and L. Van Proeyen, The holomorphy conjecture for ideals in
dimension two, Proc. Amer. Math. Soc. 139 (2011), 3845–3852.

[LVP2] A. Lemahieu and L. Van Proeyen, Monodromy conjecture for nondegenerate
surface singularities, Trans. Amer. Math. Soc. 363(9) (2011), 4801–4829.

[LV] A. Lemahieu and W. Veys, Zeta functions and monodromy for surfaces that are
general for a toric idealistic cluster, Int. Math. Res. Not. IMRN 1 (2009), 11–62.

https://doi.org/10.1017/nmj.2016.51 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2016.51


188 W. CASTRYCK, D. IBADULA AND A. LEMAHIEU

[RV] B. Rodrigues and W. Veys, Holomorphy of Igusa’s and topological zeta functions
for homogeneous polynomials, Pacific J. Math. 201 (2001), 429–440.

[ST] K. Smith and H. Thompson, “Irrelevant exceptional divisors for curves on a
smooth surface”, in Algebra, Geometry and their Interactions, Contemp. Math.
448, Amer. Math. Soc., Providence, RI, 2007, 245–254.

[Va] A. Varchenko, Zeta-function of monodromy and Newton’s diagram, Invent. Math.
37 (1976), 253–262.

[Ve] W. Veys, Holomorphy of local zeta functions for curves, Math. Ann. 295 (1993),
635–641.

Wouter Castryck

Vakgroep Wiskunde

Universiteit Gent

Krijgslaan 281

9000 Gent

Belgium

and

Departement Elektrotechniek

Katholieke Universiteit Leuven and iMinds

Kasteelpark Arenberg 10/2452

3001 Leuven

Belgium

wouter.castryck@gmail.com

Denis Ibadula

Faculty of Mathematics and Informatics

Ovidius University

Bulevardul Mamaia 124

900527 Constanta

Romania

denis@univ-ovidius.ro

Ann Lemahieu

Laboratoire Jean Alexandre Dieudonné
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