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Abstract
We study the locally analytic vectors in the completed cohomology of modular curves and determine the eigenvectors
of a rational Borel subalgebra of 𝔤𝔩2 (Q𝑝). As applications, we prove a classicality result for overconvergent
eigenforms of weight 1 and give a new proof of the Fontaine–Mazur conjecture in the irregular case under some
mild hypotheses. For an overconvergent eigenform of weight k, we show its corresponding Galois representation
has Hodge–Tate–Sen weights 0, 𝑘 − 1 and prove a converse result.
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1. Introduction

Let p be a rational prime. In his pioneering work [Eme06b], Emerton introduced completed cohomology,
which p-adically interpolates automorphic representations, and explained how techniques of locally
analytic p-adic representation theory may be applied to study it. In this article, we will focus on the
simplest (non-abelian) case: completed cohomology of the modular curves. More precisely, let K be an
open subgroup GL2 (A 𝑓 ), where A 𝑓 denotes the ring of finite adèles of Q. We have the modular curve
of level K

𝑌𝐾 (C) = GL2(Q)\(H
±1 × GL2(A 𝑓 )/𝐾),

where H±1 = C−R is the union of the usual upper and lower half-planes. Denote by A𝑝𝑓 the prime-to-p
part of A 𝑓 . For an open subgroup 𝐾 𝑝 of GL2 (A

𝑝
𝑓 ), the completed cohomology of tame level 𝐾 𝑝 is

defined as

�̃�𝑖 (𝐾 𝑝 ,Z𝑝) := lim
←−−
𝑛

lim
−−→

𝐾𝑝⊂GL2 (Q𝑝)

𝐻𝑖 (𝑌𝐾 𝑝𝐾𝑝 (C),Z/𝑝
𝑛).

It is p-adically complete and equipped with a natural continuous action of GL2(Q𝑝). Our main tool
to study this will be (p-adic) Hodge theory. Hence, we would like to extend the coefficients Q𝑝 to a
complete, algebraically closed field. So let 𝐶 = C𝑝 , the completion of an algebraic closure Q𝑝 of Q𝑝 ,
and O𝐶 be its ring of integers. Consider

�̃�𝑖 (𝐾 𝑝 ,O𝐶 ) := lim
←−−
𝑛

lim
−−→

𝐾𝑝⊂GL2 (Q𝑝)

𝐻𝑖 (𝑌𝐾 𝑝𝐾𝑝 (C),O𝐶/𝑝𝑛).

Then �̃�𝑖 (𝐾 𝑝 , 𝐶) := �̃�𝑖 (𝐾 𝑝 ,O𝐶 ) ⊗O𝐶 𝐶 is a Q𝑝-Banach space representation of GL2(Q𝑝). As in
[ST03], we can consider its locally analytic vectors �̃�𝑖 (𝐾 𝑝, 𝐶)la. Let

◦ 𝔤 = 𝐶 ⊗Q𝑝 𝔤𝔩2(Q𝑝): the ‘complexified’ Lie algebra of GL2 (Q𝑝);
◦ 𝐵 ⊂ GL2(Q𝑝): the upper-triangular Borel subgroup;
◦ 𝔟 ⊂ 𝔤: the ‘complexified’ Lie algebra of B.

The Lie algebra 𝔤 (in particular 𝔟) acts naturally on �̃�𝑖 (𝐾 𝑝 , 𝐶)la by the infinitesimal action of GL2(Q𝑝).
Given a character 𝜇 : 𝔟 → 𝐶, one main goal of this article is to study the 𝜇-isotypic part �̃�𝑖 (𝐾 𝑝 , 𝐶)la𝜇 .
We can pass to the direct limit over all tame levels 𝐾 𝑝:

�̃�𝑖 (𝐶)la𝜇 := lim
−−→

𝐾 𝑝⊂GL2 (A
𝑝
𝑓
)

�̃�𝑖 (𝐾 𝑝 , 𝐶)la𝜇 .

Clearly, there is a natural action of GL2 (A
𝑝
𝑓 ) × 𝐵 on it.

To state our result, we need more notation. The open modular curve 𝑌𝐾 (C) has a natural compacti-
fication 𝑋𝐾 (C) by adding cusps. This complete curve 𝑋𝐾 (C) has a natural model 𝑋𝐾 over Q, and we
denote by 𝑋𝐾,𝐶 its base change to C. Let k be an integer. We have the usual automorphic line bundle
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𝜔𝑘 on 𝑋𝐾,𝐶 whose global sections correspond to level-K modular forms of weight k (with coefficients
in C). Denote by

𝑀𝑘 := lim
−−→

𝐾 ⊂GL2 (A 𝑓 )

𝐻0(𝑋𝐾,𝐶 , 𝜔
𝑘 ),

𝐻1(𝜔𝑘 ) := lim
−−→

𝐾 ⊂GL2 (A 𝑓 )

𝐻1 (𝑋𝐾,𝐶 , 𝜔
𝑘 ),

where both limits are taken over all open compact subgroups of GL2 (A 𝑓 ). Both spaces have natural ac-
tions of GL2 (A 𝑓 ) and relate to automorphic representations of GL2 (A) (after choosing an isomorphism
𝐶 � C). Here A denotes the ring of adèles of Q.

We also need players which are special in this p-adic story: overconvergent modular forms. This will
be slightly different from the usual one in the literature as we want an action of the Borel B. We denote by
X𝐾 the rigid analytic space associated to 𝑋𝐾,𝐶 . Let Γ(𝑝𝑛) = 1+ 𝑝𝑛𝑀2 (Z𝑝) ⊂ GL2(Z𝑝) be the principal
congruence subgroup of level 𝑛 ≥ 2 and let 𝐾 𝑝 be a tame level. As explained by Katz–Mazur [KM85,
Theorem 13.7.6], 𝑋𝐾 𝑝Γ(𝑝𝑛) ,𝐶 has a natural integral model over O𝐶 , and the irreducible components
of its special fibre can be indexed by surjective homomorphisms (Z/𝑝𝑛)2 → Z/𝑝𝑛. We denote by
X𝐾 𝑝Γ(𝑝𝑛) ,𝑐 ⊂ X𝐾 𝑝Γ(𝑝𝑛) the tubular neighbourhood of the non-supersingular points of irreducible
components of indices sending (1, 0) ∈ (Z/𝑝𝑛)2 to 0. Let 𝑀†𝑘 (𝐾

𝑝Γ(𝑝𝑛)) be the space of sections of
𝜔𝑘 defined on a strict neighbourhood of X𝐾 𝑝Γ(𝑝𝑛) ,𝑐 . Overconvergent modular forms of weight k are
defined as

𝑀†𝑘 := lim
−−→

𝐾 𝑝⊂GL2 (A
𝑝
𝑓
)

lim
−−→
𝑛

𝑀†𝑘 (𝐾
𝑝Γ(𝑝𝑛)).

One can check that there is a natural action of GL2 (A
𝑝
𝑓 ) × 𝐵 on it.

Since modular curves can be defined over Q𝑝 , the absolute Galois group 𝐺Q𝑝 = Gal(Q𝑝/Q𝑝) acts
on C and everything we have defined and commutes with the action of GL2 (A

𝑝
𝑓 ) × 𝐵. Our main results

describe �̃�𝑖 (𝐶)la𝜇 as a representation of GL2 (A
𝑝
𝑓 ) × 𝐵 × 𝐺Q𝑝 .

We need the following characters of GL2 (A
𝑝
𝑓 )×𝐵 for stating our result. Denote by 𝜀 : A×𝑓 /Q

×
>0 → Z

×
𝑝

the p-adic cyclotomic character (via class field theory, which sends a uniformiser 𝑙 ≠ 𝑝 to a geometric
Frobenius). We define 𝑡 : GL2 (A 𝑓 ) → Z

×
𝑝 as 𝜀 ◦ det and view it as a character of GL2 (A

𝑝
𝑓 ) × 𝐵 by

restriction. For 𝑖 = 1, 2, we define 𝑒𝑖 : 𝐵 → Q×𝑝 by sending
(
𝑎1 𝑏
0 𝑎2

)
∈ 𝐵 to 𝑎𝑖 and view them as

characters of GL2 (A
𝑝
𝑓 ) × 𝐵 by projecting onto B. We write · rather than ⊗ when twisting by such a

character. One main result of this article is as follows. (This is obtained from Theorem 5.4.2 by taking
direct limit over all 𝐾 𝑝. There is a small difference as we do not put a Galois action on 𝑒1, 𝑒2, 𝑡 here.)

Theorem 1.0.1. Let 𝑘 ∈ Z and let 𝜇 = 𝜇𝑘 : 𝔟 → 𝐶 be the character sending
(
𝑎 𝑏
0 𝑑

)
to 𝑘𝑑. Assume

𝑘 ≠ 1. There is a natural decomposition

�̃�1 (𝐶)la𝜇𝑘 = 𝑁𝑘,1 · 𝑒
−𝑘
1 𝑡𝑘 ⊕ 𝑁𝑘,𝑤 (𝑘 − 1) · 𝑒−1

1 𝑒𝑘−1
2 𝑡,

where (𝑘 − 1) denotes a Tate twist by 𝑘 − 1. Moreover, we have the following description of 𝑁𝑘,1 and
𝑁𝑘,𝑤 :

(1) 𝑁𝑘,𝑤 � 𝑀†2−𝑘 for 𝑘 ≠ 2. When 𝑘 = 2, we have

0→ 𝑀†0/𝑀0 → 𝑁𝑘,𝑤 → 𝑀0 → 0.
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(2) If 𝑘 ≤ −1, then there is an exact sequence

0→ 𝐻1(𝜔𝑘 ) → 𝑁𝑘,1 → 𝑀†𝑘 → 0.

(3) If 𝑘 = 0, then there is an exact sequence

0→ 𝐻1 (𝜔0) → 𝑁𝑘,1 → 𝑀†0/𝑀0 → 0.

(4) If 𝑘 ≥ 2, then 𝑁𝑘,1 � 𝑀†𝑘/𝑀𝑘 .

All of the maps and isomorphisms here are GL2(A
𝑝
𝑓 ) × 𝐵 × 𝐺Q𝑝 -equivariant.

One may view this as a Hodge–Tate decomposition into weight 0 and 1 − 𝑘 components. Hence,
this is a p-adic analogue of the Shimura isomorphism. Our convention is that the cyclotomic character
is of Hodge–Tate weight −1. We have a similar (Hodge–Tate–Sen) decomposition if 𝑘 ∉ Z (Theorem
5.4.2). Unfortunately, we can only determine half of the decomposition, which roughly is given by
overconvergent modular forms of weight 2 − 𝑘 . We will give a definition of this space for nonintegral
weights in Definition 5.2.3.

When 𝑘 = 1, we do not get a decomposition because of the existence of non-Hodge–Tate represen-
tations with equal Hodge–Tate–Sen weights. Here is our result (which follows from Theorem 5.4.6 by
taking the direct limit over all 𝐾 𝑝).

Theorem 1.0.2. Suppose 𝜇 = 𝜇1 : 𝔟→ 𝐶 sends
(
𝑎 𝑏
0 𝑑

)
to d. There is a natural exact sequence

0→ 𝑁1 · 𝑒
−1
1 𝑡 → �̃�1(𝐶)la𝜇1 → 𝑀†1 · 𝑒

−1
1 𝑡 → 0,

where 𝑁1 sits inside an exact sequence:

0→ 𝑀†1/𝑀1 → 𝑁1 → 𝐻1(𝜔) → 0.

Moreover, let �̃�1 (𝐶)la, (1,0)𝜇1 ⊂ �̃�1(𝐶)la𝜇1 be the pullback of 𝑀1 · 𝑒
−1
1 𝑡 ⊂ 𝑀†1 · 𝑒

−1
1 𝑡, so that there is an exact

sequence

0→ 𝑁1 · 𝑒
−1
1 𝑡 → �̃�1(𝐶)la, (1,0)𝜇1 → 𝑀1 · 𝑒

−1
1 𝑡 → 0.

Then (�̃�1(𝐶)la𝜇1 )
𝐺Q𝑝 ⊂ �̃�1(𝐶)la, (1,0)𝜇1 . Again, all of the maps here are GL2 (A

𝑝
𝑓 ) × 𝐵 ×𝐺Q𝑝 -equivariant.

In fact, we will generalise the usual Sen operator to this situation in Definition 5.1.5 and then show it is
nilpotent on �̃�1 (𝐶)la𝜇 and factors through the quotient 𝑀†1 · 𝑒

−1
1 𝑡 and maps it to 𝑀†1/𝑀1 · 𝑒

−1
1 𝑡 ⊂ 𝑁1 · 𝑒

−1
1 𝑡.

Both theorems give a concrete relation between completed cohomology and overconvergent modular
forms. As a first application, we are able to prove a classicality result for weight 1 overconvergent eigen-
forms. Fix a tame level 𝐾 𝑝 = 𝐾𝑆𝐾𝑆\{𝑝} for some finite set of primes S containing p and suppose 𝐾𝑆

is a maximal open compact subgroup of GL2(A
𝑆
𝑓 ), where A𝑆𝑓 is the prime-to-S part of A 𝑓 . Denote by

T𝐾 𝑝 := Z𝑝 [GL2 (A
𝑆
𝑓 )//𝐾

𝑆] the abstract Hecke algebra of 𝐾𝑆-bi-invariant compactly supported func-
tions on GL2 (A

𝑆
𝑓 ), where the Haar measure gives 𝐾𝑆 measure 1. Then T𝐾 𝑝 acts on 𝐻1(𝑌𝐾 𝑝𝐾𝑝 (C),Z𝑝)

and we denote its image in EndZ𝑝 (𝐻1(𝑌𝐾 𝑝𝐾𝑝 (C),Z𝑝)) by T(𝐾 𝑝𝐾𝑝) and let T := lim
←−−𝐾𝑝

T(𝐾 𝑝𝐾𝑝). It

can be shown that T is independent of S. Let 𝜆 : T → Q𝑝 be a Z𝑝-algebra homomorphism. We can
associate to 𝜆 a 2-dimensional semi-simple Galois representation

𝜌𝜆 : Gal(Q/Q) → GL2(Q𝑝)
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satisfying tr(𝜌𝜆 (Frob𝑙)) = 𝜆(𝑇𝑙)𝑙
−1 for 𝑙 ∉ 𝑆. Here 𝑇𝑙 = [𝐾𝑆

(
𝑙 0
0 1

)
𝐾𝑆]and Frob𝑙 is a lift of geometric

Frobenius at l. See Section 6.1.1 for more details.
Let 𝑀†1 (𝐾

𝑝) = lim
−−→𝑛

𝑀†1 (𝐾
𝑝Γ(𝑝𝑛)) and 𝑁0 =

(
1 Z𝑝
0 1

)
⊂ GL2 (Q𝑝). We have the usual 𝑈𝑝-operator

acting on 𝑁0-invariants by

𝑈𝑝 :=
𝑝−1∑
𝑖=0

(
𝑝 𝑖
0 1

)
.

Since T acts on �̃�1 (𝐾 𝑝,Z𝑝), it follows from Theorem 1.0.2 that T acts on 𝑀†1 (𝐾
𝑝). We denote by 𝔭𝜆

the kernel of 𝜆 and by 𝑀†1 (𝐾
𝑝) [𝔭𝜆] the 𝜆-isotypic part of 𝑀†1 (𝐾

𝑝).

Theorem 1.0.3 (Theorem 6.2.2). Suppose

◦ 𝑀†1 (𝐾
𝑝) [𝔭𝜆]𝑁0 ≠ 0 has a nonzero 𝑈𝑝-eigenvector;

◦ 𝜌𝜆 |𝐺Q𝑝 is Hodge–Tate of weights 0, 0.

Then 𝜆 comes from a classical weight 1 eigenform; that is, 𝑀1 (𝐾
𝑝) [𝔭𝜆] ≠ 0.

In the ordinary case, this reproves a result of Buzzard–Taylor [BT99]. Note that we do not assume the
𝑈𝑝-eigenvalue is nonzero. This will allow us to attack the Fontaine–Mazur conjecture in the nonordinary,
irregular case.

Proof. We give a sketch of the proof here. We may assume 𝜌𝜆 is irreducible. Let 𝜇1 be as in Theorem
1.0.2 and denote by 𝜆 · 𝑡 : T → Q𝑝 the map which sends 𝑇𝑙 to 𝜆(𝑇𝑙)𝑙

−1. The key point is that by
the Eichler–Shimura relation, �̃�1(𝐾 𝑝 , 𝐶)la𝜇1 [𝔭𝜆·𝑡 ] = 𝜌𝜆 ⊗Q𝑝 𝑊 for some W. Since 𝜌𝜆 is Hodge–Tate of

weights 0, 0, we have �̃�1(𝐾 𝑝 , 𝐶)la𝜇1 [𝔭𝜆·𝑡 ] = �̃�1(𝐶)la, (1,0)𝜇1 [𝔭𝜆·𝑡 ]. Now assume 𝜆 is not classical. Then it
follows from the second part of Theorem 1.0.2 that

(𝑀†1 (𝐾
𝑝) [𝔭𝜆] · 𝑒

−1
1 𝑡)𝑁0 = �̃�1 (𝐶)la, (1,0)𝜇1 [𝔭𝜆·𝑡 ]

𝑁0 = �̃�1(𝐾 𝑝 , 𝐶)la𝜇1 [𝔭𝜆·𝑡 ]
𝑁0 = 𝜌𝜆 ⊗𝑊

𝑁0 .

By choosing suitable 𝐾 𝑝 and taking suitable eigenvectors of Hecke operators𝑈𝑙 and diamond operators
at ramified places, the nonzero𝑈𝑝-eigenspace of the first term will be 1-dimensional by the q-expansion
principle. However, the corresponding subspace of the last term will always have dimension at least
dim 𝜌𝜆 = 2 if it is nonzero! Contradiction. This shows that 𝜆 has to be classical. �

Thanks to Emerton’s work on local–global compatibility, we have a good understanding of
�̃�1 (𝐾 𝑝 , 𝐶) [𝔭𝜆] in terms of the p-adic local Langlands correspondence. Colmez’s Kirillov model then
shows that a 𝑈𝑝-eigenvector always exists (see Corollary 6.4.6).

Theorem 1.0.4 (Theorem 6.4.7). Suppose

◦ 𝜌𝜆 is irreducible;
◦ 𝜌𝜆 |𝐺Q𝑝 is Hodge–Tate of weight 0, 0.

Then 𝜆 is classical; that is, 𝑀1 (𝐾
𝑝) [𝔭𝜆] ≠ 0 for some tame level 𝐾 𝑝 .

We say a Galois representation 𝜌 is pro-modular if 𝜌 = 𝜌𝜆 for some 𝐾 𝑝 and 𝜆. Combining Theorem
1.0.4 with work on promodularity of a Galois representation ([Eme11, Theorem 1.2.3], which is based
on previous work of Böckle, Diamond–Flach–Guo, Khare–Wintenberger and Kisin), we give a new
proof of the Fontaine–Mazur conjecture in the irregular case under some mild hypotheses.

Theorem 1.0.5 (Theorem 6.4.8 and Corollary 6.4.9). Let 𝑝 > 2 be a prime number and 𝜌 : Gal(Q/Q) →
GL2(Q𝑝) a continuous irreducible 2-dimensional representation. Assume
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(1) 𝜌 is unramified outside of finitely many primes;
(2) det 𝜌(𝑐) = −1 for a complex conjugation 𝑐 ∈ Gal(Q/Q);
(3) 𝜌 |𝐺Q𝑝 is Hodge–Tate of weights 0, 0;
(4) the residual representation �̄� |Gal(Q/Q(𝜇𝑝)) is irreducible;
(5) ( �̄� |𝐺Q𝑝 )

𝑠𝑠 is either irreducible or of the form 𝜂1 ⊕ 𝜂2 for some characters 𝜂1, 𝜂2 satisfying
𝜂1/𝜂2 ≠ 1, 𝜔±1.

Then 𝜌 is modular in the sense that it is isomorphic to the representation attached to a classical weight
1 cuspidal eigenform by [DS74]. In particular, 𝜌 has finite image.

Remark 1.0.6. This result was already known by the work of Pilloni–Stroh [PS16]. Before their work,
much work on this problem was done in the ordinary case (Buzzard–Taylor [BT99], Calegari–Geraghty
[CG18] and others) and has been generalised to the case of Hilbert modular forms. I hope this article
gives a new perspective on this problem.

If the results of this article can also be generalised to Hilbert case, one should be able to remove the
last two conditions by invoking our previous work on promodularity [Pan19].

For overconvergent eigenforms of weight not necessarily 1, we have the following result.

Theorem 1.0.7 (Theorem 6.4.11). Suppose 𝜌𝜆 is irreducible and 𝑀†𝑘 (𝐾
𝑝) [𝔭𝜆] ≠ 0; then 𝜌𝜆 |𝐺Q𝑝 has

Hodge–Tate–Sen weights 0, 𝑘 − 1. Conversely, suppose

◦ 𝜌𝜆 |𝐺Q𝑝 is irreducible and has Hodge–Tate–Sen weights 0, 𝑘 − 1;

then 𝑀†𝑘 (𝐾
𝑝) [𝔭𝜆] ≠ 0.

Remark 1.0.8. As pointed out by a referee, Gouvêa in [Gou94, Conjecture 4] conjectured that the
Hodge–Tate weights of the Galois representation associated to an overconvergent eigenform of weight
k are 0, 𝑘 − 1 and guessed that this should be an equivalence. Our result confirms his conjecture and his
guess under the given hypotheses.

We note that Sean Howe also proved Gouvêa’s conjecture in [How21] independently. Recently, we
found a more direct way to prove Gouvêa’s conjecture in [Pan20] using Scholze’s fake-Hasse invariants.
But the method in [Pan20] does not seem to be enough to give a converse result. Indeed, one key
ingredient in our proof of Theorem 1.0.7 here is Colmez’s Kirillov model [Col10, Chap. VI], which is
a deep result in p-adic local Langlands correspondence for GL2(Q𝑝).

Now we explain our strategy to compute �̃�1 (𝐶)la𝜇 . As mentioned before, our main tool is p-adic Hodge
theory. Fix a tame level 𝐾 𝑝 . By the work of Scholze [Sch15], there is an adic spaceX𝐾 𝑝 ∼ lim

←−−𝐾𝑝
X𝐾 𝑝𝐾𝑝

(the modular curve at infinite level) with Hodge–Tate period map 𝜋HT : X𝐾 𝑝 → ℱℓ = P1, where ℱℓ
denotes the adic space associated to the flag variety of GL2/𝐶. Let O𝐾 𝑝 be the pushforward of the
structure sheaf of X𝐾 𝑝 along 𝜋HT. Then Scholze shows that there is a natural isomorphism

�̃�𝑖 (𝐾 𝑝 , 𝐶) � 𝐻𝑖 (ℱℓ,O𝐾 𝑝 ),

where the right-hand side is computed on the analytic site of ℱℓ. In order to study the (GL2(Q𝑝)-)locally
analytic vectors, we consider the subsheaf of locally analytic sections Ola

𝐾 𝑝 ⊂ O𝐾 𝑝 (Section 4.2.6).

Theorem 1.0.9 (Theorem 4.4.6). There is a natural isomorphism

�̃�𝑖 (𝐾 𝑝 , 𝐶)la � 𝐻𝑖 (ℱℓ,Ola
𝐾 𝑝 ).

Next we need a careful local study of the sheaf Ola
𝐾 𝑝 . This part is largely inspired by the work of

Berger–Colmez [BC16]. There are two key ingredients:

(1) Ola
𝐾 𝑝 satisfies a differential equation on ℱℓ;

(2) an explicit description of sections of Ola
𝐾 𝑝 (Theorem 4.3.9).
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We will only explain the differential equation in detail here. It turns out to be nothing but the horizontal
nilpotent subalgebra. To be more precise, we follow some constructions on the flag variety from [BB83].
Recall 𝔤 = 𝔤𝔩2(𝐶). For a C-point x of the flag variety Fl of GL2/𝐶, let 𝔟𝑥 , 𝔫𝑥 ⊂ 𝔤 be its corresponding
Borel subalgebra and nilpotent subalgebra. Let

𝔤0 := OFl ⊗𝐶 𝔤,

𝔟0 := { 𝑓 ∈ 𝔤0 | 𝑓𝑥 ∈ 𝔟𝑥 , for all 𝑥 ∈ Fl(𝐶)},
𝔫0 := { 𝑓 ∈ 𝔤0 | 𝑓𝑥 ∈ 𝔫𝑥 , for all 𝑥 ∈ Fl(𝐶)}.

By abuse of notation, we also view these as vector bundles on ℱℓ. Then 𝔤0 acts on Ola
𝐾 𝑝 in an

obvious way.
Theorem 1.0.10 (Theorem 4.2.7). 𝔫0 acts trivially on Ola

𝐾 𝑝 .
In fact, we will show the existence of such a differential equation in a very general setting.

Theorem 1.0.11 (Theorem 3.1.2). Suppose
◦ 𝑋 = Spa(𝐴, 𝐴+): a 1-dimensional smooth affinoid adic space (over Spa(𝐶,O𝐶 ));
◦ G: a finite-dimensional compact p-adic Lie group;
◦ Spa(𝐵, 𝐵+): a Galois pro-étale perfectoid covering of X with Galois group G.
Then under some smallness assumption on X (cf. Section 3.1.1), there is an element of 𝐵 ⊗Q𝑝 Lie(𝐺)
that annihilates the G-locally analytic vectors in B. It is nonzero if Spa(𝐵, 𝐵+) is a locally analytic
covering in the sense of Definition 3.5.4.
Remark 1.0.12. This can be viewed as a p-adic analogue of the Cauchy–Riemann equation in classical
complex analysis. See also Remarks 3.1.4, 3.1.7 for the relation with classical and relative Sen theory
(also called the p-adic Simpson correspondence in the literature). We can also allow some ramification;
cf. Theorem 3.1.2.
Example 1.0.13. One simple example is
◦ 𝑋 = Spa(𝐶〈𝑇±1〉,O𝐶 〈𝑇±1〉), the 1-dimensional torus;
◦ 𝑋 = Spa(𝐶〈𝑇±

1
𝑝∞ 〉,O𝐶 〈𝑇±

1
𝑝∞ 〉), the perfectoid inverse limit of Spa(𝐶〈𝑇±

1
𝑝𝑚 〉,O𝐶 〈𝑇±

1
𝑝𝑚 〉);

◦ 𝐺 � Z𝑝 .

In this case, the G-locally analytic vectors in 𝐶〈𝑇
± 1
𝑝∞ 〉 are the smooth vectors

⋃
𝑚∈N𝐶〈𝑇

± 1
𝑝𝑚 〉. Our

differential operator is simply a generator of Lie(𝐺).
Back to the flag variety. Since 𝔫0 acts trivially onOla

𝐾 𝑝 , there is an induced action of 𝔟0/𝔫0 � 𝔥⊗Oℱℓ ,
where 𝔥 is a Cartan subalgebra of 𝔤. We choose it as the Levi quotient of 𝔟; that is, the diagonal matrices.
Hence, we have an (horizontal) action 𝜃𝔥 of 𝔥 onOla

𝐾 𝑝 . By Harish–Chandra’s theory, this action is closely
related to the action of the centre 𝑍 (𝑈 (𝔤)) (Corollary 4.2.8). In the study of cohomology of locally
symmetric spaces, the infinitesimal group action is related to Hodge theory. Our next result gives a
p-adic Hodgetheoretic interpretation of 𝜃𝔥.

Theorem 1.0.14 (Theorem 5.1.11). 𝜃𝔥 (
(
0 0
0 1

)
) is the unique Sen operator on the cohomology

𝐻𝑖 (ℱℓ,Ola
𝐾 𝑝 ) � �̃�𝑖 (𝐾 𝑝 , 𝐶)la for any i.

Remark 1.0.15. Since the usual Sen operator is defined for a finite-dimensional C-semilinear repre-
sentation of 𝐺Q𝑝 , we will generalise this notion to this situation in Definition 5.1.5. For example, for
any finite-dimensional C-semilinear subrepresentation V of 𝐺Q𝑝 in �̃�𝑖 (𝐾 𝑝, 𝐶)la, this result implies that

𝜃𝔥 (

(
0 0
0 1

)
) agrees with usual Sen operator when restricted to V. We also sketch a more direct construction

of the Sen operator on �̃�𝑖 (𝐾 𝑝 , 𝐶)la in Remark 5.1.16.
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Remark 1.0.16. In Beilinson–Bernstein’s theory of localisation (see Section C of [Beı̆84]), Ola
𝐾 𝑝 is a

�̃�-module. Note that everything here is also GL2 (Q𝑝)-equivariant. Hence, we obtain a (�̃�,GL2(Q𝑝))-
module on ℱℓ, which is very similar to the picture in the complex analytic setting (for example, the
work of Kashiwara–Schmid [KS94]).

As a corollary, this implies that on the locally analytic vectors in the completed cohomology, the
infinitesimal character of GL2(Q𝑝) (i.e., action of 𝑍 (𝑈 (𝔤))) and the infinitesimal character of 𝐺Q𝑝 (Sen
operator as an element in the centre of ‘𝐶 ⊗Q𝑝 Lie(𝐺Q𝑝 )’) are closely related. This directly implies the
(Hodge–Tate) decomposition in Theorem 1.0.1.

Remark 1.0.17. The same strategy of this article should give Theorem 1.0.11 for higher dimensional
rigid analytic varieties, Theorem 1.0.10 for general Hodge–Tate period maps and Theorem 1.0.14 for
Shimura varieties of Hodge type. I plan to report about this in a future paper. We also note that the
relation between the action of the centre of the universal enveloping algebra and Sen operator on the
locally analytic vectors in the completed cohomology (not necessarily of the modular curves) was
already vastly studied by Dospinescu–Paškūnas–Schraen in [DPS20].

After writing up this article, I was informed by Sean Howe that very recently he also obtained some
part of Theorem 5.4.2 and the easier direction of Theorem 1.0.7 in [How21].

For people who are interested in the relation between our work and the higher Coleman theory
recently developed by Boxer–Pilloni in [BP21], it is worth pointing out that one can show that the
𝑁𝑘,1 (𝑘 ≥ 2) in Theorem 1.0.1 and 𝑁1 in Theorem 1.0.2 are nothing but the direct limit of the first
cohomology of 𝜔𝑘 on X𝐾 𝑝Γ(𝑝𝑛) with support in the closure (in the adic topology) of X𝐾 𝑝Γ(𝑝𝑛) ,𝑐 . See
also [Cam21, Theorem 1.0.3].

This article is organised as follows. We first collect some basic facts about locally analytic vectors in
Section 2. One important notion is a derived functor 𝑅𝑖𝔏𝔄 of taking locally analytic vectors introduced
in Definition 2.2.1.

In Section 3, we explain how to derive the differential equation claimed in Theorem 1.0.11 from
relative Sen theory. Along the way, we also prove a vanishing result for 𝑅𝑖𝔏𝔄 which later will be used to
prove Theorem 1.0.9. Nothing is new in the sense that all of the techniques were probably well-known
in Sen’s theory.

In Section 4, we apply our theory developed in the previous section to modular curves at infinite level.
The computation of the differential equation in this case is a simple reinterpretation of an old result of
Faltings. We also give an explicit description of the sections of Ola

𝐾 𝑝 and use it to prove Theorem 1.0.9.
In Section 5, we first give a proof of Theorem 1.0.14. Using our explicit description of Ola

𝐾 𝑝 , it is

easy to verify that 𝜃𝔥 (
(
0 0
0 1

)
) behaves as a Sen operator on Ola

𝐾 𝑝 and its cohomology. Next we compute

�̃�1 (𝐾 𝑝 , 𝐶)la𝜇 . Fix a character 𝜒 ∈ 𝔥∗ and denote by Ola,𝜒
𝐾 𝑝 the 𝜃𝔥 = 𝜒-isotypic part. Let 𝔫 be the nilpotent

subalgebra of 𝔟. Basically we are reduced to computing the 𝔫-cohomology of the sheaf Ola,𝜒
𝐾 𝑝 and the

cohomology of the 𝔫-invariants and 𝔫-coinvariants of Ola,𝜒
𝐾 𝑝 on ℱℓ (at least for nonsingular weight).

In Section 6, we give the global applications mentioned earlier. To do this, we need Emerton’s work
on local–global compatibility and Colmez’s work on Kirillov models. It should be mentioned that we
slightly generalise Emerton’s local–global compatibility result so that it is now valid when localised at
a Eisenstein maximal ideal.

Notation

Fix an algebraic closure Q of Q. Denote by 𝐺Q the absolute Galois group Gal(Q/Q). For each rational
prime l, fix an algebraic closure Q𝑙 of Q𝑙 with ring of integers Z𝑙 , an embedding Q → Q𝑙 which
determines a decomposition group 𝐺Q𝑙 ⊂ 𝐺Q at l and a lift of geometric Frobenius Frob𝑙 ∈ 𝐺Q𝑙 . Our
convention for local class field theory sends a uniformiser to a lift of geometric Frobenius. We denote by
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𝜀 the p-adic cyclotomic character 𝐺Q → Z×𝑝 and, by abuse of notation, also the corresponding character
A×𝑓 /Q

×
>0 → Z

×
𝑝 via global class field theory. Similarly, we denote by 𝜀𝑝 the p-adic cyclotomic character

𝐺Q𝑝 → Z
×
𝑝 and also the characterQ×𝑝 → Z×𝑝 sending x to 𝑥 |𝑥 |. Suppose S is a finite set of rational primes.

We denote by 𝐺Q,𝑆 the the Galois group of the maximal extension of Q unramified outside S and∞.
All completed tensor products mean ‘p-adically completed tensor product’. For example, if V and W

are two Q𝑝-Banach spaces, then 𝑉 ⊗̂Q𝑝𝑊 = (lim
←−−𝑛
(𝑉𝑜 ⊗Z𝑝 𝑊

𝑜/𝑝𝑛)) ⊗Z𝑝 Q𝑝 , where 𝑉𝑜 and 𝑊𝑜 denote
the open unit balls of V and W.

If 𝜌 : Γ → GL𝑛 (Q𝑝) denotes a continuous representation of a profinite group Γ, we denote by
�̄�𝑠𝑠 : Γ → GL2(F𝑝) the semi-simplification of its residual representation, which is well-defined up to
conjugation. If �̄�𝑠𝑠 is irreducible, we simply write �̄�. Here F𝑝 denotes the residue field of Z𝑝 .

For an adic space X, an open set 𝑉 ⊂ 𝑋 and a sheaf F on X, we sometimes write F(𝑉) instead of
𝐻0 (V,F). For example, O𝑋 (𝑉) denotes analytic functions on V.

For a tuple k = (𝑘1, · · · , 𝑘𝑑) ∈ N
𝑑 , we denote the sum

∑𝑑
𝑖=1 𝑘𝑖 by |k|.

Suppose G is a group and f is a function on G (valued in some group). Let 𝑔 ∈ 𝐺. The left translation
action of g on f is denoted by 𝑙𝑔 · 𝑓 , which sends 𝑥 ∈ 𝐺 to 𝑓 (𝑔−1𝑥). Similarly, the right translation
action of g on f is denoted by 𝑟𝑔 · 𝑓 and sends 𝑥 ∈ 𝐺 to 𝑓 (𝑥𝑔). Note that both actions are left actions.

2. Locally analytic vectors

In this section, we collect some basic results in the theory of locally analytic representations studied by
Schneider and Teitelbaum [ST02, ST03]. We will first recall the (naive) definition of locally analytic
functions on a compact p-adic Lie group, following Subsection 2.1 of [BC16]. Then we will introduce
a derived functor of taking locally analytic vectors.

2.1. Definition and basic properties

2.1.1. Let G be a p-adic Lie group of dimension d. By Theorem 27.1 of [Sch11], there exists a compact
open subgroup 𝐺0 of G equipped with an integer-valued, saturated p-valuation. As a consequence, there
exist 𝑔1, · · · , 𝑔𝑑 ∈ 𝐺0 (an ordered basis) such that the map 𝑐 : Z𝑑𝑝 → 𝐺0 defined by (𝑥1, · · · , 𝑥𝑑) ↦→

𝑔𝑥1
1 · · · 𝑔

𝑥𝑑
𝑑 is a homeomorphism. Let 𝐺𝑛 = 𝐺 𝑝𝑛

0 = {𝑔𝑝
𝑛
, 𝑔 ∈ 𝐺0} for 𝑛 ≥ 1. This is in fact a subgroup,

and 𝑐−1 (𝐺𝑛) = (𝑝𝑛Z𝑝)𝑑 . So {𝐺𝑛}𝑛 forms a fundamental system of open neighbourhoods of the identity
element 1 in G. We will fix such a c in the following discussion, but all of the definitions we make below
will not depend on the choice of c. See Section 23 and Section 26 of [Sch11] for more details.

If B is a Q𝑝-Banach space with norm ‖ · ‖, we denote by 𝒞(𝐺𝑛, 𝐵) the space of B-valued continuous
functions on 𝐺𝑛 and by 𝒞an(𝐺𝑛, 𝐵) the subspace of B-valued analytic functions. More precisely,
𝑓 : 𝐺𝑛 → 𝐵 is analytic if its pullback under c can be written as

x = (𝑥1, · · · , 𝑥𝑑) ∈ (𝑝
𝑛Z𝑝)

𝑑 ↦→
∑

k=(𝑘1 , · · · ,𝑘𝑑) ∈N𝑑

𝑏k𝑥
𝑘1
1 · · · 𝑥

𝑘𝑑
𝑑

for some 𝑏k ∈ 𝐵 such that 𝑝𝑛 |k |𝑏k → 0 as |k| → ∞. We define ‖ 𝑓 ‖𝐺𝑛 = supk∈N𝑑 ‖𝑝
𝑛 |k |𝑏k‖ and

𝒞an (𝐺𝑛, 𝐵) is a Q𝑝-Banach space under this norm. There is a natural norm-preserving isomorphism
𝒞an (𝐺𝑛,Q𝑝)⊗̂Q𝑝𝐵 � 𝒞an(𝐺𝑛, 𝐵) induced by the Q𝑝-linear structure of B. When 𝐵 = Q𝑝 , the usual
point-wise multiplication of two functions defines a natural Q𝑝-algebra structure on 𝒞an(𝐺𝑛,Q𝑝).

To see this definition is independent of the choice of 𝑔1, · · · , 𝑔𝑑 , we introduce another set of
coordinates of 𝐺𝑛 given by the the exponential map. These coordinates are called coordinates of the
first kind in Section 34 of [Sch11]. More precisely, let Lie(𝐺) be the Lie algebra of G and consider the
logarithm map

log : 𝐺0 → Lie(𝐺),
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which is a homeomorphism onto its image. In fact, its image log(𝐺0) is a free Z𝑝-module with a basis
log(𝑔1), · · · , log(𝑔𝑑). Hence,

𝑒 : Z𝑑𝑝 → 𝐺0, (𝑦1, · · · , 𝑦𝑑) ↦→ exp(𝑦1 log(𝑔1) + · · · + 𝑦𝑑 log(𝑔𝑑))

defines a homeomorphism. Here exp is the inverse of log (exponential map). Under this parametrisation,
𝐺𝑛 is identified with the image of (𝑝𝑛Z𝑝)𝑑 . As before, a function on 𝐺𝑛 is called analytic if its pullback
under e can be written as a power series in 𝑦𝑖 with certain growth conditions on its coefficients. This
definition of analyticity agrees with the previous definition as the transition functions between the
coordinates (𝑥1, · · · , 𝑥𝑑) and (𝑦1, · · · , 𝑦𝑑) are given by convergent power series with coefficients in Z𝑝;
cf. Proposition 34.1 of [Sch11].

Different choices of ordered bases 𝑔1, · · · , 𝑔𝑑 give rise to different bases of log(𝐺0) over Z𝑝 (as a
Z𝑝-module). It is easy to see now that 𝒞an(𝐺𝑛, 𝐵) and ‖ · ‖𝐺𝑛 are independent of choice of an ordered
basis. As a corollary, 𝒞an(𝐺𝑛, 𝐵) and ‖ · ‖𝐺𝑛 are invariant under both the left and right translation
actions of 𝐺0. We sketch a proof for the left translation by 𝐺0 here. The case for right translation and
general n will be exactly the same. Let x be a nontrivial element of 𝐺0. It suffices to prove the claim
under the assumption that x is not a pth power. Choose an ordered basis 𝑔1, · · · , 𝑔𝑑 with 𝑔1 = 𝑥. This is
possible by our assumption on 𝐺0; see Section 26 of [Sch11]. To compute the left translation action of
x, we are essentially reduced to the case 𝐺0 = Z𝑝 , which can be verified directly. In fact, this argument
shows a bit more.

Lemma 2.1.2. For any integer 𝑛 ≥ 0, let 𝒞an (𝐺𝑛,Q𝑝)
𝑜 ⊂ 𝒞an(𝐺𝑛,Q𝑝) be the unit ball with

respect to the norm ‖ · ‖𝐺𝑛 . Then both left and right translation actions of 𝐺𝑛+1 are trivial on
𝒞an (𝐺𝑛,Q𝑝)

𝑜/𝑝.

Proof. One can reduce to the trivial case 𝐺𝑛 = Z𝑝 by the same argument. �

The following density result will be used later.

Proposition 2.1.3. For n large enough, there is a dense subspace lim
−−→𝑘∈N

𝑉𝑘 ⊂ 𝒞an(𝐺𝑛,Q𝑝), where
each𝑉𝑘 is a finite-dimensional subspace of 𝒞an(𝐺𝑛,Q𝑝) stable under both the left and right translation
actions of 𝐺𝑛 and such that for any 𝑘, 𝑙 ∈ N, 𝑓𝑘 ∈ 𝑉𝑘 , 𝑓𝑙 ∈ 𝑉𝑙 , we have 𝑓𝑘 𝑓𝑙 ∈ 𝑉𝑘+𝑙 .

Proof. This is essentially proved in the proof of Theorem 6.1 of [BC16]. We recall their argument here.
The rough idea is to reduce to the case 𝐺 = GL𝑁 (Z𝑝), in which case the algebraic functions on GL𝑁
are dense in the space of analytic functions.

For n large enough, we may find an embedding 𝐺𝑛 into 1 + 𝑝2𝑀𝑁 (Z𝑝) ⊂ GL𝑁 (Z𝑝) for some N,
where 𝑀𝑁 (Z𝑝) denotes the space of 𝑁 × 𝑁 matrices over Z𝑝 . We sketch a proof of this well-known
result here because it seems to lack a suitable reference. By Ado’s theorem (Section 7, 3, Theorem 3
of [Bou60]), there is a faithful representation of Lie(𝐺) over Q⊕𝑁𝑝 for some N. Choose n large enough
so that log(𝐺𝑛) maps to 𝑝2𝑀𝑁 (Z𝑝). Then this Lie algebra morphism can be integrated to a group
homomorphism 𝐺𝑛 → 1 + 𝑝2𝑀𝑁 (Z𝑝), which is necessarily a closed embedding. This can be deduced
from results in Section 31, notably Theorem 31.5 of [Sch11].

Fix such an embedding. 𝐺𝑛 is now viewed as a subset of 𝑀𝑁 (Q𝑝). For 𝑘 ∈ 𝑁 , let 𝑉𝑘 be the space
of Q𝑝-valued functions on 𝐺𝑛 that are restrictions of polynomials of degree ≤ 𝑘 on 𝑀𝑁 (Q𝑝). Here we
identify 𝑀𝑁 (Q𝑝) with an affine space of dimension 𝑁2 (over Q𝑝). We claim that the union of all 𝑉𝑘 is
dense in 𝒞an(𝐺𝑛,Q𝑝). To see this, note that the space of polynomial functions on 𝑀𝑁 (Q𝑝) is dense in
𝒞an (1 + 𝑝2𝑀𝑁 (Z𝑝),Q𝑝) when restricted to 1 + 𝑝2𝑀𝑁 (Z𝑝). Hence, its pullback under the exponential
map is dense in 𝒞an(𝑝2𝑀𝑁 (Z𝑝),Q𝑝). As the image of 𝒞an (𝑝2𝑀𝑁 (Z𝑝),Q𝑝) → 𝒞an (log(𝐺𝑛),Q𝑝) is
dense, this implies our claim.

It is clear from the construction that all 𝑉𝑘 are stable under left and right translation actions and
closed under multiplications. �
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2.1.4. Now if B is a Q𝑝-Banach space equipped with a continuous action of 𝐺𝑛, then we denote by
𝐵𝐺𝑛−an ⊂ 𝐵 the subset of 𝐺𝑛-analytic vectors. One can define this as follows: there is a left action
on 𝒞an(𝐺𝑛, 𝐵) by (𝑔 · 𝑓 ) (ℎ) = 𝑔( 𝑓 (𝑔−1ℎ)), 𝑔, ℎ ∈ 𝐺𝑛, 𝑓 ∈ 𝒞an(𝐺𝑛, 𝐵). We define 𝐵𝐺𝑛−an as the
image of 𝒞an(𝐺𝑛, 𝐵)

𝐺𝑛 → 𝐵 under the evaluation map at the identity element in 𝐺𝑛. Equivalently,
𝑣 ∈ 𝐵𝐺𝑛−an if 𝑓𝑣 : 𝐺𝑛 → 𝐵, 𝑓𝑣 (𝑔) = 𝑔 · 𝑣 lies in 𝒞an(𝐺𝑛, 𝐵). It is clear that ‖ · ‖𝐺𝑛 induces a norm
on 𝐵𝐺𝑛−an, which we denote by the same notation. Now 𝐺𝑛 acts on 𝐵𝐺𝑛−an = 𝒞an (𝐺𝑛, 𝐵)

𝐺𝑛 by right
translation. One checks easily that this action is unitary and equivariant with respect to the inclusion
𝐵𝐺𝑛−an ⊂ 𝐵.

We say B is an analytic representation of 𝐺𝑛 if 𝐵 = 𝐵𝐺𝑛−an.
One has the following lemma (cf. Lemme 2.4. of [BC16]).

Lemma 2.1.5. Let B be a Banach representation of 𝐺𝑛. If 𝑏 ∈ 𝐵𝐺𝑛−an, then

(1) 𝑏 ∈ 𝐵𝐺𝑛+1−an,
(2) ‖𝑏‖𝐺𝑛+1 ≤ ‖𝑏‖𝐺𝑛 .
(3) ‖𝑏‖𝐺𝑚 agrees with the norm of b in B for m sufficiently large.

Definition 2.1.6. Suppose B is a Banach representation of 𝐺0. The space of locally analytic vectors in
B is 𝐵la =

⋃
𝑛≥0 𝐵

𝐺𝑛−an with the direct limit topology.

Remark 2.1.7. If B is a representation of G, then 𝐵la can be defined by restricting to the action of 𝐺0.
It is easy to see that 𝐵la is independent of the choice of 𝐺0 and 𝐵la is G-stable.

The Lie algebra Lie(𝐺) acts on the locally analytic vectors. One can check this in the universal
case 𝒞an(𝐺𝑛,Q𝑝). Indeed, one writes 𝐵𝐺𝑛−an = (𝒞an (𝐺𝑛,Q𝑝)⊗̂Q𝑝𝐵)

𝐺𝑛 . The Lie algebra action of
Lie(𝐺) on 𝐵𝐺𝑛−an comes from the action on 𝒞an (𝐺𝑛,Q𝑝) induced from the right translation action.
The following lemma is Lemme 2.6 of [BC16].

Lemma 2.1.8. Suppose B is a Banach representation of 𝐺0. If 𝐷 ∈ Lie(𝐺) and 𝑛 ≥ 1, then there exists
a constant 𝐶𝐷,𝑛 such that ‖𝐷 (𝑥)‖𝐺𝑛 ≤ 𝐶𝐷,𝑛‖𝑥‖𝐺𝑛 for any 𝑥 ∈ 𝐵𝐺𝑛−an.

The following example will appear naturally later.

Example 2.1.9. Suppose 𝐺 = 𝐺0 = Z𝑝 and B is a Q𝑝-Banach space representation of Z𝑝 . Let 𝐵𝑜 be
the open unit ball of B. Suppose there exists an integer 𝑚 > 0 such that

(𝛾 − 1)𝑚 · (𝐵𝑜) ⊂ 𝑝𝐵𝑜

for any 𝛾 ∈ Z𝑝 . Then B is an analytic representation of 𝑝ℎZ𝑝 for h sufficiently large. To see this, it
suffices to prove that B is an analytic representation of Z𝑝 if (𝛾 − 1) · (𝐵𝑜) ⊂ 𝑝2𝐵𝑜 for any 𝛾 ∈ Z𝑝 . Let
𝛾 = 1 ∈ Z𝑝 . For any 𝑓 ∈ 𝐵, consider 𝑔 : Z𝑝 → 𝐵 defined by 𝑔(𝑥) =

∑+∞
𝑛=0

(𝑥
𝑛

)
(𝛾 − 1)𝑛 · 𝑓 . One checks

easily that g is analytic and 𝑔(𝑥) = 𝑥 · 𝑓 . Hence, 𝑓 ∈ 𝐵Z𝑝−an and 𝐵 = 𝐵Z𝑝−an.

2.2. Derived functor

Let 𝐺,𝐺0, 𝐺𝑛 be as in the first paragraph of Section 2.1.1 and let B be aQ𝑝-Banach representation of G.
Recall

𝐵la = lim
−−→
𝑛

𝐵𝐺𝑛−an = lim
−−→
𝑛

(𝐵⊗̂Q𝑝𝒞
an (𝐺𝑛,Q𝑝))

𝐺𝑛 = lim
−−→
𝑛

𝐻0
cont (𝐺𝑛, 𝐵⊗̂Q𝑝𝒞

an (𝐺𝑛,Q𝑝)).

Write 𝔏𝔄(𝐵) = 𝐵la. We can also consider the following ‘right derived functor’ of 𝔏𝔄.

Definition 2.2.1. For a Q𝑝-Banach representation B of G, let

𝑅𝑖𝔏𝔄(𝐵) := lim
−−→
𝑛

𝐻𝑖cont (𝐺𝑛, 𝐵⊗̂Q𝑝𝒞
an(𝐺𝑛,Q𝑝)).
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We say B is

◦ 𝔏𝔄-acyclic if 𝑅𝑖𝔏𝔄(𝐵) = 0, 𝑖 ≥ 1;
◦ strongly 𝔏𝔄-acyclic if the direct systems {𝐻𝑖cont(𝐺𝑛, 𝐵⊗̂Q𝑝𝒞

an (𝐺𝑛,Q𝑝))}𝑛, 𝑖 ≥ 1 are essentially
zero; that is, for any n, the image of 𝐻𝑖cont (𝐺𝑛, 𝐵⊗̂Q𝑝𝒞

an(𝐺𝑛,Q𝑝)) → 𝐻𝑖cont(𝐺𝑚, 𝐵⊗̂Q𝑝𝒞
an

(𝐺𝑚,Q𝑝)) is zero for sufficiently large 𝑚 ≥ 𝑛.

We put a quotation mark on right derived functor as we do not plan to discuss the abelian category
we are working with. Clearly, 𝑅𝑖𝔏𝔄 measures the failure of exactness when taking the locally analytic
vectors and does not depend on choices of 𝐺0. This ad hoc definition will be enough for our purpose in
view of the following simple lemma.

Lemma 2.2.2.

(1) Suppose 0→ 𝑀0 → 𝑀1 → 𝑀2 → 0 is a short exact sequence of Q𝑝-Banach representations of G
with G-equivariant continuous homomorphisms (which are necessarily strict by the open mapping
theorem). Then there is a long exact sequence:

0→ (𝑀0)la → (𝑀1)la → (𝑀2)la → 𝑅1𝔏𝔄(𝑀0) → 𝑅1𝔏𝔄(𝑀1) → 𝑅1𝔏𝔄(𝑀2) → . . .

(2) Let 𝑀• be a bounded chain complex of Q𝑝-Banach representations of G with G-equivariant strict
homomorphisms. If 𝑀𝑞 and 𝐻𝑞 (𝑀•) are 𝔏𝔄-acyclic for any q, then (𝐻𝑞 (𝑀•))la = 𝐻𝑞 ((𝑀•)la).

(3) Let 0 → 𝐵 → 𝑀0 → 𝑀1 → · · · be an exact chain complex of Q𝑝-Banach representa-
tions of G with G-equivariant strict homomorphisms. Assume 𝑀𝑞 is 𝔏𝔄-acyclic for any q. Then
𝑅𝑖𝔏𝔄(𝐵) = 𝐻𝑖 ((𝑀•)la). Moreover, if all 𝑀𝑞 are strongly 𝔏𝔄-acyclic and the direct systems
{𝐻𝑖 ((𝑀•)𝐺𝑛−an)}𝑛, 𝑖 ≥ 1 are essentially zero, then B is strongly 𝔏𝔄-acyclic.

Proof. For the first part, since all of the homomorphisms are strict, 𝐻𝑖 (𝑀•,𝑜) can be killed by a bounded
power of p, where 𝑀•,𝑜 denotes the open unit ball of 𝑀•. Therefore, 𝑀•⊗̂Q𝑝𝒞an(𝐺𝑛,Q𝑝) remains
exact for any n and we obtain the desired long exact sequence by taking 𝐺𝑛-cohomology and passing to
the direct limit over n.

The second and third parts follow from the first part by a simple induction argument. For example,
one can prove that the kernel and image of 𝑀𝑞 → 𝑀𝑞+1 are𝔏𝔄-acyclic by induction on q. This certainly
implies that (𝐻𝑞 (𝑀•))la = 𝐻𝑞 ((𝑀•)la). We leave the third part as an exercise. �

A result of Schneider–Teitelbaum says that admissible representations are 𝔏𝔄-acyclic (Theorem 7.1
of [ST03]). In fact, their argument also essentially proves strong 𝔏𝔄-acyclicity.

Theorem 2.2.3. Any admissible Q𝑝-Banach representation B of G is strongly 𝔏𝔄-acyclic.

Proof. Since B is admissible, there is a𝐺0-equivariant embedding 𝐵 ↩→ 𝒞(𝐺0,Q𝑝)
⊕𝑑 for some d. Then

the quotient C is an admissibleQ𝑝-Banach representation of𝐺0. Note that𝒞(𝐺0,Q𝑝) � 𝒞(𝐺𝑛,Q𝑝)
⊕𝑑𝑛

as a representation of 𝐺𝑛 for some 𝑑𝑛. It follows from Shapiro’s lemma for continuous cohomology that
𝐻1

cont (𝐺𝑛,𝒞(𝐺0,Q𝑝)⊗̂Q𝑝𝒞
an(𝐺𝑛,Q𝑝)) = 0. Hence,

(𝒞(𝐺0,Q𝑝)
⊕𝑑)𝐺𝑛−an → 𝐶𝐺𝑛−an → 𝐻1

cont(𝐺𝑛, 𝐵⊗̂Q𝑝𝒞
an(𝐺𝑛,Q𝑝)) → 0.

By Corollaire IV.14. of [CD14], we have an exact sequence

0→ 𝐵 (𝑚) → (𝒞(𝐺0,Q𝑝)
⊕𝑑) (𝑚) → 𝐶 (𝑚) → 0.

See [CD14, §IV] for the notation here. One can check 𝐶𝐺𝑛−an ⊂ 𝐶 (𝑛+2) ⊂ 𝐶𝐺𝑛+1−an.
This means that the image of (𝒞(𝐺0,Q𝑝)

⊕𝑑)𝐺𝑛+1−an in 𝐶𝐺𝑛+1−an contains 𝐶𝐺𝑛−an. Hence,
𝐻1

cont (𝐺𝑛, 𝐵⊗̂Q𝑝𝒞
an (𝐺𝑛,Q𝑝)) → 𝐻1

cont (𝐺𝑛+1, 𝐵⊗̂Q𝑝𝒞
an(𝐺𝑛+1,Q𝑝)) has zero image. A simple induc-

tion on cohomology degree 𝑖 ≥ 1 proves the theorem. �

We need the following variant for later applications.
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Corollary 2.2.4. Let B be an admissible Q𝑝-Banach representation of G and M be a Q𝑝-Banach space
with trivial G-action. Then 𝐵⊗̂Q𝑝𝑀 is strongly 𝔏𝔄-acyclic.

Proof. Let 𝐵𝑜 be the unit open ball of B. Take n large enough so that 𝐵𝑜 is 𝐺𝑛-stable. We claim
that 𝐻•cont (𝐺𝑛, 𝐵

𝑜) is a finitely generated Z𝑝-module and hence has bounded p-torsion. Indeed, since
B is admissible, there exists a Z𝑝 [𝐺𝑛]-equivariant injection 𝐵𝑜 ↩→ 𝒞(𝐺𝑛,Z𝑝)

⊕𝑑 for some d, whose
quotient is p-torsion free. An induction argument on i implies the finiteness here. It is well-known that
𝐻•cont (𝐺𝑛, 𝐵) can be computed by a cochain complex (𝒞(𝐺𝑛, 𝐵)⊕𝑖 , 𝑑𝑖). This is a strict complex because
(𝒞(𝐺𝑛, 𝐵

𝑜)⊕𝑖 , 𝑑𝑖) computes 𝐻•cont(𝐺𝑛, 𝐵
𝑜). Since 𝒞(𝐺𝑛, 𝐵⊗̂Q𝑝𝑀) � 𝒞(𝐺𝑛, 𝐵)⊗̂Q𝑝𝑀 , we know that

(𝒞(𝐺𝑛, 𝐵)
⊕𝑖 ⊗̂Q𝑝𝑀, 𝑑𝑖 ⊗ 1) computes 𝐻•cont (𝐺𝑛, 𝐵⊗̂Q𝑝𝑀). Therefore,

𝐻•cont(𝐺𝑛, 𝐵⊗̂Q𝑝𝑀) � 𝐻•cont(𝐺𝑛, 𝐵)⊗̂Q𝑝𝑀.

Our claim now follows from the previous theorem. �

3. Locally analytic vectors and relative Sen theory

The main goal of this section is to generalise results of Berger and Colmez [BC16] and Sen [Sen81] in
the 1-dimensional geometric setting. The main result roughly says that the locally analytic vectors satisfy
a differential equation given by a (relative) Sen operator. We claim no originality for most results here.
One strong tool in these works is the theory of decompletions. We will review the Tate–Sen formalism
of Berger–Colmez [BC08], which is flexible enough to handle our situation. As an application, we will
show that taking locally analytic vectors is exact under certain conditions.

The results of this section are closely related to the work of Faltings [Fal05], Abbes–Gros–Tsuji
[AGT16] and Liu–Zhu [LZ17] on p-adic Simpson correspondences. See Remark 3.1.7.

3.1. Statement of the main result

3.1.1. Fix a complete algebraically closed non-Archimedean field C of characteristic zero. Recall that
a non-Archimedean field is a topological field whose topology is induced by a non-Archimedean norm
| · | : 𝐶 → R≥0. It is naturally an extension of Q𝑝 for some p and we assume its norm agrees with the
usual p-adic norm | · |𝑝 = 𝑝−val𝑝 ( ·) on Q𝑝 . Let O𝐶 be the ring of integers of C. Our setup is as follows:

◦ 𝑋 = Spa(𝐴, 𝐴+): a 1-dimensional smooth affinoid adic space over Spa(𝐶,O𝐶 );
◦ G: a finite-dimensional compact p-adic Lie group;
◦ 𝑋 = Spa(𝐵, 𝐵+): an affinoid perfectoid algebra over Spa(𝐶,O𝐶 ), which is a ‘log G-Galois pro-étale

perfectoid covering’ of X. More precisely, this means that there is a finite set S of classical points in
X and 𝑋 ∼ lim

←−−𝑖∈𝐼
𝑋𝑖 in the sense of Definition 7.14 of [Sch12] for some index set I, where each

𝑋𝑖 = Spa(𝐵𝑖 , 𝐵+𝑖 ) is a finite Galois covering of X unramified outside of S, and 𝐵+ is the p-adic
completion of lim

−−→𝑖
𝐵+𝑖 . Moreover, the inverse limit of the Galois group of 𝑋𝑖 over X is identified with

G. When S is nonempty, we further assume for each point s in S, the ramification-index 𝑒𝑖 of
𝑋𝑖 → 𝑋 at s is a p-power for any i and {𝑒𝑖}𝑖∈𝐼 is unbounded;

◦ assume X is small in the sense that S contains at most one element and there is an étale map
𝑋 → T1 = Spa(𝐶〈𝑇±1〉,O𝐶 〈𝑇±1〉) (respectively 𝑋 → B1 = Spa(𝐶〈𝑇〉,O𝐶 〈𝑇〉) mapping S to 0)
when S is empty (respectively otherwise) which factors as a composite of rational embeddings and
finite étale maps.

Note that G acts continuously on the Banach algebra B and we can consider the locally analytic
vectors 𝐵la ⊂ 𝐵. Let Lie(𝐺) be the Lie algebra of G. It acts on 𝐵la, and this action can be extended
B-linearly to a map 𝐵 ⊗Q𝑝 Lie(𝐺) × 𝐵la → 𝐵.
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Theorem 3.1.2. Fix an étale map 𝑋 → T1 (respectively 𝑋 → B1) if S is empty (respectively nonempty)
as above. For each ‘log G-Galois pro-étale perfectoid covering’ 𝑋 of X, we can assign an element
𝜃 = 𝜃𝑋 ∈ 𝐵 ⊗Q𝑝 Lie(𝐺), satisfying

(1) 𝜃 annihilates 𝐵la. In other words, locally analytic vectors satisfy certain (first-order) differential
equation.

(2) 𝜃 is functorial in (𝐺, �̃�): if H is a closed normal subgroup of G so that 𝑋 ′ = Spa(𝐵𝐻 , (𝐵+)𝐻 ) is a
‘log 𝐺/𝐻-Galois pro-étale perfectoid covering’ of X, then

𝜃𝑋 ≡ 𝜃𝑋 ′mod 𝐵 ⊗Q𝑝 Lie(𝐻),

where 𝜃𝑋 ′ ∈ 𝐵
𝐻 ⊗Q𝑝 Lie(𝐺/𝐻) is viewed as an element in 𝐵 ⊗Q𝑝 Lie(𝐺/𝐻).

(3) 𝜃 ≠ 0 if 𝑋 is a locally analytic covering in the sense of 3.5.4.

Moreover, if we start with another étale map 𝑋 → T1 (or étale map 𝑋 → B1), then the element
𝜃 ′ ∈ 𝐵 ⊗Q𝑝 Lie(𝐺) obtained using this étale map will differ 𝜃 by a unit of A. In other words, 𝐴×𝜃 ⊂
𝐵 ⊗Q𝑝 Lie(𝐺) does not depend on the choice of the étale map.

Remark 3.1.3. From the point of view of differential operators, one may regard 𝜃 as some p-adic
analogue of Cauchy–Riemann operator in the classical complex analysis.

Remark 3.1.4. In the classical p-adic Hodge theory of p-adic Galois representations, this 𝜃 is nothing
but the Sen operator; cf. Theorem 12 of [Sen81], Théorème 1.9 of [BC16]. So it is reasonable to call it
relative Sen operator.

Remark 3.1.5. It is natural to ask whether there is a canonical representative of 𝜃 so that one can glue
them in some global situation. First, it turns out that the natural place for 𝜃 to live is 𝐵 ⊗𝐴Ω1

𝐴/𝐶
(𝑆) ⊗Q𝑝

Lie(𝐺) (−1), where Ω1
𝐴/𝐶
(𝑆) denotes the continuous 1-forms of A over C with simple poles at S and

(1) denotes the usual Tate-twist. So 𝜃 is viewed as a (log) Higgs field.
Secondly, if S is empty – that is, 𝑋 is a G-Galois pro-étale perfectoid covering of X – then we can

make this element canonical using the functorial isomorphism Ω1
𝐴/𝐶
(−1) � 𝐻1

cont (𝐺, 𝐵) (Proposition
3.23 of [Sch13b]). Here 𝐻1

cont(𝐺, 𝐵) denotes the continuous group cohomology group and is identified
with 𝐻1(𝑋proét, Ô𝑋 ) by an argument similar to the proof of Lemma 5.6 of [Sch13a]. By the functorial
property, it is enough to pin down this element 𝜃 for a particular 𝑋 , provided that 𝜃�̃� ≠ 0. Indeed, if 𝑋 ′
is a H-Galois pro-étale perfectoid covering of X, we can consider 𝑋 ′′ := 𝑋 ×𝑋 𝑋 ′, the fibre product in
the category of pro-étale coverings of X. Then 𝑋 ′′ is a (𝐺 × 𝐻)-Galois pro-étale perfectoid covering
of X. Once 𝜃𝑋 is determined, so is 𝜃𝑋 ′′ and hence 𝜃𝑋 ′ by the functorial property.

Suppose 𝐺 � Z𝑝 . Then there is a canonical isomorphism

Ω1
𝐴/𝐶 (−1) ⊗Q𝑝 Lie(𝐺) ∼−→ 𝐻1

cont (𝐺, 𝐵) ⊗Z𝑝 𝐺
∼
−→ 𝐵𝐺 ,

where the first map is induced by the exponential map of G and 𝐵𝐺 denotes the G-coinvariants of B.
Under this isomorphism, the canonical 𝜃 is given by the image of 1 ∈ 𝐵 in 𝐵𝐺 . It can be checked that
this is independent of the choice of such a Z𝑝-covering.

The proof of Proposition 3.23 of [Sch13b] crucially uses the fact that when X is defined over some
finite extension ofQ𝑝 , then there is the Faltings’s extension (Corollary 6.14 of [Sch13a]) which produces
this canonical isomorphism. Faltings’s extension has also been generalised to the log case; cf. Corollary
2.4.5 of [DLLZ18]. Hence, it is conceivable that there is a canonical 𝜃 in general.

Example 3.1.6.

◦ 𝑋 = Spa(𝐶〈𝑇±1〉,O𝐶 〈𝑇±1〉), the 1-dimensional torus;
◦ 𝑋 = Spa(𝐶〈𝑇±

1
𝑝∞ 〉,O𝐶 〈𝑇±

1
𝑝∞ 〉), the inverse limit of Spa(𝐶〈𝑇±

1
𝑝𝑚 〉,O𝐶 〈𝑇±

1
𝑝𝑚 〉);
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◦ 𝐺 = Z𝑝 which acts by 𝑘 · 𝑇
1
𝑝𝑚 = 𝜁

𝑘
𝑝𝑚 𝑇

1
𝑝𝑚 , 𝑘 ∈ Z𝑝 where {𝜁𝑝𝑚 }𝑚 is a choice of compatible system

of 𝑝𝑚th roots of unity.

The locally analytic vectors in𝐶〈𝑇±
1
𝑝∞ 〉 are just

⋃
𝑚𝐶〈𝑇±

1
𝑝𝑚 〉, the smooth vectors. This can be deduced

easily from the existence of Tate’s normalised trace in this situation; that is, there is a continuous left
inverse of the inclusion 𝐶〈𝑇±

1
𝑝𝑚 〉 ↩→ 𝐶〈𝑇

± 1
𝑝∞ 〉. See Lemma 3.2.5 or Théorème 3.2 of [BC16]. The

differential operator 𝜃 in this case is 𝑑𝑇
𝑇 ⊗ 1, where 1 is the image of 1 ∈ Z𝑝

log
−→ Lie(Z𝑝) under

the logarithm. The same result holds for 𝑋 = Spa(𝐶〈𝑇〉,O𝐶 〈𝑇〉), the 1-dimensional unit ball and
𝑋 = Spa(𝐶〈𝑇

1
𝑝∞ 〉,O𝐶 〈𝑇

1
𝑝∞ 〉).

Remark 3.1.7. As mentioned in Remark 3.1.5, 𝜃 should be considered as a log Higgs field. This is
closely related to previous work of Faltings [Fal05], Abbes–Gros–Tsuji [AGT16] and Liu–Zhu [LZ17]
on p-adic Simpson correspondences. More precisely, for a finite-dimensional continuous representation
V of G, the p-adic Simpson correspondence associates a log Higgs field (after extending the coefficients
to B):

𝜙𝑉 : 𝐵 ⊗Q𝑝 𝑉 → Ω1
𝐴/𝐶 (𝑆) ⊗𝐴 𝐵 ⊗Q𝑝 𝑉 (−1),

which is monoidal in V. Hence, from the Tannakian point of view, this gives rise to a log Higgs field
which is nothing but our 𝜃. Basically, we will construct 𝜃 by taking V as the space of analytic functions
on G (after taking a certain limit).

To see that 𝜃 annihilates 𝐵la, we remark that, as a B-module, ker(𝜙𝑉 ) are generated by the G-smooth
vectors in 𝐵 ⊗Q𝑝 𝑉 . Hence, when V is the space of analytic functions on G, it is tautological that 𝐵la is
in the kernel of 𝜃. I hope this provides some intuition for the constructions below.

3.2. Relative Sen theory

In this subsection, we will first define a bigger perfectoid algebra 𝐵∞ containing B and construct
(functorially) an operator in the endomorphism group End𝐵∞ (𝐵∞ ⊗Q𝑝 𝑉) for any continuous finite-
dimensional Q𝑝-representation V of G.

3.2.1. Fix an étale map 𝑓1 : 𝑋 → 𝑌 which factors as a composite of rational embeddings and finite étale
maps, where Y is either T1 = Spa(𝐶〈𝑇±1〉,O𝐶 〈𝑇±1〉) or B1 = Spa(𝐶〈𝑇〉,O𝐶 〈𝑇〉). In the latter case, we
assume the image of S in Y is 0. We will fix such a choice of 𝑓1 : 𝑋 → 𝑌 from now on.

For any 𝑛 ∈ N, when 𝑌 = T1 (respectively B1), let

𝑌𝑛 = Spa(𝑅𝑛, 𝑅+𝑛) := Spa(𝐶〈𝑇±
1
𝑝𝑛 〉,O𝐶 〈𝑇±

1
𝑝𝑛 〉) (respectively Spa(𝐶〈𝑇

1
𝑝𝑛 〉,O𝐶 〈𝑇

1
𝑝𝑛 〉)),

𝑌∞ = Spa(𝑅, 𝑅+) := Spa(𝐶〈𝑇±
1
𝑝∞ 〉,O𝐶 〈𝑇±

1
𝑝∞ 〉) (respectively Spa(𝐶〈𝑇

1
𝑝∞ 〉,O𝐶 〈𝑇

1
𝑝∞ 〉)).

This is the example considered in Example 3.1.6. Note that 𝑌∞ ∼ lim
←−−𝑖∈N

𝑌𝑖 is a Galois covering of Y
and 𝑅+ is the p-adic completion of lim

−−→
𝑅+𝑛. We denote the Galois group by Γ, which can be identified

with Z𝑝 noncanonically. For 𝑛 ≥ 𝑚, there is the usual trace map

tr𝑌 ,𝑛,𝑚 : 𝑅+𝑛 → 𝑅+𝑚.

Concretely, it sends 𝑇
𝑙

𝑝𝑘 , (𝑙, 𝑝) = 1 to 𝑝𝑛−𝑚𝑇
𝑙

𝑝𝑘 if 𝑘 ≤ 𝑚 and 0 otherwise. Clearly, 1
𝑝𝑛−𝑚 tr𝑌 ,𝑛,𝑚 are

compatible when n varies and extends to a 𝑅+𝑚-linear map

tr+𝑌 ,𝑚 : 𝑅+ → 𝑅+𝑚,
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which is a left inverse of the inclusion 𝑅+𝑚 → 𝑅+. It commutes with the action of Γ as taking traces
commutes with the Galois action. Moreover, for any 𝑥 ∈ 𝑅+,

lim
𝑚→+∞

tr+𝑌 ,𝑚 (𝑥) = 𝑥.

After inverting p, we get a 𝑅𝑚-linear map tr𝑌 ,𝑚 : 𝑅 → 𝑅𝑚 (Tate’s normalised trace). Let 𝛾 be any
topological generator of 𝑝𝑚Γ. It is easy to see that 𝛾 − 1 is invertible on ker(tr𝑌 ,𝑚). Moreover, the norm
‖(𝛾 − 1)−1‖ on ker(tr𝑌 ,𝑚) equals | (𝜁𝑝𝑚+1 − 1)−1 |𝑝 = 𝑝

1
𝑝𝑚 (𝑝−1) , which converges to 1 as 𝑚 →∞.

3.2.2. The material here should be a consequence of some general results of Diao–Lan–Liu–Zhu on
log affinoid perfectoid spaces. See 5.3 of [DLLZ19]. For our later applications, we give a more explicit
presentation.

Now we base change everything along the map 𝑋 → 𝑌 :
𝑋𝑛 = Spa(𝐴𝑛, 𝐴+𝑛) := 𝑋 ×𝑌 𝑌𝑛,

𝑋∞ = Spa(𝐴∞, 𝐴+∞) := 𝑋 ×𝑌 𝑌∞,

where all of the fibre products are taken in the category of adic spaces over C. We remark that 𝑋 → 𝑌
is locally of finite type in the sense of [Hub96, Definition 1.2.1] and the fibre product exists by [Hub96,
Proposition 1.2.2]. All of the fibre products we consider below will exist for the same reason.

𝑋∞ 𝑌∞

𝑋𝑛 𝑌𝑛

𝑋 𝑌

.

Recall that C is equipped with an non-Archimedean norm | · |. For any |𝑝 |𝑐 ∈ |𝐶×| ⊂ R×
≥0, we fix a

choice of element in C, formally written as 𝑝𝑐 , with norm |𝑝 |𝑐 .

Lemma 3.2.3. Let (𝐴+𝑛 ⊗𝑅+𝑛 𝑅
+)tf,∧ be the p-adic completion of the p-torsion free quotient of 𝐴+𝑛 ⊗𝑅+𝑛 𝑅

+.

(1) The natural map (𝐴+𝑛 ⊗𝑅+𝑛 𝑅+)tf,∧ → 𝐴+∞ is injective and its cokernel is killed by 𝑝𝐶𝑛 for some
constant 𝐶𝑛 with 𝐶𝑛 → 0 as 𝑛→ 0.

(2) 𝐴+∞ is the p-adic completion of lim
−−→𝑛

𝐴+𝑛.
(3) (𝐴∞, 𝐴+∞) is a perfectoid affinoid (𝐶,O𝐶 )-algebra.

Proof. As 𝑋 → 𝑌 can be written as a composite of rational embeddings and finite étale maps, we may
apply Lemma 4.5 of [Sch13a] here. Strictly speaking, Lemma 4.5 assumes 𝑌𝑛 is étale over Y, but the
same argument works here using that R is a perfectoid C-algebra and 𝑅+ is the p-adic completion of
lim
−−→

𝑅+𝑛. �

Hence, we may extend (𝐴𝑚-linearly) Tate’s normalised trace tr𝑌 ,𝑚 to 𝑋∞:
tr𝑋,𝑚 : 𝐴∞ → 𝐴𝑚,

which is a continuous 𝐴𝑚-linear left inverse of the inclusion 𝐴𝑚 → 𝐴∞. Moreover, the image of 𝐴+∞ is
contained in 𝑝−𝐶𝑚𝐴+𝑚 for some constant 𝐶𝑚 with 𝐶𝑚 → 0 as 𝑚 → 0. For any 𝑥 ∈ 𝐴∞, we still have

lim
𝑚→+∞

tr𝑋,𝑚(𝑥) = 𝑥.

Note that Γ acts on 𝑋∞ and commutes with tr𝑋,𝑚. For any topological generator 𝛾 of 𝑝𝑚Γ, the action
of 𝛾 − 1 on ker(tr𝑋,𝑚) is invertible. The norm of its inverse ‖(𝛾 − 1)−1‖ is bounded by some 𝑝𝑐𝑚 for
some constant 𝑐𝑚 > 0, and 𝑐𝑚 → 0 as 𝑚 →∞.
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Remark 3.2.4. These properties of Tate’s normalised trace appear as (TS2), (TS3) in the Tate–Sen
conditions formulated by Berger–Colmez; cf. [BC08] Définition 3.1.3.

𝐴∞ is a Banach space representation of Γ. We can consider its Γ-locally analytic vectors; cf. 2.1.4.
The following lemma is a direct consequence of the existence of Tate’s normalised traces. See also
Théorème 3.2 of [BC16].

Lemma 3.2.5. (𝐴∞) 𝑝
𝑛Γ−an = 𝐴𝑛 for any integer 𝑛 ≥ 0. In particular, the subspace of Γ-locally analytic

vectors in 𝐴∞ is
⋃
𝑛≥0 𝐴𝑛.

Proof. For 𝑚 ≥ 𝑛, as tr𝑋,𝑚 is continuous and Γ-equivariant, it can be restricted to the 𝑝𝑛Γ-analytic
vectors

(𝐴∞)
𝑝𝑛Γ−an tr𝑋,𝑚

−−−−→ (𝐴𝑚)
𝑝𝑛Γ−an = (𝐴𝑚)

𝑝𝑛Γ = 𝐴𝑛.

Note that the action of 𝑝𝑛Γ on 𝐴𝑚 is trivial on 𝑝𝑚Γ; hence, the analyticity implies the first equality.
Now the lemma follows from lim𝑚→+∞ tr𝑋,𝑚(𝑥) = 𝑥. �

3.2.6. Next we base change the tower {𝑋𝑛}𝑛 to 𝑋 . Suppose 𝐺0 is an open subgroup of G. Let

𝑋𝐺0 := Spa(𝐵𝐺0 , (𝐵+)𝐺0)

be the corresponding covering of X. We can take the fibre product in the category of adic spaces over C

𝑋 ′𝐺0 ,𝑛
:= 𝑋𝐺0 ×𝑋 𝑋𝑛 = 𝑋𝐺0 ×𝑌 𝑌𝑛,

and take its normalisation

𝑋𝐺0 ,𝑛 = Spa(𝐵𝐺0 ,𝑛, 𝐵
+
𝐺0 ,𝑛
).

Note that by Abhyankar’s lemma for rigid analytic spaces (cf. Lemma 4.2.2, 4.2.3 of [DLLZ19], which
is based on earlier work of Lütkebohmert), 𝑋𝐺0 ,𝑛 → 𝑌𝑛 is unramified when n is sufficiently large; hence,
𝑋𝐺0 ,𝑛 → 𝑋𝑛 is finite étale and

𝑋𝐺0 ,𝑛 = 𝑋𝐺0 ,𝑚 ×𝑋𝑚 𝑋𝑛 = 𝑋𝐺0 ,𝑚 ×𝑌𝑚 𝑌𝑛

for sufficiently large 𝑚 < 𝑛. This implies that when n is sufficiently large,

𝑋𝐺0 ,∞ = Spa(𝐵𝐺0 ,∞, 𝐵
+
𝐺0 ,∞
) := 𝑋𝐺0 ,𝑛 ×𝑋𝑛 𝑋∞ = 𝑋𝐺0 ,𝑛 ×𝑌𝑛 𝑌∞

is independent of n. Since 𝑋𝐺0 ,𝑛 → 𝑌𝑛 can be written as a composite of rational embeddings and finite
étale maps, Lemma 3.2.3 still holds in this setting. For example, 𝐵+𝐺0 ,∞

is the p-adic completion of
lim
−−→𝑛

𝐵+𝐺0 ,𝑛
. For sufficiently large n, there exist Tate’s normalised traces tr𝑋𝐺0 ,𝑛

: 𝐵𝐺0 ,∞ → 𝐵𝐺0 ,𝑛 with
same properties as in the case {𝑋𝑛}𝑛. In particular, (𝐵𝐺0 ,∞)

𝑝𝑛Γ−an = 𝐵𝐺0 ,𝑛 for n large enough.

𝑋∞ 𝑋𝐺0 ,∞ 𝑋∞ 𝑌∞

𝑋𝑛 𝑋𝐺0 ,𝑛 𝑋𝑛 𝑌𝑛

𝑋 𝑋𝐺0 𝑋 𝑌

.

Suppose 𝐺 ′0 is another open subgroup of G containing 𝐺0. We have compatible maps 𝑋𝐺0 ,𝑛 → 𝑋𝐺′0 ,𝑛
which are finite étale when n is sufficiently large. Hence, 𝑋𝐺0 ,∞ → 𝑋𝐺′0 ,∞ is a finite étale covering of
affinoid perfectoid spaces. Let 𝐵+∞ be the p-adic completion of lim

−−→𝐺0
𝐵+𝐺0 ,∞

over all open subgroups
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𝐺0 of G and 𝐵∞ = 𝐵+∞[
1
𝑝 ] equipped with the norm induced from 𝐵+𝐺0 ,∞

. Then (𝐵∞, 𝐵+∞) is again
an affinoid perfectoid (𝐶,O𝐶 )-algebra as it is the completion of a direct limit of perfectoid affinoid
(𝐶,O𝐶 )-algebras. We denote Spa(𝐵∞, 𝐵+∞) by 𝑋∞. Note that 𝑋∞ also agrees with the fibre product of
�̃� = lim
←−−

𝑋𝐺0 and 𝑋∞ = lim
←−−

𝑋𝑛 in the pro-Kummer étale site of X equipped with the natural log structure
defined by S; cf. [DLLZ18].

Clearly, 𝐺 ×Γ acts on 𝐵+∞ and 𝐵∞. Then it follows from Faltings’s almost purity theorem (cf. [Sch12,
Theorem 7.9 (iii)]) that (𝐵+∞/(𝑝))𝐺0 almost equals 𝐵+𝐺0 ,∞

/(𝑝). Hence, (𝐵∞)𝐺0 = 𝐵𝐺0 ,∞ and (𝐵+∞)𝐺0

almost equals 𝐵+𝐺0 ,∞
.

Proposition 3.2.7. 𝐵∞ satisfies the Tate–Sen conditions formulated by Berger–Colmez in [BC08, Défi-
nition 3.1.3] with

◦ 𝑆 = Q𝑝;
◦ Λ̃ = 𝐵∞ equipped with the valuation induced by its norm;
◦ 𝐺0 = 𝐺 × Γ, 𝐻0 = 𝐺 × {1} as a subgroup of 𝐺 × Γ;
◦ Λ𝐻,𝑛 = 𝐵𝐻,𝑛, 𝑅𝐻,𝑛 = tr𝑋𝐻 ,𝑛 for any open subgroup H of 𝐻0 = 𝐺.

Proof. To see (TS1), for any open subgroups 𝐻1 ⊂ 𝐻2 of G, we know that (𝐵∞)𝐻2 = 𝐵𝐻2 ,∞ →

(𝐵∞)
𝐻1 = 𝐵𝐻1 ,∞ is a finite étale map between perfectoid algebras; hence, by Faltings’s almost purity

theorem, 𝐵+𝐻2 ,∞
→ 𝐵+𝐻1 ,∞

is almost finite étale. All of the claims in (TS2), (TS3) are essentially verified
in 3.2.2 and the above discussion. �

Remark 3.2.8. It follows from the definition directly that 𝐵∞ satisfies the Tate–Sen conditions with
respect to the action of 𝐺0 × Γ for any open subgroup 𝐺0 of G.

Lemma 3.2.9. (𝐵∞)Γ = 𝐵.

Proof. Recall that 𝑋 = Spa(𝐵, 𝐵+) is perfectoid and 𝐵+ is the p-adic completion of the direct limit
lim
−−→𝐺0

𝐵+𝐺0 ,0 over all open subgroups 𝐺0 of G. Let n be a positive integer. Note that by our assumption on
the ramification-index in Section 3.1.1 and Abhyankar’s lemma (cf. Lemma 4.2.2, 4.2.3 of [DLLZ19]),
𝑋𝐺0 ,𝑛 → 𝑋𝐺0 ,0 is finite étale for sufficiently small 𝐺0. Hence, for a sufficiently small subgroup 𝐺0, the
fibre product

𝑋𝑛 = Spa(𝐵𝑛, 𝐵+𝑛) := 𝑋 ×𝑋𝐺0 ,0
𝑋𝐺0 ,𝑛

is independent of the choice of 𝐺0 and 𝑋𝑛 → 𝑋 is a finite étale map between affinoid perfectoid spaces.
By the same argument as in the proof of Lemma 3.2.3, 𝐵+𝑛 is the p-adic completion of lim

−−→𝐺0
𝐵+𝐺0 ,𝑛

.
Hence, it follows from our discussion in Section 3.2.6 that 𝐵+∞ is the p-adic completion of lim

−−→𝑛
𝐵+𝑛. By

Faltings’s almost purity theorem, we see that (𝐵+∞)Γ is almost 𝐵+ and (𝐵∞)Γ = 𝐵. �

3.2.10. Now suppose V is a finite-dimensional continuous representation of G over Q𝑝 . We are going
to construct a morphism: Lie(Γ) → End𝐵∞ (𝐵∞ ⊗Q𝑝 𝑉); that is, a Lie algebra representation of Lie(Γ)
on 𝐵∞ ⊗Q𝑝 𝑉 .

As G is compact, there exists a G-stable Z𝑝-lattice 𝑇 ⊂ 𝑉 . Let (𝐵∞)◦ ⊂ 𝐵∞ be the subset of power-
bounded elements (equivalently elements with spectral norm at most 1). Note that (𝐵∞)◦ ⊗Z𝑝 𝑇 carries a
diagonal action of G and an action of Γ on the first factor. This defines an action of𝐺×Γ on (𝐵∞)◦⊗Z𝑝𝑇 .

Proposition 3.2.11. Fix a constant 𝑐 < 1
2 inside |𝐶×| ⊂ R×

≥0. Suppose 𝐺0 is an open subgroup of
G acting trivially on 𝑇/𝑝𝑇 . Then there exists a constant 𝑛(𝐺0), which is independent of T and only
depends on c, such that for any integer 𝑛 ≥ 𝑛(𝐺0), the tensor product (𝐵∞)◦ ⊗Z𝑝 𝑇 has a unique free
𝐵+𝐺0 ,𝑛

-submodule 𝐷+𝐺0 ,𝑛
(𝑇) of rank dimQ𝑝 𝑉 with the following properties:

(1) 𝐷+𝐺0 ,𝑛
(𝑇) is fixed by 𝐺0 and 𝐺 × Γ-stable;

(2) the natural morphism (𝐵∞)◦ ⊗𝐵+
𝐺0 ,𝑛

𝐷+𝐺0 ,𝑛
(𝑇) → (𝐵∞)

◦ ⊗Z𝑝 𝑇 is an isomorphism;
(3) there exists a basis 𝔅 of 𝐷+𝐺0 ,𝑛

(𝑇) over 𝐵+𝐺0 ,𝑛
such that (𝛾 − 1) (𝔅) ⊂ 𝑝𝑐𝐷+𝐺0 ,𝑛

(𝑇) for any 𝛾 ∈ Γ;
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(4) (𝛾 − 1)𝑚(𝐷+𝐺0 ,𝑛
(𝑇)) ⊂ 𝑝𝐷+𝐺0 ,𝑛

(𝑇) for any 𝛾 ∈ Γ and 𝑚 ≥ 𝑚(𝑐, 𝑛), a constant only depending on
𝑐, 𝑛.

Proof. This follows from Proposition 3.3.1 of [BC08] by choosing 𝑐3 = 𝑐 and 𝑐1, 𝑐2 sufficiently small
such that 𝑐1 + 2𝑐2 + 2𝑐3 < 1. Note that in our setup, we may choose the constants 𝑐1, 𝑐2, 𝑐3 in the Tate–
Sen conditions to be arbitrarily small. The first three parts are the same as [BC08, 3.3.1]. The last part
is a consequence of the third one. �

Now we construct an action of Lie(Γ) on 𝐵∞ ⊗Q𝑝 𝑉 . Choose a constant c, a sufficiently small open
subgroup 𝐺0 and 𝑛 ≥ 𝑛(𝐺0) as in the proposition. By Amice’s result (see Example 2.1.9), the last
part of the proposition implies that the action of 𝑝𝑚Γ on 𝐷+𝐺0 ,𝑛

(𝑇) ⊗Z𝑝 Q𝑝 is analytic for sufficiently
large m. Thus, Lie(Γ) acts on 𝐷+𝐺0 ,𝑛

(𝑇) ⊗Z𝑝 Q𝑝 . Since 𝐵𝐺0 ,𝑛 is fixed by 𝑝𝑛Γ, this action of Lie(Γ) is
𝐵𝐺0 ,𝑛-linear. By the second part of the proposition, we may extend it 𝐵∞-linearly to an action of Lie(Γ)
on (𝐵∞)◦ ⊗Z𝑝 𝑇 ⊗ Q𝑝 = 𝐵∞ ⊗Q𝑝 𝑉 . This action commutes with the action of 𝐺 × Γ as the two actions
commute when restricted to 𝐷+𝐺0 ,𝑛

(𝑇) ⊗ Q𝑝 .
Note that the second part of Proposition 3.2.11 implies that

(𝐵∞ ⊗Q𝑝 𝑉)
𝐺0 = (𝐵∞)

𝐺0 ⊗𝐵+
𝐺0 ,𝑛

𝐷+𝐺0 ,𝑛
(𝑇) = 𝐵𝐺0 ,∞ ⊗𝐵+𝐺0 ,𝑛

𝐷+𝐺0 ,𝑛
(𝑇).

Lemma 3.2.12. For any 𝑚 ≥ 𝑚(𝑐, 𝑛), the subspace of 𝑝𝑚Γ-analytic vectors in (𝐵∞ ⊗ 𝑉)𝐺0 is
𝐵𝐺0 ,𝑚 ⊗𝐵+𝐺0 ,𝑛

𝐷+𝐺0 ,𝑛
(𝑇). In particular, the second part of Proposition 3.2.11 implies that there is a

natural isomorphism

(𝐵∞ ⊗Q𝑝 𝑉)
𝐺0 , 𝑝

𝑚Γ−an ⊗𝐵𝐺0 ,𝑚
𝐵∞ � 𝐵∞ ⊗Q𝑝 𝑉.

Proof. For any 𝑘 ≥ 𝑚, the normalised trace tr𝑋𝐺0 ,𝑘
: 𝐵𝐺0 ,∞ → 𝐵𝐺0 ,𝑘 induces a map

(𝐵∞ ⊗Q𝑝 𝑉)
𝐺0 , 𝑝

𝑚Γ−an = (𝐵𝐺0 ,∞ ⊗𝐵+𝐺0 ,𝑛
𝐷+𝐺0 ,𝑛

(𝑇)) 𝑝
𝑚Γ−an → (𝐵𝐺0 ,𝑘 ⊗𝐵+𝐺0 ,𝑛

𝐷+𝐺0 ,𝑛
(𝑇)) 𝑝

𝑚Γ−an.

As the action of 𝑝𝑚Γ on 𝐵𝐺0 ,𝑘 is trivial on 𝑝𝑘Γ, we have a natural decomposition

𝐵𝐺0 ,𝑘 =
⊕

𝜒:𝑝𝑚Γ/𝑝𝑘Γ→𝐶×

𝐵𝐺0 ,𝑘 [𝜒]

into the direct sum of 𝜒-isotypic components, where 𝜒 runs through all characters of 𝑝𝑚Γ/𝑝𝑘Γ. Note
that 𝜒 is an analytic function on 𝑝𝑚Γ only when 𝜒 is trivial. Hence,

(𝐵𝐺0 ,𝑘 ⊗𝐵+𝐺0 ,𝑛
𝐷+𝐺0 ,𝑛

(𝑇)) 𝑝
𝑚Γ−an = (𝐵𝐺0 ,𝑘 )

𝑝𝑚Γ ⊗𝐵+
𝐺0 ,𝑛

𝐷+𝐺0 ,𝑛
(𝑇) = 𝐵𝐺0 ,𝑚 ⊗𝐵+𝐺0 ,𝑛

𝐷+𝐺0 ,𝑛
(𝑇).

The rest of the proof is the same as the one of Lemma 3.2.5. �

If 𝐺0 is moreover a normal subgroup of G, we may choose n large enough so that 𝐵𝐺,𝑛 → 𝐵𝐺0 ,𝑛 is
finite étale. Then by Galois descent, there is a Γ-equivariant isomorphism

(𝐷+𝐺0 ,𝑛
(𝑇) ⊗Z𝑝 Q𝑝)

𝐺 ⊗𝐵𝐺,𝑛 𝐵𝐺0 ,𝑛 = 𝐷+𝐺0 ,𝑛
(𝑇) ⊗Z𝑝 Q𝑝 .

Let 𝐷𝐺,𝑛 (𝑉) = (𝐷+𝐺0 ,𝑛
(𝑇) ⊗Z𝑝 Q𝑝)

𝐺 . By the second part of Proposition 3.2.11, there is a natural
isomorphism

𝐵∞ ⊗𝐵𝐺,𝑛 𝐷𝐺,𝑛 (𝑉) � 𝐵∞ ⊗Q𝑝 𝑉

and one can repeat all of the above discussion with 𝐺0 replaced by G. Hence, we may reformulate the
above construction into the following form, which clearly is independent of the choice of 𝑇, 𝑐, 𝐺0, 𝑛.
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Proposition 3.2.13. For each finite-dimensional continuous representation V of G over Q𝑝 , there exists
a (necessarily unique) 𝐵∞-linear action of Lie(Γ) on 𝐵∞ ⊗Q𝑝 𝑉

𝜙𝑉 : Lie(Γ) → End𝐵∞ (𝐵∞ ⊗Q𝑝 𝑉)

extending the natural action of Lie(Γ) on the Γ-locally analytic vectors in (𝐵∞ ⊗Q𝑝 𝑉)𝐺 . Moreover, it
satisfies the following properties:
(1) 𝜙𝑉 commutes with the action of 𝐺 × Γ;
(2) 𝜙𝑉 is functorial in V; that is, suppose𝜓 : 𝑉 → 𝑊 is a G-equivariant map between G-representations,

then 1 ⊗ 𝜓 : 𝐵∞ ⊗ 𝑉 → 𝐵∞ ⊗𝑊 intertwines 𝜙𝑉 and 𝜙𝑊 .
(3) 𝜙𝑉 commutes with tensor products; that is, suppose𝑉1, 𝑉2 are two finite-dimensional representations

of G, then 𝜙𝑉1 ⊗ 1+ 1 ⊗ 𝜙𝑉2 = 𝜙𝑉1⊗Q𝑝𝑉2 on (𝐵∞ ⊗Q𝑝 𝑉1) ⊗𝐵∞ (𝐵∞ ⊗Q𝑝 𝑉2) = 𝐵∞ ⊗Q𝑝 (𝑉1 ⊗Q𝑝 𝑉2).

Proof. It is easy to check all these properties on the Γ-locally analytic vectors in (𝐵∞ ⊗Q𝑝 𝑉)𝐺 . We
omit the details here. �

If we fix a generator of Lie(Γ), then this proposition becomes the form claimed in the beginning of
this subsection.

Suppose 𝐺0 is an open subgroup of G. As 𝐵∞ satisfies the Tate–Sen conditions with respect to 𝐺0×Γ
(see Remark 3.2.8), Proposition 3.2.13 still holds with all G replaced by 𝐺0. Thus, Proposition 3.2.13
can be generalised as follows.
Proposition 3.2.14. For each finite-dimensional continuous representation V of G over Q𝑝 , there exists
a (necessarily unique) 𝐵∞-linear action of Lie(Γ) on 𝐵∞ ⊗Q𝑝 𝑉 , extending its natural action on the
G-smooth, Γ-locally analytic vectors in 𝐵∞ ⊗Q𝑝 𝑉 . Here an element in 𝐵∞ ⊗Q𝑝 𝑉 is called G-smooth
if it is fixed by some open subgroup of G. Moreover, this action satisfies all three properties as in the
previous proposition.

Hence, this action of Lie(Γ) on 𝐵∞ ⊗Q𝑝 𝑉 only depends on the restriction of the representation to any
open subgroup of G. As it commutes with Γ, it induces a B-linear action of Lie(Γ) on (𝐵∞ ⊗Q𝑝 𝑉)Γ =
𝐵 ⊗Q𝑝 𝑉 by Lemma 3.2.9.

3.3. Proof of the main result I: construction

3.3.1. We will first show that the action in Proposition 3.2.13 factors through 𝐵⊗Lie(𝐺). As a byproduct,
this will imply Theorem 3.1.2. The strategy is to apply Proposition 3.2.13 to𝑉 = 𝒞an(𝐺,Q𝑝), the space
of analytic functions on G. However, as this is an infinite-dimensional vector space over Q𝑝 , it requires
a limiting argument plus some extra work.

Let 𝐺0 ⊂ 𝐺 be a compact open subgroup equipped with an integer-valued, saturated p-valuation as
in Section 2.1.1. By Proposition 2.1.3, we may replace 𝐺0 by a smaller subgroup and assume that there
is a dense sub-algebra lim

−−→𝑘∈N
𝑉𝑘 ⊂ 𝒞an(𝐺0,Q𝑝), where each 𝑉𝑘 is a finite-dimensional subspace of

𝒞an (𝐺0,Q𝑝) stable under both the left and right translation actions of 𝐺0. We will always view 𝑉𝑘 as a
representation of 𝐺0 using the left translation action.

Let 𝒞an(𝐺0,Q𝑝)
𝑜 be the unit ball of 𝒞an(𝐺0,Q𝑝) with respect to the norm ‖ · ‖𝐺0 (see Section 2.1.1

for the notation here). Then

𝑉𝑜𝑘 := 𝑉𝑘 ∩𝒞
an (𝐺0,Q𝑝)

𝑜

is a 𝐺0-stable lattice. Moreover, it follows from Lemma 2.1.2 that 𝑉𝑜𝑘 /𝑝 is fixed by an open subgroup
𝐺1 of 𝐺0 for all k. Now we apply Proposition 3.2.11 to 𝑉𝑘 , with 𝐺 = 𝐺0: fix a constant c as in the
proposition and 𝑛 ≥ 𝑛(𝐺1). There is 𝐷+𝐺1 ,𝑛

(𝑉𝑜𝑘 ) ⊂ (𝐵∞)
𝑜 ⊗ 𝑉𝑜𝑘 such that

(𝐵∞)
◦ ⊗𝐵+

𝐺1 ,𝑛
𝐷+𝐺1 ,𝑛

(𝑉𝑜𝑘 ) = (𝐵∞)
◦ ⊗Z𝑝 𝑉

𝑜
𝑘 .
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By the uniqueness of 𝐷+𝐺1 ,𝑛
(𝑉𝑜𝑘 ), these {𝐷+𝐺1 ,𝑛

(𝑉𝑜𝑘 )}𝑘 form a direct system. Hence, we may take the
direct limit of this equality over k:

(𝐵∞)
◦ ⊗𝐵+

𝐺1 ,𝑛
lim
−−→
𝑘

𝐷+𝐺1 ,𝑛
(𝑉𝑜𝑘 ) = (𝐵∞)

◦ ⊗Z𝑝 lim
−−→
𝑘

𝑉𝑜𝑘 .

By taking the p-adic completion and inverting p, we obtain

𝐵∞⊗̂𝐵𝐺1 ,𝑛
𝐷𝐺1 ,𝑛 = 𝐵∞⊗̂Q𝑝𝒞

an(𝐺0,Q𝑝).

Here 𝐷+𝐺1 ,𝑛
is the p-adic completion of lim

−−→𝑘
𝐷+𝐺1 ,𝑛

(𝑉𝑜𝑘 ) and 𝐷𝐺1 ,𝑛 = 𝐷+𝐺1 ,𝑛
⊗Z𝑝 Q𝑝 equipped with the

p-adic topology. The right-hand side becomes 𝒞an(𝐺0,Q𝑝) as lim
−−→𝑘

𝑉𝑘 is dense inside of it.
Now we can construct an action of Lie(Γ) as before: there is an integer 𝑚 ≥ 0 such that (𝛾 −

1)𝑚𝐷+𝐺1 ,𝑛
(𝑉𝑜𝑘 ) ⊂ 𝑝𝐷+𝐺1 ,𝑛

(𝑉𝑜𝑘 ) for all 𝑘 ≥ 0 and 𝛾 ∈ Γ. Hence,

(𝛾 − 1)𝑚𝐷+𝐺1 ,𝑛
⊂ 𝑝𝐷+𝐺1 ,𝑛

for any 𝛾 ∈ Γ. By Example 2.1.9, the action of Γ on 𝐷𝐺1 ,𝑛 is locally analytic. Its Lie algebra action can
be extended 𝐵∞-linearly to an action on 𝐵∞⊗̂𝐵𝐺1 ,𝑛

𝐷𝐺1 ,𝑛 = 𝐵∞⊗̂Q𝑝𝒞
an (𝐺0,Q𝑝):

𝜙𝐺0 : Lie(Γ) → End𝐵∞ (𝐵∞⊗̂Q𝑝𝒞
an(𝐺0,Q𝑝)).

Again this action uniquely extends the natural action of Lie(Γ) on the Γ-locally analytic vectors in
(𝐵∞⊗̂Q𝑝𝒞

an (𝐺0,Q𝑝))
𝐺0 , where 𝐺0 acts diagonally on 𝐵∞ and 𝒞an (𝐺0,Q𝑝). In fact, let 𝐷+𝐺0 ,𝑛

=

(𝐷+𝐺1 ,𝑛
)𝐺0 and 𝐷𝐺0 ,𝑛 = (𝐷𝐺1 ,𝑛)

𝐺0 = 𝐷+𝐺0 ,𝑛
⊗Z𝑝 Q𝑝 . Then by arguments similar to Lemma 3.2.12 and

the paragraph below it, we have the following lemma.

Lemma 3.3.2. For n sufficiently large, 𝐷𝐺0 ,𝑛 is the subspace of 𝑝𝑛Γ-analytic vectors in
(𝐵∞⊗̂Q𝑝𝒞

an (𝐺0,Q𝑝))
𝐺0 = (𝐵∞)𝐺0−an, and 𝐵∞⊗̂𝐵𝐺0 ,𝑛

𝐷𝐺0 ,𝑛 = 𝐵∞⊗̂Q𝑝𝒞
an(𝐺0,Q𝑝).

The action of Lie(Γ) via 𝜙𝐺0 commutes with Γ as both actions commute on 𝐷𝐺1 ,𝑛. Moreover,
it follows from the functorial property of 𝜙𝑉𝑘 in Proposition 3.2.13 that the action of Lie(Γ) on
𝐷+𝐺1 ,𝑛

(𝑉𝑜𝑘 ) ⊗ Q𝑝 commutes with the right translation action of 𝐺0. By passing to the limit, we see that
𝜙𝐺0 also commutes with the right translation action of 𝐺0. Recall that the multiplication structure on
𝒞an (𝐺0,Q𝑝) induces maps 𝑉𝑘 ⊗ 𝑉𝑙 → 𝑉𝑘+𝑙; cf. Proposition 2.1.3. Hence, the last part of Proposition
3.2.13 implies that for any 𝜃 ∈ 𝜙𝐺0 (Lie(Γ)), 𝑓1, 𝑓2 ∈ 𝒞an (𝐺0,Q𝑝),

𝜃 ( 𝑓1) 𝑓2 + 𝑓1𝜃 ( 𝑓2) = 𝜃 ( 𝑓1 𝑓2);

that is, 𝜃 is a derivation. Hence, we have proved the following.

Proposition 3.3.3. 𝜙𝐺0 (𝑥) acts as a 𝐺0-right-invariant derivation on 𝐵∞⊗̂Q𝑝𝒞
an(𝐺0,Q𝑝) for any

𝑥 ∈ Lie(Γ). Moreover, it commutes with Γ.

Corollary 3.3.4. 𝜙𝐺0 factors through 𝐵 ⊗Q𝑝 Lie(𝐺0) ⊂ End𝐵∞ (𝐵∞⊗̂Q𝑝𝒞an(𝐺0,Q𝑝)). Here Lie(𝐺0)
acts on𝒞an(𝐺0,Q𝑝) by the infinitesimal action of the left translation of𝐺0, and we extend it 𝐵∞-linearly
to an action of 𝐵 ⊗Q𝑝 Lie(𝐺0) on 𝐵∞⊗̂Q𝑝𝒞

an(𝐺0,Q𝑝).

Proof. Clearly, 𝜙𝐺0 factors through 𝐵∞ ⊗Q𝑝 Lie(𝐺0). As it commutes with Γ, it also factors through
(𝐵∞ ⊗Q𝑝 Lie(𝐺0))

Γ = 𝐵 ⊗Q𝑝 Lie(𝐺0) by Lemma 3.2.9. �

By abuse of notation, we also denote by 𝜙𝐺0 : Lie(Γ) → 𝐵 ⊗Q𝑝 Lie(𝐺0). Suppose we replace 𝐺0
by a smaller subgroup 𝐺 ′0 and consider the restriction of 𝒞an(𝐺0,Q𝑝) → 𝒞an(𝐺 ′0,Q𝑝). It is easy to
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see that 𝜙𝐺0 = 𝜙𝐺′0 once we identify Lie(𝐺0) = Lie(𝐺) = Lie(𝐺 ′0). Hence, 𝜙𝐺0 is independent of the
choice of 𝐺0 and we denote it by

𝜙𝑋 : Lie(Γ) → 𝐵 ⊗Q𝑝 Lie(𝐺).

Corollary 3.3.5. The image of 𝜙𝑋 acts trivially on the G-locally analytic vectors in B.

Proof. Recall that (see Section 2.1.1)

𝐵𝐺0−an = (𝐵⊗̂Q𝑝𝒞
an(𝐺0,Q𝑝))

𝐺0 = (𝐵∞⊗̂Q𝑝𝒞
an (𝐺0,Q𝑝))

𝐺0×Γ,

where the second equality follows from Lemma 3.2.9. Hence, by our construction of 𝜙𝐺0 , the action of
Lie(Γ) is trivial on 𝐵𝐺0−an. An easy computation shows that this action is nothing but 𝜙𝑋 . Note that
this argument works for all sufficiently small 𝐺0, which clearly implies the claim in the corollary. �

Now if we fix a generator of Lie(Γ) and denote by 𝜃𝑋 its image in 𝐵 ⊗Q𝑝 Lie(𝐺) under 𝜙𝑋 , then we
obtain the form claimed in the first part of Theorem 3.1.2.

Our next result implies that 𝜙𝑋 is universal. Let V be a finite-dimensional representation of G over
Q𝑝 . The action of G on V is locally analytic; hence, there is a natural 𝐵∞-linear action of 𝐵∞⊗Q𝑝 Lie(𝐺)
on 𝐵∞ ⊗Q𝑝 𝑉 . Therefore, 𝜙𝑋 gives an action of Lie(Γ) on 𝐵∞ ⊗Q𝑝 𝑉 . On the other hand, we defined
another action of Lie(Γ) called 𝜙𝑉 in Proposition 3.2.13.

Corollary 3.3.6. 𝜙𝑉 agrees with 𝜙𝑋 for any V.

Proof. Let 𝐺0 be a sufficiently small open subgroup of G as in the beginning of Section 3.3.1. Moreover,
we may assume V is a 𝐺0-analytic representation. Let 𝑉∗ be the dual vector space of V. Then taking the
matrix coefficients of V induces a map

𝑚𝑉 : 𝑉 ⊗Q𝑝 𝑉
∗ → 𝒞an (𝐺0,Q𝑝),

𝑚𝑉 (𝑣 ⊗ 𝑙) (𝑔) = 𝑙 (𝑔−1 · 𝑣), 𝑣 ∈ 𝑉, 𝑙 ∈ 𝑉∗, 𝑔 ∈ 𝐺0.

This map is𝐺0-equivariant where𝐺0 acts only on the first factor of𝑉⊗𝑉∗ and acts via the left translation
on 𝒞an(𝐺0,Q𝑝). The induced map

1𝐵∞ ⊗ 𝑚𝑉 : 𝐵∞ ⊗Q𝑝 𝑉 ⊗Q𝑝 𝑉
∗ → 𝐵∞⊗̂Q𝑝𝒞

an(𝐺0,Q𝑝)

intertwines 𝜙𝑉 ⊗𝑉 ∗ = 𝜙𝑉 ⊗ 1𝑉 ∗ and 𝜙𝐺0 = 𝜙𝑋 . One can check this on the 𝐺0-fixed, Γ-locally analytic
vectors. Trivially, this map also intertwines 𝜙𝑋 ⊗ 1𝑉 ∗ and 𝜙𝑋 . Now for any nonzero 𝑣 ∈ 𝑉 , there exists
𝑙 ∈ 𝑉∗ such that 𝑚𝑉 (𝑣 ⊗ 𝑙) ≠ 0. From this, it is easy to see that 𝜙𝑉 has to factor through 𝜙𝑋 . �

Remark 3.3.7. This corollary gives a ‘practical way’ to compute 𝜙𝑋 : choose a faithful representation
V of an open subgroup of G. Then 𝜙𝑉 completely determines 𝜙𝑋 .

Remark 3.3.8. 𝐵 ⊗Q𝑝 Lie(𝐺) acts naturally on the G-locally analytic vectors (𝐵 ⊗Q𝑝 𝑉)la of 𝐵 ⊗Q𝑝 𝑉 .
Hence, 𝜙𝑋 : Lie(Γ) → 𝐵⊗Q𝑝Lie(𝐺) induces an action of Lie(Γ) on (𝐵⊗Q𝑝𝑉)la. Combining Corollaries
3.3.5 and 3.3.6, it is easy to see that this action is nothing but 𝜙𝑉 .

Corollary 3.3.9. 𝜙𝑋 is functorial in the pair (𝐵, 𝐺); that is, suppose that H is a closed normal subgroup
of G such that 𝑋 ′ = Spa(𝐵𝐻 , (𝐵+)𝐻 ) is a ‘log 𝐺/𝐻-Galois pro-étale perfectoid covering’ of X as in
3.1.1, then 𝜙𝑋 ′ : Lie(Γ) → 𝐵𝐻 ⊗Q𝑝 Lie(𝐺/𝐻) ⊂ 𝐵⊗Q𝑝 Lie(𝐺/𝐻) can be identified with the composite

Lie(Γ)
𝜙𝑋
−−→ 𝐵 ⊗Q𝑝 Lie(𝐺)

mod 𝐵⊗Q𝑝Lie(𝐻 )
−−−−−−−−−−−−−−→ 𝐵 ⊗Q𝑝 Lie(𝐺/𝐻).

Proof. It is enough to check that the formulation of 𝜙𝑉 in Proposition 3.2.13 is functorial in a similar
sense. But this basically follows from the construction. We omit the details here. �
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We mention the following results concerning the uniqueness of our differential equation. Note that
𝑋∞ = Spa(𝐵∞, 𝐵+∞) is a ‘log 𝐺 × Γ-Galois pro-étale perfectoid covering’ of X. Let 𝐵la

∞ be the 𝐺 × Γ-
locally analytic vectors in 𝐵∞.

Proposition 3.3.10. If 𝐷 ∈ 𝐵∞ ⊗Q𝑝 Lie(𝐺) and 𝐷 (𝑣) = 0 for any 𝑣 ∈ 𝐵la
∞, then 𝐷 = 0.

Proof. We will freely use notation introduced in Section 3.3.1. Let 𝐺0 be a compact open subgroup of
G considered there. By Lemma 3.3.2, we have an isomorphism for sufficiently large n

𝐵∞⊗̂𝐵𝐺0 ,𝑛
(𝐵∞)

𝐺0−an, 𝑝𝑛Γ−an = 𝐵∞⊗̂Q𝑝𝒞
an(𝐺0,Q𝑝).

It follows from Section 2.1.4 that this is equivariant with respect to the following actions of 𝐺0: the
natural action on (𝐵∞)𝐺0−an, 𝑝𝑛Γ−an, the right translation action on 𝒞an(𝐺0,Q𝑝) and trivial actions on
both 𝐵∞. Using this action of𝐺0, we get 𝐵∞-linear actions of 𝐵∞⊗Q𝑝 Lie(𝐺) on both sides. In particular,
D annihilates both sides. However, if 𝐷 ≠ 0, we can always find a 𝐵∞-valued analytic function on 𝐺0
which is not annihilated by D. Contradiction. This proves our claim. �

Corollary 3.3.11. Suppose 𝐷 ∈ 𝐵∞ ⊗Q𝑝 Lie(𝐺 × Γ) annihilates 𝐵la
∞. Then D can be written as

𝐷 = 𝑏𝑑,

where 𝑏 ∈ 𝐵∞ and 𝑑 ∈ 𝜙𝑋∞(Lie(Γ)).

Proof. We note that by the functorial property Corollary 3.3.9, 𝜙𝑋∞ ≡ 𝜙𝑋∞mod 𝐵∞ ⊗Q𝑝 Lie(𝐺); hence,
the composite of 𝜙𝑋∞ and the projection map

Lie(Γ)
𝜙𝑋∞
−−−→ 𝐵∞ ⊗Q𝑝 Lie(𝐺 × Γ) → 𝐵∞ ⊗Q𝑝 Lie(Γ)

is simply the identity map. In particular, we can find 𝑏 ∈ 𝐵∞ and 𝑑 ∈ 𝜙𝑋∞(Lie(Γ)) such that 𝐷 − 𝑏𝑑 ∈
𝐵∞ ⊗Q𝑝 Lie(𝐺). The rest follows from Corollary 3.3.5 and Proposition 3.3.10. �

3.4. Proof of the main result II: uniqueness

3.4.1. In the previous section, we proved the existence of 𝜃 in Theorem 3.1.2. Note that the construction
depends on a choice of an étale map 𝑓1 : 𝑋 → 𝑌 = T1 or B1 in Section 3.2.1. In this section, we will
show that in fact 𝜃 is well-defined up to 𝐴×. People who are interested in global applications can skip
reading this part as this part will not play any role later.

3.4.2. Consider another étale map 𝑓2 : 𝑋 → 𝑌 which factors as a composite of rational embeddings and
finite étale maps. Let

𝑋 ′ := 𝑋 × 𝑓2 ,𝑌 𝑌∞

be the pullback of the profinite covering 𝑌∞ along 𝑓2. See Section 3.2.1 for the definition of 𝑌∞. In the
notation below, we put a superscript ′ for everything constructed using 𝑓2 instead of 𝑓1. For example,
𝑋 ′ = Spa(𝐵′, 𝐵′+) is an affinoid ‘log 𝐺 ′-Galois pro-étale perfectoid covering’ of X with 𝐺 ′ = Γ. We
would like to compute 𝜙𝑋 ′ : Lie(Γ) → 𝐵′ ⊗Q𝑝 Lie(𝐺 ′) = 𝐵′ ⊗Q𝑝 Lie(Γ) first. In general, we will use
the functorial property to reduce to this computation.

We will freely use the notation introduced in the previous subsections. In particular, 𝑋 ′∞ =
Spa(𝐵′∞, 𝐵′+∞) is a 𝐺 ′ × Γ-covering of X. It is also a 𝐺 ′-covering of 𝑋∞ = Spa(𝐴∞, 𝐴+∞) and a Γ-
covering of 𝑋 ′ = Spa(𝐵′, 𝐵′+). Note that by Abhyankar’s lemma, both coverings are profinite étale of
perfectoid algebras. By the Hochschild–Serre spectral sequence, we have

𝐻1
cont (𝐺

′ × Γ, 𝐵′∞) � 𝐻1
cont (Γ, (𝐵

′
∞)
𝐺′×{1}) = 𝐻1

cont (Γ, 𝐴∞) � 𝐻1
cont(Γ, 𝐴).
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The first isomorphism follows from 𝐻1
cont (𝐺

′ × {1}, 𝐵′∞) = 0, which is a consequence of the almost
purity theorem. The last isomorphism follows from the existence and properties of the Tate nor-
malised trace tr𝑋,0 : 𝐴∞ → 𝐴. We denote by 𝜏1 the composite isomorphism 𝐻1

cont(𝐺
′ × Γ, 𝐵′∞)

∼
−→

𝐻1
cont (Γ, 𝐴).
Symmetrically, we can get another isomorphism 𝜏2 : 𝐻1

cont(𝐺
′ × Γ, 𝐵′∞)

∼
−→ 𝐻1

cont (Γ, 𝐴) by

𝐻1
cont (𝐺

′ × Γ, 𝐵′∞) � 𝐻1
cont(𝐺

′, (𝐵′∞)
{1}×Γ) = 𝐻1

cont (𝐺
′, 𝐵′) = 𝐻1

cont (Γ, 𝐵
′) � 𝐻1

cont(Γ, 𝐴).

As 𝐻1
cont (Γ, 𝐴) is a free A-module of rank 1, the composite 𝜏1 ◦ 𝜏

−1
2 ∈ End𝐴(𝐻1

cont (Γ, 𝐴)) = 𝐴 is given
by an element 𝑎 ∈ 𝐴×.

Lemma 3.4.3. 𝜙𝑋 ′ : Lie(Γ) → 𝐵′ ⊗Q𝑝 Lie(Γ) is multiplication by a.

Proof. Fix a topological generator 𝛾 of Γ. Unravelling all of the isomorphisms above, we can find an
element 𝑏 ∈ 𝐵′∞ such that

(𝛾, 1) · 𝑏 − 𝑏 = −1 (3.4.1)

(1, 𝛾) · 𝑏 − 𝑏 = 𝑎. (3.4.2)

Here (𝛾, 1), (1, 𝛾) are elements in 𝐺 ′ × Γ = Γ × Γ. In particular, both actions of Γ on b are analytic.
As pointed out in Remark 3.3.7, in order to compute 𝜙𝑋 ′ , we choose a faithful representation of

𝐺 ′ = Γ on 𝑉 = Q⊕2
𝑝 :

Γ→ GL2(Q𝑝), 𝛾 ↦→

(
1 1
0 1

)
.

Then 𝐵′∞ ⊗Q𝑝 𝑉 = (𝐵′∞)
⊕2 has a 𝐺 ′-fixed basis over 𝐵′∞:

𝑒1 = (1, 0), 𝑒2 = (𝑏, 1).

Moreover, it is easy to see that the action of Γ on this basis is (locally) analytic. Therefore, 𝜙𝑉 is obtained
by 𝐵′∞-linearly extending the action of Lie(Γ) on 𝑒1, 𝑒2. Let 𝑡 ∈ Lie(Γ) be the logarithm of 𝛾. Then
𝑡 · 𝑒1 = 0 and it follows from Equation (3.4.2) that 𝑡 · 𝑒2 = 𝑎𝑒1. Hence,

𝜙𝑉 : Lie(Γ) → 𝐵′∞ ⊗Q𝑝 𝔤𝔩2 (Q𝑝)

𝑡 ↦→

(
0 𝑎
0 0

)
.

Comparing this with the definition of V, we see that 𝜙𝑋 ′ is just multiplication by a. �

3.4.4. Now we are ready to prove 𝜙𝑋 is well-defined up to 𝐴×. We will keep using the notation introduced
in Section 3.4.2. Suppose 𝑋 is ‘log G-Galois pro-étale perfectoid covering’ of X. Now using 𝑓2 : 𝑋 → 𝑌
instead of 𝑓1 : 𝑋 → 𝑌 in the setup Section 3.2.1 and redoing everything before, then rather than 𝜙𝑋 , we
get

𝜙′
𝑋

: Lie(Γ) → 𝐵 ⊗Q𝑝 Lie(𝐺).

Proposition 3.4.5. 𝑎𝜙′
𝑋
(𝑥) = 𝜙𝑋 (𝑥), for any 𝑥 ∈ Lie(Γ). In particular, 𝜙′

𝑋
and 𝜙𝑋 differ by a unit of A.

Proof. First note that the special case 𝑋 = 𝑋∞ = Spa(𝐴∞, 𝐴+∞) is essentially proved by the same
computation as above (after switching the role of 𝑓1 and 𝑓2). In general, let V be a finite-dimensional
continuous representation of G over Q𝑝 . It is enough to show that 𝑎−1𝜙𝑉 on 𝐵∞ ⊗Q𝑝 𝑉 agrees with the
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action of Lie(Γ) induced from 𝜙′
𝑋

. Consider 𝑋∞ := Spa(𝐵∞, 𝐵+∞). This is a ‘log 𝐺 × Γ-Galois pro-étale
perfectoid covering’ of X. Then by the functorial property Corollary 3.3.9,

𝜙′
𝑋
≡ 𝜙′

𝑋∞
mod 𝐵∞ ⊗Q𝑝 Lie(Γ).

Hence, the actions of Lie(Γ) on 𝐵∞ ⊗Q𝑝 𝑉 induced from 𝜙′
𝑋

and 𝜙′
𝑋∞

are the same because Γ acts
trivially on V. So it suffices to compare 𝑎−1𝜙𝑉 and 𝜙′

𝑋∞
.

Since both actions are 𝐵∞-linear, it follows from Proposition 3.2.11 that we only need to compare two
actions on the Γ-locally analytic vectors in (𝐵∞ ⊗Q𝑝 𝑉)𝐺 . Now on this G-fixed subspace, 𝜙𝑉 acts by the
natural Lie algebra action of Lie(Γ), while by Remark 3.3.8 and the functorial property Corollary 3.3.9,

𝜙′
𝑋∞
≡ 𝜙′𝑋∞mod 𝐵∞ ⊗Q𝑝 Lie(𝐺),

the action on (𝐵∞ ⊗Q𝑝 𝑉)𝐺,Γ−la induced by 𝜙′
𝑋∞

is just 𝜙′𝑋∞ . Hence, the desired equality is a direct

consequence of the special case 𝑋 = 𝑋∞. �

Remark 3.4.6. One can also use Corollary 3.3.11 to reduce the general case to the special case 𝑋 = 𝑋∞.

3.5. Locally analytic covering

3.5.1. The goal of this subsection is to give a sufficient condition for 𝜃 to be nonzero. We will continue
using the notation introduced before. In particular, there is a fixed étale map 𝑓1 : 𝑋 → 𝑌 as in Section
3.2.1. First, let’s recall Faltings’s extension in the rigid analytic variety setting; cf. Corollary 6.14
of [Sch13a], Corollary 2.4.5 of [DLLZ18]. However, as both references assume X is defined over a
discretely valued complete non-Archimedean extension of Q𝑝 , we give a rather ad hoc definition here
which will be sufficient for our purpose.

Fix a generator 𝛾 of Γ from now on and consider the following unipotent representation of Γ on
𝑉 = Q⊕2

𝑝 :

Γ→ GL2 (Q𝑝) : 𝛾 ↦→

(
1 1
0 1

)
.

Clearly, V is an extension of the trivial representation by itself:

0→ Q𝑝 → 𝑉 → Q𝑝 → 0.

Tensor this exact sequence with 𝐵∞ over Q𝑝 and take Γ-invariants with respect to the diagonal actions:

0→ 𝐵→ (𝐵∞ ⊗Q𝑝 𝑉)
Γ → 𝐵→ 0. (FE)

Note that this G-equivariant sequence is exact by the almost purity theorem. It follows from the discussion
in 3.4.2 that its extension class is independent of the choice of 𝑓1 up to multiplication by a unit of A.

The norm on 𝐵∞ induces norms on 𝐵∞ ⊗𝑉 = (𝐵∞)⊕2 and its subspaces, and (FE) is continuous with
respect to this topology. One important property of (FE) is that if we take the continuous G-cohomology,
the following connecting homomorphism of the long exact sequence is an isomorphism:

𝐴 = 𝐵𝐺
∼
−→ 𝐻1

cont (𝐺, 𝐵).

This can be seen by identifying

𝐻𝑖cont (𝐺, 𝐵) � 𝐻𝑖cont(𝐺 × Γ, 𝐵∞) � 𝐻𝑖cont (Γ, 𝐴∞) � 𝐻𝑖cont (Γ, 𝐴),
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where the first two isomorphisms follow from the almost purity theorem and the last isomorphism is a
consequence of the Tate’s normalised trace. Then it is easy to compute the connecting homomorphism.

In fact, this holds for any open subgroup 𝐺0 of G; that is, if we take the continuous 𝐺0-cohomology
of (FE), the connecting homomorphism 𝐵𝐺0 → 𝐻1

cont (𝐺0, 𝐵) is an isomorphism. To see this, note that
Spa(𝐵, 𝐵+) is a ‘log𝐺0-Galois pro-étale perfectoid covering’ of Spa(𝐵𝐺0 , (𝐵+)𝐺0). Hence, 𝐻1

cont (𝐺0, 𝐵)
is also a free rank 1 𝐵𝐺0 -module. So in view of what we have proved, the claim follows from the fact
that the natural map 𝐵𝐺0 ⊗𝐴 𝐻1

cont (𝐺, 𝐵) → 𝐻1
cont(𝐺0, 𝐵) is an isomorphism.

Remark 3.5.2. If X is defined over a finite extension ofQ𝑝 , then (FE) recovers (log) Faltings’s extension
on �̃� defined in [Sch13a, DLLZ18] by identifying the quotient B with 𝐵 ⊗𝐴 Ω1

𝐴/𝐶
(𝑆) sending 1 ∈ 𝐵

to 𝑓 ∗1 (
𝑑𝑇
𝑇 ), where Ω1

𝐴/𝐶
(𝑆) denotes the continuous 1-forms of A over C with a simple pole at S. See

Proposition 2.3.15 and proof of Corollary 2.4.2 of [DLLZ18]. Here �̃� is viewed as an open set in the
pro-Kummer étale site of X equipped with the natural log structure defined by S (cf. Example 2.1.2 of
[DLLZ18]).

Proposition 3.5.3. The following conditions are equivalent:

(1) (FE) remains exact after taking 𝐺0-analytic vectors for some open subgroup 𝐺0 of G equipped with
an integer-valued, saturated p-valuation as in Section 2.1.1.

(2) (FE) remains exact after taking G-locally analytic vectors of each term.
(3) There exists a G-locally analytic vector 𝑧 ∈ 𝐵∞ such that 𝛾(𝑧) = 𝑧 − 1.

Proof. The first two parts are clearly equivalent with existence of a G-locally analytic vector 𝑥 ∈
(𝐵∞ ⊗Q𝑝 𝑉)

Γ mapping to 1 ∈ 𝐵 in (FE). Write 𝐵∞ ⊗Q𝑝 𝑉 = (𝐵∞)⊕2. Then 𝑥 = (𝑧, 1) for some 𝑧 ∈ 𝐵∞
which is G-locally analytic and satisfies 𝛾(𝑧) = 𝑧 − 1. This proves the equivalence between these three
conditions. �

Definition 3.5.4. We say 𝑋 is a locally analytic covering of X if one of the conditions in Proposition
3.5.3 holds.

Remark 3.5.5. An analysis similar to Section 3.4.2 shows that this definition is independent of the
choice of 𝑓1 : 𝑋 → 𝑌 . There is another intrinsic definition: 𝑋 is a locally analytic covering of X if and
only if the natural map 𝐻1

cont (𝐺, 𝐵la) → 𝐻1
cont(𝐺, 𝐵) is an isomorphism. We sketch a proof here. It

follows from Tate’s normalised trace that 𝐻1
cont (Γ, (𝐴∞)

la) � 𝐻1 (Γ, 𝐴∞). Note that 𝐴∞ = (𝐵∞)𝐺 . We
claim that there are natural isomorphisms

𝐻1
cont(𝐺 × Γ, (𝐵∞)

la) � 𝐻1
cont (Γ, (𝐴∞)

la) � 𝐻1
cont(Γ, 𝐴∞) � 𝐻1

cont (𝐺 × Γ, 𝐵∞).

The first and third isomorphisms follow from the Hochschild–Serre spectral sequence and
𝐻1

cont (𝐺, 𝐵∞) = 𝐻1
cont (𝐺, (𝐵∞)

la) = 0. The vanishing of 𝐻1
cont (𝐺, 𝐵∞) is clear by the almost pu-

rity theorem. For the vanishing of 𝐻1
cont (𝐺, (𝐵∞)

la), using Lemma 3.3.2, it suffices to show that
lim
−−→𝑛

𝐻1 (𝐺𝑛,𝒞
an (𝐺𝑛,Q𝑝)) = 0, which is true. Now we apply the Hochschild–Serre spectral sequence

to the subgroup {1} × Γ ⊂ 𝐺 × Γ in the computation of 𝐻1
cont (𝐺 × Γ, (𝐵∞)la) and 𝐻1

cont (𝐺 × Γ, 𝐵∞).
Since 𝐻1

cont (Γ, 𝐵∞) = 0, it is easy to see that 𝐻1
cont (𝐺, 𝐵la) � 𝐻1

cont (𝐺, 𝐵) is equivalent with

𝐻1 (Γ, (𝐵∞)
la)𝐺 = 0;

that is, the Γ-coinvariants of (𝐵∞)la have no G-invariants. Note that 1 ∈ (𝐵∞)la is fixed by G. Hence, the
vanishing of 𝐻1(Γ, (𝐵∞)la)𝐺 certainly implies the existence of element z in the third part of Proposition
3.5.3. On the other hand, if there exists such an element z, the argument in Section 3.6.7 will imply that
𝐻1 (Γ, (𝐵∞)la) = 0. This finishes the proof.

Proposition 3.5.6. 𝜙𝑋 : Lie(Γ) → 𝐵 ⊗Q𝑝 Lie(𝐺) is nonzero if 𝑋 is a locally analytic covering of X.
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Proof. We need results established in Section 3.3.1. Let 𝐺0 an open subgroup as in Section 3.3.1.
Suppose 𝜙𝑋 = 0. It follows from our construction there and Lemma 3.3.2 that Lie(Γ) is acting trivially
on the Γ-locally analytic vectors in (𝐵∞)𝐺0−an. Hence, there does not exist an element 𝑧 ∈ (𝐵∞)𝐺0−an

such that 𝛾(𝑧) = 𝑧 − 1. As 𝐺0 can be taken arbitrarily small, part (3) of Proposition 3.5.3 implies that
𝑋 is not a locally analytic covering of X. �

3.6. Application: acyclicity of taking locally analytic vectors of B

We keep the notation and setup from Section 3.1.1. Our main result of this subsection gives an equivalent
condition for B being 𝔏𝔄-acyclic. See Subsection 2.2 for more details about this notion.

Theorem 3.6.1. Suppose 𝑋 = Spa(𝐵, 𝐵+) is a ‘log G-Galois pro-étale perfectoid covering’ of X and
X is small. Then 𝑅𝑖𝔏𝔄(𝐵) = 0 for all 𝑖 ≥ 1 if and only if 𝑋 is a locally analytic covering of X (see
Definition 3.5.4). When this happens, B is strongly 𝔏𝔄-acyclic.

3.6.2. One direction is clear. Suppose 𝑅𝑖𝔏𝔄(𝐵) = 0, 𝑖 ≥ 1. Take completed tensor products of (FE)
with 𝒞an (𝐺𝑛,Q𝑝) over Q𝑝 and take the continuous 𝐺𝑛-cohomology

0→ 𝐵𝐺𝑛−an → (𝐵∞ ⊗Q𝑝 𝑉)
Γ,𝐺𝑛−an → 𝐵𝐺𝑛−an → 𝐻1

cont (𝐺𝑛,𝒞
an(𝐺𝑛,Q𝑝)⊗̂Q𝑝𝐵).

Then by passing to the direct limit with 𝑛→∞, we see that the last term vanishes. Hence, (FE) remains
exact when taking G-locally analytic vectors.

3.6.3. The proof of the other direction goes as follows: first 𝐻𝑖cont (𝐺𝑛, 𝐵⊗̂Q𝑝𝒞
an(𝐺𝑛,Q𝑝)) will be

identified with a certain group cohomology of Γ and then we construct explicit elements to kill these
cohomology groups. In particular, it implies strongly 𝔏𝔄-acyclicity. We remark that this is a standard
technique in the theory of (𝜑, Γ)-modules for studying Galois cohomology of p-adic Galois represen-
tations.

Keep the notation introduced in Section 3.2.1. Let 𝐺0 be an open subgroup considered in Section
3.3.1. We can consider 𝐻𝑖cont (𝐺0 × Γ, 𝐵∞⊗̂Q𝑝𝒞

an (𝐺0,Q𝑝)). On the one hand, by the almost purity
theorem, 𝐻𝑖cont (Γ, 𝐵

+
∞ ⊗Z𝑝 𝒞

an(𝐺0,Q𝑝)
◦/𝑝) almost vanishes for 𝑖 ≥ 1; hence,

𝐻𝑖cont (Γ, 𝐵∞⊗̂Q𝑝𝒞
an(𝐺0,Q𝑝)) = 0.

Applying the Hochschild–Serre spectral sequence to {1} × Γ ⊂ 𝐺0 × Γ and using Lemma 3.2.9, we get

𝐻𝑖cont (𝐺0, 𝐵⊗̂Q𝑝𝒞
an(𝐺0,Q𝑝))

∼
−→ 𝐻𝑖cont (𝐺0 × Γ, 𝐵∞⊗̂Q𝑝𝒞

an(𝐺0,Q𝑝)).

On the other hand, if we apply the Hochschild–Serre spectral sequence to 𝐺0 × {1} ⊂ 𝐺0 × Γ and
note that (𝐵∞⊗̂Q𝑝𝒞an(𝐺0,Q𝑝))

𝐺0 = (𝐵∞)𝐺0−an, we get

𝐻𝑖cont(Γ, (𝐵∞)
𝐺0−an)

∼
−→ 𝐻𝑖cont (𝐺0 × Γ, 𝐵∞⊗̂Q𝑝𝒞

an(𝐺0,Q𝑝)).

All of these isomorphism are functorial in 𝐺0. Therefore,

Lemma 3.6.4. There is a natural isomorphism

𝐻𝑖cont (𝐺0, 𝐵⊗̂Q𝑝𝒞
an (𝐺0,Q𝑝)) � 𝐻𝑖cont (Γ, (𝐵∞)

𝐺0−an)

functorial in 𝐺0.

3.6.5. From this, it is clear that 𝐻𝑖cont (𝐺0, 𝐵⊗̂Q𝑝𝒞
an(𝐺0,Q𝑝)) = 0, 𝑖 ≥ 2 as Γ is 1-dimensional. So we

assume 𝑖 = 1 from now on. Our next step is to replace (𝐵∞)𝐺0−an on the right-hand side by a smaller
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space. Let 𝐷𝐺0 ,𝑛 be the subspace of 𝑝𝑛Γ-analytic vectors in (𝐵∞)𝐺0−an; that is, (𝐵∞)𝐺0×𝑝
𝑛Γ−an. It

follows from Lemma 3.3.2 that for sufficiently large n,

(𝐵∞)
𝐺0−an = 𝐵𝐺0 ,∞⊗̂𝐵𝐺0 ,𝑛

𝐷𝐺0 ,𝑛.

Moreover, let 𝐷+𝐺0 ,𝑛
= 𝐵+∞ ∩ 𝐷𝐺0 ,𝑛; then by our construction in Section 3.3.1,

(𝛾 − 1)𝑚(𝐷+𝐺0 ,𝑛
) ⊂ 𝑝𝐷+𝐺0 ,𝑛

for some m depending on n. Fix such n and m for the moment. Recall that from results in Section
3.2.6, for k large enough, there is Tate’s normalised trace tr𝑋𝐺0 ,𝑘

: 𝐵𝐺0 ,∞ → 𝐵𝐺0 ,𝑘 and 𝛾 − 1 is
invertible on ker(tr𝑋𝐺0 ,𝑘

) with the norm of its inverse ‖(𝛾 − 1)−1‖ < 𝑝
1

2𝑚 . We claim that 𝐻1
cont

(Γ, ker(tr𝑋𝐺0 ,𝑘
)⊗̂𝐵𝐺0 ,𝑛

𝐷𝐺0 ,𝑛) = 0 for such k. Assuming this, as 𝐷𝐺0 ,𝑘 = 𝐵𝐺𝑛 ,𝑘 ⊗𝐵𝐺0 ,𝑛
𝐷𝐺0 ,𝑛, we get

𝐻1
cont (Γ, (𝐵∞)

𝐺0−an) = 𝐻1
cont (Γ, 𝐷𝐺0 ,𝑘 ) = 𝐻1

cont (Γ, (𝐵∞)
(𝐺0×𝑝

𝑘Γ)−an)

for k sufficiently large. Therefore,

𝑅1𝔏𝔄(𝐵) = lim
−−→
𝑛,𝑘

𝐻1
cont (Γ, (𝐵∞)

(𝐺𝑛×𝑝
𝑘Γ)−an).

The vanishing of 𝐻1
cont(Γ, ker(tr𝑋𝐺0 ,𝑘

)⊗̂𝐵𝐺0 ,𝑛
𝐷𝐺0 ,𝑛) is a consequence of the following easy lemma.

Lemma 3.6.6. For any 𝑎 ∈ ker(tr𝑋𝐺0 ,𝑘
)+ := ker(tr𝑋𝐺0 ,𝑘

) ∩ 𝐵+∞ and 𝑏 ∈ 𝐷+𝐺0 ,𝑛
, we have 𝑝𝑎 ⊗ 𝑏 ∈

(𝛾 − 1) (ker(tr𝑋𝐺0 ,𝑘
)+⊗̂𝐵+

𝐺0 ,𝑘
𝐷+𝐺0 ,𝑛

).

Proof. Let 𝑐 = (𝛾 − 1)−1(𝑝𝑎) ∈ ker(tr𝑋𝐺0 ,𝑘
)+. Consider the series

+∞∑
𝑙=0
(𝛾−1 − 1)−𝑙 (𝑐) ⊗ (𝛾 − 1)𝑙 (𝑏) =

+∞∑
𝑙=0

𝛾𝑙 (1 − 𝛾)−𝑙 (𝑐) ⊗ (𝛾 − 1)𝑙 (𝑏)

which by our assumption converges to an element 𝑥 ∈ ker(tr𝑋𝐺0 ,𝑘
)+⊗̂𝐵+

𝐺0 ,𝑘
𝐷+𝐺0 ,𝑛

. A direct computation
gives (𝛾 − 1) (𝑥) = 𝑝𝑎 ⊗ 𝑏. Indeed, let

𝑦𝑙 = (𝛾
−1 − 1)−𝑙 (𝑐), 𝑧𝑙 = (𝛾 − 1)𝑙 (𝑏).

Then (𝛾 − 1) (𝑦𝑙) = −𝛾(𝑦𝑙−1), (𝛾 − 1) (𝑧𝑙) = 𝑧𝑙+1. Hence,

(𝛾 − 1) (𝑦𝑙 ⊗ 𝑧𝑙) = (𝛾 − 1) (𝑦𝑙) ⊗ 𝑧𝑙 + 𝛾(𝑦𝑙) ⊗ (𝛾 − 1) (𝑧𝑙) = −𝛾(𝑦𝑙−1) ⊗ 𝑧𝑙 + 𝛾(𝑦𝑙) ⊗ 𝑧𝑙+1.

When taking the summation of l from 0 to +∞, only −𝛾(𝑦−1) ⊗ 𝑧0 is not cancelled out. But this is just
(𝛾 − 1) (𝑐) ⊗ 𝑏 = 𝑝𝑎 ⊗ 𝑏. �

3.6.7. Now it suffices to show that for any element 𝑥 ∈ (𝐵∞) (𝐺0×𝑝
𝑘Γ)−an, we can find 𝑛 > 0 and 𝑙 ≥ 𝑘

such that

𝑥 ∈ (𝛾 − 1) ((𝐵∞) (𝐺𝑛×𝑝
𝑙Γ)−an).

Fix such 𝑘, 𝑥. Let 𝜙𝛾 ∈ Lie(Γ) be the logarithm of 𝛾. Then by Lemma 2.1.8, there exists a constant
𝐶 > 0 such that

‖𝜙𝛾 (𝑥)‖𝐺0×𝑝𝑘Γ ≤ 𝐶‖𝑥‖𝐺0×𝑝𝑘Γ .

Recall that ‖ · ‖𝐺0×𝑝𝑘Γ is a norm on the 𝐺0 × 𝑝𝑘Γ-analytic vectors introduced in Section 2.1.1.
Recall that we assume 𝑋 is a locally analytic covering of X. Hence, by part (3) of Proposition

3.5.3, we may find an element 𝑧 ∈ (𝐵∞)
la such that 𝛾(𝑧) = 𝑧 − 1. By our construction of 𝐵∞ in
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Section 3.2.6,
⋃
𝑛,𝑙 𝐵𝐺𝑛 ,𝑙 is dense in 𝐵∞. Hence, there exists an element 𝑧0 ∈ 𝐵𝐺𝑛 ,𝑙 for some 𝑛, 𝑙 such

that 𝑧 ∈ (𝐵∞) (𝐺𝑛×𝑝
𝑙Γ)−an and the norm of 𝑧 − 𝑧0 (as an element in 𝐵∞) satisfies

‖𝑧 − 𝑧0‖ ≤
1

2𝐶𝑝1/(𝑝−1) .

Enlarging 𝑛, 𝑙 if necessary, we may assume ‖𝑧 − 𝑧0‖𝐺𝑛×𝑝𝑙Γ = ‖𝑧 − 𝑧0‖ by Lemma 2.1.8. Now consider
the series

−

+∞∑
𝑚=0

𝜙 (𝑚)𝛾 (𝑥)

(𝑚 + 1)!
(𝑧 − 𝑧0)

𝑚+1.

It is easy to see that ‖ 𝜙
(𝑚)
𝛾 (𝑥)

(𝑚+1)! (𝑧 − 𝑧0)
𝑚+1‖𝐺𝑛×𝑝𝑙Γ ≤

‖𝑥 ‖𝐺0×𝑝𝑘Γ

2𝑚+1𝐶 . So this series converges (with respect
to ‖ · ‖𝐺𝑛×𝑝𝑙Γ) to an element 𝑦 ∈ (𝐵∞)

(𝐺𝑛×𝑝
𝑙Γ)−an. Note that 𝜙𝛾 (𝑧 − 𝑧0) = 𝜙𝛾 (𝑧) = −1. A direct

computation shows

𝜙𝛾 (𝑦) = 𝑥.

After replacing l by a larger integer, we may assume (𝛾 − 1)𝑚(𝐷+𝐺𝑛 ,𝑙) ⊂ 𝑝𝐷+𝐺𝑛 ,𝑙 for some 𝑚 > 0 by our
construction in Section 3.3.1. Recall that 𝐷+𝐺𝑛 ,𝑙 = (𝐵∞)

(𝐺𝑛×𝑝
𝑙Γ)−an ∩ 𝐵+∞. From this and 𝜙𝛾 (𝑦) = 𝑥, we

conclude 𝑥 ∈ (𝛾 − 1) ((𝐵∞) (𝐺𝑛×𝑝
𝑙Γ)−an) by the following simple lemma.

Lemma 3.6.8. Let M be a unitary Q𝑝-Banach representation of Γ and 𝑀𝑜 be its unit ball. Suppose
(𝛾 − 1)𝑚𝑀𝑜 ⊂ 𝑝𝑀𝑜 for some 𝑚 ≥ 0. Then 𝜙𝛾 (𝑀) ⊂ (𝛾 − 1) (𝑀).

Proof. The argument here was pointed out by a referee and is much simpler than my previous argument.
One only needs to observe that 𝜙𝛾 is the logarithm of 𝛾; hence,

𝜙𝛾 = (𝛾 − 1)
∑
𝑚=0
(−1)𝑚

(𝛾 − 1)𝑚

𝑚 + 1
,

and the second series converges to an operator on M by our assumption. �

Remark 3.6.9. The argument of this subsection is basically the same as the proof of Théorème 3.4
of [BC16]. Note that in their setting, the assumption ‘locally analytic’ always holds by Lemme 3.6 of
[BC16].

For later applications, it will be useful to remove the smallness assumption on X in Theorem 3.6.1.
Unfortunately, we have to make some assumption in order to do this. Let 𝑋 = Spa(𝐵, 𝐵+) be a ‘log G-
Galois pro-étale perfectoid covering’ of 𝑋 = Spa(𝐴, 𝐴+) as in Section 3.1.1 except that we do not require
X to be small anymore. Denote by 𝜋 : 𝑋 → 𝑋 and Õ = 𝜋∗O𝑋 . Then we can consider subsheaf Õla

⊂ Õ
of G-locally analytic sections and subsheaves Õ𝑛 ⊂ Õ of 𝐺𝑛-analytic sections. Clearly, lim

−−→𝑛
Õ𝑛 = Ola.

Corollary 3.6.10. Suppose 𝑋 = Spa(𝐵, 𝐵+) is a ‘log G-Galois pro-étale perfectoid covering’ of 𝑋 =
Spa(𝐴, 𝐴+) and X can be covered by small rational open subsets 𝑋𝑖 , 𝑖 = 1, · · · , 𝑘 , whose preimage 𝑋𝑖
in �̃� is a locally analytic covering of 𝑋𝑖 . Then

(1) 𝑅𝑖𝔏𝔄(𝐵) = 𝐻𝑖 (𝑋, Õla
) = �̌�𝑖 (𝑋, Õla

) for any i, where �̌�𝑖 (𝑋, Õla
) denotes the Čech cohomology.

In particular, B is 𝔏𝔄-acyclic if and only if

�̌�𝑖 (𝑋, Õla
) = 0, 𝑖 ≥ 1.
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(2) Write 𝔘0 = {𝑋1, · · · , 𝑋𝑘 }. For any sheaf F on X, denote by �̌�𝑖 (𝔘0, 𝐹) the Čech cohomology of F
with respect to the cover 𝔘0. Suppose the direct system {�̌�𝑖 (𝔘0, Õ

𝑛
)}𝑛 is essentially zero for any

𝑖 > 0. Then B is strongly 𝔏𝔄-acyclic.

Proof. The argument here is a standard application of Čech cohomology. Let 𝔅 be the set of small
rational open subsets of X contained in some 𝑋𝑖 . It is easy to see that𝔅 is closed under finite intersections
and forms a basis of open subsets of X. Moreover, for any 𝑈 ∈ 𝔅, 𝜋−1 (𝑈) is a locally analytic covering
of U. We claim that for any 𝑖 ≥ 1,𝑈 ∈ 𝔅, the Čech cohomology

�̌�𝑖 (𝑈, Õla
) = 0.

To see this, since U is quasi-compact, any open cover of U can be refined to a finite cover 𝔘 ⊂ 𝔅. Let
𝐶•(𝔘, Õ), 𝐶•(𝔘, Õla

) be the Čech complex for Õ and Õla
with respect to this cover. Then 𝐵→ 𝐶•(𝔘, Õ)

is strictly exact by the almost vanishing of higher cohomology (Theorem 1.8.(iv) of [Sch12]). Note that
each term in this complex is 𝔏𝔄-acyclic by Theorem 3.6.1. Passing to locally analytic vectors, we see
that 𝐵la → 𝐶•(𝔘, Õla

) is also exact by the second part of Lemma 2.2.2. Hence, �̌�𝑖 (𝑈, Õla
) = 0, 𝑖 ≥ 1.

Now by Corollaire 4, p. 176 of [Gro57], the vanishing of higher Čech cohomology for any 𝑈 ∈ 𝔅

implies that 𝐻𝑖 (𝑈, Õla
) = 0, 𝑖 ≥ 1 and 𝐻𝑖 (𝑋, Õla

) = �̌�𝑖 (𝑋, Õla
). Hence, we can compute 𝐻𝑖 (𝑋, Õla

)

using a Čech complex with respect to a finite cover in 𝔅. We can use 𝔘0 here. All of the claims in the
corollary follow on applying the third part of Lemma 2.2.2 to 𝐵→ 𝐶•(𝔘0, Õ). �

4. Locally analytic functions on perfectoid modular curves

Now we apply the previous general theory to the case of modular curves of infinite level at p. It turns
out that in this case, the differential operator in Theorem 3.1.2 is very classical (see Theorem 4.2.7)
and (twisted) 𝒟-modules on the flag variety appear naturally in this setup. Following Berger–Colmez
[BC16], we also give explicit descriptions of the GL2(Q𝑝)-locally analytic functions on the infinite
level modular curve. This will be important for our calculations in the next section.

In the first subsection, we will collect some basic facts about modular curves of infinite level at p
and the Hodge–Tate period map. This is the simplest case in the theory of perfectoid Shimura varieties
developed by Scholze in [Sch15].

4.1. Modular curves and the Hodge–Tate period map

4.1.1. We define modular curves adèlically. Fix a neat open compact subgroup 𝐾 ⊂ GL2(A 𝑓 ) and let
𝑌𝐾 /Q be the moduli space of elliptic curves with level-K structure. Let H±1 be the union of upper and
lower half-planes. The complex points of 𝑌𝐾 are given by the usual double quotient

𝑌𝐾 (C) = GL2 (Q)\(H
±1 × GL2(A 𝑓 )/𝐾).

𝑌𝐾 admits a natural compactification 𝑋𝐾 /Q by adding finitely many cusps. The universal elliptic
curve over 𝑌𝐾 extends to a semi-abelian variety over 𝑋𝐾 and we denote by 𝜔 the sheaf of its invariant
differentials. On the complex points,𝜔 is the canonical extension of 𝜔|𝑌𝐾 (C) as defined in Main Theorem
3.1 of [Mum77].

Fix a complete algebraically closed non-Archimedean field extension C of Q𝑝 as in Section 3.1.1.
Denote by X𝐾 (respectively Y𝐾 ) the adic space associated to 𝑋𝐾 ×Q 𝐶 (respectively 𝑌𝐾 ×Q 𝐶).

Theorem 4.1.2. For any tame level 𝐾 𝑝 ⊂ GL2(A
𝑝
𝑓 ) contained in the level-N subgroup {𝑔 ∈ GL2 (Ẑ

𝑝) =∏
𝑙≠𝑝 GL2 (Z𝑙) | 𝑔 ≡ 1mod 𝑁} for some 𝑁 ≥ 3 prime to p, there exists a unique perfectoid space X𝐾 𝑝

over C such that

X𝐾 𝑝 ∼ lim
←−−

𝐾𝑝⊂GL2 (Q𝑝)

X𝐾 𝑝𝐾𝑝 ,

https://doi.org/10.1017/fmp.2022.1 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2022.1


Forum of Mathematics, Pi 31

where 𝐾𝑝 runs through all open compact subgroups of GL2 (Q𝑝). Therefore, there is a natural right
action of GL2 (Q𝑝) on X𝐾 𝑝 . Moreover, for any open compact subgroup 𝐾𝑝 of GL2(Q𝑝), there is a basis
consisting of open affinoid subsets U of X𝐾 𝑝𝐾𝑝 with affinoid perfectoid preimage 𝑈∞ in X𝐾 𝑝 , and the
map

lim
−−→

𝐾 ′𝑝⊂𝐾𝑝

𝐻0 (𝑈𝐾 ′𝑝 ,OX𝐾𝑝𝐾′𝑝 ) → 𝐻0(𝑈∞,OX𝐾𝑝 )

has dense image. Here 𝑈𝐾 ′𝑝 denotes the preimage of U in X𝐾 𝑝𝐾 ′𝑝 .

Proof. The existence of X𝐾 𝑝 basically follows from Theorem III.1.2 of [Sch15] by taking connected
components into account. For the existence of a basis of open subsets of X𝐾 𝑝𝐾𝑝 , by part (iii) of Theorem
III.1.2 of [Sch15], for sufficiently small 𝐾𝑝 , we can find an open cover ofX𝐾 𝑝𝐾𝑝 with the desired density
property. As taking rational subsets preserves this density property by Lemma 4.5 of [Sch13a], we may
find such a basis 𝔅𝐾𝑝 of open affinoid subsets for sufficiently small 𝐾𝑝 . In general, we can descend
this property to any 𝐾𝑝 . To see this, it is enough to find an affinoid cover of X𝐾 𝑝𝐾𝑝 with the desired
properties. We may assume 𝐾𝑝 is a subgroup of GL2 (Z𝑝). Take an GL2 (Z𝑝)-invariant affinoid cover of
ℱℓ. Then Scholze’s result implies that this cover comes from an affinoid cover of X𝐾 𝑝𝐾 ′𝑝 for some 𝐾 ′𝑝
sufficiently small. We may assume 𝐾 ′𝑝 is a normal subgroup of 𝐾𝑝 . Hence, X𝐾 𝑝𝐾𝑝 can be viewed as the
quotient of X𝐾 𝑝𝐾 ′𝑝 by 𝐾𝑝/𝐾

′
𝑝 and we can descend this cover to X𝐾 𝑝𝐾𝑝 by [Han16, Theorem 1.3]. �

4.1.3. One powerful tool to study the geometry of X𝐾 𝑝 is the Hodge–Tate period map introduced in
Theorem III.1.2 of [Sch15]. We will give an equivalent definition in our setup.

Fix a 𝐾 𝑝 as in the theorem and an open subgroup 𝐾𝑝 of GL2(Z𝑝). Let X = X𝐾 ,Y = Y𝐾 with
𝐾 = 𝐾 𝑝𝐾𝑝 and let 𝑓 : E → Y be the universal elliptic curve. Then 𝑅1 𝑓∗Z𝑝 defines a rank 2 étale
Z𝑝-local system 𝑉 . Our normalisation is that

◦ 𝑉 corresponds to the standard representation of 𝐾𝑝 ⊂ GL2 (Z𝑝). See, for example, Subsection 2.4 of
[Eme06a].

This Z𝑝-local system 𝑉 induces a Ẑ𝑝-local system �̂� on Yproét, the pro-étale site of Y; see 8.1, 8.2 of
[Sch13a] for the notation here. On the other hand, we denote by 𝐷dR the relative de Rham cohomology
of E over Y. This is a rank 2 vector bundle on Y equipped with a (decreasing) Hodge filtration Fil• and
Gauss–Manin connection ∇𝑉 . Its graded components are given by

gr𝑛 (𝐷dR) �

⎧⎪⎪⎨⎪⎪⎩
𝜔−1 |Y, 𝑛 = 0
𝜔|Y, 𝑛 = 1
0, 𝑛 ≠ 0, 1

.

Here implicitly we choose a polarisation of E – that is, an isomorphism ∧2𝐷dR � OY – and we will fix
this choice from now on. Recall that there is the structural de Rham sheaf OBdR on Yproét also equipped
with a decreasing filtration and a BdR-linear connection; cf. §6 of [Sch13a] and [Sch16]. By the relative
de Rham comparison theorem (Theorem 8.8 of [Sch13a]), there is a natural isomorphism

�̂� ⊗Ẑ𝑝 OBdR � 𝐷dR ⊗OY OBdR

compatible with the filtrations and connections. Here, by abuse of notation, 𝐷dR is viewed as a sheaf on
Yproét by Lemma 7.3 of [Sch13a].

Next, we extend these results to X using the theory of log adic spaces. See [DLLZ19, DLLZ18] for
more details here. We will view X as a log adic space by equipping it with the natural log structure
defined by the cusps C := X − Y; cf. Example 2.1.2 of [DLLZ18]. Then �̂� defines a rank 2 Ẑ𝑝-local
system �̂� log on Xprokét, the pro-Kummer étale site of X. There is also the structural de Rham sheaf
OBdR,log on Xprokét equipped with a decreasing filtration and a logarithmic connection:

∇ : OBdR,log → OBdR,log ⊗OX Ω1
X(C).
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Here Ω1
X (C) as usual denotes the sheaf of differentials on X with simple poles at C. As the monodromy

of𝑉 along each cusp is unipotent, we have the following relative log de Rham comparison isomorphism
(Theorem 3.2.12 and its proof of [DLLZ18]):

�̂� log ⊗Ẑ𝑝 OBdR,log � 𝐷dR,log ⊗OX OBdR,log (4.1.1)

compatible with the filtrations and logarithmic connections, where 𝐷dR,log is a filtered vector bundle
equipped with a logarithmic connection ∇𝑉 . In fact, by Theorem 1.7 of [DLLZ18], (𝐷dR,log,∇𝑉 ) is the
canonical extension of (𝐷dR,∇𝑉 ). Hence, in particular,

gr𝑛 (𝐷dR,log) �

⎧⎪⎪⎨⎪⎪⎩
𝜔−1, 𝑛 = 0
𝜔, 𝑛 = 1
0, 𝑛 ≠ 0, 1

.

Now we have a decreasing filtration (the relative Hodge–Tate filtration) on �̂� log ⊗Ẑ𝑝 ÔX as in
Subsection 2.2. of [CS17]. More precisely, let OB+dR,log be the positive structural de Rham sheaf on
Xprokét (the geometric de Rham period sheaf in Definition 2.2.10 of [DLLZ18]) which also admits a
logarithmic connection. Consider

M0 = (𝐷dR,log ⊗OX OB+dR,log)
∇=0.

Recall that there is the positive de Rham sheaf B+dR on Xprokét (Definition 2.2.3.(2) of [DLLZ18]) and
the usual surjective map: 𝜃 : B+dR → ÔX. Then Proposition 7.9 of [Sch13a] implies

�̂� log ⊗Ẑ𝑝 B
+
dR,log ⊇ M0 ⊇ �̂� log ⊗Ẑ𝑝 ker(𝜃). (4.1.2)

Hence, we obtain a filtration on �̂� log ⊗Ẑ𝑝 B
+
dR/(ker 𝜃) = �̂� log ⊗Ẑ𝑝 ÔX, which again by Proposition 7.9

of [Sch13a] can be identified with

0→ gr0 (𝐷dR,log) ⊗OX ÔX → �̂� log ⊗Ẑ𝑝 ÔX → gr1 (𝐷dR,log) ⊗OX ÔX (−1) → 0.

In other words, we get the following exact sequence of locally free ÔX-modules on Xprokét (relative
Hodge–Tate filtration of �̂� log ⊗Ẑ𝑝 ÔX):

0→ 𝜔−1 ⊗OX ÔX (1) → �̂� log (1) ⊗Ẑ𝑝 ÔX → 𝜔 ⊗OX ÔX → 0. (4.1.3)

Remark 4.1.4. Strictly speaking, Proposition 7.9 of [Sch13a] is only proved when there is no log
structure. However, all of the arguments work here with the input replaced by the corresponding results
in Section 2 of [DLLZ18]. For example, the local structure of OB+dR,log in Proposition 6.10 is now
replaced by Proposition 2.3.15 of [DLLZ18].

There is one minor subtlety here: compared with the definition of OBdR in [Sch13a], there is an
extra completion of OB+dR,log [𝑡

−1] in Definition 2.2.10 of [DLLZ18], where 𝑡 ∈ B+dR is a generator of
ker(𝜃). I claim that such a completion is unnecessary in our case; that is, the isomorphism (4.1.1) can
be restricted to

�̂� log ⊗Ẑ𝑝 OB
+
dR,log [𝑡

−1] � 𝐷dR,log ⊗OX OB+dR,log [𝑡
−1] .

In fact, using the local structure of OB+dR,log, we may argue as in Theorem 7.2 of [Sch13a] that M0

is a B+dR-lattice of (�̂� log ⊗Ẑ𝑝 OBdR,log)
∇=0 = �̂� log ⊗Ẑ𝑝 BdR by the Poincaré lemma (Corollary 2.4.2 of

[DLLZ18]). This is enough to deduce our claim.

4.1.5. Now we take 𝐾𝑝 = GL2 (Z𝑝). Hence, X = X𝐾 𝑝GL2 (Z𝑝) . As lim
←−−𝐾𝑝⊂GL2 (Q𝑝)

X𝐾 𝑝𝐾𝑝 (equipped
with log structures defined by cusps) can be viewed as an open covering of X in Xprokét, we can evaluate
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the exact sequence (4.1.3) on lim
←−−𝐾𝑝

X𝐾 𝑝𝐾𝑝 . Note that X𝐾 𝑝 trivialises the universal Tate module; hence,
by Theorem 4.1.2, we obtain the following exact sequence of vector bundles on X𝐾 𝑝 .

Theorem 4.1.6.

0→ 𝜔−1
𝐾 𝑝 (1) → 𝑉 (1) ⊗Q𝑝 OX𝐾𝑝 → 𝜔𝐾 𝑝 → 0,

where 𝜔𝐾 𝑝 is the pullback of 𝜔 as a coherent sheaf from X to X𝐾 𝑝 and 𝑉 = Q⊕2
𝑝 is the standard

representation of GL2 (Q𝑝) and viewed as a constant sheaf on X𝐾 𝑝 . This exact sequence is GL2(Z𝑝)-
equivariant.

Clearly, the position of 𝜔−1
𝐾 𝑝 in 𝑉 ⊗Q𝑝 OX𝐾𝑝 induces a map (Hodge–Tate period map)

𝜋HT : X𝐾 𝑝 → ℱℓ,

where ℱℓ is the adic space over C associated to the usual flag variety for GL2. One can check that our
definition of 𝜋HT agrees with the one defined in III.3 of [Sch15],1 using Lemma III.3.4 and Corollary
III.3.17 in the reference.

There is a right action of GL2(Q𝑝) on ℱℓ by acting on the total space (rather than the position of the
flag). We will always use this right action.

Theorem III.3.18 of [Sch15] provides an affinoid cover {𝑈1,𝑈2} of ℱℓ. In our case, ℱℓ = P1 and
𝑈1 = {[𝑥1 : 𝑥2], ‖𝑥1‖ ≥ ‖𝑥2‖},𝑈2 = {[𝑥1 : 𝑥2], ‖𝑥2‖ ≥ ‖𝑥1‖}.

Theorem 4.1.7. 𝜋HT is GL2 (Q𝑝)-equivariant and commutes with Hecke operators away from p (when
changing 𝐾 𝑝), for the trivial action of these Hecke operators on ℱℓ. Moreover, let 𝔅 be the set of finite
intersections of rational subsets of𝑈1,𝑈2. Then 𝔅 is a basis of open affinoid subsets of ℱℓ stable under
finite intersections and each 𝑈 ∈ 𝔅 has the following properties:

◦ its preimage 𝑉∞ = 𝜋−1
HT (𝑈) is affinoid perfectoid;

◦ 𝑉∞ is the preimage of an affinoid subset 𝑉𝐾𝑝 ⊂ X𝐾 𝑝𝐾𝑝 for sufficiently small open subgroup 𝐾𝑝 of
GL2(Q𝑝);

◦ the map lim
−−→𝐾𝑝

𝐻0(𝑉𝐾𝑝 ,OX𝐾𝑝𝐾𝑝 ) → 𝐻0(𝑉∞,OX𝐾𝑝 ) has dense image;
◦ U does not contain all Q𝑝-rational points of ℱℓ.

Proof. See Theorem III.1.2 of [Sch15] and Theorem III.3.18 of [Sch15]. �

4.2. Faltings’s extension and computation of 𝜽

Let 𝐾𝑝 ⊂ GL2 (Q𝑝) be an open subgroup and X an affinoid subset of X = X𝐾 𝑝𝐾𝑝 containing at most
one cusp. Suppose its preimage �̃� in X𝐾 𝑝 is a ‘log 𝐾𝑝-Galois pro-étale perfectoid covering’ of X and
X is small in the sense of Section 3.1.1. Note that by Theorem 4.1.2 and Lemma 5.2 (and its proof) of
[Sch15], such X form a basis of open subsets of X.

The goal of this subsection is to compute the differential operator 𝜃 in Theorem 3.1.2 for this Galois
covering. It turns out that this follows from a classical result of Faltings which (up to a twist) identifies the
relative Hodge–Tate filtration sequence in Theorem 4.1.6 with (log) Faltings’s extension; cf. Theorem
5 of [Fal87]. We will give a proof of this result (Theorem 4.2.2) in our setup below. A more conceptual
computation of 𝜃 in terms of the p-adic Simpson correspondence is given in Remark 4.2.5.

4.2.1. We use notation introduced in the previous subsection. First we recall the log Faltings’s extension
as defined in Corollary 6.14 of [Sch13a] and Corollary 2.4.5 of [DLLZ18]. Taking the first graded piece

1There is a slight difference: in our setup, we trivialise the first relative étale cohomology the universal elliptic curve, while
[Sch15] trivialises the universal Tate module. As a result, there is a Tate twist in the middle term of the exact sequence in Theorem
4.1.6.
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of the Poincaré lemma sequence (Corollary 2.4.2 of [DLLZ18]):

0→ B+dR → OB+dR,log
∇
−→ OB+dR,log ⊗OX Ω1

X(C) → 0, (4.2.1)

we obtain an exact sequence of ÔX-modules on Xprokét (the log Faltings’s extension):

0→ ÔX(1) → gr1 OB+dR,log
∇
−→ ÔX ⊗OX Ω1

X (C) → 0.

Its tensor product with 𝜔−1 becomes

0→ 𝜔−1 ⊗OX ÔX (1) → 𝜔−1 ⊗OX gr1 OB+dR,log → 𝜔−1 ⊗OX Ω1
X (C) ⊗OX ÔX → 0.

Recall that there is a Kodaira–Spencer map 𝜔→ 𝜔−1 ⊗OX Ω1
X(C) of coherent sheaves on X defined as

the composite

𝜔 = Fil1 𝐷dR,log ⊂ 𝐷dR,log
∇
−→ 𝐷dR,log ⊗OX Ω1

X (C) → gr0 𝐷dR,log ⊗OX Ω1
X(C) = 𝜔−1 ⊗OX Ω1

X (C).

It is well-known that this is an isomorphism: 𝜔 ∼
−→ 𝜔−1 ⊗OX Ω1

X (C). Under this isomorphism, 𝜔−1 ⊗OX

gr1 OB+dR,log can be viewed as an element of

Ext1Xprokét
(𝜔 ⊗OX ÔX, 𝜔

−1 ⊗OX ÔX (1)).

On the other hand, recall that �̂� log ⊗Ẑ𝑝 ÔX also defines an element in this extension group by the
relative Hodge–Tate filtration (4.1.3).

Theorem 4.2.2. There is an isomorphism between 𝜔−1 ⊗OX gr1 OB+dR,log and �̂� log(1) ⊗Ẑ𝑝 ÔX as ÔX-
modules such that as extension classes, they differ by −1.

Proof. Consider the first graded piece of the tensor product of �̂� log and the Poincaré lemma sequence
(4.2.1) over Ẑ𝑝; that is, the tensor product of �̂� log with the log Faltings’s extension:

0→ �̂� log(1) ⊗Ẑ𝑝 ÔX → �̂� log ⊗Ẑ𝑝 gr1 OB+dR,log
∇
−→ �̂� log ⊗Ẑ𝑝 ÔX ⊗OX Ω1

X(C) → 0.

Then the inclusion gr1(𝐷dR,log ⊗OX OB+dR,log) ⊂ gr1(�̂� log ⊗Ẑ𝑝 OB
+
dR,log) induces

0→ �̂� log(1) ⊗Ẑ𝑝 ÔX → gr1(𝐷dR,log ⊗OX OB+dR,log)
∇
−→ gr0 𝐷dR,log ⊗OX ÔX ⊗OX Ω1

X(C),

where the first inclusion follows from the sequence (4.1.2) and the image of ∇ lies in gr0 𝐷dR,log ⊗OX

ÔX ⊗OX Ω1
X(C) by Griffiths transversality. I claim that ∇ is in fact surjective as it has a left inverse: the

composite map

gr1(𝐷dR,log) ⊗OX ÔX ⊂ gr1(𝐷dR,log ⊗OX OB+dR,log)
∇
−→ gr0 𝐷dR,log ⊗OX ÔX ⊗OX Ω1

X(C)

is nothing but the tensor product of Kodaira–Spencer map with ÔX and, hence, an isomorphism. This
implies that

�̂� log(1) ⊗Ẑ𝑝 ÔX
∼
−→ gr1(𝐷dR,log ⊗OX OB+dR,log)/gr1(𝐷dR,log) ⊗OX ÔX.

Note that this right-hand side can be identified with gr0 (𝐷dR,log) ⊗OX gr1 OB+dR,log = 𝜔−1 ⊗OX

gr1 OB+dR,log as there is a canonical decomposition

gr1 (𝐷dR,log ⊗OX OB+dR,log) = gr1(𝐷dR,log) ⊗OX ÔX ⊕ gr0(𝐷dR,log) ⊗OX gr1 OB+dR,log.
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Hence, we obtain an isomorphism �̂� log(1)⊗Ẑ𝑝 ÔX � 𝜔−1⊗OX gr1 OB+dR,log as claimed in the theorem. To
check their relation as extension classes, one useful observation is that the surjection �̂� log(1) ⊗Ẑ𝑝 ÔX →

𝜔1 ⊗OX ÔX in the exact sequence (4.1.3) agrees with the composite map

�̂� log(1) ⊗Ẑ𝑝 ÔX ⊂ gr1 (𝐷dR,log ⊗OX OB+dR,log) → gr1 (𝐷dR,log) ⊗OX ÔX,

where the second map is the projection using the above decomposition. Hence, it differs by −1 with the
composite

�̂� log(1) ⊗Ẑ𝑝 ÔX → gr1(𝐷dR,log ⊗OX OB+dR,log) → gr0(𝐷dR,log) ⊗OX gr1 OB+dR,log

∇
−→ gr0 𝐷dR,log ⊗OX ÔX ⊗OX Ω1

X(C)
∼
←− gr1(𝐷dR,log) ⊗OX ÔX,

where the second map is the other projection and the last isomorphism is given by Kodaira–Spencer
map. Note that the composite of the first row is the isomorphism constructed before. This finishes the
proof of theorem. �

Corollary 4.2.3. Let 𝑋, �̃� be as in the beginning of this subsection. Moreover, we assume 𝜋HT ( �̃�) is
contained in an affinoid open subset of ℱℓ. Then 𝑋 is a locally analytic covering of X in the sense of
Definition 3.5.4.

Proof. By Proposition 3.5.3, one equivalent definition of locally analytic covering is that if we take
the global sections of Faltings’s extension on �̃� (viewed as open set in Xprokét by abuse of notation),
it remains exact after taking 𝐾𝑝-locally analytic vectors. First consider taking the global sections of
relative Hodge–Tate filtration (4.1.3) on �̃�:

0→ 𝐻0 ( �̃�, 𝜔−1 ⊗ ÔX (1)) → 𝐻0( �̃�, �̂� log(1) ⊗ ÔX) → 𝐻0( �̃�, 𝜔 ⊗ ÔX) → 0. (4.2.2)

This is exact as 𝐻1 ( �̃�, 𝜔−1 ⊗OX ÔX (1)) = 0 by Theorem 5.4.3 of [DLLZ19]. Note that �̂� log becomes
a trivial local system on �̃�; hence, the middle term is naturally isomorphic to 𝑉 (1) ⊗Q𝑝 𝐻0( �̃�, ÔX)

where 𝑉 = Q⊕2
𝑝 is the standard representation of 𝐾𝑝 ⊂ GL2(Q𝑝). By our assumption on 𝜋HT ( �̃�), there

exists an element e ∈ 𝑉 (1) ⊗Q𝑝 𝐶 ⊂ 𝑉 (1) ⊗Q𝑝 𝐻0( �̃�, ÔX) whose image 𝑒 ∈ 𝐻0 ( �̃�, 𝜔 ⊗OX ÔX) is a
basis of 𝐻0( �̃�, 𝜔 ⊗OX ÔX) as a 𝐻0( �̃�, ÔX)-module.

As the action of 𝐾𝑝 on V is analytic (even algebraic), we conclude that the short exact sequence
(4.2.2) remains exact after passing to the 𝐾𝑝-locally analytic vectors. The same holds when taking global
sections of the tensor product of the exact sequence (4.1.3) and 𝜔, which is equivalent to multiplying
the sequence (4.2.2) by 𝑒. Now the corollary follows by identifying this exact sequence with Faltings’s
extension (up to −1). �

Now we are ready to calculate 𝜃. We will give an explicit description first and rewrite in a coordinate-
free way later. We

◦ fix a generator of Z𝑝 (1) from now on; that is, an isomorphism Z𝑝 (1) � Z𝑝 .

Let e1 = (1, 0), e2 = (0, 1) be the standard basis of 𝑉 = Q⊕2
𝑝 and denote their images by 𝑒1, 𝑒2 ∈

𝐻0 (X𝐾 𝑝 , 𝜔𝐾 𝑝 ) (fake-Hasse invariants) using the surjective map in the exact sequence in Theorem
4.1.6 and the chosen generator of Z𝑝 (1). We remark that Aut(𝐶/Q𝑝) acts on 𝑒1, 𝑒2 via the cyclotomic
character because of the Tate-twist in 𝑉 (1).

Let 𝑋, �̃� be as in the previous corollary. In particular, 𝜔𝐾 𝑝 |�̃� is trivial and generated by some
section e. Hence, we may view 𝑒1

𝑒 ,
𝑒2
𝑒 as elements in OX𝐾𝑝 ( �̃�).

https://doi.org/10.1017/fmp.2022.1 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2022.1


36 Lue Pan

Theorem 4.2.4. The differential operator 𝜃 associated to (𝐾𝑝 , �̃�) in Theorem 3.1.2 is, up to a unit of
OX𝐾𝑝 ( �̃�),

1
𝑒2

(
𝑒1𝑒2 𝑒2

2
−𝑒2

1 −𝑒1𝑒2

)
∈ 𝔤𝔩2(OX𝐾𝑝 ( �̃�)) = OX𝐾𝑝 ( �̃�) ⊗Q𝑝 Lie(𝐾𝑝).

Remark 4.2.5. As mentioned in Remark 3.1.7, it is better to view 𝜃 as a log Higgs field. The computation
of 𝜃 here is just computing the Higgs bundle associated to �̂� log under the p-adic Simpson correspondence,
which can be deduced from (𝐷dR,log,∇), the other side of the de Rham comparison. This was pointed
out to me by Michael Harris.

Proof. We will freely use the notation and constructions introduced in Section 3. Hence, 𝑋 =
Spa(𝐴, 𝐴+), �̃� = Spa(𝐵, 𝐵+). Fix an étale map 𝑋 → 𝑌 as in Section 3.2.1. Let 𝑋∞ = Spa(𝐴∞, 𝐴+∞)
(respectively �̃�∞ = Spa(𝐵∞, 𝐵+∞)) be the pullback of the perfectoid covering 𝑌∞ to X (respectively �̃�);
cf. Section 3.2.2 (respectively 3.2.6).

To compute 𝜃, we follow Remark 3.3.7. Recall that V is the standard 2-dimensionalQ𝑝-representation
of 𝐾𝑝 ⊂ GL2 (Q𝑝). We need to compute 𝜙𝑉 : Lie(Γ) → 𝐵∞ ⊗Q𝑝 𝑉 in Proposition 3.2.13, which agrees
with the natural action of Lie(Γ) when restricted to (𝐵∞ ⊗Q𝑝 𝑉)𝐾𝑝 ,Γ−la. By Theorem 4.1.6, ignoring
the Tate-twist, we have

0→ 𝐵 · 𝑒−1 → 𝐵 ⊗Q𝑝 𝑉 → 𝐵 · 𝑒 → 0,

where 𝑒−1 ∈ 𝐻0 ( �̃�, 𝜔−1
𝐾 𝑝 ) is dual to 𝑒 ∈ 𝐻0 ( �̃�, 𝜔𝐾 𝑝 ). Take the tensor product with 𝐵∞ over B and then

take the 𝐾𝑝-invariants:

0→ (𝐵∞ · 𝑒−1)𝐾𝑝 → (𝐵∞ ⊗ 𝑉)
𝐾𝑝 → (𝐵∞ · 𝑒)

𝐾𝑝 → 0. (4.2.3)

To compute the action of Lie(Γ) on (𝐵∞ ⊗𝑉)𝐾𝑝 ,Γ−la, by Theorem 4.2.2, this sequence can be identified
with the global sections of Faltings’s extension on 𝑋∞ (viewed as an open set in Xprokét), up to −1.
Hence, by results in Section 2 of [DLLZ18] (in particular, Proposition 2.3.15 and proof of Corollary
2.4.2), the sequence (4.2.3) is 𝐴∞-linearly and Γ-equivariant isomorphic to the tensor product over Q𝑝
of 𝐴∞ with a nontrivial self extension of trivial representation of Γ:

0→ Q𝑝 → 𝑉1 → Q𝑝 → 0,

which we essentially write down in Section 3.5.1. Clearly, Lie(Γ) acts trivially on (𝐵∞ · 𝑒−1)𝐾𝑝 ,Γ−la �
(𝐴∞)

Γ−la, and if we fix a generator x of Lie(Γ), it maps the quotient (𝐵∞ · 𝑒)𝐾𝑝 ,Γ−la isomorphically to
(𝐵∞ · 𝑒

−1)𝐾𝑝 ,Γ−la. Therefore, 𝜙𝑉 (𝑥) is zero on 𝐵 · 𝑒−1 and 𝜙𝑉 (𝑥) (𝐵 ⊗ 𝑉) = 𝐵 · 𝑒−1.
The rest is to write this as an element of 𝐵⊗Q𝑝 Lie(𝐾𝑝) up to 𝐵×. It is easy to see that f = 𝑒2

𝑒 e1−
𝑒1
𝑒 e2 ∈

𝐵 ⊗Q𝑝 𝑉 generates 𝐵 · 𝑒−1. As 𝜙𝑉 (𝑥) |𝐵⊗𝑉 factors through 𝐵 · 𝑒, we may assume it sends e to f. A direct
computation gives the matrix in the theorem. �

4.2.6. To rewrite this theorem in a coordinate-free way, it is better to work with sheaves. Consider the
pushforward of OX𝐾𝑝 along 𝜋HT : X𝐾 𝑝 → ℱℓ

O𝐾 𝑝 := 𝜋HT∗OX𝐾𝑝 .

We define a subsheaf

Ola
𝐾 𝑝 ⊂ O𝐾 𝑝

as follows: for any quasi-compact open set U of ℱℓ, 𝐻0(𝑈,Ola
𝐾 𝑝 ) is the subspace of 𝐾𝑝-locally analytic

vectors in 𝐻0(𝑈,O𝐾 𝑝 ), where 𝐾𝑝 is an open subgroup of GL2(Q𝑝) stabilising U. Note that such 𝐾𝑝
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always exists by the compactness of U and 𝐻0(𝑈,Ola
𝐾 𝑝 ) is independent of choice of 𝐾𝑝 . Since taking

locally analytic vectors is a left-exact process (see the construction in Section 2) and 𝜋HT∗O+X𝐾𝑝 is a
sheaf, Ola

𝐾 𝑝 indeed defines a sheaf on ℱℓ.
Clearly, Ola

𝐾 𝑝 is GL2 (Q𝑝)-equivariant and there is a natural action of the Lie algebra of GL2(Q𝑝) on
Ola
𝐾 𝑝 . Hecke operators away from p act on it naturally as we only use the action at p in the construction.
We claim that the natural map Oℱℓ → O𝐾 𝑝 has image in Ola

𝐾 𝑝 . It is enough to check this for a basis
of affinoid open subsets U of ℱℓ. Since ℱℓ is an adic space associated to a variety over C of finite
type, we may consider all affinoid subsets U such that Oℱℓ (𝑈) can be written as a continuous quotient
of 𝐶〈𝑇1 · · · , 𝑇𝑚〉 for some m and the quotient topology on Oℱℓ (𝑈) agrees with its natural topology.
Fix such a U; then there exists an open subgroup 𝐾𝑝 ⊂ GL2(Q𝑝) stabilising U and acting trivially on
O+ℱℓ (𝑈)/𝑝. From this, we see that the action of 𝐾𝑝 on Oℱℓ (𝑈) is locally analytic (using arguments in
Example 2.1.9, for example).

We follow some constructions on the flag variety in [BB83]. Denote by 𝔤 the tensor product of the
Lie algebra of GL2(Q𝑝) with C; that is, 𝔤𝔩2 (𝐶). For a C-point x of the flag variety Fl of GL2/𝐶, let
𝔟𝑥 , 𝔫𝑥 ⊂ 𝔤 be its corresponding Borel subalgebra and nilpotent subalgebra. Let

𝔤0 := OFl ⊗𝐶 𝔤,

𝔟0 := { 𝑓 ∈ 𝔤0 | 𝑓𝑥 ∈ 𝔟𝑥 , for all 𝑥 ∈ Fl(𝐶)},
𝔫0 := { 𝑓 ∈ 𝔤0 | 𝑓𝑥 ∈ 𝔫𝑥 , for all 𝑥 ∈ Fl(𝐶)}

be GL2-equivariant vector bundles on Fl, where GL2 acts by conjugation on 𝔤. By abuse of notation, we
also view these as vector bundles on ℱℓ, the associated adic space of Fl. Then we have a natural action
of 𝔤0 on Ola

𝐾 𝑝 : for 𝑓 ∈ Oℱℓ , 𝑧 ∈ 𝔤, 𝑠 ∈ Ola
𝐾 𝑝 ,

( 𝑓 ⊗ 𝑧) · 𝑠 = 𝑓 (𝑧 · 𝑠).

Theorem 4.2.7. 𝔫0 acts trivially on Ola
𝐾 𝑝 .

Proof. Its enough to check this on open subsets as in Theorem 4.1.7, for which we may invoke Theorem
4.2.4 and our claim follows immediately. In fact, it follows from the proof of Theorem 4.2.4 that the action
of 𝜙𝑉 on𝑉 (1) ⊗Q𝑝OX𝐾𝑝 is trivial on 𝜔−1

𝐾 𝑝 (1) and induces an isomorphism 𝜔𝐾 𝑝
∼
−→ 𝜔−1

𝐾 𝑝 (1). Since 𝜋HT
is defined by the position of 𝜔−1

𝐾 𝑝 (1) in 𝑉 (1) ⊗Q𝑝 OX𝐾𝑝 , it is tautological that OX𝐾𝑝 𝜃 ⊂ OX𝐾𝑝 ⊗𝐶 𝔤
contains 𝔫0. �

Fix a rational Borel subalgebra 𝔟 := {
(
∗ ∗

0 ∗

)
} and a Cartan subalgebra 𝔥 := {

(
∗ 0
0 ∗

)
} of 𝔤 and let W

be the Weyl group. Recall the Harish–Chandra isomorphism 𝑍 (𝑈 (𝔤)) � 𝑆(𝔥)𝑊 , where 𝑍 (𝑈 (𝔤)) is the
centre of the universal enveloping algebra 𝑈 (𝔤) of 𝔤 and 𝑆(𝔥) is the symmetric algebra of 𝔥 equipped
with the dot action of W: 𝑤 · 𝜇 = 𝑤(𝜇 + 𝜌) − 𝜌, 𝜇 ∈ 𝔥∗. Here 𝜌 is the half sum of positive roots as
usual. Let 𝔤0 := 𝔰𝔩2(𝐶) ⊂ 𝔤 and 𝔥0 = 𝔥 ∩ 𝔤0. Then, similarly, 𝑍 (𝑈 (𝔤𝟝)) � 𝑆(𝔥𝟝)𝑊 . We also denote by

𝔷 := {
(
𝑎 0
0 𝑎

)
} ⊂ 𝔤 the centre of 𝔤.

It is clear that 𝔟0/𝔫0 = Oℱℓ ⊗𝐶 𝔥 by identifying global sections of 𝔟0/𝔫0 with 𝔥. So we have a a
natural embedding 𝔥→ 𝔟0/𝔫0.

Corollary 4.2.8. There is a natural (horizontal) action 𝜃𝔥 of 𝔥 on Ola
𝐾 𝑝 commuting with 𝔤. In fact, −𝜃𝔥

induces an action of 𝑆(𝔥𝟝) extending the one of 𝑍 (𝑈 (𝔤𝟝)) and 𝜃𝔥 |𝔷 agrees with the action of 𝔷 ⊂ 𝔤.

Proof. The first part follows from the fact that 𝐻0(ℱℓ, 𝔟0/𝔫0) is GL2-invariant. The second part
essentially follows from Harish–Chandra’s theorem. Note that there is a sign here since this construction
studies the 𝔫𝑥-coinvariants rather than invariants. See Section 2 and Section 3 of [BB83]. �
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Remark 4.2.9. See Theorem 5.1.8, 5.1.11 for an interpretation of this action in terms of the classical
Sen operator arising from the action of 𝐺Q𝑝 .

Remark 4.2.10. In Beilinson–Bernstein’s theory of localisation (see, for example, Section C of [Beı̆84]),
Ola
𝐾 𝑝 is a �̃�-module in this analytic setting. Similarly, fix a weight 𝜒 of 𝔥. We denote by Ola,𝜒

𝐾 𝑝 the 𝜒-
component of Ola

𝐾 𝑝 ; that is, the subsheaf of sections of weight 𝜒. Then Ola,𝜒
𝐾 𝑝 is a �̃�𝜒-module. Recall

that �̃�𝜒 is a ring of twisted differential operators on the flag variety. Everything here is also GL2(Q𝑝)-
equivariant. Hence, we obtain a (�̃�𝜒,GL2(Q𝑝))-module on ℱℓ, which is very similar to the picture in
the complex analytic setting.

In a series of works (see, for example, [Ard17]), Ardakov proved a p-adic analogue of Beilinson–
Bernstein’s localisation theorem. Roughly speaking, he showed that one can realise the dual of an
admissible locally analytic representation of GL2(Q𝑝) as global sections of certain GL2 (Q𝑝)-equivariant
𝒟-modules onℱℓ. It is very natural to ask whether there is some form of duality relating his construction
with Ola,𝜒

𝐾 𝑝 here.

4.3. Local structure of Ola
𝑲 𝒑

So far,Ola
𝐾 𝑝 is defined in an abstract way. We give an explicit description of its sections in this subsection.

This is largely inspired by the calculations of Berger–Colmez in Section 4 and Section 5 of [BC16].
We will follow their arguments and combine with our differential equation 𝜃 = 0. To do this, one needs
enough sections of Ola

𝐾 𝑝 .

4.3.1. Let Γ(𝑝𝑛) = 1 + 𝑝𝑛𝑀2 (Z𝑝). Recall that Y𝐾 𝑝Γ(𝑝𝑛) parametrises elliptic curves with certain level
structures away from p and a trivialisation of its 𝑝𝑛-torsion points. In particular, the Weil pairing induces
a trivialisation of 𝜇𝑝𝑛 (𝐶). This defines a map Y𝐾 𝑝Γ(𝑝𝑛) → Isom(Z/𝑝𝑛, 𝜇𝑝𝑛 (𝐶)), which extends to its
compactification X𝐾 𝑝Γ(𝑝𝑛) → Isom(Z/𝑝𝑛, 𝜇𝑝𝑛 (𝐶)). Classically, this map can be obtained by looking
at the connected components. Taking inverse limits, we obtain X𝐾 𝑝 → Isom(Z𝑝 ,Z𝑝 (1)), where
Isom(Z𝑝 ,Z𝑝 (1)) is identified as Spa(𝒞(Isom(Z𝑝 ,Z𝑝 (1)), 𝐶),𝒞(Isom(Z𝑝 ,Z𝑝 (1)),O𝐶 )). Recall that
we have chosen a basis of Z𝑝 (1) before Theorem 4.2.4; that is, an isomorphism Isom(Z𝑝 ,Z𝑝 (1)) � Z×𝑝 .
Then X𝐾 𝑝 → Isom(Z𝑝 ,Z𝑝 (1)) � Z×𝑝 defines a function

𝑡 ∈ 𝐻0(X𝐾 𝑝 ,OX𝐾𝑝 ),

which is well-defined up to Z×𝑝 . See also (4.2) of [Eme06b] for another description. We remark that 𝐺Q𝑝
acts on t via the cyclotomic character because it is essentially an element of Z𝑝 (1). The group GL2 (Q𝑝)
acts on t via 𝜀𝑝 ◦ det, where 𝜀𝑝 : Q×𝑝 → Z×𝑝 sends x to 𝑥 |𝑥 |; hence, the action of 𝔤 = 𝔤𝔩2(Q𝑝) on t is the
trace map (

𝑎 𝑏
𝑐 𝑑

)
· 𝑡 = (𝑎 + 𝑑)𝑡,

(
𝑎 𝑏
𝑐 𝑑

)
∈ 𝔤.

If we take the direct limit over all tame levels 𝐾 𝑝: �̃�0(𝐶) := lim
−−→𝐾 𝑝

𝐻0 (X𝐾 𝑝 ,OX𝐾𝑝 ), then GL2 (A 𝑓 )

acts naturally on �̃�0(𝐶) and acts on t via 𝜀 ◦ det. See Notation in the beginning of this article for the
definition of 𝜀. Using this observation, it is easy to figure out how Hecke operators away from p change
when multiplying by a power of t.

For 𝑛 ≥ 1, we fix 𝑡𝑛 ∈ 𝐻
0(X𝐾 𝑝Γ(𝑝𝑛) ,OX𝐾𝑝Γ(𝑝𝑛 ) ) so that ‖𝑡 − 𝑡𝑛‖ ≤ 𝑝−𝑛.

4.3.2 (A consequence of 𝜃 = 0). We introduced a basis 𝔅 of affinoid open subsets of ℱℓ in Theorem
4.1.7. Fix 𝑈 ∈ 𝔅 from now on. Then by our construction, 𝑉∞ := 𝜋−1

HT (𝑈) is affinoid perfectoid
and is the preimage of an affinoid subset 𝑉𝐾𝑝 ⊂ X𝐾 𝑝𝐾𝑝 . Recall that we have fake-Hasse invariants
𝑒1, 𝑒2 ∈ 𝐻

0(X𝐾 𝑝 , 𝜔𝐾 𝑝 ). Throughout this subsection, we assume

◦ 𝑒1 generates 𝐻0 (𝑉∞, 𝜔𝐾 𝑝 ).
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In our later computations, we will always assume one of 𝑒1, 𝑒2 generates 𝐻0(𝑉∞, 𝜔𝐾 𝑝 ). When 𝑒2

generates 𝐻0(𝑉∞, 𝜔𝐾 𝑝 ), one can use the action of
(
0 1
1 0

)
to reduce to the above case. When 𝑒1 is a basis,

we can take 𝑒 = 𝑒1 in Theorem 4.2.4. Hence, up to a unit, 𝜃 on 𝑉∞ is
(
𝑥 𝑥2

−1 −𝑥

)
∈ 𝔤𝔩2 (O𝐾 𝑝 (𝑈)),

where 𝑥 := 𝑒2
𝑒1
∈ Oℱℓ (𝑈), a standard coordinate on ℱℓ = P1. In particular, we have the following

important lemma.

Lemma 4.3.3. Suppose 𝑓 ∈ Ola
𝐾 𝑝 (𝑈) is annihilated by 𝔟 = {

(
∗ ∗

0 ∗

)
} ⊂ 𝔤𝔩2(Q𝑝). Then f is annihilated

by 𝔤𝔩2(Q𝑝); that is, f is fixed by an open subgroup of GL2(Q𝑝).

Proof. By Theorem 3.1.2, 𝜃 ( 𝑓 ) = 0. But 𝔟 · 𝑓 = 0. Hence, 𝜃 ( 𝑓 ) =
(

0 0
−1 0

)
· 𝑓 = 0. Thus, 𝔤𝔩2(Q𝑝) ·

𝑓 = 0. �

Remark 4.3.4. Here is a sketch of another proof without using 𝜃. By using the action of
(
𝑝 0
0 1

)
, one may

assume𝑉∞ is a rational open subset of some 𝜖-neighbourhood of the anticanonical locus X∗Γ(𝑝∞) (𝜖)𝑎 for
some 𝜖 ∈ (0, 1/2). See Chapter III of [Sch15] for notation here. Since f is annihilated by 𝔟, it is fixed by
an open subgroup Γ′0 of the upper-triangular Borel in GL2 (Q𝑝). We may assume Γ′0 ⊂ 𝐾𝑝 and denote by
𝑉Γ′0

the preimage of 𝑉𝐾𝑝 in X∗Γ′0 (𝜖)𝑎. Then f comes from a section in OX∗
Γ′0
(𝜖 )𝑎 (𝑉Γ′0

). The key point here
is that by Corollary III.2.23 of [Sch15], there exist Tate’s normalised traces from OX∗

Γ′0
(𝜖 )𝑎 to sections on

finite levels. Hence, a standard argument shows that f comes from some finite level by analyticity; cf. the
proof of Lemma 3.2.5 or [BC16, Théorème 3.2]. Thus, f is fixed by some open subgroup of GL2(Q𝑝).

4.3.5. Now we can give an explicit description of Ola
𝐾 𝑝 (𝑈), following Subsection 4.2, 5.2 of [BC16].

The basic idea is to find ‘power series expansions along 𝑒1, 𝑒2, 𝑡’. Note that the actions of 𝐾𝑝 on these
elements are analytic. Our setup is as follows. Fix a compact open subgroup 𝐺0 of 𝐾𝑝 equipped with an
integer-valued, saturated p-valuation. For example, one can take 1 + 𝑝𝑚𝑀2 (Z𝑝) for sufficiently large m.
Then we have 𝐺𝑛 = 𝐺 𝑝𝑛

0 as in Section 2.1.1. Let 𝑉𝐺𝑛 ⊂ X𝐾 𝑝𝐺𝑛 be the preimage of 𝑉𝐾𝑝 . By our choice
of U (cf. Theorem 4.1.7), the direct limit lim

−−→𝑛
𝐻0 (𝑉𝐺𝑛 ,OX𝐾𝑝𝐺𝑛 ) → 𝐻0 (𝑉∞,OX𝐾𝑝 ) has dense image.

Hence, for any 𝑛 ≥ 0, we can find (cf. Section 2.1.4 and Lemma 2.1.5)

◦ an integer 𝑟 (𝑛) > 𝑟 (𝑛 − 1) > 0;
◦ 𝑥𝑛 ∈ 𝐻

0 (𝑉𝐺𝑟 (𝑛) ,OX𝐾𝑝𝐺𝑟 (𝑛) ) such that ‖𝑥 − 𝑥𝑛‖𝐺𝑟 (𝑛) = ‖𝑥 − 𝑥𝑛‖ ≤ 𝑝−𝑛 in 𝐻0 (𝑉∞,OX𝐾𝑝 ).

As in Section 4.3.1, we can find (after replacing 𝑟 (𝑛) by a larger number if necessary)

◦ 𝑡𝑛 ∈ OX𝐾𝑝𝐺𝑟 (𝑛) (X𝐾 𝑝𝐺𝑟 (𝑛) ) such that ‖𝑡 − 𝑡𝑛‖𝐺𝑟 (𝑛) = ‖𝑡 − 𝑡𝑛‖ ≤ 𝑝−𝑛 in 𝐻0 (X𝐾 𝑝 ,OX𝐾𝑝 ).

We can define a norm on 𝐻0(𝑉∞, 𝜔𝐾 𝑝 ) by identifying it with 𝐻0(𝑉∞,OX𝐾𝑝 ) using 𝑒1. It is easy to see
lim
−−→𝑛

𝐻0 (𝑉𝐺𝑛 , 𝜔) → 𝐻0 (𝑉∞, 𝜔𝐾 𝑝 ) also has dense image. Here, by abuse of notation, 𝜔 denotes ‘the 𝜔

on X𝐾 𝑝𝐾𝑝 ’. Hence, we can also find (after enlarging 𝑟 (𝑛) if necessary)

◦ 𝑒1,𝑛 ∈ 𝐻
0(𝑉𝐺𝑟 (𝑛) , 𝜔) such that ‖𝑒1 − 𝑒1,𝑛‖𝐺𝑟 (𝑛) = ‖𝑒1 − 𝑒1,𝑛‖ ≤ 𝑝−𝑛 in 𝐻0 (𝑉∞, 𝜔𝐾 𝑝 ).

Note that 𝑒1,𝑛 is also a basis of 𝐻0 (𝑉∞, 𝜔𝐾 𝑝 ), if 𝑛 > 0.
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As before, we denote by 𝔟 = {

(
∗ ∗

0 ∗

)
} ⊂ 𝔤𝔩2 (Q𝑝) the Lie algebra of the upper-triangular Borel

subgroup and by 𝔫 its nilpotent subalgebra. Let

𝑢+ =

(
0 1
0 0

)
, ℎ =

(
1 0
0 −1

)
, 𝑧 =

(
1 0
0 1

)

be a basis of 𝔟. Then 𝑢+ · 𝑥 = 𝑢+ · 𝑒2
𝑒1

= 1 and ℎ · 𝑒1 = 𝑒1 and 𝑧 · 𝑡 = 2𝑡.

4.3.6 (Expansion along 𝔫). Fix 𝑓 ∈ Ola
𝐾 𝑝 (𝑈). We are going to write f as a power series. Suppose

𝑓 ∈ O𝐾 𝑝 (𝑈)𝐺𝑚−an. By Lemma 2.1.8, there is a constant 𝐶1 such that ‖𝑢+ · 𝑠‖𝐺𝑚 ≤ 𝑝𝐶1 ‖𝑠‖𝐺𝑚 , for any
𝑠 ∈ O𝐾 𝑝 (𝑈)𝐺𝑚−an. Choose 𝑛′′ ≥ max(𝐶1 + 1/(𝑝 − 1) + 1, 𝑚). Then

‖(𝑥 − 𝑥𝑛′′ )
𝑙 (𝑢
+)𝑙 · 𝑠

𝑙!
‖𝐺𝑟 (𝑛′′) ≤ 𝑝−𝑙 ‖𝑠‖𝐺𝑟 (𝑚)

for any 𝑙 ≥ 0 and 𝑠 ∈ O𝐾 𝑝 (𝑈)𝐺𝑚−an by a simple calculation. Hence,

𝐷𝑥 (𝑠) :=
+∞∑
𝑙=0
(−1)𝑙 (𝑥 − 𝑥𝑛′′ )𝑙

(𝑢+)𝑙 · 𝑠

𝑙!

defines a bounded map 𝐷𝑥 : O𝐾 𝑝 (𝑈)𝐺𝑚−an → O𝐾 𝑝 (𝑈)𝐺𝑟 (𝑛′′) −an with norm ≤ 1. Moreover, since
𝑢+ · (𝑥 − 𝑥𝑛′′ ) = 1, one checks easily 𝑢+ ◦ 𝐷𝑥 = 0. Let

𝑎𝑖 := 𝐷𝑥

(
(𝑢+)𝑖 · 𝑓

𝑖!

)
=
+∞∑
𝑙=0
(−1)𝑙 (𝑥 − 𝑥𝑛′′ )𝑙

(𝑢+)𝑙+𝑖 · 𝑓

𝑙!𝑖!
∈ O𝐾 𝑝 (𝑈)𝐺𝑟 (𝑛′′) −an.

Its norm ‖𝑎𝑖 ‖𝐺𝑟 (𝑛′′) ≤ ‖
(𝑢+)𝑖 · 𝑓
𝑖! ‖𝐺𝑚 ≤ 𝑝 (𝑛

′′−1)𝑖 ‖ 𝑓 ‖𝐺𝑚 . Thus,
∑
𝑖≥0 𝑎𝑖 (𝑥 − 𝑥𝑛′′ )

𝑖 is convergent in
O𝐾 𝑝 (𝑈)𝐺𝑟 (𝑛′′) −an and a direct computation shows (using

∑𝑙
𝑖=0(−1)𝑖 1

𝑖!(𝑙−𝑖)! = 0 if 𝑙 ≥ 1) that in fact

𝑓 =
+∞∑
𝑖=0

𝑎𝑖 (𝑥 − 𝑥𝑛′′ )
𝑖

in O𝐾 𝑝 (𝑈)𝐺𝑟 (𝑛′′) −an. Note that 𝑢+ · 𝑎𝑖 = 0 for any i by our construction.

4.3.7 (Expansion along h). Next we write 𝑎𝑖 as a power series. Note that ‖𝑒1 − 𝑒1,𝑙 ‖𝐺𝑟 (𝑙) = ‖𝑒1 − 𝑒1,𝑙 ‖ ≤

𝑝−𝑙 . Hence, ‖𝑒1,𝑙 ‖𝐺𝑟 (𝑙) = ‖𝑒1‖𝐺𝑟 (𝑙) = 1. For 𝑗 ≥ 1, the series

log(
𝑒1
𝑒1,𝑙
) = log

(
1 +

𝑒1 − 𝑒1,𝑙

𝑒1,𝑙

)
:= −

+∞∑
𝑗=1
(−1) 𝑗

1
𝑗
(
𝑒1
𝑒1,𝑙
− 1) 𝑗

converges in O𝐾 𝑝 (𝑈)𝐺𝑟 (𝑙) −an and has norm ‖ log( 𝑒1
𝑒1,𝑙
)‖𝐺𝑟 (𝑙) ≤ 𝑝−𝑙 . Moreover, since 𝑢+ · 𝑒1 = 0, ℎ · 𝑒1 =

𝑒1, it follows that 𝑢+ · log( 𝑒1
𝑒1,𝑙
) = 0, ℎ · log( 𝑒1

𝑒1,𝑙
) = 1. Hence, we can repeat the previous process with

𝑢+, 𝑥 − 𝑥𝑛′′ replaced by ℎ, log( 𝑒1
𝑒1,𝑛′
): by Lemma 2.1.8, there is a constant 𝐶2 such that ‖ℎ · 𝑠‖𝐺𝑟 (𝑛′′) ≤

𝑝𝐶2 ‖𝑠‖𝐺𝑟 (𝑛′′) , 𝑠 ∈ O𝐾 𝑝 (𝑈)𝐺𝑟 (𝑛′′) −an. Choose 𝑛′ ≥ max (𝐶2 + 1/(𝑝 − 1) + 1, 𝑟 (𝑛′′)). Then we have

𝑎𝑖 =
+∞∑
𝑗=0

𝑏𝑖, 𝑗

(
log(

𝑒1
𝑒1,𝑛′
)

) 𝑗
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in O𝐾 𝑝 (𝑈)𝐺𝑟 (𝑛′) −an, where

𝑏𝑖, 𝑗 =
+∞∑
𝑙=0
(−1)𝑙

(
log(

𝑒1
𝑒1,𝑛′
)

) 𝑙
ℎ𝑙+ 𝑗 · 𝑎𝑖
𝑙! 𝑗!

is convergent in O𝐾 𝑝 (𝑈)𝐺𝑟 (𝑛′) −an and has norm ‖𝑏𝑖, 𝑗 ‖𝐺𝑟 (𝑛′) ≤ 𝑝 (𝑛
′−1) 𝑗+(𝑛′′−1)𝑖 ‖ 𝑓 ‖𝐺𝑚 . Also, since

[ℎ, 𝑢+] = 2𝑢+ and 𝑢+ · 𝑎𝑖 = 0, we have

𝑢+ · 𝑏𝑖, 𝑗 = ℎ · 𝑏𝑖, 𝑗 = 0.

4.3.8 (Expansion along z). Finally, we can expand 𝑏𝑖, 𝑗 using z. This is almost the same as in Section
4.3.7. Note that t is invertible with norm 1; hence, 𝑡𝑙 is also invertible. Thus, log( 𝑡𝑡𝑙 ) converges in
O𝐾 𝑝 (𝑈)𝐺𝑟 (𝑙) −an with norm ≤ 𝑝−𝑙 . It satisfies 𝑢+ · log( 𝑡𝑡𝑙 ) = ℎ · log( 𝑡𝑡𝑙 ) = 0 and 𝑧 · log( 𝑡𝑡𝑙 ) = 2. Then for
any sufficiently large integer 𝑛 ≥ 𝑟 (𝑛′), we have

𝑏𝑖, 𝑗 =
+∞∑
𝑘=0

𝑐𝑖, 𝑗 ,𝑘

(
log(

𝑡

𝑡𝑛
)

) 𝑘

converges in O𝐾 𝑝 (𝑈)𝐺𝑟 (𝑛) −an, where

𝑐𝑖, 𝑗 ,𝑘 =
1
2𝑘
+∞∑
𝑙=0
(−1)𝑙 (

1
2

log(
𝑡

𝑡𝑛
))𝑙

𝑧𝑙+𝑘 · 𝑏𝑖, 𝑗

𝑙!𝑘!

and has norm

‖𝑐𝑖, 𝑗 ,𝑘 ‖𝐺𝑟 (𝑛) ≤ 𝑝 (𝑛−1)𝑘+(𝑛′−1) 𝑗+(𝑛′′−1)𝑖 ‖ 𝑓 ‖𝐺𝑚 .

Since z commutes with 𝑢+, ℎ, it follows that

𝑢+ · 𝑐𝑖, 𝑗 ,𝑘 = ℎ · 𝑐𝑖, 𝑗 ,𝑘 = 𝑧 · 𝑐𝑖, 𝑗 ,𝑘 = 0;

that is, 𝑐𝑖, 𝑗 ,𝑘 is annihilated by 𝔟. By Lemma 4.3.3, this implies 𝑐𝑖, 𝑗 ,𝑘 is fixed 𝐺𝑟 (𝑛) . Therefore,

𝑐𝑖, 𝑗 ,𝑘 ∈ 𝐻
0(𝑉𝐺𝑟 (𝑛) ,OX𝐾𝑝𝐺𝑟 (𝑛) ).

In particular, ‖𝑐𝑖, 𝑗 ,𝑘 ‖𝐺𝑟 (𝑛) = ‖𝑐𝑖, 𝑗 ,𝑘 ‖.

Theorem 4.3.9. Keep the notation in Section 4.3.5. For any 𝑓 ∈ Ola
𝐾 𝑝 (𝑈) which is 𝐺𝑚-analytic, there

exist an integer 𝑁 = 𝑁 ( 𝑓 ), bounded above by some constant only depending on m, and unique elements
𝑐 (𝑛)𝑖, 𝑗 ,𝑘 ( 𝑓 ) ∈ 𝐻

0(𝑉𝐺𝑟 (𝑛) ,OX𝐾𝑝𝐺𝑟 (𝑛) ) for 𝑖, 𝑗 , 𝑘 ≥ 0, 𝑛 ≥ 𝑁 with norm ‖𝑐 (𝑛)𝑖, 𝑗 ,𝑘 ( 𝑓 )‖ ≤ 𝑝 (𝑛−1) (𝑖+ 𝑗+𝑘) ‖ 𝑓 ‖𝐺𝑚
for which

𝑓 =
∑

𝑖, 𝑗 ,𝑘≥0
𝑐 (𝑛)𝑖, 𝑗 ,𝑘 ( 𝑓 ) (𝑥 − 𝑥𝑛)

𝑖

(
log(

𝑒1
𝑒1,𝑛
)

) 𝑗 (
log(

𝑡

𝑡𝑛
)

) 𝑘

holds in O𝐾 𝑝 (𝑈)𝐺𝑟 (𝑛) −an. Conversely, given 𝑛 > 0 and c𝑖, 𝑗 ,𝑘 ∈ 𝐻0 (𝑉𝐺𝑟 (𝑛) ,OX𝐾𝑝𝐺𝑟 (𝑛) ), 𝑖, 𝑗 , 𝑘 ≥ 0 such
that ‖c𝑖, 𝑗 ,𝑘 ‖ ≤ 𝑝 (𝑛−1) (𝑖+ 𝑗+𝑘)𝐶 ′ holds for a uniform constant 𝐶 ′,

𝑓 ′ :=
∑

𝑖, 𝑗 ,𝑘≥0
c𝑖, 𝑗 ,𝑘 (𝑥 − 𝑥𝑛)𝑖

(
log(

𝑒1
𝑒1,𝑛
)

) 𝑗 (
log(

𝑡

𝑡𝑛
)

) 𝑘

defines an element in O𝐾 𝑝 (𝑈)𝐺𝑟 (𝑛) −an. We can take 𝑁 ( 𝑓 ′) = 𝑛; hence, 𝑐 (𝑛)𝑖, 𝑗 ,𝑘 ( 𝑓
′) = c𝑖, 𝑗 ,𝑘 .
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Proof. We have written 𝑓 =
∑
𝑖, 𝑗 ,𝑘≥0 𝑐𝑖, 𝑗 ,𝑘 (𝑥 − 𝑥𝑛′′ )

𝑖
(
log( 𝑒1

𝑒1,𝑛′
)
) 𝑗 (

log( 𝑡𝑡𝑛 )
) 𝑘

with ‖𝑐𝑖, 𝑗 ,𝑘 ‖𝐺𝑟 (𝑛) ≤
𝑝 (𝑛−1)𝑘+(𝑛′−1) 𝑗+(𝑛′′−1)𝑖 ‖ 𝑓 ‖𝐺𝑚 . The rest is to change the coordinates from 𝑥 − 𝑥𝑛′′ to 𝑥 − 𝑥𝑛 and
from log( 𝑒1

𝑒1,𝑛′
) to log( 𝑒1

𝑒1,𝑛
). By our construction, both (𝑥 − 𝑥𝑛) − (𝑥 − 𝑥𝑛′′ ), log( 𝑒1

𝑒1,𝑛
) − log( 𝑒1

𝑒1,𝑛′
) ∈

𝐻0 (𝑉𝐺𝑟 (𝑛) ,OX𝐾𝑝𝐺𝑟 (𝑛) ) and

‖(𝑥 − 𝑥𝑛) − (𝑥 − 𝑥𝑛′′ ) ‖ ≤ 𝑝−𝑛
′′

, ‖ log(
𝑒1
𝑒1,𝑛
) − log(

𝑒1
𝑒1,𝑛′
) ‖ ≤ 𝑝−𝑛

′

.

Hence, if we write

∑
𝑖, 𝑗 ,𝑘≥0

𝑐𝑖, 𝑗 ,𝑘 (𝑥 − 𝑥𝑛′′ )
𝑖

(
log(

𝑒1
𝑒1,𝑛′
)

) 𝑗 (
log(

𝑡

𝑡𝑛
)

) 𝑘
=

∑
𝑖, 𝑗 ,𝑘≥0

𝑐 (𝑛)𝑖, 𝑗 ,𝑘 ( 𝑓 ) (𝑥 − 𝑥𝑛)
𝑖

(
log(

𝑒1
𝑒1,𝑛
)

) 𝑗 (
log(

𝑡

𝑡𝑛
)

) 𝑘

for some 𝑐 (𝑛)𝑖, 𝑗 ,𝑘 ( 𝑓 ) ∈ 𝐻
0(𝑉𝐺𝑟 (𝑛) ,OX𝐾𝑝𝐺𝑟 (𝑛) ), a simple computation gives

‖𝑐 (𝑛)𝑖, 𝑗 ,𝑘 ( 𝑓 )‖𝐺𝑟 (𝑛) ≤ 𝑝 (𝑛−1)𝑘+(𝑛′−1) 𝑗+(𝑛′′−1)𝑖 ‖ 𝑓 ‖𝐺𝑚 ≤ 𝑝 (𝑛−1) (𝑖+ 𝑗+𝑘) ‖ 𝑓 ‖𝐺𝑚

as 𝑛 ≥ 𝑛′ ≥ 𝑛′′. For the uniqueness and the converse part, using the bounds on 𝑐 (𝑛)𝑖, 𝑗 ,𝑘 ( 𝑓 ), we can repeat
our construction (with 𝑛′′ = 𝑛′ = 𝑛 this time) and recover 𝑐 (𝑛)𝑖, 𝑗 ,𝑘 ( 𝑓 ) from f. We omit the details here. �

Definition 4.3.10. Keep the notation in Section 4.3.5. For any 𝑛 > 0, we define O𝑛 (𝑈){𝑥, 𝑒1, 𝑡} ⊂
Ola
𝐾 𝑝 (𝑈) to be the subset of f, which can be written as

𝑓 =
∑

𝑖, 𝑗 ,𝑘≥0
𝑐𝑖, 𝑗 ,𝑘 (𝑥 − 𝑥𝑛)

𝑖

(
log(

𝑒1
𝑒1,𝑛
)

) 𝑗 (
log(

𝑡

𝑡𝑛
)

) 𝑘

with 𝑐𝑖, 𝑗 ,𝑘 ∈ 𝐻0 (𝑉𝐺𝑟 (𝑛) ,OX𝐾𝑝𝐺𝑟 (𝑛) ), 𝑖, 𝑗 , 𝑘 ≥ 0 such that ‖𝑐𝑖, 𝑗 ,𝑘 ‖ ≤ 𝑝 (𝑛−1) (𝑖+ 𝑗+𝑘)𝐶 ′ holds for some
uniform constant 𝐶 ′. It is a Banach algebra over C with norm

‖ 𝑓 ‖𝑛 := sup
𝑖, 𝑗 ,𝑘≥0

‖𝑐 (𝑛)𝑖, 𝑗 ,𝑘 ( 𝑓 )𝑝
(𝑛−1) (𝑖+ 𝑗+𝑘) ‖.

LetO𝑛 (𝑈)+{𝑥, 𝑒1, 𝑡} be its open unit ball. By Theorem 4.3.9, sending f to 𝑐 (𝑛)𝑖, 𝑗 ,𝑘 ( 𝑓 )𝑝
(𝑛−1) (𝑖+ 𝑗+𝑘) induces

an isomorphism of topological Z𝑝-modules

O𝑛 (𝑈)+{𝑥, 𝑒1, 𝑡} �
∏
𝑖, 𝑗 ,𝑘≥0

𝐻0(𝑉𝐺𝑟 (𝑛) ,O+X𝐾𝑝𝐺𝑟 (𝑛) ).

Remark 4.3.11. It is clear from the proof of Theorem 4.3.9 that O𝑛 (𝑈){𝑥, 𝑒1, 𝑡} is independent of the
choice of 𝑥𝑛, 𝑒1,𝑛, 𝑡𝑛.

Remark 4.3.12. For any 𝑚 > 0, by Theorem 4.3.9, we can find n such that there are continuous
embeddings (of Banach spaces)

O𝐾 𝑝 (𝑈)𝐺𝑚−an → O𝑛 (𝑈){𝑥, 𝑒1, 𝑡} → O𝐾 𝑝 (𝑈)𝐺𝑟 (𝑛) −an.

Hence, lim
−−→𝑛

O𝐾 𝑝 (𝑈)𝐺𝑛−an � lim
−−→𝑛

O𝑛 (𝑈){𝑥, 𝑒1, 𝑡} as topological spaces. It will be clear later that
O𝑛 (𝑈){𝑥, 𝑒1, 𝑡} behaves a lot better in applications.

4.3.13. Theorem 4.3.9 can be rephrased sheaf-theoretically. Recall some construction in the paragraph
above Corollary 3.6.10. We denote by O+𝑟 (𝑛) the pushforward of O+𝑉𝐺𝑟 (𝑛) from 𝑉𝐺𝑟 (𝑛) to 𝑉𝐾𝑝 , by Õ the
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pushforward of O𝑉∞ from 𝑉∞ to 𝑉𝐾𝑝 , by Õ𝑛 ⊂ Õ the subsheaf of 𝐺𝑛-analytic sections and by Õla
⊂ Õ

the subsheaf of 𝐾𝑝-locally analytic sections. For each 𝑛 > 0, we can define a map

𝜙+𝑛 :
∏

(𝑖, 𝑗 ,𝑘) ∈N3

O+𝑟 (𝑛) → Õla

sending (𝑎𝑖, 𝑗 ,𝑘 ) ∈
∏
𝑖, 𝑗 ,𝑘≥0 O+𝑟 (𝑛) (𝑊) to

∑
𝑖, 𝑗 ,𝑘≥0

𝑝−(𝑛−1) (𝑖+ 𝑗+𝑘)𝑎𝑖, 𝑗 ,𝑘 (𝑥 − 𝑥𝑛)
𝑖

(
log(

𝑒1
𝑒1,𝑛
)

) 𝑗 (
log(

𝑡

𝑡𝑛
)

) 𝑘
∈ Õla

(𝑊),

for any open set W of 𝑉𝐾𝑝 . Let 𝜙𝑛 : (
∏
(𝑖, 𝑗 ,𝑘) ∈N3 O+𝑟 (𝑛) ) ⊗Z𝑝 Q𝑝 → Õla

be 𝜙+𝑛 ⊗ Q𝑝 . Then Theorem
4.3.9 implies that 𝜙𝑛 is an isomorphism onto its image im(𝜙𝑛) and for any 𝑚 > 0, we have Õ𝑚 ⊂
im(𝜙𝑛) ⊂ Õ𝑟 (𝑛) for some n. A direct consequence is the following.

Lemma 4.3.14. Let𝔘 be a finite cover of𝑉𝐾 𝑝 by rational open subsets. We have the following assertions
for Čech cohomology with respect to 𝔘.

(1) �̌�𝑖 (𝔘,
∏
(𝑖, 𝑗 ,𝑘) ∈N3 O+𝑟 (𝑛) ) ⊗Z𝑝 Q𝑝 = 0, 𝑖 ≥ 1.

(2) The direct system {�̌�𝑖 (𝔘, Õ𝑛)}𝑛 is essentially zero for any 𝑖 ≥ 1.

Proof. Let 𝐶•(𝔘,O+𝑟 (𝑛) ) be the Čech complex for O+𝑟 (𝑛) with respect to 𝔘. Note that if we denote
by 𝔘′ the pullback of 𝔘 to 𝑉𝐺𝑟 (𝑛) , then 𝐶•(𝔘,O+𝑟 (𝑛) ) is nothing but the Čech complex for O+𝑉𝐺𝑟 (𝑛)
with respect to 𝔘′. Hence, Tate’s acyclicity result implies that 𝐻𝑖 (𝐶•(𝔘,O+𝑟 (𝑛) )) ⊗Z𝑝 Q𝑝 = 0, 𝑖 ≥ 1.
Therefore, 𝐻𝑖 (𝐶•(𝔘,O+𝑟 (𝑛) )), 𝑖 ≥ 1 is annihilated by some 𝑝𝑘 by open mapping theorem. From this,
we get 𝐻𝑖 (𝐶•(𝔘,

∏
(𝑖, 𝑗 ,𝑘) ∈N3 O+𝑟 (𝑛) )) ⊗Z𝑝 Q𝑝 = 0, 𝑖 ≥ 1, which is exactly what we want.

The second part is a direct consequence of the first one and the inclusion Õ𝑚 ⊂ im(𝜙𝑛) ⊂ Õ𝑟 (𝑛) . �

Since O𝐾 𝑝 (𝑈) is a Banach space representation of 𝐾𝑝 , we can talk about its (strongly)𝔏𝔄-acyclicity
(with respect to 𝐾𝑝). See Subsection 2.2 for more details.

Proposition 4.3.15. O𝐾 𝑝 (𝑈) is strongly 𝔏𝔄-acyclic for any 𝑈 ∈ 𝔅.

Proof. By Lemma 5.2 and its proof of [Sch13a], we can find a cover of 𝑉𝐾𝑝 by finitely many rational
subsets 𝑈1, · · · ,𝑈𝑚 such that each 𝑈𝑖 is small in the sense of Section 3.1.1 with 𝑆 = {cusp in 𝑈𝑖}. By
Corollary 4.2.3, the preimage of 𝑈𝑖 in 𝑉∞ is a locally analytic covering of 𝑈𝑖 . The proposition now
follows from Corollary 3.6.10 and Lemma 4.3.14. �

4.4. Cohomology of Ola
𝑲 𝒑 and completed cohomology

In this subsection, we compare the coherent cohomology of Ola
𝐾 𝑝 (on ℱℓ) and OX𝐾𝑝 (on X𝐾 𝑝 ). By

Scholze’s result [Sch15], the latter one is closely related to the completed cohomology of modular curves
introduced earlier by Emerton [Eme06b]. The main result is that the cohomology of Ola

𝐾 𝑝 is more or
less the subspace of locally analytic vectors in completed cohomology.

4.4.1. First recall the construction of completed cohomology. See, for example, [Eme06b, CE12]. For a
tame level 𝐾 𝑝 ⊂ GL2(A

𝑝
𝑓 ), let

�̃�𝑖 (𝐾 𝑝 ,Z/𝑝𝑛) := lim
−−→

𝐾𝑝⊂GL2 (Q𝑝)

𝐻𝑖 (𝑌𝐾 𝑝𝐾𝑝 (C),Z/𝑝
𝑛).
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Since 𝑌𝐾 𝑝𝐾𝑝 (C) is affine, �̃�𝑖 = 0, 𝑖 ≥ 2. Note that �̃�𝑖 (𝐾 𝑝 ,Z/𝑝𝑛) can also be defined using the
compactified modular curves; that is, the natural restriction map

lim
−−→
𝐾𝑝

𝐻𝑖 (𝑋𝐾 𝑝𝐾𝑝 (C),Z/𝑝
𝑛) → lim

−−→
𝐾𝑝

𝐻𝑖 (𝑌𝐾 𝑝𝐾𝑝 (C),Z/𝑝
𝑛)

is an isomorphism. This is clear when 𝑖 = 0. When 𝑖 = 2, both sides are zero. When 𝑖 = 1, the cokernel
of above comes from cohomology of top degree around each cusp, which vanishes as the ramification
degree of each cusp is divisible by arbitrary power of p.

The completed cohomology of tame level 𝐾 𝑝 is defined as

�̃�𝑖 (𝐾 𝑝 ,Z𝑝) := lim
←−−
𝑛

�̃�𝑖 (𝐾 𝑝 ,Z/𝑝𝑛).

It has a natural admissible continuous action of GL2(Q𝑝); that is, �̃�𝑖 (𝐾 𝑝 ,Z𝑝)/𝑝 is a smooth admissible
representation of GL2(Q𝑝) over F𝑝; cf. [CE12, Theorem 1.16]. As a consequence, �̃�𝑖 (𝐾 𝑝 ,Z𝑝) has
bounded p-torsion; that is, p-power torsion classes in �̃�𝑖 (𝐾 𝑝 ,Z𝑝) have bounded exponent.

The following result (essentially due to Scholze) relates completed cohomology and the cohomol-
ogy of O+X𝐾𝑝 . Here we say a map is Hecke-equivariant if it commutes with Hecke operators away
from p.

Theorem 4.4.2. There is a natural GL2(Q𝑝) and Hecke-equivariant isomorphism of almost O𝐶 -
modules

�̃�𝑖 (𝐾 𝑝 ,Z/𝑝𝑛) ⊗Z𝑝/𝑝𝑛 O𝐶/𝑝𝑛 � 𝐻𝑖 (X𝐾 𝑝 ,O+X𝐾𝑝 /𝑝
𝑛),

where the right-hand side is computed using the analytic topology of X𝐾 𝑝 .

Proof. Basically the same proof of Theorem IV.2.1 of [Sch15] works here: first we may identify
𝐻𝑖 (𝑋𝐾 𝑝𝐾𝑝 (C),Z/𝑝

𝑛) with 𝐻𝑖ét (X𝐾 𝑝𝐾𝑝 ,Z/𝑝𝑛) by the comparison theorem; then, using the primitive
comparison theorem (Theorem 1.3 of [Sch13a]) and taking the direct limit over all 𝐾𝑝 , we obtain the
desired almost isomorphism. �

Corollary 4.4.3. There is a natural GL2(Q𝑝) and Hecke-equivariant isomorphism of almost O𝐶 -
modules

�̃�𝑖 (𝐾 𝑝,Z𝑝)⊗̂Z𝑝O𝐶 � 𝐻𝑖 (X𝐾 𝑝 ,O+X𝐾𝑝 ).

Proof. Since the higher cohomology of O+X𝐾𝑝 almost vanishes on any affinoid perfectoid open subset
(Theorem 1.8.(iv) of [Sch12]), we can compute 𝐻𝑖 (X𝐾 𝑝 ,O+X𝐾𝑝 ) and 𝐻𝑖 (X𝐾 𝑝 ,O+X𝐾𝑝 /𝑝

𝑛) by Čech
cohomology. Take a finite affinoid perfectoid cover of X𝐾 𝑝 and let 𝑀• be the Čech complex for O+X𝐾𝑝
with respect to this cover. Then as almost O𝐶 -modules, 𝐻𝑖 (𝑀•) = 𝐻𝑖 (X𝐾 𝑝 ,O+X𝐾𝑝 ) and 𝐻𝑖 (𝑀•/𝑝𝑛) =
𝐻𝑖 (X𝐾 𝑝 ,O+X𝐾𝑝 /𝑝

𝑛). In view of the previous theorem, the corollary above is reduced to the following
lemma. �

Lemma 4.4.4. Let 𝑀• be a bounded above chain complex of p-adically complete, p-torsion-free Z𝑝-
modules. Assume that lim

←−−𝑛
𝐻𝑖 (𝑀•/𝑝𝑛) has bounded p-torsion for any i. Then we have natural isomor-

phisms

𝐻𝑖 (𝑀•)
∼
−→ lim
←−−
𝑛

𝐻𝑖 (𝑀•)/𝑝𝑛
∼
−→ lim
←−−
𝑛

𝐻𝑖 (𝑀•/𝑝𝑛).
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Proof. Since 𝑀• is p-adically complete and p-torsion free, we know that 𝐻𝑖 (𝑀•) is derived p-adically
complete. See [Sta20, Tag 091N] for more details. In particular,

HomZ𝑝 (Q𝑝 , 𝐻
𝑖 (𝑀•)) = 0.

For the reader’s convenience, we recall the argument here. Suppose HomZ𝑝 (Q𝑝 , 𝐻𝑖 (𝑀•)) ≠ 0. We can
find 𝑥𝑛 ∈ 𝐻𝑖 (𝑀•), 𝑛 = 0, 1, 2, · · · satisfying 𝑝𝑥𝑛 = 𝑥𝑛−1 and 𝑥0 ≠ 0. Let 𝑥𝑛 ∈ 𝑀 𝑖 be a lift of 𝑥𝑛. Then
there exist 𝑦𝑛 ∈ 𝑀 𝑖−1 such that 𝑑𝑦𝑛 = 𝑥𝑛−1 − 𝑝𝑥𝑛. Define 𝑦 = 𝑦1 + 𝑝𝑦2 + 𝑝

2𝑦3 + · · · ∈ 𝑀 𝑖−1. One checks
easily 𝑑𝑦 = 𝑥0. Hence, 𝑥0 = 0, a contradiction.

Thus, HomZ𝑝 (Q𝑝/Z𝑝 , 𝐻𝑖 (𝑀•)) = 0. Now by the universal coefficient theorem, we have

0→ 𝐻𝑖 (𝑀•)/𝑝𝑛 → 𝐻𝑖 (𝑀•/𝑝𝑛) → 𝐻𝑖+1(𝑀•) [𝑝𝑛] → 0.

When n varies, the transition map 𝐻𝑖+1(𝑀•) [𝑝𝑛+1] → 𝐻𝑖+1(𝑀•) [𝑝𝑛] is multiplication by p. Hence,
lim
←−−𝑛

𝐻𝑖+1(𝑀•) [𝑝𝑛] = HomZ𝑝 (Q𝑝/Z𝑝 , 𝐻𝑖 (𝑀•)) = 0. We get lim
←−−𝑛

𝐻𝑖 (𝑀•)/𝑝𝑛
∼
−→ lim
←−−𝑛

𝐻𝑖 (𝑀•/𝑝𝑛)

by passing to the limit over n of the above exact sequence.
It remains to show that 𝐻𝑖 (𝑀•) → lim

←−−𝑛
𝐻𝑖 (𝑀•)/𝑝𝑛 is an isomorphism. This is clearly surjective

as 𝐻𝑖 (𝑀•) is a quotient of ker(𝑀 𝑖 𝑑−→ 𝑀 𝑖+1), which is p-adically complete. Let K be the kernel of this
map. By our assumption, all of the torsion in lim

←−−𝑛
𝐻𝑖 (𝑀•)/𝑝𝑛 can be annihilated by 𝑝𝑘 for some k.

For any 𝑥 ∈ 𝐾 , we can find 𝑥 ′ ∈ 𝐻𝑖 (𝑀•) satisfying 𝑝𝑘+1𝑥 ′ = 𝑥. Then 𝑥 ′ maps to a torsion element
in lim
←−−𝑛

𝐻𝑖 (𝑀•)/𝑝𝑛. Hence, 𝑦 = 𝑝𝑘𝑥 ′ ∈ 𝐾 and 𝑝𝑦 = 𝑥. Therefore, 𝑝𝐾 = 𝐾 , which implies 𝐾 = 0 as
HomZ𝑝 (Q𝑝 , 𝐻𝑖 (𝑀•)) = 0. �

Remark 4.4.5. In fact, it is well-known that �̃�𝑖 (𝐾 𝑝 ,Z𝑝) is p-torsion free because the p-adic étale
cohomology of curves has no torsion. Hence, the proof of Corollary 4.4.3 can be greatly simplified in
this case. We decide to present this complicated proof here because it works in more general settings.

We write �̃�𝑖 (𝐾 𝑝 ,O𝐶 ) = �̃�𝑖 (𝐾 𝑝 ,Z𝑝)⊗̂Z𝑝O𝐶 and �̃�𝑖 (𝐾 𝑝 , 𝐶) = �̃�𝑖 (𝐾 𝑝 ,Z𝑝)⊗̂Z𝑝𝐶. Then

�̃�𝑖 (𝐾 𝑝 , 𝐶) � 𝐻𝑖 (X𝐾 𝑝 ,OX𝐾𝑝 )

is a Q𝑝-Banach representation of GL2(Q𝑝). Our main result here identifies its subspace of GL2(Q𝑝)-
locally analytic vectors.

Theorem 4.4.6. For any 𝑖 ≥ 0, there are natural GL2(Q𝑝) and Hecke-equivariant isomorphisms

◦ �̃�𝑖 (𝐾 𝑝 , 𝐶) � 𝐻𝑖 (ℱℓ,O𝐾 𝑝 ),
◦ �̃�𝑖 (𝐾 𝑝 , 𝐶)la � 𝐻𝑖 (ℱℓ,Ola

𝐾 𝑝 ).

Proof. First note that all higher direct images 𝑅 𝑗𝜋HT∗OX𝐾𝑝 = 0, 𝑗 > 0. One can check this on a basis
𝔅 of open subsets of ℱℓ in Theorem 4.1.7 and invoke the acyclicity result on affinoid perfectoid spaces;
cf. Theorem 1.8.(iv) of [Sch12]. Hence,

𝐻𝑖 (X𝐾 𝑝 ,OX𝐾𝑝 ) = 𝐻𝑖 (ℱℓ, 𝜋HT∗OX𝐾𝑝 ) = 𝐻𝑖 (ℱℓ,O𝐾 𝑝 ).

This proves the first isomorphism in the theorem and shows that 𝐻𝑖 (ℱℓ,O𝐾 𝑝 ) can be computed by the
Čech complex of a finite cover of ℱℓ of open subsets in 𝔅. We claim the same is true for Ola

𝐾 𝑝 ; that is,

𝐻 𝑗 (𝑈,Ola
𝐾 𝑝 ) = 0

for any 𝑈 ∈ 𝔅 and 𝑗 > 0. Therefore, 𝐻𝑖 (ℱℓ,Ola
𝐾 𝑝 ) can also be computed using Čech cohomology.

Recall that 𝔅 is stable under finite intersections. By Corollaire 4, p. 176 of [Gro57], it suffices to show
the Čech cohomology �̌� 𝑗 (𝑈,Ola

𝐾 𝑝 ) = 0 for any 𝑈 ∈ 𝔅 and 𝑗 > 0. This can be proved in exactly
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the same way as in the first paragraph of the proof of Corollary 3.6.10 using the acyclicity result in
Proposition 4.3.15.

Now let 𝔘 ⊂ 𝔅 be a finite cover of ℱℓ and 𝐶•(𝔘,O𝐾 𝑝 ), 𝐶•(𝔘,Ola
𝐾 𝑝 ) be the Čech complexes

for O𝐾 𝑝 ,Ola
𝐾 𝑝 using this cover. Then 𝐶•(𝔘,O𝐾 𝑝 ) is a strict complex because 𝐻𝑖 (𝐶•(𝔘,O+𝐾 𝑝 )) �

𝐻𝑖 (X𝐾 𝑝 ,O+X𝐾𝑝 ) � �̃�𝑖 (𝐾 𝑝,O𝐶 ) (as almost O𝐶 -modules) has bounded p-power torsion, where O+𝐾 𝑝 =
𝜋HT∗O+X𝐾𝑝 . Moreover, each 𝐶𝑖 (𝔘,O𝐾 𝑝 ) is 𝔏𝔄-acyclic by Proposition 4.3.15 and 𝐻𝑖 (𝐶•(𝔘,O𝐾 𝑝 )) =
�̃�𝑖 (𝐾 𝑝 , 𝐶) is 𝔏𝔄-acyclic because �̃�𝑖 (𝐾 𝑝,Z𝑝) is an admissible representation of GL2 (Q𝑝) and we can
apply the result of Schneider–Teitelbaum; cf. Corollary 2.2.4. Hence, the theorem follows from the
second part of Lemma 2.2.2 as (𝐶•(𝔘,O𝐾 𝑝 ))la = 𝐶•(𝔘,Ola

𝐾 𝑝 ). �

5. 𝝁-isotypic part of completed cohomology

The goal of this section is to determine the 𝜇-isotypic part of �̃�𝑖 (𝐾 𝑝 , 𝐶)la. We will give a complete
answer for integral weights as described in the Introduction. Roughly speaking, the answer is a mixture
of coherent cohomology groups of modular curves at finite level and overconvergent modular forms.
Also, we will give a p-adic Hodge-theoretic interpretation of the horizontal action 𝜃𝔥.

From now on, we assume 𝐶 = C𝑝 is the completion of Q𝑝 . Then 𝐺Q𝑝 acts continuously on
𝐶, �̃�𝑖 (𝐾 𝑝,Z𝑝), �̃�

𝑖 (𝐾 𝑝 , 𝐶) and commutes with the action of GL2 (Q𝑝) and Hecke operators away
from p.

5.1. A p-adic Hodge-theoretic interpretation of 𝜽𝖍
5.1.1. We would like to write down the action 𝜃𝔥 introduced in Corollary 4.2.8 on Ola

𝐾 𝑝 using the
explicit description in Theorem 4.3.9. So keep the notation in Subsection 4.3. In particular, 𝑒1 generates
𝐻0 (𝑉, 𝜔𝐾 𝑝 ). Then for any 𝑓 ∈ Ola

𝐾 𝑝 (𝑈), we can write

𝑓 =
∑

𝑖, 𝑗 ,𝑘≥0
𝑐 (𝑛)𝑖, 𝑗 ,𝑘 ( 𝑓 ) (𝑥 − 𝑥𝑛)

𝑖

(
log(

𝑒1
𝑒1,𝑛
)

) 𝑗 (
log(

𝑡

𝑡𝑛
)

) 𝑘

for sufficiently large n (as in Theorem 4.3.9). By our construction in Corollary 4.2.8, a direct computation

shows that 𝜃𝔥 (
(
𝑎 0
0 𝑑

)
) acts onOla

𝐾 𝑝 (𝑈) as
(
𝑑 (𝑑 − 𝑎)𝑥
0 𝑎

)
∈ Oℱℓ (𝑈)⊗𝐶𝔤. (To see this, recall that

(
𝑥 𝑥2

−1 −𝑥

)

is a generator of 𝐻0(𝑈, 𝔫0); cf. Section 4.3.2. One computes directly that [
(
𝑑 (𝑑 − 𝑎)𝑥
0 𝑎

)
,

(
𝑥 𝑥2

−1 −𝑥

)
] =

(𝑎 − 𝑑)

(
𝑥 𝑥2

−1 −𝑥

)
, and this (𝑎 − 𝑑) agrees with [

(
𝑎 0
0 𝑑

)
,

(
0 1
0 0

)
] = (𝑎 − 𝑑)

(
0 1
0 0

)
.) Hence,

𝑐 (𝑛)𝑖, 𝑗 ,𝑘 (𝜃𝔥 (

(
𝑎 0
0 𝑑

)
) · 𝑓 ) = 𝑑 ( 𝑗 + 1)𝑐 (𝑛)𝑖, 𝑗+1,𝑘 ( 𝑓 ) + (𝑎 + 𝑑) (𝑘 + 1)𝑐 (𝑛)𝑖, 𝑗 ,𝑘+1 ( 𝑓 ).

Let 𝜒 be a weight of 𝔥; that is, a C-linear map 𝜒 : 𝔥→ 𝐶. We can write 𝜒(

(
𝑎 0
0 𝑑

)
) = 𝑎𝑛1 + 𝑑𝑛2 for some

𝑛1, 𝑛2 ∈ 𝐶. Fix N sufficiently large so that

(
𝑡

𝑡𝑁
)𝑛1 :=

∑
𝑙≥0

(
𝑛1
𝑙

)
(
𝑡

𝑡𝑁
− 1)𝑙 ,

(
𝑒1
𝑒1,𝑁
)𝑛2−𝑛1 :=

∑
𝑙≥0

(
𝑛2 − 𝑛1

𝑙

)
(

𝑒1
𝑒1,𝑁

− 1)𝑙
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converge in O𝐺𝑟 (𝑁 ) −an
𝐾 𝑝 . One checks easily that 𝜃𝔥 (

(
𝑎 0
0 𝑑

)
) acts as 𝜒 on ( 𝑡𝑡𝑁 )

𝑛1 ( 𝑒1
𝑒1,𝑁
)𝑛2−𝑛1 . Denote by

Ola,𝜒
𝐾 𝑝 ⊂ Ola

𝐾 𝑝 the subsheaf of sections of weight 𝜒.

Lemma 5.1.2. For any weight 𝜒 and 𝑈 ∈ 𝔅,

(1) 𝐻𝑖 (𝔥,Ola
𝐾 𝑝 (𝑈) ⊗ 𝜒) = 0, 𝑖 ≥ 1.

(2) Suppose 𝑒1 is a generator on 𝑉 = 𝜋−1
HT (𝑈); then any 𝑓 ∈ Ola,𝜒

𝐾 𝑝 (𝑈) can be written as

𝑓 = (
𝑡

𝑡𝑁
)𝑛1 (

𝑒1
𝑒1,𝑁
)𝑛2−𝑛1

∑
𝑖≥0

𝑐 (𝑛)𝑖 ( 𝑓 ) (𝑥 − 𝑥𝑛)
𝑖

for some 𝑛 > 𝑁 sufficiently large and 𝑐 (𝑛)𝑖 ( 𝑓 ) ∈ 𝐻0 (𝑉𝐺𝑟 (𝑛) ,OX𝐾𝑝𝐺𝑟 (𝑛) ) with bound ‖𝑐 (𝑛)𝑖 ( 𝑓 )‖ ≤
𝐶 ′𝑝 (𝑛−1)𝑖 for a uniform 𝐶 ′.

Proof. Using the action of GL2(Q𝑝), we can reduce to the case considered above; that is, that 𝑒1
generates 𝐻0(𝑉, 𝜔𝐾 𝑝 ). Note that ( 𝑡𝑡𝑁 )

𝑛1 ( 𝑒1
𝑒1,𝑁
)𝑛2−𝑛1 is invertible. Hence, multiplication by it induces an

𝔥-equivariant isomorphism Ola
𝐾 𝑝 (𝑈) ⊗ 𝜒

∼
−→ Ola

𝐾 𝑝 (𝑈). Therefore, it is enough to prove the case 𝜒 = 0.

The second part is clear in view of the explicit formula for 𝑐 (𝑛)𝑖, 𝑗 ,𝑘 (𝜃𝔥 (
(
𝑎 0
0 𝑑

)
) · 𝑓 ) above. To see the first

part, write 𝔞 = {

(
∗ 0
0 0

)
} ⊂ 𝔥. We claim

(1) 𝐻1(𝔞,Ola
𝐾 𝑝 (𝑈)) = 0;

(2) 𝐻0(𝔞,Ola
𝐾 𝑝 (𝑈)) ⊂ Ola

𝐾 𝑝 (𝑈) is the subset of f such that 𝑐 (𝑛)𝑖, 𝑗 ,𝑘 ( 𝑓 ) = 0, 𝑘 ≥ 1.

Again, the second claim is clear by our explicit formula. For the first claim, suppose 𝑓 ∈ Ola
𝐾 𝑝 (𝑈) has

an expansion as in Theorem 4.3.9. For any 𝑖, 𝑗 , 𝑘 ≥ 0, let 𝑐′𝑖, 𝑗 ,𝑘+1 = 1
𝑘+1𝑐

(𝑛)
𝑖, 𝑗 ,𝑘 ( 𝑓 ). Then ‖𝑐′𝑖, 𝑗 ,𝑘 ‖ ≤

𝐶 ′′𝑝 (𝑛−0.5) (𝑖+ 𝑗+𝑘) for some uniform 𝐶 ′′. Hence,

𝑓 ′ =
∑

𝑖, 𝑗≥0,𝑘≥1
𝑐′𝑖, 𝑗 ,𝑘 (𝑥 − 𝑥𝑛)

𝑖

(
log(

𝑒1
𝑒1,𝑛
)

) 𝑗 (
log(

𝑡

𝑡𝑛
)

) 𝑘

converges in O𝐺𝑟 (𝑛) −an
𝐾 𝑝 . One checks easily 𝜃𝔥 (

(
1 0
0 0

)
) · 𝑓 ′ = 𝑓 . This proves the vanishing of

𝐻1 (𝔞,Ola
𝐾 𝑝 (𝑈)). The same argument also gives 𝐻1 (𝔥/𝔞, 𝐻0(𝔞,Ola

𝐾 𝑝 (𝑈))) = 0. By the Hochschild–
Serre spectral sequence, we deduce our claim in the lemma. �

We denote by 𝐻𝑖 (ℱℓ,Ola
𝐾 𝑝 )

𝜒 the subspace of 𝐻𝑖 (ℱℓ,Ola
𝐾 𝑝 ) where 𝜃𝔥 acts by 𝜒. Then

𝐻0 (ℱℓ,Ola,𝜒
𝐾 𝑝 ) = 𝐻0 (ℱℓ,Ola

𝐾 𝑝 )
𝜒.

Corollary 5.1.3.

(1) 𝜃𝔥 (ℎ) · 𝑓 = 0, 𝜃𝔥 (𝑧) · 𝑓 = 𝑧 · 𝑓 , 𝑓 ∈ 𝐻0(ℱℓ,Ola
𝐾 𝑝 ). In particular, 𝐻0 (ℱℓ,Ola,𝜒

𝐾 𝑝 ) = 0 if 𝜒(ℎ) ≠ 0.
(2) If 𝜒(ℎ) ≠ 0, then 𝐻1(ℱℓ,Ola,𝜒

𝐾 𝑝 ) = 𝐻1(ℱℓ,Ola
𝐾 𝑝 )

𝜒. If 𝜒(ℎ) = 0, there is a 𝔤-equivariant exact
sequence

0→ lim
−−→

𝐾𝑝⊂GL2 (Q𝑝)

𝐻0 (X𝐾 𝑝𝐾𝑝 ,OX𝐾𝑝𝐾𝑝 ) · (
𝑡

𝑡𝑁
)𝑛1 → 𝐻1 (ℱℓ,Ola,𝜒

𝐾 𝑝 ) → 𝐻1 (ℱℓ,Ola
𝐾 𝑝 )

𝜒 → 0,

where 𝑛1 = 𝜒(

(
1 0
0 0

)
) and 𝑡𝑁 ∈ 𝐻

0(X𝐾 𝑝𝐾𝑝 ,OX𝐾𝑝𝐾𝑝 ) sufficiently close to t for some 𝐾𝑝 .
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Proof. The action of GL2 (Q𝑝) on �̃�0(𝐾 𝑝 , 𝐶)la factors through the determinant map; hence, for any
global section 𝑓 ∈ 𝐻0(ℱℓ,Ola

𝐾 𝑝 ) � �̃�0(𝐾 𝑝 , 𝐶)la, we have 𝜃𝔥 (ℎ) · 𝑓 = 0 and 𝜃𝔥 (𝑧) · 𝑓 = 𝑧 · 𝑓 by the
explicit expression of 𝜃𝔥 in Section 5.1.1. This also shows that the horizontal action 𝜃𝔥 of 𝔥 agrees with
the constant action of 𝔥 ⊂ 𝔤 on �̃�0(𝐾 𝑝 , 𝐶)la.

For the second part, it follows from the first part of Lemma 5.1.2 that there is a spectral sequence

𝐸 𝑝𝑞2 = Ext𝑝
𝐶 [𝔥] (𝜒, 𝐻

𝑞 (ℱℓ,Ola
𝐾 𝑝 )) ⇒ 𝐻 𝑝+𝑞 (ℱℓ,Ola,𝜒

𝐾 𝑝 ).

The exact sequence of low degrees reads2

0→ Ext1𝐶 [𝔥] (𝜒, 𝐻
0(ℱℓ,Ola

𝐾 𝑝 )) → 𝐻1 (ℱℓ,Ola,𝜒
𝐾 𝑝 ) → 𝐻1 (ℱℓ,Ola

𝐾 𝑝 )
𝜒 → Ext2𝐶 [𝔥] (𝜒, 𝐻

0(ℱℓ,Ola
𝐾 𝑝 )).

When 𝜒(ℎ) ≠ 0, both Ext1 and Ext2 vanish because 𝜃𝔥 (ℎ) acts via zero on 𝐻0(ℱℓ,Ola
𝐾 𝑝 ). Now assume

𝜒(ℎ) = 0. After multiplying by ( 𝑡𝑡𝑁 )
−𝑛1 ∈ 𝐻0(ℱℓ,Ola

𝐾 𝑝 )
−𝜒, we may assume 𝜒 = 0. It suffices to show

◦ 𝐻1 (𝔥, 𝐻0(ℱℓ,Ola
𝐾 𝑝 )) � lim

−−→𝐾𝑝⊂GL2 (Q𝑝)
𝐻0 (X𝐾 𝑝𝐾𝑝 ,OX𝐾𝑝𝐾𝑝 ).

◦ 𝐻2 (𝔥, 𝐻0(ℱℓ,Ola
𝐾 𝑝 )) = 0.

Both claims follow from the Hochschild–Serre spectral sequence and

◦ 𝐻1 (𝔞, �̃�0(𝐾 𝑝 , 𝐶)la) = 0;
◦ 𝐻0 (𝔞, �̃�0(𝐾 𝑝 , 𝐶)la) = 𝐻0 (𝔤, �̃�0 (𝐾 𝑝 , 𝐶)la) = lim

−−→𝐾𝑝⊂GL2 (Q𝑝)
𝐻0(X𝐾 𝑝𝐾𝑝 ,OX𝐾𝑝𝐾𝑝 )

by the explicit description of �̃�0 (𝐾 𝑝 , 𝐶) in [Eme06b, (4.2)]. �

5.1.4. It is interesting to investigate the p-adic Hodge-theoretic meaning of 𝜃𝔥. First, we generalise the
classical notion of the Sen operator.

Definition 5.1.5. Suppose W is a C-Banach space equipped with a semi-linear continuous action of an
open subgroup of 𝐺Q𝑝 , say 𝐺𝐾 . We say a continuous C-linear endomorphism 𝜃Sen ∈ End𝐶 (𝑊) is a Sen
operator if it extends the natural action of 1 ∈ Q𝑝 � Lie(Gal(Q𝑝 (𝜇𝑝∞)/Q𝑝)) on the 𝐺𝐾 (𝜇𝑝∞) -smooth,
𝐺𝐾 -locally analytic vectors of W (viewed as a Q𝑝-Banach space).

If𝑊 = lim
−−→𝑛

𝑊𝑛 is an increasing union of C-Banach spaces𝑊𝑛 equipped with a semi-linear continuous
action of an open subgroup of 𝐺Q𝑝 , then we say 𝜃 ∈ End𝐶 (𝑊) is a Sen operator if 𝜃 preserves each 𝑊𝑛
and acts as a Sen operator on it. We also say W has pure Hodge–Tate–Sen weight 𝑘 ∈ 𝐶 if multiplication
by −𝑘 is a Sen operator on W.

Remark 5.1.6. The first part of the definition makes sense as for any 𝐺𝐾 (𝜇𝑝∞) -smooth vector v, the
action of 𝐺𝐾 on v factors through a finite-dimensional p-adic Lie group which has an open subgroup
naturally isomorphic to an open subgroup of Gal(Q𝑝 (𝜇𝑝∞)/Q𝑝). Also, it is clear that this definition is
independent of the choice of K.

Remark 5.1.7. If W is a finite-dimensional C-vector space, then in [Sen81] Sen proves that 𝜃Sen exists
and is unique. However, for a general W, to what extent 𝜃Sen exists uniquely is not known to the author.

In our case, we will take 𝑊 = O𝐾 𝑝 (𝑈)la and �̃�𝑖 (𝐾 𝑝 , 𝐶)la. Note that 𝑉𝐾𝑝 can be defined over a finite
extension K of Q𝑝 so O𝐾 𝑝 (𝑈)la has a natural action of 𝐺𝐾 .

Theorem 5.1.8. 𝜃𝔥 (
(
0 0
0 1

)
) is the unique Sen operator on O𝐾 𝑝 (𝑈)la.

2In fact, one can avoid the machinery of spectral sequences in this simple case. It was shown in the proof of Theorem 4.4.6 that
𝐻 𝑖 (ℱℓ,Ola

𝐾𝑝 ) can be computed by the Čech cohomology. Hence, we can use the cover {𝑈1 ,𝑈2 } of ℱℓ introduced in Section
5.1.12. Therefore, Ola

𝐾𝑝 (𝑈1) ⊕Ola
𝐾𝑝 (𝑈2) → Ola

𝐾𝑝 (𝑈1 ∩𝑈2) computes 𝐻 𝑖 (ℱℓ,Ola
𝐾𝑝 ) . Now this exact sequence comes from

applying Ext•
𝐶 [𝔥] (𝜒, ·) to this Čech complex.
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Remark 5.1.9. Roughly speaking, this result relates an operator in p-adic Hodge theory on (the infinite
level) modular curves with some group-theoretic operator (𝜃𝔥). This is very classical in the study of the
cohomology of locally symmetric spaces using complex Hodge theory. See, for example, Chapter II,
Section 4 of [BW00].

Remark 5.1.10. This result and Theorem 5.1.11 are all obtained by explicit calculations. It should be
possible to avoid these calculations by further decompleting O𝐾 𝑝 (𝑈)la with respect to the action of 𝐺𝐾
(i.e., usual Sen theory). I plan to come back to this in a future work.

Proof. By Theorem 4.3.9, for each m, we have continuous embeddings

O𝐾 𝑝 (𝑈)𝐺𝑚−an → O𝑛 (𝑈){𝑥, 𝑒1, 𝑡} → O𝐾 𝑝 (𝑈)𝐺𝑟 (𝑛) −an

for some n. See Definition 4.3.10. Since elements defined over a finite extension of K are dense in
𝐻0 (𝑉𝐺𝑟 (𝑛) ,OX𝐾𝑝𝐺𝑟 (𝑛) ), we may assume 𝑥𝑛, 𝑒1,𝑛, 𝑡𝑛 defined over K after enlarging K if necessary. Hence,

𝐺𝐾 preserves O𝑛 (𝑈){𝑥, 𝑒1, 𝑡} and it is enough to show that the action of 𝜃𝔥 (
(
0 0
0 1

)
) is a Sen operator

on O𝑛 (𝑈){𝑥, 𝑒1, 𝑡} and is the unique one.
For simplicity, we write M for O𝑛 (𝑈){𝑥, 𝑒1, 𝑡}, and for any finite extension 𝐾 ′ of K, we denote by

𝑀𝐾 ′ ⊂ 𝑀 the subspace of f with all 𝑐 (𝑛)𝑖, 𝑗 ,𝑘 ( 𝑓 ) defined over 𝐾 ′. It is clear that

𝑀 � 𝑀𝐾 ′ ⊗̂𝐾 ′𝐶.

One useful fact is

◦ 𝐺Q𝑝 acts trivially on x and acts via cyclotomic character on 𝑒1, 𝑡.

From this, one can check that 𝑀𝐾 ′ is 𝐺𝐾 ′ (𝜇𝑝∞) -fixed and 𝐺𝐾 ′ acts analytically on it. Conversely, any
such element f of M is contained in 𝑀𝐾 ′ because 𝑐 (𝑛)𝑖, 𝑗 ,𝑘 ( 𝑓 ) can be computed from f using the action of 𝔤
as in Subsection 4.3; hence, is 𝐺𝐾 ′-analytic and an argument using Tate’s normalised trace implies that

it is in fact fixed by 𝐺𝐾 ′ . Now a direct computation (using results in Section 5.1.1) shows that 𝜃𝔥 (
(
0 0
0 1

)
)

agrees with the natural action of 1 ∈ Q𝑝 � Lie(Gal(Q𝑝 (𝜇𝑝∞)/Q𝑝)) on 𝑀𝐾 ′ . The uniqueness follows
from 𝑀 � 𝑀𝐾 ′ ⊗̂𝐾 ′𝐶. �

Theorem 5.1.11. 𝜃𝔥 (
(
0 0
0 1

)
) is the unique Sen operator on 𝐻𝑖 (ℱℓ,Ola

𝐾 𝑝 ) = �̃�𝑖 (𝐾 𝑝 , 𝐶)la for any i.

5.1.12. The case 𝑖 = 0 follows from Theorem 5.1.8. So it suffices to prove the case 𝑖 = 1. We introduce
some notation first.

We have shown in the proof of Theorem 4.4.6 that 𝐻𝑖 (ℱℓ,Ola
𝐾 𝑝 ) can be computed by Čech cohomol-

ogy using a finite cover of ℱℓ in 𝔅. In particular, we can use the cover {𝑈1,𝑈2}, where𝑈1 (respectively
𝑈2) is the subset |𝑥 | ≤ 1 (respectively |𝑥 | ≥ 1). See Theorem 4.1.7. Denote by 𝑈12 = 𝑈1 ∩𝑈2. Then

Ola
𝐾 𝑝 (𝑈1) ⊕ Ola

𝐾 𝑝 (𝑈2) → Ola
𝐾 𝑝 (𝑈12)

computes 𝐻𝑖 (ℱℓ,Ola
𝐾 𝑝 ). Denote by 𝑉? = 𝜋−1

HT (𝑈?) with ? = 1, 2, 12. Fix an open subgroup 𝐺0 =
1 + 𝑝𝑙𝑀2 (Z𝑝) for some sufficiently large 𝑙 ≥ 2 so that 𝑉? is the preimage of some affinoid subset 𝑉?,𝐺0

of X𝐾 𝑝𝐺0 . As before, we write 𝐺𝑛 = 𝐺 𝑝𝑛

0 . Since 𝑒1 is a basis on 𝑈1, we can find 𝑥𝑛, 𝑒1,𝑛, 𝑡𝑛 as in
Section 4.3.5 and define O𝑛 (𝑈1){𝑥, 𝑒1, 𝑡} as in Definition 4.3.10. Note that by restricting 𝑥𝑛, 𝑒1,𝑛, 𝑡𝑛 on
𝑈12, we can define O𝑛 (𝑈12){𝑥, 𝑒1, 𝑡} similarly with unit ball O𝑛 (𝑈12)

+{𝑥, 𝑒1, 𝑡}. Now 𝑒1 is not a basis

on 𝑈2. So we work with 1
𝑥 , 𝑒2, 𝑡 instead of 𝑥, 𝑒1, 𝑡. Write 𝑦 = 1

𝑥 = 𝑒1
𝑒2

. Since the action of 𝑤 =

(
0 1
1 0

)
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interchanges 𝑈1,𝑈2, we obtain 𝑦𝑛 := 𝑤∗𝑥𝑛, 𝑒2,𝑛 := 𝑤∗𝑒1,𝑛 on 𝑈2. Using 𝑦𝑛, 𝑒2,𝑛, 𝑡𝑛, we can define
O𝑛 (𝑈2){𝑦, 𝑒2, 𝑡} ⊂ Ola

𝐾 𝑝 (𝑈2) on 𝑈2.

Lemma 5.1.13. For any 𝑛 > 2, the restriction from 𝑈2 to 𝑈12 induces a map

O𝑛 (𝑈2){𝑦, 𝑒2, 𝑡} → O𝑛 (𝑈12){𝑥, 𝑒1, 𝑡}

preserving norms of 𝑦 − 𝑦𝑛 and log( 𝑒2
𝑒2,𝑛
). See Definition 4.3.10 for the definition of norm ‖ · ‖𝑛.

Proof. On 𝑈12, we have

𝑦 − 𝑦𝑛 =
1
𝑥
− 𝑦𝑛 =

1
𝑥𝑛
·

1
1 + 𝑥−𝑥𝑛𝑥𝑛

− 𝑦𝑛 = (
1
𝑥𝑛
− 𝑦𝑛) −

∑
𝑖≥1

1
(−𝑥𝑛)𝑖+1

(𝑥 − 𝑥𝑛)
𝑖 .

Since ‖𝑥𝑛‖ = ‖𝑥‖ = 1 and 1
𝑥𝑛
− 𝑦𝑛 = ( 1

𝑥𝑛
− 1
𝑥 ) + (𝑦 − 𝑦𝑛) has norm ≤ 𝑝−𝑛 on 𝑈12; hence,

𝑝−(𝑛−1) (𝑦 − 𝑦𝑛) ∈ −
1
𝑥2
𝑛

𝑝−(𝑛−1) (𝑥 − 𝑥𝑛) + 𝑝O𝑛 (𝑈12)
+{𝑥, 𝑒1, 𝑡}.

The claim for log( 𝑒2
𝑒2,𝑛
) can be proved in a similar way. �

Proof of Theorem 5.1.11. Fix an integer 𝑚 > 2. Recall that �̃�1(𝐾 𝑝 , 𝐶) = coker(O𝐾 𝑝 (𝑈1) ⊕
O𝐾 𝑝 (𝑈2) → O𝐾 𝑝 (𝑈12)). By Proposition 4.3.15 and Corollary 2.2.4, all of the terms in the following
exact sequence

0→ �̃�0(𝐾 𝑝 , 𝐶) → O𝐾 𝑝 (𝑈1) ⊕ O𝐾 𝑝 (𝑈2) → O𝐾 𝑝 (𝑈12)

are strongly 𝔏𝔄-acyclic with respect to the action of 𝐺0. From this, it is easy to see that there exists
an integer 𝑚′ ≥ 𝑚 such that �̃�1 (𝐾 𝑝, 𝐶)𝐺𝑚−an is contained in the image of O𝐾 𝑝 (𝑈12)

𝐺𝑚′−an. Then by
Theorem 4.3.9, we can find 𝑛 ≥ 𝑚′ so that O𝐾 𝑝 (𝑈12)

𝐺𝑚′−an ⊂ O𝑛 (𝑈12){𝑥, 𝑒1, 𝑡} ⊂ O𝐾 𝑝 (𝑈12)
𝐺𝑟 (𝑛) −an.

As a consequence, the inclusion �̃�1(𝐾 𝑝 , 𝐶)𝐺𝑚−an ⊂ �̃�1(𝐾 𝑝 , 𝐶)𝐺𝑟 (𝑛) −an factors through the largest
separated quotient 𝑀𝑛 of

coker(O𝑛 (𝑈1){𝑥, 𝑒1, 𝑡} ⊕ O𝑛 (𝑈2){𝑦, 𝑒2, 𝑡} → O𝑛 (𝑈12){𝑥, 𝑒1, 𝑡})

(using the quotient topology on the cokernel). It suffices to show that 𝜃𝔥 (
(
0 0
0 1

)
) acts as the unique Sen

operator on 𝑀𝑛.
Now let K be a finite extension of Q𝑝 so that 𝑉1,𝐺0 , 𝑥𝑛, 𝑒1,𝑛, 𝑡𝑛 are all defined over K. Denote by

𝑀1 ⊂ O𝑛 (𝑈1){𝑥, 𝑒1, 𝑡} the subspace of𝐺𝐾 (𝜇𝑝∞) -fixed,𝐺𝐾 -analytic vectors. This is a K-Banach algebra
with norm ‖ · ‖𝑛, and we denote its unit ball by 𝑀𝑜

1 . Similarly, we can define 𝑀2 ⊂ O𝑛 (𝑈2){𝑦, 𝑒2, 𝑡} and
𝑀12 ⊂ O𝑛 (𝑈12){𝑥, 𝑒1, 𝑡} and their unit balls 𝑀𝑜

2 , 𝑀
𝑜
12. Then as in the proof of Theorem 5.1.8, we have

𝑀𝑜
1 ⊗̂O𝐾𝐶 � O𝑛 (𝑈1){𝑥, 𝑒1, 𝑡}, and similar results hold for 𝑀12 and 𝑀2. The previous lemma implies

that Ola
𝐾 𝑝 (𝑈1) ⊕ Ola

𝐾 𝑝 (𝑈2) → Ola
𝐾 𝑝 (𝑈12) has a subcomplex 𝑀𝑜

1 ⊕ 𝑀𝑜
2 → 𝑀𝑜

12. Moreover, let 𝑀𝑜 be
the quotient of coker(𝑀𝑜

1 ⊕ 𝑀𝑜
2 → 𝑀𝑜

12) by its torsion subgroup. Then

𝑀𝑛 = 𝑀𝑜⊗̂O𝐾𝐶

and 𝑀 = 𝑀𝑜 ⊗Z𝑝 Q𝑝 is the subspace of 𝐺𝐾 (𝜇𝑝∞) -fixed 𝐺𝐾 -analytic vectors in 𝑀𝑛. As in the proof of

Theorem 5.1.8, we know that 𝜃𝔥 (
(
0 0
0 1

)
) agrees with 1 ∈ Lie(Gal(Q𝑝 (𝜇𝑝∞)/Q𝑝)) on 𝑀12 and hence

also agrees on its quotient M. This verifies our definition of Sen operator. �
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Remark 5.1.14. It can be proved by explicit calculations that coker(𝑀𝑜
1 ⊕ 𝑀𝑜

2 → 𝑀𝑜
12) is already

torsion-free, so taking the largest separated quotient is in fact unnecessary.

Remark 5.1.15. It is clear from the proof that there is a close relation between two analytic aspects of
the completed cohomology: one comes from the group action of GL2 (Q𝑝), and one comes from the
Galois action of 𝐺Q𝑝 . Also, Theorem 5.1.11 implies that the two infinitesimal characters are closely
related. Both are actually deep theorems in the p-adic local Langlands for GL2(Q𝑝). See Théorème V.3
of [CD14] and Théorème 1.2 of [Dos12].

Remark 5.1.16. It is natural to ask whether we can show the existence of the Sen operator on �̃�𝑖 (𝐾 𝑝, 𝐶)la

in a more direct way. The answer is affirmative. We sketch a construction here based on the Tate–Sen
formalism of Berger–Colmez [BC08]. Let 𝐺 = 𝐺𝑛 for some n. The key point here is that

◦ the action of 𝐺Q𝑝 on �̃�𝑖 (𝐾 𝑝,Q𝑝)
𝐺−an,𝑜/𝑝 is trivial on an open subgroup; that is, the image of

𝐺Q𝑝 → End
(
(�̃�𝑖 (𝐾 𝑝 ,Q𝑝)

𝐺−an)𝑜/𝑝
)

is finite, where �̃�𝑖 (𝐾 𝑝 ,Q𝑝)
𝐺−an,𝑜 denotes the unit open ball

of �̃�𝑖 (𝐾 𝑝 ,Q𝑝)𝐺−an.

The argument is almost the same as the proof of [Pan20, Theorem 6.1]. Let 𝑊𝑜 be the unit open ball of
�̃�𝑖 (𝐾 𝑝 ,Q𝑝). Then

�̃�𝑖 (𝐾 𝑝 ,Q𝑝)
𝐺−an,𝑜/𝑝 =

(
𝑊𝑜⊗̂Z𝑝𝒞

an(𝐺𝑛,Q𝑝)
𝑜
)𝐺𝑛
/𝑝

⊆
(
𝑊𝑜 ⊗Z𝑝 𝒞

an (𝐺𝑛,Q𝑝)
𝑜/𝑝

)𝐺𝑛
⊆

(
𝑊𝑜/𝑝𝑊𝑜 ⊗F𝑝 𝒞

an(𝐺𝑛,Q𝑝)
𝑜/𝑝

)𝐺𝑛+1
= (𝑊𝑜/𝑝𝑊𝑜)𝐺𝑛+1 ⊗F𝑝 𝒞

an(𝐺𝑛,Q𝑝)
𝑜/𝑝,

where the last equality follows from Lemma 2.1.2. All maps are 𝐺Q𝑝 -equivariant. Note that
(𝑊𝑜/𝑝𝑊𝑜)𝐺𝑛+1 is a finite-dimensional F𝑝-vector space by the admissibility of the completed coho-
mology. Hence, the action of 𝐺Q𝑝 on �̃�𝑖 (𝐾 𝑝 ,Q𝑝)

𝐺−an,𝑜/𝑝 necessarily factors through a finite quotient
of 𝐺Q𝑝 .

Now we can apply Proposition 3.3.1 of [BC08] (with 𝐺0 = 𝐺Q𝑝 , 𝐻0 = 𝐺Q𝑝 (𝜇𝑝∞) ) to obtain the Sen
operator on �̃�𝑖 (𝐾 𝑝 ,Q𝑝)

𝐺−an⊗̂Q𝑝𝐶 except that �̃�𝑖 (𝐾 𝑝 ,Q𝑝)𝐺−an is not finite-dimensional. To get around
this, one can argue in a similar way to Section 3.3.1 by finding a dense subspace of �̃�𝑖 (𝐾 𝑝 ,Q𝑝)𝐺−an

which can be written as a union of finite-dimensional 𝐺Q𝑝 -invariant subspaces. For example, one
can take the subspace of GL2 (Z𝑝)-algebraic vectors. Indeed, the density is clear when 𝑖 = 0. When
𝑖 = 1, the proof of Lemma 6.3.8 implies that GL2 (Z𝑝)-algebraic vectors are dense in �̃�𝑖 (𝐾 𝑝 ,Q𝑝)
and hence also dense in �̃�𝑖 (𝐾 𝑝,Q𝑝)

𝐺−an. Therefore, one gets the desired unique Sen operator on
�̃�𝑖 (𝐾 𝑝 ,Q𝑝)

𝐺−an⊗̂Q𝑝𝐶. This defines the Sen operator on

lim
−−→
𝑛

(
�̃�𝑖 (𝐾 𝑝 ,Q𝑝)

𝐺𝑛−an⊗̂Q𝑝𝐶
)
� �̃�𝑖 (𝐾 𝑝 , 𝐶)la.

To see this isomorphism as LB-spaces, we claim that lim
−−→𝑛

(
𝑊𝐺𝑛−an⊗̂Q𝑝𝐶

)
� (𝑊 ⊗̂Q𝑝𝐶)

la for any
admissible Q𝑝-Banach representation W of 𝐺0. This is clear for 𝑊 = 𝒞(𝐺0,Q𝑝) because we even have
(𝑊 ⊗̂Q𝑝𝐶)

𝐺𝑛−an � 𝑊𝐺𝑛−an⊗̂Q𝑝𝐶 in this case. The general case can be proved by embedding W into
𝒞(𝐺0,Q𝑝)

⊕𝑑 for some d and applying the acyclicity result Corollary 2.2.4. We omit the details here.

5.2. 𝖓-cohomology (I)

5.2.1. We start to compute the 𝔫-cohomology of 𝐻1(ℱℓ,Ola,𝜒
𝐾 𝑝 ). Since 𝔫 is 1-dimensional, 𝐻0(𝔫, •)

(respectively 𝐻1(𝔫, •)) are the 𝔫-invariants (respectively 𝔫-coinvariants). Denote by Ola,𝜒,𝔫
𝐾 𝑝 (respec-
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tively (Ola,𝜒
𝐾 𝑝 )𝔫) the 𝔫-invariants (respectively 𝔫-coinvariants) of Ola,𝜒

𝐾 𝑝 . For the purpose of introduction,
we assume 𝜒(ℎ) ≠ 0. Then 𝐻0(ℱℓ,Ola,𝜒

𝐾 𝑝 ) = 0 and we have B-equivariant maps3

0→ 𝐻1 (ℱℓ,Ola,𝜒,𝔫
𝐾 𝑝 ) → 𝐻1(ℱℓ,Ola,𝜒

𝐾 𝑝 )
𝔫 → 𝐻0(ℱℓ, (Ola,𝜒

𝐾 𝑝 )𝔫) ⊗𝐶 𝔫∗ → 0, (5.2.1)

𝐻1(ℱℓ,Ola,𝜒
𝐾 𝑝 )𝔫 � 𝐻1(ℱℓ, (Ola,𝜒

𝐾 𝑝 )𝔫). (5.2.2)

Here 𝔫∗ = Hom𝐶 (𝔫, 𝐶). We will compute Ola,𝜒,𝔫
𝐾 𝑝 , (Ola,𝜒

𝐾 𝑝 )𝔫 in this subsection.

5.2.2. For a weight 𝜒, we write 𝜒(

(
𝑎 0
0 𝑑

)
) = 𝑛1𝑎 + 𝑛2𝑑 for some 𝑛1, 𝑛2 ∈ 𝐶 and sometimes identify 𝜒

with an ordered pair (𝑛1, 𝑛2) ∈ 𝐶
2.

First we compute (Ola,𝜒
𝐾 𝑝 )𝔫 . It turns out that for generic 𝜒, this is essentially the space of overconvergent

modular forms. We need some notation here. Let ∞ ∈ ℱℓ be the point where 𝑒1 vanishes. We can
consider the fibre of Ola,𝜒

𝐾 𝑝 at∞ (as a sheaf of Oℱℓ-modules); that is, Ola,𝜒
𝐾 𝑝 /𝔪∞O

la,𝜒
𝐾 𝑝 . Here 𝔪∞ denotes

the ideal sheaf defined by∞.

Definition 5.2.3. For a weight 𝜒, we define

𝑀†𝜒 (𝐾
𝑝) := 𝐻0(ℱℓ,Ola,𝜒

𝐾 𝑝 /𝔪∞O
la,𝜒
𝐾 𝑝 ),

the fibre of Ola,𝜒
𝐾 𝑝 at∞, and call it the space of overconvergent modular forms of weight 𝜒 of tame level

𝐾 𝑝 . There are natural actions of 𝐺Q𝑝 , the Borel subgroup B and Hecke operators away from p on this
space.

5.2.4. To justify its name, we can compare this definition with other existing definitions of overconvergent
modular forms in the literature [Kat73, CM98, Pil13, AIS14, CHJ17]. We will only focus on integral
weights to illustrate the main difference here.

Let k be an integer. We first introduce overconvergent modular forms with full level at p. Let
Γ(𝑝𝑛) = 1 + 𝑝𝑛𝑀2 (Z𝑝). We define the canonical locus X𝐾 𝑝Γ(𝑝𝑛) ,𝑐 ⊂ X𝐾 𝑝Γ(𝑝𝑛) as follows: using the
integral model and the index of Igusa components in Theorem 13.7.6 of [KM85], X𝐾 𝑝Γ(𝑝𝑛) ,𝑐 is the
tubular neighbourhood of the nonsingular points (= non-supersingular points) of irreducible components
of indices (Z/𝑝𝑛)2 → Z/𝑝𝑛, (1, 0) ↦→ 0. Equivalently, on the ordinary locus of these irreducible
components, the canonical subgroup (of level n) corresponds to (∗, 0) ⊂ (Z/𝑝𝑛)2 under the level
structure. Sections of 𝜔𝑘 on any strict neighbourhood of X𝐾 𝑝Γ(𝑝𝑛) ,𝑐 are called overconvergent modular
forms of weight k of level 𝐾 𝑝Γ(𝑝𝑛), which we denote by 𝑀†𝑘 (𝐾

𝑝Γ(𝑝𝑛)). Here a strict neighbourhood
of X𝐾 𝑝Γ(𝑝𝑛) ,𝑐 means an open set containing the closure X̄𝐾 𝑝Γ(𝑝𝑛) ,𝑐 . Clearly, 𝑀†𝑘 (𝐾

𝑝Γ(𝑝𝑛)) forms a
direct system when n varies.

Definition 5.2.5. Let 𝑘 ∈ Z. We define the space of overconvergent modular forms of weight k of tame
level 𝐾 𝑝 as

𝑀†𝑘 (𝐾
𝑝) := lim

−−→
𝑛

𝑀†𝑘 (𝐾
𝑝Γ(𝑝𝑛)).

The Galois group 𝐺Q𝑝 , Borel subgroup B and Hecke operators away from p act naturally on it.

Recall that classical overconvergent modular forms are defined as follows. Let Γ1(𝑝
𝑛) = {

(
𝑎 𝑏
𝑐 𝑑

)
∈

GL2(Z𝑝) | 𝑎 − 1, 𝑑 − 1, 𝑐 ∈ 𝑝𝑛Z𝑝}. Then we have the canonical locus X𝐾 𝑝Γ1 (𝑝𝑛) ,𝑐 ⊂ X𝐾 𝑝Γ1 (𝑝𝑛) , which

3Again, these follow from some standard spectral sequences, but one can avoid them here. Using the cover {𝑈1 ,𝑈2 }, we
have the exact sequence 0→ Ola,𝜒

𝐾 𝑝
(𝑈1) ⊕ Ola,𝜒

𝐾 𝑝
(𝑈2) → Ola,𝜒

𝐾 𝑝
(𝑈12) → 𝐻 1 (ℱℓ,Ola,𝜒

𝐾 𝑝
) → 0. Our claim follows on applying

𝐻 𝑖 (𝔫, ·) to this exact sequence.
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is defined as the image of X𝐾 𝑝Γ(𝑝𝑛) ,𝑐 under the natural map X𝐾 𝑝Γ(𝑝𝑛) → X𝐾 𝑝Γ1 (𝑝𝑛) . Using Katz–
Mazur’s integral model, this can also be defined as tubular neighbourhood of non-supersingular points
of irreducible components whose ordinary points classify ordinary elliptic curves with level structure at
p given by the canonical subgroup (of level n). We define 𝑀†𝑘 (𝐾

𝑝Γ1(𝑝
𝑛)) similarly as sections defined

in a strict neighbourhood of X𝐾 𝑝Γ1 (𝑝𝑛) ,𝑐 . Note that this is slightly different from the usual definition as
X𝐾 𝑝Γ1 (𝑝𝑛) is not connected.

We can obtain 𝑀†𝑘 (𝐾
𝑝) from lim

−−→𝑛
𝑀†𝑘 (𝐾

𝑝Γ1(𝑝
𝑛)) by inverting the action of

(
𝑝−1 0
0 1

)
. We can also

recover lim
−−→𝑛

𝑀†𝑘 (𝐾
𝑝Γ1(𝑝

𝑛)) from 𝑀†𝑘 (𝐾
𝑝) by taking invariants of 𝑁0 =

(
1 Z𝑝
0 1

)
:

lim
−−→
𝑛

𝑀†𝑘 (𝐾
𝑝Γ1(𝑝

𝑛)) = 𝑀†𝑘 (𝐾
𝑝)𝑁0 .

Proposition 5.2.6. Suppose 𝜒(

(
𝑎 0
0 𝑑

)
) = 𝑛1𝑎 + 𝑛2𝑑 with 𝑛1, 𝑛2 ∈ Z. Let 𝑘 = 𝜒(ℎ) = 𝑛1 − 𝑛2. There is a

canonical isomorphism induced by multiplication by 𝑒−𝑘2 𝑡𝑛1 :

𝜙𝜒 : 𝑀†𝑘 (𝐾
𝑝)
∼
−→ 𝑀†𝜒 (𝐾

𝑝)

satisfying

(𝑔1, 𝑔2) · 𝜙𝜒 ( 𝑓 ) = 𝜙𝜒 ((𝑔1, 𝑔2) · 𝑓 ) 𝑑
−𝑘𝜀𝑝 (𝑎𝑑)

𝑛1𝜀𝑝 (𝑔2)
𝑛1−𝑘 ,

𝑓 ∈ 𝑀†𝑘 (𝐾
𝑝), 𝑔1 =

(
𝑎 𝑏
0 𝑑

)
∈ 𝐵, 𝑔2 ∈ 𝐺Q𝑝 . Recall that 𝜀𝑝 : 𝐺Q𝑝 → Z

×
𝑝 is the p-adic cyclotomic

character and regarded as a character Q×𝑝 → Z×𝑝 sending x to 𝑥 |𝑥 | via local class field theory.

Remark 5.2.7. For a 𝐵 × 𝐺Q𝑝 -representation W and integers 𝑖, 𝑗 , 𝑘 , we write 𝑊 · 𝑒𝑖1𝑒
𝑗
2𝑡
𝑘 to denote the

twist of W by the character sending (
(
𝑎 𝑏
0 𝑑

)
, 𝑔) ∈ 𝐵 × 𝐺Q𝑝 to 𝑎𝑖𝑑 𝑗𝜀𝑝 (𝑎𝑑)

𝑘𝜀𝑝 (𝑔)
𝑖+ 𝑗+𝑘 . Therefore, we

can rewrite the isomorphism in Proposition 5.2.6 as

𝑀†𝑘 (𝐾
𝑝) · 𝑒−𝑘2 𝑡𝑛1 � 𝑀†𝜒 (𝐾

𝑝).

Proof. For any 𝑈 ∈ 𝔅, a neighbourhood of∞ not containing the zero of x, since 𝑒1 is not a basis now,
as in Section 5.1.12, we can use 𝑒2 instead. More precisely, let 𝑦 = 1

𝑥 = 𝑒1
𝑒2

. We can find 𝑦𝑛, 𝑒2,𝑛, 𝑡𝑛 as in
Section 4.3.5 and define O𝑛 (𝑈){𝑦, 𝑒2, 𝑡}. Denote by O𝑛 (𝑈){𝑦} ⊂ O𝑛 (𝑈){𝑦, 𝑒2, 𝑡} the subset on which
𝜃𝔥 acts by zero. Then Ola,𝜒

𝐾 𝑝 (𝑈) = lim
−−→𝑛

O𝑛 (𝑈){𝑦} · 𝑡𝑛1 ( 𝑒2
𝑒2,𝑛
)𝑛2−𝑛1 . Equivalently, as in Lemma 5.1.2, any

element in O𝑛 (𝑈){𝑦} · 𝑡𝑛1 ( 𝑒2
𝑒2,𝑛
)𝑛2−𝑛1 can be written as

𝑡𝑛1 (
𝑒2
𝑒2,𝑛
)𝑛2−𝑛1

∑
𝑖≥0

𝑐𝑖 (𝑦 − 𝑦𝑛)
𝑖 ,

where 𝑐𝑖 ∈ 𝐻0(𝑉𝐺𝑟 (𝑛) ,OX𝐾𝑝𝐺𝑟 (𝑛) ) with bound ‖𝑐𝑖 ‖ ≤ 𝐶 ′𝑝 (𝑛−1)𝑖 for a uniform 𝐶 ′. There is no need to
put 𝑡𝑛1

𝑛 here because 𝑛1 is an integer.
We can take 𝐺𝑟 (𝑛) to be some Γ(𝑝𝑚). We claim

◦ 𝑉𝐺𝑟 (𝑛) is a strict neighbourhood of X𝐾 𝑝𝐺𝑟 (𝑛) ,𝑐 .

Since both are affinoid subsets, it is enough to check that 𝑉𝐺𝑟 (𝑛) contains the closure of the non-cusp
classical points of X𝐾 𝑝𝐺𝑟 (𝑛) ,𝑐 . We check this relation for their preimages in X𝐾 𝑝 . Note that U is a
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𝐺𝑟 (𝑛) -invariant open neighbourhood of ∞. In particular, U contains 𝐺𝑟 (𝑛) · ∞ and 𝑉∞ contains the
closed set 𝜋−1

HT (𝐺𝑟 (𝑛) · ∞). Our claim follows from the following lemma.

Lemma 5.2.8. The preimages of non-cusp points of X𝐾 𝑝Γ(𝑝𝑚) ,𝑐 in X𝐾 𝑝 map to Γ(𝑝𝑚) · ∞ under the
Hodge–Tate period map for any 𝑚 ≥ 1.

Proof. If 𝑚 = 1, this follows from Lemma III.3.14 of [Sch15] by noting our canonical locus X𝐾 𝑝Γ(𝑝) ,𝑐
does not intersect the anticanonical locus in the reference. The general case 𝑚 ≥ 2 can be reduced to

this case by using the action of
(
𝑝𝑚−1 0

0 1

)
. �

Now fix such a U. Note that∞ is defined by 𝑦 = 0. We need to construct an isomorphism

Ola,𝜒
𝐾 𝑝 (𝑈)/(𝑦)

∼
−→ lim
−−→
𝑛

𝑀†𝑘 (𝐾
𝑝Γ(𝑝𝑛)).

Since O𝑛 (𝑈){𝑦} � O+𝑉𝐺𝑟 (𝑛) (𝑉𝐺𝑟 (𝑛) ) [[𝑝
−(𝑛−1) (𝑦 − 𝑦𝑛)]] ⊗Z𝑝 Q𝑝 , there is a natural O𝑉𝐺𝑟 (𝑛) (𝑉𝐺𝑟 (𝑛) )-

algebra homomorphism

𝜑𝑛 : O𝑛 (𝑈){𝑦}/(𝑦) → O𝑉𝐺𝑟 (𝑛) (𝑉
′′
𝐺𝑟 (𝑛)
)

sending 𝑝−(𝑛−1) (𝑦 − 𝑦𝑛) to −𝑝−(𝑛−1) 𝑦𝑛 ∈ O𝑉𝐺𝑟 (𝑛) (𝑉
′′
𝐺𝑟 (𝑛)
), where 𝑉 ′′𝐺𝑟 (𝑛) ⊂ 𝑉𝐺𝑟 (𝑛) is the rational subset

defined by |𝑝−𝑛𝑦𝑛 | ≤ 1. The same argument as above shows that 𝑉 ′′𝐺𝑟 (𝑛) is a strict neighbourhood of
X𝐾 𝑝𝐺𝑟 (𝑛) ,𝑐 . Let 𝑉 ′𝐺𝑟 (𝑛) ⊂ 𝑉𝐺𝑟 (𝑛) defined by |𝑝−(𝑛−1) 𝑦𝑛 | ≤ 1. We claim that

◦ the image of 𝜑𝑛 contains analytic functions convergent on 𝑉 ′𝐺𝑟 (𝑛) .

Indeed, sinceO𝑉𝐺𝑟 (𝑛) (𝑉
′
𝐺𝑟 (𝑛)
) � O𝑉𝐺𝑟 (𝑛) (𝑉𝐺𝑟 (𝑛) )〈𝑝

−(𝑛−1) 𝑦𝑛〉, this claim is clear in view of the definition
of 𝜑𝑛.

Hence, we have a map

O𝑛 (𝑈){𝑦} · 𝑡𝑛1 (
𝑒2
𝑒2,𝑛
)𝑛2−𝑛1/(𝑦) → 𝜔𝑘 (𝑉 ′′𝐺𝑟 (𝑛) )

by sending 𝑓 𝑡𝑛1 ( 𝑒2
𝑒2,𝑛
)𝑛2−𝑛1 to 𝜑𝑛 ( 𝑓 )𝑒

𝑛1−𝑛2
2,𝑛 ; that is, multiplication by 𝑡−𝑛1𝑒𝑛1−𝑛2

2 . Clearly, this map is
compatible when n varies and induces a map Ola,𝜒

𝐾 𝑝 (𝑈)/(𝑦) → lim
−−→𝑛

𝑀†𝑘 (𝐾
𝑝Γ(𝑝𝑛)).

To prove this is an isomorphism, it suffices to show that for any n and strict neighbourhood W of
X𝐾 𝑝Γ(𝑝𝑛) ,𝑐 , we can find 𝑚 ≥ 𝑛 such that the preimage of W in X𝐾 𝑝𝐺𝑟 (𝑚) contains 𝑉 ′𝐺𝑟 (𝑚) . Let �̃� be
the preimage of W in X𝐾 𝑝 . Then it is an open neighbourhood of 𝜋−1

HT (∞) = {𝑥 ∈ X𝐾 𝑝 | |𝑦(𝑥) | = 0}.
Therefore, {𝑥 ∈ X𝐾 𝑝 | |𝑝−𝑚𝑦(𝑥) | ≥ 1}, 𝑚 = 0, 1, · · · and �̃� form an open cover of 𝑉∞. Note that 𝑉∞
is quasi-compact because it is affinoid; hence, {𝑧 ∈ 𝑉∞ | |𝑝−(𝑚−1) 𝑦(𝑧) | ≤ 1} ⊂ �̃� for some m. Using
‖𝑦 − 𝑦𝑚‖ ≤ 𝑝−𝑚 on 𝑉∞, it is easy to see that this m works here.

The claim for the B-action follows from the construction and the fact that(
𝑎 𝑏
0 𝑑

)
· 𝑒2 = 𝑏𝑒1 + 𝑑𝑒2,

whose reduction modulo 𝔪∞ is 𝑑𝑒2 and that
(
𝑎 𝑏
0 𝑑

)
· 𝑡 = 𝑎𝑑 |𝑎𝑑 |. The claim for 𝐺Q𝑝 -action is clear as

𝐺Q𝑝 acts via the cyclotomic character on 𝑒2, 𝑡. �

We record the following result obtained in this proof.
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Lemma 5.2.9. Given an open subset U of ℱℓ containing ∞, there exists a strict neighbourhood of
X𝐾 𝑝Γ(𝑝𝑛) ,𝑐 for some n whose preimage in X𝐾 𝑝 is contained in 𝜋−1

HT (𝑈). Conversely, for any 𝑛 > 0
and any strict neighbourhood W of X𝐾 𝑝Γ(𝑝𝑛) ,𝑐 , there exists an open subset of ℱℓ containing ∞ whose
preimage in X𝐾 𝑝 is contained in the preimage of W.

Proof. For the first claim, we may assume𝑈 ∈ 𝔅. Then this was proved around Lemma 5.2.8. The second
claim follows from the argument in the second to last paragraph of the proof of Theorem 5.2.6. �

We are going to compare 𝑀†𝜒 (𝐾
𝑝) with the 𝔫-coinvariants (Ola,𝜒

𝐾 𝑝 )𝔫 of Ola,𝜒
𝐾 𝑝 . Note that there is a

natural action of 𝔥 on (Ola,𝜒
𝐾 𝑝 )𝔫 induced from the action of 𝔟. We will always use this constant 𝔥-action

from now on, unless otherwise specified (to distinguish with the horizontal action 𝜃𝔥). Since 𝑀†𝜒 (𝐾
𝑝)

is the fibre of Ola,𝜒
𝐾 𝑝 at∞, the action of 𝔟 on it factors through 𝔥. It is easy to see that

◦ 𝔥 acts on 𝑀†𝜒 (𝐾
𝑝) via 𝜒.

We denote by 𝑖∞ the natural embedding∞ ↩→ ℱℓ.

Proposition 5.2.10. Let 𝜒 = (𝑛1, 𝑛2) be a weight.

(1) (Ola,𝜒
𝐾 𝑝 )𝔫 is a skyscraper sheaf supported at∞ and hence has no 𝐻1.

(2) 𝔫(Ola,𝜒
𝐾 𝑝 ) ⊂ 𝔪∞Ola,𝜒

𝐾 𝑝 . Thus, we get a natural exact sequence

0→ (𝑖∞)∗𝑁𝜒 → (Ola,𝜒
𝐾 𝑝 )𝔫 → (𝑖∞)∗𝑀

†
𝜒 (𝐾

𝑝) → 0

for some 𝑁𝜒. Moreover, 𝔥 acts on 𝑁𝜒 via (𝑛2 + 1, 𝑛1 − 1). In particular, this exact sequence splits
naturally if 𝜒(ℎ) ≠ 1; that is, 𝜒 |𝔥0 ≠ 𝜌 |𝔥0 . Recall that 𝜌 denotes the half-sum of positive roots.

(3) (Ola,𝜒
𝐾 𝑝 )𝔫 = (𝑖∞)∗𝑀

†
𝜒 (𝐾

𝑝); that is, 𝑁𝜒 = 0 if 𝜒(ℎ) ≠ 0,−1,−2, · · · and is p-adically non-Liouville
(see Remark 5.2.11 for a definition).

(4) (Ola,𝜒
𝐾 𝑝 )𝔫 � (𝑖∞)∗𝑀

†
𝜒 (𝐾

𝑝) ⊕ (𝑖∞)∗𝑀
†
𝜒 (𝐾

𝑝) · (𝑒1/𝑒2)
1−𝜒 (ℎ) if 𝜒(ℎ) ∈ {0,−1,−2, · · · }.

Remark 5.2.11. Recall that according to Clark [Cla66], we say 𝛼 ∈ 𝐶 is p-adically non-Liouville if

lim inf
𝑛→∞
|𝛼 + 𝑛|1/𝑛 > 0;

that is, it cannot be well approximated by rational integers. It appears naturally in the study of p-adic
differential equations. Suppose 𝛼 ∉ Z and consider the inhomogeneous differential equation around
𝑥 = 0,

(𝑥
𝑑

𝑑𝑥
+ 𝛼)𝑦 =

1
1 − 𝑥

.

It has a unique formal power series solution
∑
𝑛≥0

1
𝑛+𝛼𝑥

𝑛, whose convergence is equivalent with 𝛼 being
non-Liouville. In fact, it will be clear to the reader that a variant of this differential equation will show
up in our case.

Proof. Let𝑈 ∈ 𝔅. We first show (Ola,𝜒
𝐾 𝑝 (𝑈))𝔫 = 0 if 𝑒1 is a basis on U. Clearly, this implies that (Ola,𝜒

𝐾 𝑝 )𝔫

is supported at ∞. On such a U, using the notation in Lemma 5.1.2, any element in 𝑓 ∈ Ola,𝜒
𝐾 𝑝 (𝑈) can

be written as

𝑓 = (
𝑡

𝑡𝑁
)𝑛1 (

𝑒1
𝑒1,𝑁
)𝑛2−𝑛1

∑
𝑖≥0

𝑐 (𝑛)𝑖 ( 𝑓 ) (𝑥 − 𝑥𝑛)
𝑖 .

Since 𝑢+ ∈ 𝔫 acts trivially on 𝑒1, 𝑡 and acts as the usual derivation on (𝑥 − 𝑥𝑛), an argument similar to
the proof of Lemma 5.1.2 shows that 𝔫 is a surjection on Ola,𝜒

𝐾 𝑝 (𝑈).
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Now let 𝑈 ∈ 𝔅 containing ∞ and on which 𝑒2 is a basis. As in the proof of Proposition 5.2.6, any
𝑓 ∈ Ola,𝜒

𝐾 𝑝 (𝑈) can be written as

𝑓 = (
𝑡

𝑡𝑁
)𝑛1 (

𝑒2
𝑒2,𝑁
)𝑛2−𝑛1

∑
𝑖≥0

𝑐𝑖 (𝑦 − 𝑦𝑛)
𝑖

for some n and 𝑐𝑖 . Using 𝑢+ · 𝑒2 = 𝑒1 = 𝑦𝑒2 and 𝑢+ · 𝑦 = −𝑦2, we get

𝑢+ · 𝑓 = 𝑦(
𝑡

𝑡𝑁
)𝑛1 (

𝑒2
𝑒2,𝑁
)𝑛2−𝑛1 (

∑
𝑖≥0
(𝑛2 − 𝑛1)𝑐𝑖 (𝑦 − 𝑦𝑛)

𝑖 − 𝑦
∑
𝑖≥1

𝑖𝑐𝑖 (𝑦 − 𝑦𝑛)
𝑖−1)

= 𝑦(
𝑡

𝑡𝑁
)𝑛1 (

𝑒2
𝑒2,𝑁
)𝑛2−𝑛1

∑
𝑖≥0
((𝑛2 − 𝑛1 − 𝑖)𝑐𝑖 − (𝑖 + 1)𝑐𝑖+1𝑦𝑛) (𝑦 − 𝑦𝑛)

𝑖 ∈ 𝑦Ola,𝜒
𝐾 𝑝 (𝑈).

Hence, 𝔫(Ola,𝜒
𝐾 𝑝 ) ⊂ 𝔪∞Ola,𝜒

𝐾 𝑝 and we can define 𝑁𝜒 as in the lemma. Moreover, one can compute

(ℎ − (𝑛2 − 𝑛1 + 2)) · (𝑦 𝑓 ) = 𝑦(
𝑡

𝑡𝑁
)𝑛1 (

𝑒2
𝑒2,𝑁
)𝑛2−𝑛1 (ℎ + 2(𝑛1 − 𝑛2)) · (

∑
𝑖≥0

𝑐𝑖 (𝑦 − 𝑦𝑛)
𝑖)

= −2𝑢+ · 𝑓 .

Also, it is easy to check that z acts on everything via 𝜒(𝑧) = 𝑛1 + 𝑛2. Hence, we conclude that 𝔥 acts via
(𝑛2 + 1, 𝑛1 − 1) on 𝑁𝜒.

The last two claims require a bit more work. We denote by 𝑈𝑛 ⊂ 𝑈 the rational subset defined by
|𝑝−𝑛𝑦 | ≤ 1. Then 𝑈𝑛 ∈ 𝔅 and contains ∞. Note that 𝜋−1

HT (𝑈𝑛) is also the preimage of 𝑉 ′′𝐺𝑟 (𝑛) = {𝑥 ∈
𝑉𝐺𝑟 (𝑛) , |𝑦𝑛 (𝑥)𝑝

−𝑛 | ≤ 1} because ‖𝑦− 𝑦𝑛‖ ≤ 𝑝−𝑛. For n sufficiently large so that both ( 𝑡𝑡𝑛 )
𝑛1 , ( 𝑒2

𝑒2,𝑛
)𝑛2−𝑛1

converge, we denote by 𝐶𝑛 ⊂ Ola
𝐾 𝑝 (𝑈𝑛) the subset of elements of the form

(
𝑡

𝑡𝑛
)𝑛1 (

𝑒2
𝑒2,𝑛
)𝑛2−𝑛1

∑
𝑖≥0

𝑐𝑖𝑦
𝑖 ,

where 𝑐𝑖 ∈ 𝐻0 (𝑉 ′′𝐺𝑟 (𝑛) ,OX𝐾𝑝𝐺𝑟 (𝑛) ) with bound ‖𝑐𝑖 ‖ ≤ 𝐶 ′𝑝 (𝑛−1)𝑖 for a uniform 𝐶 ′. Note that as
‖𝑦‖ ≤ 𝑝−𝑛 in 𝐻0 (𝜋−1

HT (𝑈𝑛),OX𝐾𝑝 ), we can choose 𝑦𝑛 = 0 here. As before, 𝑝 (𝑛−1)𝑖𝑐𝑖 defines an
isomorphism 𝐶𝑛 � (

∏
𝑖≥0 𝐻

0(𝑉 ′′𝐺𝑟 (𝑛) ,O
+
X𝐾𝑝𝐺𝑟 (𝑛)

)) ⊗Z𝑝 Q𝑝 and 𝐶𝑛 forms a direct system when n varies.
It is easy to see that

(Ola,𝜒
𝐾 𝑝 )𝔫 = (𝑖∞)∗(lim−−→

𝑛

(𝐶𝑛)𝔫).

Assume that 𝑛1 − 𝑛2 = 𝜒(ℎ) ≠ 0,−1,−2, · · · and is p-adically non-Liouville. For any 𝑓 ∈ 𝐶𝑛 and n
sufficiently large, we need to show that 𝑦 𝑓 ∈ 𝑢+(𝐶𝑚) for some 𝑚 ≥ 𝑛. Write

𝑓 = (
𝑡

𝑡𝑛
)𝑛1 (

𝑒2
𝑒2,𝑛
)𝑛2−𝑛1

∑
𝑖≥0

𝑐𝑖𝑦
𝑖

for some 𝑐𝑖 ∈ 𝐻0 (𝑉 ′′𝐺𝑟 (𝑛) ,OX𝐾𝑝𝐺𝑟 (𝑛) ) and ‖𝑐𝑖 ‖ ≤ 𝐶 ′𝑝 (𝑛−1)𝑖 for some 𝐶 ′. By our assumption, we can
find 𝑚 ≥ 𝑛 such that

|𝑛1 − 𝑛2 + 𝑖 | ≥ 𝑝−𝑖 (𝑚−𝑛)
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for i sufficiently large. Then ‖ 𝑐𝑖
−𝑛1+𝑛2−𝑖

‖ ≤ 𝐶 ′𝑝 (𝑚−1)𝑖 for i large enough and

(
𝑡

𝑡𝑛
)𝑛1 (

𝑒2
𝑒2,𝑛
)𝑛2−𝑛1

∑
𝑖≥0

𝑐𝑖
−𝑛1 + 𝑛2 − 𝑖

𝑦𝑖

defines an element 𝑔 ∈ 𝐶𝑚. A simple computation gives that 𝑢+ · 𝑔 = 𝑦 𝑓 . Hence, 𝑁𝜒 = 0 and
(Ola,𝜒

𝐾 𝑝 )𝔫 = (𝑖∞)∗𝑀
†
𝜒 (𝐾

𝑝) in this case.
Now assume 𝑛1 − 𝑛2 = 𝜒(ℎ) ∈ {0,−1,−2, · · · }. Recall that for 𝑓 ∈ 𝐶𝑛 as above, we have

𝑢+ · 𝑓 = (
𝑡

𝑡𝑛
)𝑛1 (

𝑒2
𝑒2,𝑛
)𝑛2−𝑛1

∑
𝑖≥0
(𝑛2 − 𝑛1 − 𝑖)𝑐𝑖𝑦

𝑖+1.

Hence, the 𝑦𝑛2−𝑛1+1 term in the summation always has zero coefficient. Conversely, if 𝑓 =
( 𝑡𝑡𝑛 )

𝑛1 ( 𝑒2
𝑒2,𝑛
)𝑛2−𝑛1

∑
𝑖≥0 𝑐𝑖𝑦

𝑖 ∈ 𝐶𝑛 with 𝑐𝑛2−𝑛1 = 0, we have |𝑛2 − 𝑛1 − 𝑖 | ≥ 𝑝−𝑖 for i sufficiently large and
( 𝑡𝑡𝑛 )

𝑛1 ( 𝑒2
𝑒2,𝑛
)𝑛2−𝑛1

∑
0≤𝑖≠𝑛2−𝑛1

𝑐𝑖
𝑛2−𝑛1−𝑖

𝑦𝑖 converges to an element 𝑔 ∈ 𝐶𝑛+1. Again, it is easy to check that
𝑦 𝑓 = 𝑢+ · 𝑔. Thus, we can define an isomorphism

𝑀†𝜒 (𝑈
𝑝)
∼
−→ 𝑁𝜒

by sending f to 𝑓 𝑦𝑛2−𝑛1+1, where 𝑓 ∈ Ola,𝜒
𝐾 𝑝 (𝑈) is a lifting of 𝑓 ∈ Ola,𝜒

𝐾 𝑝 (𝑈)/(𝑦). Since 𝑦 = 𝑒1/𝑒2, this
isomorphism becomes B-equivariant if we twist the left-hand side by (𝑒1/𝑒2)

1−𝑛1+𝑛2 . �

Next we compute Ola,𝜒,𝔫
𝐾 𝑝 , the 𝔫-invariants of Ola,𝜒

𝐾 𝑝 .

Proposition 5.2.12.

(1) Suppose U does not contain ∞; that is, 𝑒1 is a basis on U. Fix N large enough so that
( 𝑡𝑡𝑁 )

𝑛1 , ( 𝑒1
𝑒1,𝑁
)𝑛2−𝑛1 converge. Then any 𝑓 ∈ Ola,𝜒,𝔫

𝐾 𝑝 (𝑈) can be written as

𝑓 = (
𝑡

𝑡𝑁
)𝑛1 (

𝑒1
𝑒1,𝑁
)𝑛2−𝑛1𝑐

for some 𝑛 ≥ 𝑁 sufficiently large and 𝑐 ∈ 𝐻0(𝑉𝐺𝑟 (𝑛) ,OX𝐾𝑝𝐺𝑟 (𝑛) ).
(2) Suppose 𝑒2 is a basis on 𝑈 ∈ 𝔅 and 𝜒(ℎ) = 𝑛1 − 𝑛2 ∈ {0,−1,−2, · · · }. Fix N large enough so that
( 𝑡𝑡𝑁 )

𝑛1 converges. Then any 𝑓 ∈ Ola,𝜒,𝔫
𝐾 𝑝 (𝑈) can be written as

𝑓 = (
𝑡

𝑡𝑁
)𝑛1 (

𝑒2
𝑒2,𝑁
)𝑛2−𝑛1𝑐𝑦𝑛2−𝑛1 = (

𝑡

𝑡𝑁
)𝑛1 (

𝑒1
𝑒2,𝑁
)𝑛2−𝑛1𝑐

for some 𝑛 ≥ 𝑁 and 𝑐 ∈ 𝐻0 (𝑉𝐺𝑟 (𝑛) ,OX𝐾𝑝𝐺𝑟 (𝑛) ).

(3) 𝔥 acts on Ola,𝜒,𝔫
𝐾 𝑝 (𝑈) via (𝑛2, 𝑛1) for any open subset 𝑈 ⊂ ℱℓ.

(4) Suppose 𝜒(ℎ) ≠ 0,−1,−2, · · · . Then

lim
−−→
𝑈 �∞

Ola,𝜒,𝔫
𝐾 𝑝 (𝑈) = 0;

that is, the stalk of Ola,𝜒,𝔫
𝐾 𝑝 at∞ is zero.

Remark 5.2.13. The overconvergent modular forms of weight 𝜒 introduced in [Pil13, AIS14, CHJ17]
are essentially the stalk of Ola,𝜒,𝔫

𝐾 𝑝 at a Q𝑝-rational point of ℱℓ \ {∞}. For example, the ∞ in [CHJ17,
Theorem 1.1] corresponds to the locus where 𝑒2 = 0; that is, 𝑥 = 0 in our setup.
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Proof. For the first part, as in Lemma 5.1.2, any 𝑓 ∈ Ola,𝜒
𝐾 𝑝 (𝑈) can be written as

𝑓 = (
𝑡

𝑡𝑁
)𝑛1 (

𝑒1
𝑒1,𝑁
)𝑛2−𝑛1

∑
𝑖≥0

𝑐 (𝑛)𝑖 ( 𝑓 ) (𝑥 − 𝑥𝑛)
𝑖

for some n and 𝑐 (𝑛)𝑖 ( 𝑓 ) are unique for such a n. Since 𝑢+ acts as the usual derivation on (𝑥 − 𝑥𝑛), we see
that 𝑢+ · 𝑓 = 0 if and only if 𝑐 (𝑛)𝑖 ( 𝑓 ) = 0, 𝑖 > 0. This proves the first part.

Suppose ∞ ∈ 𝑈 and 𝑒2 is a basis on U. As in the proof of Proposition 5.2.10, for any 𝑓 ∈

Ola,𝜒
𝐾 𝑝 (𝑈), we can find n so that 𝑓 |𝑈𝑛 can be written as 𝑓 = ( 𝑡𝑡𝑁 )

𝑛1 ( 𝑒2
𝑒2,𝑁
)𝑛2−𝑛1

∑
𝑖≥0 𝑐𝑖𝑦

𝑖 for some
𝑐𝑖 ∈ 𝐻

0 (𝑉 ′′𝐺𝑟 (𝑛) ,OX𝐾𝑝𝐺𝑟 (𝑛) ). Then

𝑢+ · 𝑓 = (
𝑡

𝑡𝑁
)𝑛1 (

𝑒2
𝑒2,𝑁
)𝑛2−𝑛1

∑
𝑖≥0
(𝑛2 − 𝑛1 − 𝑖)𝑐𝑖𝑦

𝑖+1.

Hence, that 𝑢+ · 𝑓 = 0 is equivalent with

(𝑛2 − 𝑛1 − 𝑖)𝑐𝑖 = 0, 𝑖 ≥ 0.

This implies all 𝑐𝑖 = 0; that is, 𝑓 |𝑈𝑛 = 0 if 𝜒(ℎ) = 𝑛1 − 𝑛2 ≠ 0,−1,−2, · · · . When 𝜒(ℎ) ∈
{0,−1,−2, · · · }, we see that all 𝑐𝑖 = 0 except 𝑖 = 𝑛2 − 𝑛1 and

𝑦 |𝑈𝑛 = (
𝑡

𝑡𝑁
)𝑛1 (

𝑒2
𝑒2,𝑁
)𝑛2−𝑛1𝑐𝑖𝑦

𝑛2−𝑛1 = (
𝑡

𝑡𝑁
)𝑛1 (

𝑒1
𝑒2,𝑁
)𝑛2−𝑛1𝑐𝑖 .

We have shown that f on 𝑈𝑛 := {𝑧 ∈ 𝑈 | |𝑦(𝑧)𝑝−𝑛 | ≥ 1} has the form ( 𝑡𝑡𝑁 )
𝑛1 ( 𝑒1

𝑒2,𝑁
)𝑛2−𝑛1𝑐′𝑖 for some

𝑐′𝑖 ∈ 𝐻
0(𝑉 ′′′𝐺𝑟 (𝑛) ,OX𝐾𝑝𝐺𝑟 (𝑛) ), where 𝑉 ′′′𝐺𝑟 (𝑛) ⊂ 𝑉𝐺𝑟 (𝑛) is defined by |𝑦𝑛𝑝−𝑛 | ≥ 1. It is clear that 𝑐𝑖 , 𝑐′𝑖 can

glue to a section 𝑐 ∈ 𝐻0 (𝑉𝐺𝑟 (𝑛) ,OX𝐾𝑝𝐺𝑟 (𝑛) ) and 𝑓 = ( 𝑡𝑡𝑁 )
𝑛1 ( 𝑒1

𝑒2,𝑁
)𝑛2−𝑛1𝑐. This proves the second and

fourth parts of the proposition.
The third part follows directly from the first two parts. �

Remark 5.2.14. One can reinterpret these computations from the point of view of spectral theory.
Consider the stalk of Ola,𝜒

𝐾 𝑝 at∞:

𝐴𝜒 := lim
−−→
𝑈 �∞

Ola,𝜒
𝐾 𝑝 (𝑈),

where the direct limit runs through all open subsets U containing∞. We equip 𝐴𝜒 with the direct limit
topology. Note that if we fix𝑈 ∈ 𝔅 containing∞ and ( 𝑡𝑡𝑛 )

𝑛1 ( 𝑒2
𝑒2,𝑛
)−𝜒 (ℎ) ∈ Ola,𝜒

𝐾 𝑝 (𝑈), then multiplication
by ( 𝑡𝑡𝑛 )

−𝑛1 ( 𝑒2
𝑒2,𝑛
)𝜒 (ℎ) induces an isomorphism 𝐴𝜒

∼
−→ 𝐴0. Here 0 denotes the weight 0. Clearly, this is

not 𝔫-equivariant and a simple computation shows that the action of 𝑢+ on 𝐴𝜒 becomes

𝑢+ − 𝜒(ℎ)𝑦 on 𝐴0.

Now Proposition 5.2.10 and Proposition 5.2.12 can be rephrased as follows:

(1) 𝑢+/𝑦 is a well-defined operator on 𝐴0.
(2) (outside of spectrum) 𝑢+/𝑦 − 𝜒(ℎ) is invertible if 𝜒(ℎ) ≠ 0,−1,−2, · · · and is p-adically non-

Liouville.
(3) (continuous spectrum) 𝑢+/𝑦 − 𝜒(ℎ) is injective and has dense image if 𝜒(ℎ) is p-adically Liouville.
(4) (point spectrum) 𝑢+/𝑦 − 𝜒(ℎ) has kernel the stalk of Ola,𝜒,𝔫

𝐾 𝑝 at∞ if −𝜒(ℎ) ∈ N,

summarising the results we have obtained so far.
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Theorem 5.2.15. Let 𝜒 = (𝑛1, 𝑛2) be a weight. Then

(1) (𝐻1(ℱℓ,Ola
𝐾 𝑝 )

𝜒)𝔫 = 𝐻1(ℱℓ,Ola,𝜒
𝐾 𝑝 )𝔫 = 0 if 𝜒(ℎ) ≠ 0.

(2) Suppose 𝜒(ℎ) ≠ 0, 1. There is a natural Hecke-equivariant weight decomposition of 𝐶 [𝐵]-modules

𝐻1(ℱℓ,Ola
𝐾 𝑝 )

𝜒,𝔫 = 𝐻1 (ℱℓ,Ola,𝜒
𝐾 𝑝 )

𝔫 = 𝑀†𝜒 (𝐾
𝑝) ⊗𝐶 𝔫∗ ⊕𝑊2,

where 𝑊2 has weight (𝑛2, 𝑛1) and 𝑀†𝜒 (𝐾
𝑝) ⊗𝐶 𝔫∗ has weight (𝑛1 − 1, 𝑛2 + 1).

Proof. Assume 𝜒(ℎ) ≠ 0. Then by our discussion in the beginning of this subsection Equation (5.2.2),
𝐻1 (ℱℓ,Ola,𝜒

𝐾 𝑝 )𝔫 � 𝐻1(ℱℓ, (Ola,𝜒
𝐾 𝑝 )𝔫), which is zero, as pointed out in Proposition 5.2.10.

Suppose 𝜒(ℎ) ≠ 1, then −𝜒(ℎ) ≠ 𝑤 · (−𝜒) (ℎ). It follows from Corollary 4.2.8 that (ℎ+ 𝜒(ℎ)) (ℎ−𝑤 ·
(−𝜒) (ℎ)) = 0 on 𝐻1(ℱℓ,Ola,𝜒

𝐾 𝑝 )
𝔫 . Therefore, we have a natural weight decomposition 𝐻1(ℱℓ,Ola,𝜒

𝐾 𝑝 )
𝔫 =

𝑊1 ⊕ 𝑊2 such that 𝔥 acts on 𝑊1 (respectively 𝑊2) via (𝑛1 − 1, 𝑛2 + 1) (respectively (𝑛2, 𝑛1)). Since
𝐻1 (ℱℓ,Ola,𝜒,𝔫

𝐾 𝑝 ) has no weight-(𝑛1−1, 𝑛2 +1) part by Proposition 5.2.12 and the weight-(𝑛1−1, 𝑛2 +1)
part of 𝐻0 (ℱℓ, (Ola,𝜒

𝐾 𝑝 )𝔫) ⊗𝐶 𝔫∗ is 𝑀†𝜒 (𝐾 𝑝) ⊗𝐶 𝔫∗ by Proposition 5.2.10, our claim for 𝑊1 now follows
from the short exact sequence (5.2.1). �

The case 𝜒(ℎ) = 0 or 1 will be treated in the next subsection.

5.3. 𝖓-cohomology (II)

5.3.1. In this subsection, we completely determine the 𝔫-cohomology of 𝐻1(ℱℓ,Ola,𝜒
𝐾 𝑝 ) for integral

weight; that is, 𝜒(ℎ) ∈ Z. Write 𝑘 = 𝜒(ℎ). We will distinguish 4 cases:
(1) 𝑘 ≥ 2;
(2) 𝑘 = 1;
(3) 𝑘 = 0;
(4) 𝑘 ≤ −1.
One key step is to understand 𝐻1(ℱℓ,Ola,𝜒,𝔫

𝐾 𝑝 ). To do this, we need to introduce some auxiliary sheaves.
Recall that 𝜔𝐾 𝑝 is defined as the pullback of 𝜔 (as a coherent sheaf) from some finite level to the infinite
level. For an integer k, we write 𝜔𝑘𝐾 𝑝 := 𝜔⊗𝑘𝐾 𝑝 .

Definition 5.3.2. We define 𝜔𝑘,sm
𝐾 𝑝 ⊂ 𝜋HT∗𝜔

𝑘
𝐾 𝑝 as the subsheaf of GL2(Q𝑝)-smooth sections. More

precisely, for any quasi-compact open subset 𝑈 ⊂ ℱℓ, we can find an open subgroup 𝐾𝑝 of GL2 (Q𝑝)

stabilising U. Then 𝜔𝑘,sm
𝐾 𝑝 (𝑈) ⊂ 𝜔𝑘𝐾 𝑝 (𝜋

−1
HT (𝑈)) is the subspace of 𝐾𝑝-smooth vectors; that is, vec-

tors fixed by some open subgroup of 𝐾𝑝 . It is easy to see that this definition is independent of the
choice of 𝐾𝑝 .
Remark 5.3.3. For 𝑈 ∈ 𝔅, using the notation in Theorem 4.1.7, we have

𝜔𝑘,sm
𝐾 𝑝 (𝑈) = lim

−−→
𝐾𝑝

𝜔𝑘 (𝑉𝐾𝑝 ).

Hence, compared with Proposition 5.2.12, it is clear that

𝜔0,sm
𝐾 𝑝 = Ola,0,𝔫

𝐾 𝑝 .

From the point of view of classical Riemann–Hilbert correspondence, it seems better to think of 𝜔𝑘,sm
𝐾 𝑝

as ‘local system on the analytic site of ℱℓ’.
Remark 5.3.4. An equivalent definition is 𝜔𝑘,sm

𝐾 𝑝 = 𝜋HT∗(lim−−→𝐾𝑝⊂GL2 (Q𝑝)
(𝜋𝐾𝑝 )

−1𝜔𝑘 ). Here 𝜋𝐾𝑝 :

X𝐾 𝑝 → X𝐾 𝑝𝐾𝑝 denotes the natural projection and 𝜋−1
𝐾𝑝

denotes pullback as sheaf of abelian groups. In
fact, the cohomology of 𝜔𝑘,sm

𝐾 𝑝 is closely related to the cohomology of 𝜔𝑘 .
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Lemma 5.3.5. There is a natural isomorphism

𝐻𝑖 (ℱℓ, 𝜔𝑘,sm
𝐾 𝑝 ) � lim

−−→
𝐾𝑝⊂GL2 (Q𝑝)

𝐻𝑖 (X𝐾 𝑝𝐾𝑝 , 𝜔𝑘 ).

Proof. The rough idea is that the Hodge–Tate period map 𝜋HT behaves as a finite map. Let 𝔘 =
{𝑈1, · · · ,𝑈𝑟 } be a subset of 𝔅 (not necessarily a cover of ℱℓ); then for sufficiently small 𝐾𝑝 and any
𝑖 = 1, · · · , 𝑟 , we know that 𝜋−1

HT (𝑈𝑖) is the preimage of an affinoid open subset 𝑉𝑖,𝐾𝑝 ⊂ X𝐾 𝑝𝐾𝑝 . Denote
by 𝔙𝐾𝑝 = {𝑉1,𝐾𝑝 , · · · , 𝑉𝑟 ,𝐾𝑝 }. Let 𝐶•(𝔘, 𝜔𝑘,sm

𝐾 𝑝 ) be the Čech complex of 𝜔𝑘,sm
𝐾 𝑝 with respect to 𝔘 and

define 𝐶•(𝔙𝐾𝑝 , 𝜔𝑘 ) in a similar way. Clearly,

𝐶•(𝔘, 𝜔𝑘,sm
𝐾 𝑝 ) = lim

−−→
𝐾𝑝

𝐶•(𝔙𝐾𝑝 , 𝜔
𝑘 ).

In particular, if𝔘 is an open cover of some𝑈 ∈ 𝔅, we conclude from the usual Tate acyclicity result that
𝐻𝑖 (𝐶•(𝔘, 𝜔𝑘,sm

𝐾 𝑝 )) = 0, 𝑖 ≥ 1. Hence, by Corollaire 4, p. 176 of [Gro57], we have𝐻𝑖 (𝑈, 𝜔𝑘,sm
𝐾 𝑝 ) = 0, 𝑖 ≥ 1

and 𝐻𝑖 (ℱℓ, 𝜔𝑘,sm
𝐾 𝑝 ) can be computed by Čech complex. Now taking 𝔘 as a cover of ℱℓ, we get our

claim. �

Corollary 5.3.6. 𝐻1 (ℱℓ, 𝜔𝑘,sm
𝐾 𝑝 ) = 0 if 𝑘 ≥ 2.

Proof. By our previous lemma, it suffices to prove 𝐻1 (X𝐾 𝑝𝐾𝑝 , 𝜔𝑘 ) = 0 when 𝑘 ≥ 2. This follows from
the positivity of 𝜔 and the Kodaira–Spencer isomorphism 𝜔2 � Ω1

X𝐾𝑝𝐾𝑝
(C), where C denotes the cusps

in X𝐾 𝑝𝐾𝑝 and is nonempty. �

The following lemma implies that the stalk of 𝜔𝑘,sm
𝐾 𝑝 at ∞ is the space of overconvergent forms of

weight k introduced in Definition 5.2.5.

Lemma 5.3.7. lim
−−→𝑈 �∞

𝜔𝑘,sm
𝐾 𝑝 (𝑈) = 𝑀†𝑘 (𝐾

𝑝).

Proof. This follows from Lemma 5.2.9 directly. �

Definition 5.3.8. We denote by

𝑀𝑘 (𝐾
𝑝) := 𝐻0(ℱℓ, 𝜔𝑘,sm

𝐾 𝑝 ) = lim
−−→

𝐾𝑝⊂GL2 (Q𝑝)

𝐻0 (X𝐾 𝑝𝐾𝑝 , 𝜔𝑘 )

the space of classical weight k modular forms of tame level 𝐾 𝑝 .

5.3.9 (nonintegral powers of t). Recall that in Section 4.3.1, we defined t as the coordinate function
on Isom(Z𝑝 ,Z𝑝 (1)) � Z×𝑝 by choosing a basis of Z𝑝 (1). For any 𝑛1 ∈ 𝐶, we can find a continuous
character Z×𝑝 → 𝐶× whose derivative sends 1 ∈ Q𝑝 = Lie(Z×𝑝) to 𝑛1 ∈ 𝐶 = Lie(𝐶×). When 𝑛1 is an
integer, we can simply take 𝑡𝑛1 . For noninteger 𝑛1, we fix one choice from now on and denote it by
𝑡𝑛1 and view it as an invertible element of 𝐻0(X𝐾 𝑝 ,OX𝐾𝑝 )

la by abuse of notation. It follows from the
discussion in Section 4.3.1 that GL2 (A 𝑓 ) acts on 𝑡𝑛1 via 𝑡𝑛1 ◦ 𝜀 ◦ det and 𝐺Q𝑝 acts on it via 𝑡𝑛1 ◦ 𝜀𝑝 .
Hence, we can allow nonintegral power of t in Remark 5.2.7.

Let 𝜒 = (𝑛1, 𝑛2). Then multiplication by 𝑡−𝑛1 induces an isomorphism Ola,𝜒
𝐾 𝑝

∼
−→ Ola,𝜒′

𝐾 𝑝 , where
𝜒′ = (0, 𝑛2 − 𝑛1). It is easy to see how the actions of GL2 (Q𝑝) × 𝐺Q𝑝 and Hecke operators away from
p change accordingly. From this, we can reduce computations to the case 𝑛1 = 0.

5.3.10 (𝑘 ≥ 2). Now we are ready to treat the case 𝑛1 − 𝑛2 = 𝑘 ≥ 2. By Proposition 5.2.10, we
have (Ola,𝜒

𝐾 𝑝 )𝔫 � (𝑖∞)∗𝑀
†
𝜒 (𝐾

𝑝) in this case and it suffices to determine 𝐻1(ℱℓ,Ola,𝜒,𝔫
𝐾 𝑝 ). Note that

multiplication by 𝑡−𝑛1𝑒𝑘1 induces an injection

Ola,𝜒,𝔫
𝐾 𝑝 → 𝜔𝑘,sm

𝐾 𝑝 .
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More precisely, since the stalk of Ola,𝜒,𝔫
𝐾 𝑝 at ∞ is zero, it is enough to define this map outside of ∞. So

let 𝑈 ∈ 𝔅 be an open subset not containing ∞. It follows from the first part of Proposition 5.2.12 that
this map is nothing but sending 𝑓 = 𝑡𝑛1 ( 𝑒1

𝑒1,𝑁
)𝑛2−𝑛1𝑐 ∈ Ola,𝜒,𝔫

𝐾 𝑝 (𝑈) to 𝑒𝑘1,𝑁 𝑐 ∈ 𝜔
𝑘,sm
𝐾 𝑝 (𝑈). This is, in fact,

an isomorphism Ola,𝜒,𝔫
𝐾 𝑝 (𝑈)

∼
−→ 𝜔𝑘,sm

𝐾 𝑝 (𝑈). Hence, the quotient of Ola,𝜒,𝔫
𝐾 𝑝 → 𝜔𝑘,sm

𝐾 𝑝 is simply the stalk
of 𝜔𝑘,sm

𝐾 𝑝 at∞; that is,

0→ Ola,𝜒,𝔫
𝐾 𝑝

×𝑡−𝑛1𝑒𝑘1
−−−−−−→ 𝜔𝑘,sm

𝐾 𝑝 → (𝑖∞)∗𝑀
†
𝑘 (𝐾

𝑝) → 0.

Take the cohomology of this exact sequence. It follows from Corollary 5.3.6 and Lemma 5.3.5 that

0→ 𝑀𝑘 (𝐾
𝑝) → 𝑀†𝑘 (𝐾

𝑝) → 𝐻1(ℱℓ,Ola,𝜒,𝔫
𝐾 𝑝 ) → 0.

Hence, 𝐻1(ℱℓ,Ola,𝜒,𝔫
𝐾 𝑝 ) � 𝑀†𝑘 (𝐾

𝑝)/𝑀𝑘 (𝐾
𝑝); that is, the quotient of overconvergent modular forms of

weight k by classical forms.

Theorem 5.3.11. Suppose 𝜒(ℎ) = 𝑘 ∈ {2, 3, · · · }. There is a Hecke and 𝐵 × 𝐺Q𝑝 -equivariant weight
decomposition (into weight (𝑛1 − 1, 𝑛2 + 1) and (𝑛2, 𝑛1) components):

𝐻1(ℱℓ,Ola
𝐾 𝑝 )

𝜒,𝔫 = 𝐻1(ℱℓ,Ola,𝜒
𝐾 𝑝 )

𝔫 = 𝑀†𝑘 (𝐾
𝑝) · 𝑒−1

1 𝑒−𝑘+12 𝑡𝑛1 ⊕ (𝑀†𝑘 (𝐾
𝑝)/𝑀𝑘 (𝐾

𝑝)) · 𝑒−𝑘1 𝑡𝑛1 .

Proof. We can multiply 𝑡−𝑛1 to reduce to the case 𝑛1 = 0. Assume 𝑛1 = 0. Note that 𝔫∗ = 𝑒−1
1 𝑒2 as

B-representations. Hence, by Proposition 5.2.6, the weight (−1,−𝑘 + 1)-part is isomorphic to 𝑀†𝑘 (𝐾
𝑝) ·

𝑒−1
1 𝑒−𝑘+12 . Since the isomorphism 𝐻1 (ℱℓ,Ola,𝜒,𝔫

𝐾 𝑝 ) � 𝑀†𝑘 (𝐾
𝑝)/𝑀𝑘 (𝐾

𝑝) is essentially induced by ×𝑒𝑘1 ,
we can twist by 𝑒−𝑘1 to make it 𝐵 × 𝐺Q𝑝 -equivariant. �

5.3.12 (𝑘 ≤ −1). Another relatively simple case is when 𝜒(ℎ) = 𝑘 ≤ −1. In this case, Proposition
5.2.12 implies that multiplication by 𝑡−𝑛1𝑒𝑘1 induces an isomorphism

Ola,𝜒,𝔫
𝐾 𝑝

∼
−→ 𝜔𝑘,sm

𝐾 𝑝 .

Therefore, by Lemma 5.3.5, 𝐻1 (ℱℓ,Ola,𝜒,𝔫
𝐾 𝑝 ) � lim

−−→𝐾𝑝
𝐻1(X𝐾 𝑝𝐾𝑝 , 𝜔𝑘 ). Combining this with Proposi-

tion 5.2.10, we get the following.

Theorem 5.3.13. Suppose 𝜒(ℎ) = 𝑘 ∈ {−1,−2, · · · }. There is a weight decomposition (into weight
(𝑛1 − 1, 𝑛2 + 1) and (𝑛2, 𝑛1) components):

𝐻1 (ℱℓ,Ola,𝜒
𝐾 𝑝 )

𝔫 = 𝑀†𝑘 (𝐾
𝑝) · 𝑒−1

1 𝑒−𝑘+12 𝑡𝑛1 ⊕ 𝑁𝑘,1 · 𝑒
−𝑘
1 𝑡𝑛1 ,

where 𝑁𝑘,1 sits inside the exact sequence

0→ lim
−−→
𝐾𝑝

𝐻1 (X𝐾 𝑝𝐾𝑝 , 𝜔𝑘 ) → 𝑁𝑘,1 → 𝑀†𝑘 (𝐾
𝑝) → 0.

All of the maps are Hecke and 𝐵 × 𝐺Q𝑝 -equivariant.

5.3.14 (𝑘 = 0). Now we consider the case 𝜒(ℎ) = 0. As before, we can multiply by 𝑡−𝑛1 and assume
𝑛1 = 0; that is, 𝜒 = 0. First we determine 𝐻1 (ℱℓ,Ola,0

𝐾 𝑝 )
𝔫 . Let F be 𝔫(Ola,0

𝐾 𝑝 ) ⊂ Ola,0
𝐾 𝑝 . Hence, the

composite

𝐻1(ℱℓ,Ola,0
𝐾 𝑝 )

𝑢+

−−→ 𝐻1 (ℱℓ,F) ⊗ 𝔫∗ → 𝐻1 (ℱℓ,Ola,0
𝐾 𝑝 ) ⊗ 𝔫∗

is the endomorphism 𝑢+ on 𝐻1 (ℱℓ,Ola,0
𝐾 𝑝 ) and it suffices to determine the kernels of both maps. Consider

0→ Ola,0,𝔫
𝐾 𝑝 → Ola,0

𝐾 𝑝
𝑢+

−−→ F ⊗ 𝔫∗ → 0.
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By Proposition 5.2.10, we know that F ⊂ 𝔪∞Ola,0
𝐾 𝑝 . Hence, 𝐻0(ℱℓ,F) = 0 because the global sections

of Ola,0
𝐾 𝑝 are lim

−−→𝐾𝑝⊂GL2 (Q𝑝)
𝐻0 (X𝐾 𝑝𝐾𝑝 ,OX𝐾𝑝𝐾𝑝 ). Therefore,

𝐻1 (ℱℓ,Ola,0,𝔫
𝐾 𝑝 ) = ker(𝐻1(ℱℓ,Ola,0

𝐾 𝑝 )
𝑢+

−−→ 𝐻1 (ℱℓ,F) ⊗ 𝔫∗)

and 𝐻1 (ℱℓ,Ola,0
𝐾 𝑝 )

𝑢+

−−→ 𝐻1(ℱℓ,F) ⊗ 𝔫∗ is surjective because ℱℓ is 1-dimensional. Note that Ola,0,𝔫
𝐾 𝑝 =

𝜔0,sm
𝐾 𝑝 . Hence, its 𝐻1 is lim

−−→𝐾𝑝
𝐻1(X𝐾 𝑝𝐾𝑝 ,OX𝐾𝑝𝐾𝑝 ). On the other hand, consider

0→ F→ Ola,0
𝐾 𝑝 → (O

la,0
𝐾 𝑝 )𝔫 → 0.

By Proposition 5.2.10, 𝐻0(ℱℓ, (Ola,0
𝐾 𝑝 )𝔫) � 𝑀†0 (𝐾

𝑝) ⊕ 𝑀†0 (𝐾
𝑝) ⊗𝐶 𝔫. It is easy to see that

𝐻0 (ℱℓ,Ola,0
𝐾 𝑝 ) = 𝑀0 (𝐾

𝑝) maps to the first factor. Hence,

ker(𝐻1 (ℱℓ,F) → 𝐻1 (ℱℓ,Ola,0
𝐾 𝑝 )) � 𝑀†0 (𝐾

𝑝)/𝑀0(𝐾
𝑝) ⊕ 𝑀†0 (𝐾

𝑝) ⊗𝐶 𝔫.

Also, since (Ola,0
𝐾 𝑝 )𝔫 has no 𝐻1, we have 𝐻1(ℱℓ,F) → 𝐻1 (ℱℓ,Ola,0

𝐾 𝑝 ) is surjective. Summarising our
discussions, we have the following result.

Proposition 5.3.15. Suppose 𝜒 = 0. Then

(1) 𝐻1(ℱℓ,Ola,0
𝐾 𝑝 )𝔫 = 0;

(2) there is a Hecke and 𝐵 × 𝐺Q𝑝 -equivariant exact sequence:

0→ lim
−−→
𝐾𝑝

𝐻1(X𝐾 𝑝𝐾𝑝 ,OX𝐾𝑝𝐾𝑝 ) → 𝐻1(ℱℓ,Ola,0
𝐾 𝑝 )

𝔫 → 𝔫∗ ⊗ 𝑀†0 (𝐾
𝑝)/𝑀0(𝐾

𝑝) ⊕ 𝑀†0 (𝐾
𝑝) → 0.

By Corollary 5.1.3, there is an exact sequence

0→ 𝑀0 (𝐾
𝑝) → 𝐻1(ℱℓ,Ola,0

𝐾 𝑝 ) → 𝐻1(ℱℓ,Ola
𝐾 𝑝 )

0 → 0. (5.3.1)

Note that 𝑀0 (𝐾
𝑝) has trivial 𝔫-action. It is crucial to know its image in 𝐻1(ℱℓ,Ola,0

𝐾 𝑝 )
𝔫 . A direct

computation shows that the composite of

𝑀0 (𝐾
𝑝) → 𝐻1(ℱℓ,Ola,0

𝐾 𝑝 )
𝔫 → 𝔫∗ ⊗ 𝑀†0 (𝐾

𝑝)/𝑀0 (𝐾
𝑝) ⊕ 𝑀†0 (𝐾

𝑝)

is the natural inclusion 𝑀0 (𝐾
𝑝) → 𝑀†0 (𝐾

𝑝) (up to a sign). Here the second map comes from the
previous proposition. From this, taking the 𝔫-cohomology of the sequence (5.3.1), we obtain the
following description in the case 𝜒(ℎ) = 0.

Theorem 5.3.16. Suppose 𝜒 = (𝑛1, 𝑛1); that is, 𝑘 = 0. Then

(1) (𝐻1(ℱℓ,Ola
𝐾 𝑝 )

𝜒)𝔫 = 0;
(2) there is a weight decomposition (into weight (𝑛1 − 1, 𝑛1 + 1) and (𝑛1, 𝑛1) components):

𝐻1(ℱℓ,Ola
𝐾 𝑝 )

𝜒,𝔫 = 𝑁2,𝑤 · 𝑒
−1
1 𝑒2𝑡

𝑛1 ⊕ 𝑁0,1 · 𝑡
𝑛1 ,

where 𝑁2,𝑤 and 𝑁0,1 sit inside exact sequences

0→ 𝑀†0 (𝐾
𝑝)/𝑀0(𝐾

𝑝) → 𝑁2,𝑤 → 𝑀0 (𝐾
𝑝) → 0,

0→ lim
−−→
𝐾𝑝

𝐻1(X𝐾 𝑝𝐾𝑝 ,OX𝐾𝑝𝐾𝑝 ) → 𝑁0,1 → 𝑀†0 (𝐾
𝑝)/𝑀0 (𝐾

𝑝) → 0.

All of the maps are Hecke and 𝐵 × 𝐺Q𝑝 -equivariant.
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5.3.17 (𝑘 = 1). Finally, we treat the case of singular weight; that is, 𝜒(ℎ) = 1. Again we may assume
𝑛1 = 0 by a twist. Note that by Proposition 5.2.10, we have (Ola,𝜒

𝐾 𝑝 )𝔫 = (𝑖∞)∗𝑀
†
𝜒 (𝐾

𝑝). Similar to the
case 𝑘 ≥ 2 in 5.3.10, there is an exact sequence

0→ Ola,𝜒,𝔫
𝐾 𝑝

×𝑒1
−−−→ 𝜔1,sm

𝐾 𝑝 → (𝑖∞)∗𝑀
†
1 (𝐾

𝑝) → 0

induced by multiplication by 𝑒1. The difference here is that 𝜔1,sm
𝐾 𝑝 have both nontrivial 𝐻0 and 𝐻1. More

precisely, taking the cohomology of this exact sequence, we get

0→ 𝑀1 (𝐾
𝑝) → 𝑀†1 (𝐾

𝑝) → 𝐻1(ℱℓ,Ola,𝜒,𝔫
𝐾 𝑝 ) → lim

−−→
𝐾𝑝

𝐻1(X𝐾 𝑝𝐾𝑝 , 𝜔1) → 0.

Then by our discussion in Section 5.2.1, we have the following result.

Theorem 5.3.18. Suppose 𝜒 = (𝑛1, 𝑛1 − 1); that is, 𝜒(ℎ) = 1. All of the maps below are Hecke and
𝐵 × 𝐺Q𝑝 -equivariant.

(1) There is a short exact sequence

0→ 𝑁1 · 𝑒
−1
1 𝑡𝑛1 → 𝐻1(ℱℓ,Ola

𝐾 𝑝 )
𝜒,𝔫 → 𝑀†1 (𝐾

𝑝) · 𝑒−1
1 𝑡𝑛1 → 0, (5.3.2)

where 𝑁1 sits inside the exact sequence

0→ 𝑀†1 (𝐾
𝑝)/𝑀1(𝐾

𝑝) → 𝑁1 → lim
−−→
𝐾𝑝

𝐻1(X𝐾 𝑝𝐾𝑝 , 𝜔1) → 0.

(2) Under (5.3.2), the weight-(𝑛1−1, 𝑛1) part 𝐻1(ℱℓ,Ola
𝐾 𝑝 )

𝜒,𝔫
(𝑛1−1,𝑛1)

of 𝐻1 (ℱℓ,Ola
𝐾 𝑝 )

𝜒,𝔫 is the pullback
of 𝑀1 (𝐾

𝑝) · 𝑒−1
1 𝑡𝑛1 ⊂ 𝑀†1 (𝐾

𝑝) · 𝑒−1
1 𝑡𝑛1 ; that is, it sits inside the exact sequence

0→ 𝑁1 · 𝑒
−1
1 𝑡𝑛1 → 𝐻1 (ℱℓ,Ola

𝐾 𝑝 )
𝜒,𝔫
(𝑛1−1,𝑛1)

→ 𝑀1 (𝐾
𝑝) · 𝑒−1

1 𝑡𝑛1 → 0.

Proof. Only the second part requires extra explanation. To see this, we tensor the sequence (5.3.2) with
𝑒1𝑡
−𝑛1 and take 𝔥0-cohomology. Recall that 𝔥0 ⊂ 𝔥 is the subalgebra of elements with trace zero. Again,

we may assume 𝑛1 = 0. We need to understand the kernel of the connecting homomorphism

𝛿1 : 𝑀†1 (𝐾
𝑝) → (𝑁1)𝔥0 � 𝑁1.

Let 𝑓 ∈ 𝑀†1 (𝐾
𝑝). Since 𝐻1 (ℱℓ,Ola

𝐾 𝑝 ) can be computed by Čech complex, we can take a cover
{𝑈 ′0,𝑈

′
1} ⊂ 𝔅 of ℱℓ such that only 𝑈 ′1 contains ∞ and the pullback of f to X𝐾 𝑝 is defined on

𝜋−1
HT (𝑈

′
1). On 𝑈 ′01 := 𝑈 ′0 ∩ 𝑈 ′1, we can find 𝑔 ∈ Ola,𝜒

𝐾 𝑝 (𝑈
′
01) such that 𝑢+ · 𝑔 = 𝑓 𝑒−1

2 . Then −𝑔 can be
viewed as a 1-cocycle of the Čech complex of Ola,𝜒

𝐾 𝑝 with respect to the cover {𝑈 ′0,𝑈
′
1}, and it maps to

𝑓 ⊗ 1 ∈ 𝑀†1 (𝐾
𝑝) ⊗ 𝑒−1

1 = 𝑀†1 (𝐾
𝑝) · 𝑒−1

1 in the sequence (5.3.2). (Here we view 𝑒1 = 𝐶 as a character
of B.) Using the notation in Lemma 5.1.2, we can take g of the form

𝑔 =
𝑓

𝑒1
log(

𝑥

𝑥𝑛
).

If we view 𝑔 ⊗ 1 as an element of Ola,𝜒
𝐾 𝑝 (𝑈

′
01) ⊗ 𝑒1, then

ℎ · (𝑔 ⊗ 1) = ℎ · 𝑔 ⊗ 1 + 𝑔 ⊗ 1 = (−𝑔 ⊗ 1 −
2 𝑓
𝑒1
⊗ 1) + 𝑔 ⊗ 1 = −

2 𝑓
𝑒1
⊗ 1.

In view of the discussion in Section 5.3.17, this means 𝛿1 ( 𝑓 ) = −2 𝑓 ∈ 𝑀†1 (𝐾
𝑝)/𝑀1(𝐾

𝑝) ⊂ 𝑁1. Hence,
𝛿1 ( 𝑓 ) = 0 if and only if 𝑓 ∈ 𝑀1 (𝐾

𝑝). From this, we easily deduce our claim in the Theorem. �
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5.4. 𝝁-isotypic part

5.4.1. Let 𝜇 ∈ 𝔥∗ be a weight, viewed as a character of 𝔟. The goal of this subsection is to determine
the 𝜇-isotypic part of �̃�1(𝐾 𝑝 , 𝐶)la � 𝐻1(ℱℓ,Ola

𝐾 𝑝 ), which we denote by

�̃�1 (𝐾 𝑝 , 𝐶)la𝜇 � 𝐻1 (ℱℓ,Ola
𝐾 𝑝 )𝜇 .

Write 𝜇 = (𝑘1, 𝑘2). Then by Corollary 4.2.8 and Harish–Chandra’s theory,4 we have

𝐻1 (ℱℓ,Ola
𝐾 𝑝 )𝜇 = 𝐻1(ℱℓ,Ola

𝐾 𝑝 )
(𝑘2 ,𝑘1)
𝜇 ⊕ 𝐻1(ℱℓ,Ola

𝐾 𝑝 )
(𝑘1+1,𝑘2−1)
𝜇

if (𝑘2, 𝑘1) ≠ (𝑘1 + 1, 𝑘2 − 1); that is, 𝜇(ℎ) ≠ −1. (This is opposite to the singular weight in the previous
section as there is a sign in Corollary 4.2.8.) Since the right-hand side is computed in Theorems 5.2.15,
5.3.11, 5.3.13, 5.3.16 (which is complete in the integral weight case), we obtain the following theorem
by writing

𝑀𝜇,1 := 𝐻1(ℱℓ,Ola
𝐾 𝑝 )

(𝑘2 ,𝑘1)
𝜇 , 𝑀𝜇,𝑤 := 𝐻1 (ℱℓ,Ola

𝐾 𝑝 )
(𝑘1+1,𝑘2−1)
𝜇 .

Note that by Theorem 5.1.11, the horizontal action 𝜃𝔥 of 𝔥 essentially agrees with the Sen operator.
Hence, 𝑀𝜇,1 has pure Hodge–Tate–Sen weight −𝑘1 and 𝑀𝜇,𝑤 has pure Hodge–Tate–Sen weight 1− 𝑘2
in the sense of Definition 5.1.5. Our convention is that cyclotomic character has Hodge–Tate weight −1.

Theorem 5.4.2. Suppose 𝜇 = (𝑘1, 𝑘2) ∈ 𝔥∗ and 𝑘 := −𝜇(ℎ) ≠ 1. There is a natural (Hodge)-
decomposition

�̃�1(𝐾 𝑝 , 𝐶)la𝜇 = 𝑀𝜇,1 ⊕ 𝑀𝜇,𝑤 ,

into Hodge–Tate–Sen weight −𝑘1 and 1 − 𝑘2 components. We have 𝑀𝜇,𝑤 = 𝑀†𝜇+2𝜌 (𝐾
𝑝) ⊗𝐶 𝔫∗ unless

𝑘 = 2. Moreover, if 𝑘 ∈ Z and
𝑀𝜇,1 = 𝑁𝑘,1 · 𝑒

−𝑘
1 𝑡𝑘2 ,

𝑀𝜇,𝑤 = 𝑁𝑘,𝑤 · 𝑒
−1
1 𝑒𝑘−1

2 𝑡𝑘1+1,

we have the following description of 𝑁𝑘,1, 𝑁𝑘,𝑤 . All of the isomorphisms and maps below are Hecke
and 𝐵 × 𝐺Q𝑝 -equivariant.

(1) 𝑁𝑘,𝑤 � 𝑀†2−𝑘 (𝐾
𝑝) unless 𝑘 ≠ 2. When 𝑘 = 2, we have

0→ 𝑀†0 (𝐾
𝑝)/𝑀0(𝐾

𝑝) → 𝑁2,𝑤 → 𝑀0 (𝐾
𝑝) → 0.

(2) If 𝑘 ≤ −1, then there is an exact sequence
0→ lim

−−→
𝐾𝑝

𝐻1(X𝐾 𝑝𝐾𝑝 , 𝜔𝑘 ) → 𝑁𝑘,1 → 𝑀†𝑘 (𝐾
𝑝) → 0.

(3) If 𝑘 = 0, then there is an exact sequence
0→ lim

−−→
𝐾𝑝

𝐻1(X𝐾 𝑝𝐾𝑝 ,OX𝐾𝑝𝐾𝑝 ) → 𝑁0,1 → 𝑀†0 (𝐾
𝑝)/𝑀0 (𝐾

𝑝) → 0.

(4) If 𝑘 ≥ 2, then 𝑁𝑘,1 � 𝑀†𝑘 (𝐾
𝑝)/𝑀𝑘 (𝐾

𝑝).

5.4.3. Now assume 𝜇(ℎ) = −1. Write 𝜇 = (𝑘1, 𝑘1 + 1). In this case, it follows from Corollary 4.2.8 that

𝐻1(ℱℓ,Ola
𝐾 𝑝 )𝜇 = 𝐻1 (ℱℓ,Ola, (𝑘1+1,𝑘1)

2

𝐾 𝑝 )𝜇

4Note 𝑤 · 𝜇 = (𝑘2 − 1, 𝑘1 + 1) . Hence, we are looking for (𝑎, 𝑏) ∈ 𝐶 such that 𝑎 + 𝑏 = 𝑘1 + 𝑘2 and −(𝑎 − 𝑏) = 𝑘1 − 𝑘2 or
(𝑘2 − 1) − (𝑘1 + 1) .
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by considering the action of the centre of 𝑈 (𝔤). Here Ola, (𝑘1+1,𝑘1)
2

𝐾 𝑝 ⊂ Ola
𝐾 𝑝 is the subsheaf of sec-

tions annihilated by (𝜃𝔥 (ℎ) − 1)2 and 𝜃𝔥 (𝑧) − 𝜇(𝑧) = 𝑧 − (2𝑘1 + 1). We compute the 𝔫-invariants of
𝐻1 (ℱℓ,Ola, (𝑘1+1,𝑘1)

2

𝐾 𝑝 ) first and then determine the 𝜇-component. Note that 𝜃𝔥 (ℎ) − 1 induces an exact
sequence

0→ Ola, (𝑘1+1,𝑘1)
𝐾 𝑝 → Ola, (𝑘1+1,𝑘1)

2

𝐾 𝑝

𝜃𝔥 (ℎ)−1
−−−−−−→ Ola, (𝑘1+1,𝑘1)

𝐾 𝑝 → 0,

where the third map is surjective by the first part of Lemma 5.1.2. For simplicity, we write F1 =

Ola, (𝑘1+1,𝑘1)
𝐾 𝑝 and F2 = Ola, (𝑘1+1,𝑘1)

2

𝐾 𝑝 . Then F2 has no 𝐻0 because F1 has no global section (Corollary
5.1.3). Hence,

0→ 𝐻1 (ℱℓ, (F2)
𝔫) → 𝐻1(ℱℓ,F2)

𝔫 → 𝐻0(ℱℓ, (F2)𝔫) ⊗𝐶 𝔫∗ → 0.

By Propositions 5.2.10 and 5.2.12, we know that the supports of (F1)
𝔫 and (F1)𝔫 do not intersect.

Therefore, 𝜃𝔥 (ℎ) − 1 induces exact sequences

0→ (F1)
𝔫 → (F2)

𝔫 𝜃𝔥 (ℎ)−1
−−−−−−→ (F1)

𝔫 → 0;

0→ (F1)𝔫 → (F2)𝔫
𝜃𝔥 (ℎ)−1
−−−−−−→ (F1)𝔫 → 0.

Taking 𝐻1 of the first sequence, we obtain

0→ 𝐻1(ℱℓ, (F1)
𝔫) → 𝐻1(ℱℓ, (F2)

𝔫)
𝜃𝔥 (ℎ)−1
−−−−−−→ 𝐻1(ℱℓ, (F1)

𝔫) → 0

as (F1)
𝔫 ⊂ F1 has no 𝐻0. Note that h acts as −1 on 𝐻1(ℱℓ, (F1)

𝔫) by Proposition 5.2.12.

Lemma 5.4.4. 𝜃𝔥 (ℎ) − 1 = −(ℎ + 1) on (F2)
𝔫 . In particular, the kernel of ℎ + 1 on 𝐻1(ℱℓ, (F2)

𝔫) is
𝐻1 (ℱℓ, (F1)

𝔫) and ℎ + 1 induces an isomorphism

ℎ + 1 : 𝐻1 (ℱℓ, (F2)
𝔫)/𝐻1(ℱℓ, (F1)

𝔫)
∼
−→ 𝐻1 (ℱℓ, (F1)

𝔫).

Proof. This is proved by explicit computation. We only need to check 𝑈 ∈ 𝔅 not containing ∞ since
the stalk of (F1)

𝔫 , hence also (F2)
𝔫 , at∞ is zero. Using the notation in Section 4.3.7, we have

(F2)
𝔫 (𝑈) = (F1)

𝔫 (𝑈) + (F1)
𝔫 (𝑈) · log(

𝑒1
𝑒1,𝑁
)

for some 𝑒1,𝑁 . Since 𝜃𝔥 (ℎ) acts as
(
−1 −2𝑥
0 1

)
on U (cf. 5.1.1), for 𝑓 ∈ (F1)

𝔫 (𝑈),

(𝜃𝔥 (ℎ) − 1) · ( 𝑓 log(
𝑒1
𝑒1,𝑁
)) = log(

𝑒1
𝑒1,𝑁
) (𝜃𝔥 (ℎ) − 1) · 𝑓 + 𝑓 𝜃𝔥 (ℎ) · log(

𝑒1
𝑒1,𝑁
) = − 𝑓 .

On the other hand, by Proposition 5.2.12, we know that (ℎ + 1) · 𝑓 = 0. Therefore,

(ℎ + 1) · ( 𝑓 log(
𝑒1
𝑒1,𝑁
)) = 𝑓 ℎ · log(

𝑒1
𝑒1,𝑁
) = 𝑓 .

Hence, 𝜃𝔥 (ℎ) − 1 = −(ℎ + 1) on (F2)
𝔫 (𝑈). �

5.4.5. Similarly, we consider

0→ 𝐻0 (ℱℓ, (F1)𝔫) → 𝐻0 (ℱℓ, (F2)𝔫)
𝜃𝔥 (ℎ)−1
−−−−−−→ 𝐻0(ℱℓ, (F1)𝔫) → 0.

https://doi.org/10.1017/fmp.2022.1 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2022.1


66 Lue Pan

Recall that (F1)𝔫 � (𝑖∞)∗𝑀
†

(𝑘1+1,𝑘1)
(𝐾 𝑝) in this case, and we may identify

(F2)𝔫 = (𝑖∞)∗(𝑀
†

(𝑘1+1,𝑘1)
(𝐾 𝑝) ⊕ 𝑀†

(𝑘1+1,𝑘1)
(𝐾 𝑝) · log(

𝑒2
𝑒2,𝑁
))

for some 𝑒2,𝑁 . Then a similar computation shows that 𝜃𝔥 (ℎ) − 1 = ℎ − 1 on (F2)𝔫 . Hence, the kernel
of ℎ + 1 on 𝐻0(ℱℓ, (F2)𝔫) ⊗𝐶 𝔫∗ is 𝐻0(ℱℓ, (F1)𝔫) ⊗𝐶 𝔫∗ ⊂ 𝐻0 (ℱℓ, (F2)𝔫) ⊗𝐶 𝔫∗.

Now to determine the kernel of ℎ + 1 on 𝐻1 (ℱℓ,F2)
𝔫 , we claim that the surjection

𝐻1 (ℱℓ,F2)
𝔫 → 𝐻0(ℱℓ, (F2)𝔫) ⊗𝐶 𝔫∗

remains surjective when passing to the kernel of ℎ + 1; that is, there is an exact sequence

0→ 𝐻1 (ℱℓ, (F2)
𝔫)𝜇 → 𝐻1(ℱℓ,F2)

𝔫
𝜇 → (𝐻

0 (ℱℓ, (F2)𝔫) ⊗𝐶 𝔫∗)𝜇 → 0.

In fact, this is really a formal consequence of the previous lemma. Consider the following commutative
diagram:

0 0 0

0 𝐻1(ℱℓ, (F1)
𝔫) 𝐻1(ℱℓ,F1)

𝔫 𝐻0(ℱℓ, (F1)𝔫) ⊗𝐶 𝔫∗ 0

0 𝐻1(ℱℓ, (F2)
𝔫) 𝐻1(ℱℓ,F2)

𝔫 𝐻0(ℱℓ, (F2)𝔫) ⊗𝐶 𝔫∗ 0

0 𝐻1(ℱℓ, (F1)
𝔫) 𝐻1(ℱℓ,F1)

𝔫 𝐻0(ℱℓ, (F1)𝔫) ⊗𝐶 𝔫∗ 0

0 0 0

𝜃𝔥 (ℎ)−1=−(ℎ+1) 𝜃𝔥 (ℎ)−1 𝜃𝔥 (ℎ)−1=ℎ+1

.

Let 𝑓 ∈ 𝐻0(ℱℓ, (F1)𝔫) ⊗𝐶 𝔫∗ ⊂ 𝐻0(ℱℓ, (F2)𝔫) ⊗𝐶 𝔫∗. We can find a preimage 𝑓 ∈ 𝐻1(ℱℓ,F1)
𝔫 .

Then (ℎ + 1) · 𝑓 ∈ 𝐻1(ℱℓ, (F1)
𝔫). By Lemma 5.4.4, there exists �̃� ∈ 𝐻1 (ℱℓ, (F2)

𝔫) such that
(ℎ + 1) · �̃� = (ℎ + 1) · 𝑓 . Now 𝑔 := 𝑓 − �̃� defines an element in 𝐻1(ℱℓ,F2)

𝔫 lifting f and annihilated
by ℎ + 1.

Since 𝐻1(ℱℓ,F1)
𝔫 is computed in Section 5.3.17, we obtain the following result. The last part is a

restatement of Theorem 5.3.18.

Theorem 5.4.6. Suppose 𝜇 = (𝑘1, 𝑘1 + 1); that is, 𝜇(ℎ) = −1. There exists an exact sequence

0→ 𝑁1 · 𝑒
−1
1 𝑡𝑘1+1 → �̃�1(𝐾 𝑝 , 𝐶)la𝜇 → 𝑀†1 (𝐾

𝑝) · 𝑒−1
1 𝑡𝑘1+1 → 0,

where 𝑁1 sits inside the exact sequence

0→ 𝑀†1 (𝐾
𝑝)/𝑀1(𝐾

𝑝) → 𝑁1 → lim
−−→
𝐾𝑝

𝐻1(X𝐾 𝑝𝐾𝑝 , 𝜔1) → 0.

Moreover, �̃�1 (𝐾 𝑝 , 𝐶)la, (𝑘1+1,𝑘1)
𝜇 ⊂ �̃�1(𝐾 𝑝 , 𝐶)la𝜇 is identified with the pullback of 𝑀1 (𝐾

𝑝) · 𝑒−1
1 𝑡𝑘1+1 ⊂

𝑀†1 (𝐾
𝑝) · 𝑒−1

1 𝑡𝑘1+1; that is, there is an exact sequence

0→ 𝑁1 · 𝑒
−1
1 𝑡𝑘1+1 → �̃�1(𝐾 𝑝 , 𝐶)la, (𝑘1+1,𝑘1)

𝜇 → 𝑀1 (𝐾
𝑝) · 𝑒−1

1 𝑡𝑘1+1 → 0.

All of the maps are Hecke and 𝐵 × 𝐺Q𝑝 -equivariant.
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6. Applications

In this section, we present several applications of the main results of previous section to the study of
overconvergent modular forms and the Fontaine–Mazur conjecture in the irregular case. One main in-
gredient is Emerton’s local–global compatibility result, which allows us to study completed cohomology
using the (p-adic) representation theory of GL2(Q𝑝).

6.1. Hecke algebra

6.1.1. First we recall the definition of the (big) Hecke algebra associated to completed cohomology. Let
𝐾 𝑝 =

∏
𝑙≠𝑝 𝐾𝑙 ⊂ GL2 (A

𝑝
𝑓 ) be a tame level and S a finite set of rational primes containing p and all

places l for which 𝐾𝑙 is not maximal. As usual, we denote the double coset action of

[𝐾𝑙

(
𝑙 0
0 1

)
𝐾𝑙]

by 𝑇𝑙 and the double coset action of

[𝐾𝑙

(
𝑙 0
0 𝑙

)
𝐾𝑙]

by 𝑆𝑙 . For any open compact subgroup 𝐾𝑝 of GL2 (Q𝑝), we define

T(𝐾 𝑝𝐾𝑝) ⊂ EndZ𝑝 (𝐻
1
ét (Y𝐾 𝑝𝐾𝑝 ,Z𝑝))

as the Z𝑝-subalgebra generated by Hecke operators 𝑇𝑙 , 𝑆±1
𝑙 at places 𝑙 ∉ 𝑆. As the notation suggests, this

does not depend on the choice of S because of the existence of continuous 2-dimensional determinants
of 𝐺Q,𝑆 over T(𝐾 𝑝𝐾𝑝) and Chebatorev’s density theorem. Now we define the Hecke algebra of tame
level 𝐾 𝑝 as

T(𝐾 𝑝) := lim
←−−

𝐾𝑝⊂GL2 (Q𝑝)

T(𝐾 𝑝𝐾𝑝).

This is a complete semi-local Z𝑝-algebra and T(𝐾 𝑝)/𝔪 is a finite field for any maximal ideal 𝔪. It
acts faithfully on �̃�1(𝐾 𝑝 ,Z𝑝) and commutes with the action of GL2 (Q𝑝) × 𝐺Q𝑝 . Moreover, there is a
continuous 2-dimensional determinant 𝐷𝑆 of 𝐺Q,𝑆 valued in T(𝐾 𝑝) in the sense of Chenevier [Che14]
satisfying the following property5: for any 𝑙 ∉ 𝑆, the characteristic polynomial of 𝐷𝑆 (Frob𝑙) is

𝑋2 − 𝑙−1𝑇𝑙𝑋 + 𝑙
−1𝑆𝑙 .

Note that its twist by inverse of the cyclotomic character is also the Eichler–Shimura congruence relation
([Del71, Théorème 4.9]); that is,

Frob2
𝑙 −𝑇𝑙 Frob𝑙 +𝑙𝑆𝑙 = 0

on �̃�1 (𝐾 𝑝 ,Z𝑝). This can be checked first on finite levels and then by passing to the limit over 𝐾𝑝 . Note
that 𝑇𝑙 , 𝑆±1

𝑙 , 𝑙 ∉ 𝑆 generate T(𝐾 𝑝) topologically.
Let 𝜆 : T(𝐾 𝑝) → Q𝑝 be a Z𝑝-algebra homomorphism. We can associate an odd semi-simple Galois

representation (unique up to conjugation)

𝜌𝜆 : 𝐺Q,𝑆 → GL2(Q𝑝)

5The existence of 𝐷𝑆 implies that T(𝐾 𝑝) is Noetherian. Note that 𝑇𝑙 , 𝑆±1
𝑙 , 𝑙 ∉ 𝑆 generate T(𝐾 𝑝) topologically; hence,

T(𝐾 𝑝) receives a surjective map from a finite product of some universal deformation rings of 2-dimensional determinants of
𝐺Q,𝑆 , which are Noetherian by the work of Chenevier.
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whose determinant is 𝜆 ◦𝐷𝑆 . Here odd means det(𝜌𝜆 (𝑐)) = −1 for any complex conjugation 𝑐 ∈ 𝐺Q,𝑆 .
Let �̃�1(𝐾 𝑝 ,Q𝑝) = �̃�1 (𝐾 𝑝 ,Q𝑝) ⊗ Q𝑝 and let 𝔭𝜆 := ker(𝜆 ⊗ Q𝑝) ∈ SpecT(𝐾 𝑝) ⊗Q𝑝 Q𝑝 . If 𝜌𝜆 is
irreducible, by the Eichler–Shimura relation, we have

Hom𝐺Q (𝜌𝜆 (−1), �̃�1(𝐾 𝑝 ,Q𝑝)) = Hom𝐺Q (𝜌𝜆 (−1), �̃�1 (𝐾 𝑝 ,Q𝑝) [𝔭𝜆]),

where 𝜌𝜆 (−1) = 𝜌𝜆 ⊗ 𝜀−1 is the twist of 𝜌𝜆 by inverse of the p-adic cyclotomic character and
�̃�1 (𝐾 𝑝 ,Q𝑝) [𝔭𝜆] denotes the 𝜆-isotypic subspace. By the main result of [BLR91], �̃�1 (𝐾 𝑝 ,Q𝑝) [𝔭𝜆] is
𝜌𝜆 (−1)-isotypic in the sense that

�̃�1(𝐾 𝑝 ,Q𝑝) [𝔭𝜆] = 𝜌𝜆 (−1) ⊗
Q𝑝

Hom𝐺Q (𝜌𝜆 (−1), �̃�1(𝐾 𝑝 ,Q𝑝)).

We remark that the centre A×𝑓 of GL2 (A 𝑓 ) acts via det(𝜌𝜆)𝜀−1 on �̃�1(𝐾 𝑝 ,Q𝑝) [𝔭𝜆] via global class
field theory.

Definition 6.1.2. Let

𝜌 : 𝐺Q → GL2(Q𝑝)

be a continuous 2-dimensional p-adic Galois representation. We say 𝜌 is

◦ pro-modular if there exists a tame level 𝐾 𝑝 and 𝜆 : T(𝐾 𝑝) → Q𝑝 such that 𝜌 � 𝜌𝜆;
◦ pro-cohomological if Hom𝐺Q (𝜌(−1), �̃�1 (𝐾 𝑝 ,Q𝑝)) ≠ 0 for some tame level 𝐾 𝑝.

Clearly, 𝜌 is pro-modular if it is pro-cohomological and irreducible by our previous discussion.
Conversely, we have the following result.

Lemma 6.1.3. Let 𝜌 = 𝜌𝜆 be an irreducible pro-modular representation for some 𝐾 𝑝 and 𝜆. The
following statements are equivalent:

(1) 𝜌 is pro-cohomological.
(2) �̃�1(𝐾 𝑝 ,Q𝑝) [𝔭𝜆] ≠ 0.
(3) �̃�1(𝐾 𝑝 , 𝐶) [𝔭𝜆] ≠ 0.

Proof. The first two are equivalent by the Eichler–Shimura relation. The equivalence between the last
two is a consequence of the following lemma. �

Lemma 6.1.4. Let 𝜌 = 𝜌𝜆 be a pro-modular representation for some 𝐾 𝑝 and 𝜆. Then

�̃�1 (𝐾 𝑝 ,Q𝑝) [𝔭𝜆]⊗̂Q𝑝𝐶 � �̃�1(𝐾 𝑝 , 𝐶) [𝔭𝜆],

where �̃�1 (𝐾 𝑝 ,Q𝑝) [𝔭𝜆] is endowed with a norm with unit ball (�̃�1(𝐾 𝑝 ,Z𝑝) ⊗ Z𝑝) [𝔭𝜆].

Proof. Choose generators 𝑔1, · · · , 𝑔𝑠 of 𝔭𝜆 as a T(𝐾 𝑝) ⊗ Q𝑝-module. We have an exact sequence

0→ �̃�1 (𝐾 𝑝,Q𝑝) [𝔭𝜆] → �̃�1 (𝐾 𝑝 ,Q𝑝)
(𝑔1 , · · · ,𝑔𝑠)
−−−−−−−−→

𝑠⊕
𝑖=1

�̃�1(𝐾 𝑝 ,Q𝑝)

which is continuous with respect to the p-adic topology; that is, defined by the unit open ball
�̃�1 (𝐾 𝑝 ,Z𝑝) ⊗ Z𝑝 . Note that the second map is strict. This sequence remains exact after taking p-adic
completion, which is exactly what we want. �

We conclude this subsection by the following result on infinitesimal characters.

Proposition 6.1.5. Suppose 𝜌 = 𝜌𝜆 is pro-cohomological and irreducible and has Hodge–Tate–Sen
weights (𝑎, 𝑏). Then as a representation of GL2(Q𝑝), the locally analytic vectors �̃�1 (𝐾 𝑝 , 𝐶)la [𝔭𝜆] ≠ 0
and have infinitesimal character {(−𝑎 − 1,−𝑏), (−𝑏 − 1,−𝑎)} ⊂ 𝔥∗.
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Proof. Note that 𝜌 can be defined over a finite extension E of Q𝑝 . Hence, �̃�1(𝐾 𝑝 ,Q𝑝) [𝔭𝜆] ∩
�̃�1 (𝐾 𝑝 ,Q𝑝) ⊗ 𝐸 ≠ 0 and is an admissible representation of GL2(Q𝑝). It has nonzero locally ana-
lytic vectors by the main result of [ST03]. Since det 𝜌 has Hodge–Tate–Sen weight 𝑎 + 𝑏, the centre 𝐶𝑧
of 𝔤 acts on �̃�1(𝐾 𝑝 , 𝐶)la [𝔭𝜆] via 𝑧 ↦→ −(𝑎 + 𝑏) − 1. Now the claim for infinitesimal character follows
directly from Corollary 4.2.8 and Theorem 5.1.11. �

Remark 6.1.6. A higher dimensional generalisation of this result was obtained by Dospinescu–
Paškūnas–Schraen in [DPS20, Theorem 1.4].

6.2. A classicality result for overconvergent weight 1 forms

6.2.1. Suppose 𝜌 = 𝜌𝜆 has equal Hodge–Tate–Sen weights 0, 0. (It is easy to reduce to this case by
twisting by a character if weights are 𝑎, 𝑎.) There are two possibilities for 𝜌: either 𝜌 |𝐺Q𝑝 is Hodge–Tate,
or not. In other words, (𝜌 ⊗Q𝑝 𝐶)

𝐺Q𝑝 is a Q𝑝-vector space of dimension 2 or 1. Recall that by Deligne–
Serre [DS74], the 2-dimensional Galois representation associated to a classical weight 1 eigenform is
Hodge–Tate at p. The main result of this subsection gives a converse.

Recall that there is a natural action of B on 𝑀†1 (𝐾
𝑝). Let 𝑁0 ⊂ 𝐵 be

(
1 Z𝑝
0 1

)
. Then we have the usual

operator

𝑈𝑝 :=
𝑝−1∑
𝑖=0

(
𝑝 𝑖
0 1

)

acting on 𝑀†1 (𝐾
𝑝)𝑁0 . Note that Theorem 5.4.2 implies that Hecke algebra T(𝐾 𝑝) also acts on the space

of overconvergent modular forms.

Theorem 6.2.2. Suppose 𝜌 = 𝜌𝜆 is pro-modular for some tame level 𝐾 𝑝. If 𝑀†1 (𝐾
𝑝)𝑁0 [𝔭𝜆] has a

nonzero 𝑈𝑝-eigenvector and 𝜌 |𝐺Q𝑝 is Hodge–Tate of weights 0, 0, then 𝜌 comes from a classical weight
1 eigenform; that is, 𝑀1 (𝐾

𝑝) [𝔭𝜆] ≠ 0.

Remark 6.2.3. Theorem 6.2.2 implies that an overconvergent weight 1 modular form of finite slope is
classical if its associated Galois representation is Hodge–Tate. In particular, this gives a different proof
of the main result of Buzzard–Taylor [BT99] in the ordinary case.

Note that we do not assume the eigenvalue of 𝑈𝑝 is nonzero. In fact, using Colmez’s Kirillov model,
we will see that the kernel of 𝑈𝑝 is always nonzero if we know the local–global compatibility at p (in
the sense of Emerton).

6.2.4. The rest of this subsection is devoted to the proof of Theorem 6.2.2. As mentioned in the
Introduction, we will need Hecke operators at bad places in the proof. After making a right translation
by some element in GL2 (A

𝑝
𝑓 ) and shrinking the level, we can find a finite set of rational primes S

containing p and an integer 𝑚 > 0 and assume the following: 𝐾 𝑝 =
∏
𝑙≠𝑝 𝐾𝑙 ⊂

∏
𝑙≠𝑝 GL2 (Z𝑙), where

𝐾𝑙 = GL2 (Z𝑙) for 𝑙 ∉ 𝑆, and

𝐾𝑙 = Γ1(𝑙
𝑚) = {

(
𝑎 𝑏
𝑐 𝑑

)
, 𝑎 − 1, 𝑐, 𝑑 − 1 ∈ 𝑙𝑚Z𝑙}, 𝑙 ∈ 𝑆 \ {𝑝}.

Moreover, 𝑀†1 (𝐾
𝑝Γ1(𝑝

𝑚)) [𝔭𝜆] has a nonzero eigenvector of 𝑈𝑝 . See Section 5.2.4 for the notation
here. Let 𝐾𝑝 = Γ1(𝑝

𝑛) for some 𝑛 ≥ 𝑚 and 𝐾 = 𝐾 𝑝𝐾𝑝 . Let 𝐴𝑆 =
∏
𝑙∈𝑆 Z

×
𝑙 ⊂

∏
𝑙∈𝑆 GL2(Z𝑙) be the

subgroup of the form
(
∗ 0
0 1

)
. Then 𝐴𝑆 is in the normaliser of

∏
𝑙∈𝑆 𝐾𝑙; hence, 𝐴𝑆 acts on X𝐾 by right

translation, which induces an action of 𝐴𝑆 on 𝑀†1 (𝐾). Clearly, this action factors through a finite group
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and we can find a (finite-order) character 𝜓 : 𝐴𝑆 → Q×𝑝 such that the 𝜓-isotypic component

𝑀†1 (𝐾)
𝜓 [𝔭𝜆]

contains a nonzero eigenvector of 𝑈𝑝 . For 𝑙 ∈ 𝑆, we denote by 𝑈𝑙 the abstract double coset action of

[𝐾𝑙

(
𝑙 0
0 1

)
𝐾𝑙] .

These operators act naturally on 𝑀†1 (𝐾). If, moreover, 𝑙 ≠ 𝑝, then 𝑈𝑙 acts naturally on �̃�1(𝐾 𝑝 , 𝐶). We
denote by

T̃(𝐾 𝑝) ⊂ End(�̃�1(𝐾 𝑝 , 𝐶))

the T(𝐾 𝑝)-subalgebra generated by 𝑈𝑙 , 𝑙 ∈ 𝑆 \ {𝑝}.

Lemma 6.2.5. T̃(𝐾 𝑝) is a finite T(𝐾 𝑝)-module; that is, each 𝑈𝑙 is integral over T(𝐾 𝑝), 𝑙 ∈ 𝑆 \ {𝑝}.

Proof. Fix 𝑙 ∈ 𝑆 \ {𝑝}. Since lim
−−→𝐾 ′𝑝

𝐻1
ét(X𝐾 𝑝𝐾 ′𝑝 ,Q𝑝) is dense in �̃�1 (𝐾 𝑝,Q𝑝) (Theorem 2.2.16 (iv) of

[Eme06b]), it suffices to find a monic polynomial 𝑃𝑙 (𝑋) ∈ T(𝐾 𝑝) [𝑋] such that 𝑃𝑙 (𝑈𝑙) acts as zero on
𝐻1

ét (X𝐾 𝑝𝐾 ′𝑝 ,Q𝑝) for any open subgroup 𝐾 ′𝑝 of GL2(Q𝑝). Fix a lift of geometric Frobenius Frob𝑙 ∈ 𝐺Q𝑙
whose image in 𝐺ab

Q𝑙
corresponds to 𝑙 ∈ Q×𝑙 via the local Artin map. Recall that there is a determinant

𝐷𝑆 of 𝐺Q,𝑆 valued in T(𝐾 𝑝). We denote by 𝑄𝑙 (𝑋) ∈ T(𝐾
𝑝) [𝑋] the characteristic polynomial of

𝑙 Frob𝑙 ∈ T(𝐾 𝑝) [𝐺Q,𝑆]. We claim that

𝑃𝑙 (𝑋) := 𝑋𝑚+1𝑄𝑙 (𝑋)

works. To see this, since 𝐻1
ét (X𝐾 𝑝𝐾 ′𝑝 ,Q𝑝) can be decomposed as a direct sum of (𝜋 𝑓 )𝐾

𝑝𝐾 ′𝑝 for some
cuspidal automorphic representations 𝜋 = 𝜋 𝑓 ⊗ 𝜋∞ on GL2(A), it is enough to show 𝑃𝑙 (𝑈𝑙) = 0 on
each nonzero (𝜋 𝑓 )𝐾

𝑝𝐾 ′𝑝 . By the theory of newforms, (𝜋𝑙)𝐾𝑙 has dimension at most 𝑚 + 1 and 𝑈𝑙 is not
nilpotent only when 𝜋𝑙 is special or a principal series. Moreover, 𝑈𝑙 acts semi-simply on generalised
eigenspaces associated to nonzero eigenvalues. See, for example, Corollary 2.2 of [Hid89]. The local–
global compatibility then implies that a nonzero eigenvalue of 𝑈𝑙 must be a root of 𝑄𝑙 (𝑋). Hence,
𝑃𝑙 (𝑈𝑙) = 0 on (𝜋 𝑓 )𝐾

𝑝𝐾 ′𝑝 . �

Now we consider the action of T̃(𝐾 𝑝) [𝑈𝑝] on 𝑀†1 (𝐾)
𝜓.

Lemma 6.2.6. 𝜆 : T(𝐾 𝑝) → Q𝑝 can be extended to 𝜆′ : T̃(𝐾 𝑝) [𝑈𝑝] → 𝐶 such that

𝑀†1 (𝐾
𝑝Γ1(𝑝

𝑛))𝜓 [𝔭𝜆′ ] ≠ 0,

where 𝔭𝜆′ denotes the kernel of 𝜆′. Moreover, for any such 𝜆′, we have

dim𝐶 𝑀†1 (𝐾
𝑝Γ1(𝑝

𝑛))𝜓 [𝔭𝜆′ ] = 1.

In particular, we obtain the following after taking direct limit over all n:

dim𝐶 lim
−−→
𝑛

𝑀†1 (𝐾
𝑝Γ1(𝑝

𝑛))𝜓 [𝔭𝜆′ ] = dim𝐶 𝑀†1 (𝐾
𝑝)𝜓,𝑁0 [𝔭𝜆′ ] = 1.

Proof. Let𝛼 ∈ 𝐶 be an eigenvalue of𝑈𝑝 on 𝑀†1 (𝐾)
𝜓 [𝔭𝜆]. Then T̃(𝐾 𝑝)/(𝔭𝜆) acts on the𝛼-eigenspace of

𝑀†1 (𝐾)
𝜓 [𝔭𝜆]. Since T̃(𝐾 𝑝)/(𝔭𝜆) is Artinian by our previous lemma, we can find 𝜆′ : T̃(𝐾 𝑝) [𝑈𝑝] → 𝐶

which sends 𝑈𝑝 to 𝛼 and extends 𝜆 and 𝑀†1 (𝐾)
𝜓 [𝔭𝜆′ ] ≠ 0. To see the multiplicity 1 claim, we re-

mark that 𝐴𝑆 acts transitively on all connected components of X𝐾 . Hence, any element of 𝑀†1 (𝐾)
𝜓
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is determined by its value on one component. Since elements in 𝑀†1 (𝐾)
𝜓 [𝔭𝜆′ ] are eigenvectors

of 𝑇𝑙 , 𝑆𝑙 , 𝑙 ∉ 𝑆 and 𝑈𝑙 , 𝑙 ∈ 𝑆, we conclude from usual q-expansion principle that this space has
dimension 1. �

Proof of Theorem 6.2.2. If 𝜌 is reducible, then it is a sum of two finite-order characters. The theory
of Eisenstein series shows that it comes from a classical modular form. Hence, we may assume 𝜌 is
irreducible.

Assume 𝜌 is not classical; that is, 𝑀1 (𝐾 𝑝) [𝔭𝜆] = 0. Since 𝑀1 (𝐾 𝑝) = lim
−−→𝐾 ′𝑝

𝐻0(X𝐾 𝑝𝐾 ′𝑝 , 𝜔) is a

direct sum of (𝜋 𝑓 )𝐾
𝑝 for some automorphic representations 𝜋 of GL2(A), the localisation

𝑀1 (𝐾 𝑝)𝔭𝜆 = 0.

Similarly, by Serre duality and the Kodaira–Spencer isomorphism, we also have

(lim
−−→
𝐾 ′𝑝

𝐻1 (X𝐾 𝑝𝐾 ′𝑝 , 𝜔1))𝔭𝜆 = 0.

Hence, by the second part of Theorem 5.4.6, (�̃�1(𝐾 𝑝 , 𝐶)la, (1,0)
(0,1) )𝔭𝜆·𝑡 = 𝑀†1 (𝐾

𝑝)𝔭𝜆 · 𝑒
−1
1 𝑡 and therefore

�̃�1 (𝐾 𝑝 , 𝐶)la, (1,0)
(0,1) [𝔭𝜆·𝑡 ] = 𝑀†1 (𝐾

𝑝) [𝔭𝜆] · 𝑒
−1
1 𝑡,

where 𝜆 · 𝑡 : T(𝐾 𝑝) → Q𝑝 denotes ‘the twist of 𝜆 by t’; that is, sends 𝑇𝑙 to 𝜆(𝑇𝑙)𝑙
−1. It can be checked

that 𝜌𝜆·𝑡 (−1) = 𝜌𝜆. Hence, �̃�1(𝐾 𝑝 ,Q𝑝) [𝔭𝜆·𝑡 ] is 𝜌-isotypic. On the other hand, by our assumption that
𝜌 is Hodge–Tate and Theorem 5.1.11, we have

�̃�1(𝐾 𝑝 , 𝐶)la(0,1) [𝔭𝜆·𝑡 ] = �̃�1(𝐾 𝑝 , 𝐶)la, (1,0)
(0,1) [𝔭𝜆·𝑡 ] .

If we write 𝑊 = Hom𝐺Q (𝜌, �̃�1(𝐾 𝑝 ,Q𝑝)), then by Lemma 6.1.4 and our discussion in Section 6.1.1,

�̃�1 (𝐾 𝑝 , 𝐶)la
(0,1) [𝔭𝜆·𝑡 ] = 𝜌 ⊗

Q𝑝
(𝑊 ⊗̂

Q𝑝
𝐶)la
(0,1) ,

where W is endowed a norm with unit ball Hom𝐺Q (𝜌𝑜, �̃�1(𝐾 𝑝 ,Z𝑝) ⊗Z𝑝) and 𝜌𝑜 ⊂ 𝜌 is any 𝐺Q-stable
lattice. Note that 𝐴𝑆 × T̃(𝐾

𝑝) acts naturally on W and 𝑈𝑝 acts on its 𝑁0-fixed vectors. Fix 𝜆′ as in
Lemma 6.2.6 and consider its ‘twist by 𝑒−1

1 𝑡’

𝜆′′ : 𝑇 (𝐾 𝑝) [𝑈 𝑝] → 𝐶

which sends 𝑇𝑙 to 𝜆′(𝑇𝑙)𝑙
−1 for 𝑙 ∉ 𝑆 and sends 𝑈𝑙 to 𝜆′(𝑈𝑙)𝑙

−1 for 𝑙 ∈ 𝑆. Then we have

𝑀†1 (𝐾
𝑝)𝜓,𝑁0 [𝔭𝜆′ ] · 𝑒

−1
1 𝑡 = �̃�1 (𝐾 𝑝, 𝐶)

la,𝜓,𝑁0
(0,1) [𝔭𝜆′′ ] = 𝜌 ⊗

Q𝑝
(𝑊 ⊗̂

Q𝑝
𝐶)

la,𝜓,𝑁0
(0,1) [𝔭𝜆′′ ] .

The left-hand side has dimension 1 over C by Lemma 6.2.6. However, the last term in the equality has
dimension at least 2 because 𝜌 is 2-dimensional! Thus, we get a contradiction. This proves that 𝜌 has to
be classical. �

6.3. Local–global compatibility

6.3.1. In order to better understand �̃�1 (𝐾 𝑝,Q𝑝) [𝔭𝜆] for a pro-modular 𝜆, we need Emerton’s local–
global compatibility conjecture, which gives a description of �̃�1(𝐾 𝑝 ,Q𝑝) [𝔭𝜆] in terms of p-adic local
Langlands for GL2(Q𝑝) as established by Breuil, Colmez, Berger, Kisin, Paškūnas. In [Eme11, Eme06a],
Emerton formulated and proved his conjecture assuming the residual representation is irreducible and
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generic. Building upon the work of Paškūnas, we gave a proof (which is complete when 𝑝 ≥ 5) in
[Pan19] in the case of definite quaternion algebras. We will mostly follow the argument in Section 3 of
[Pan19] and also Section 5 of [Pas18]. One key step is to prove the density of algebraic vectors when
we are localising at an Eisenstein maximal ideal. This part might be of some independent interest.

6.3.2. We begin by recalling work of Paškūnas on representations of GL2 (Q𝑝). See [Paš13] and also
the introduction of [Paš16]. Fix E a finite extension of Q𝑝 with ring of integers O, residue field F, and
fix a uniformiser 𝜛. Write 𝐺 = GL2(Q𝑝) and let 𝜁 : Q×𝑝 → O× be a continuous character. Following
Paškūnas, we denote by Modl adm

𝐺,𝜁 (O) the category of smooth, locally admissible G-representations on
O-torsion modules with central character 𝜁 .

Let Irradm
𝐺 be the set of G-irreducible representations in Modl adm

𝐺,𝜁 (O). There is a natural equivalence
relation ∼ on Irradm

𝐺 defined as follows: 𝜋 ∼ 𝜏 if 𝜋 = 𝜏 or there exists a sequence 𝜋0 = 𝜋, · · · , 𝜋𝑛 = 𝜏 ∈

Irradm
𝐺 such that Ext1 (𝜋𝑖 , 𝜋𝑖+1) ≠ 0 or Ext1 (𝜋𝑖+1, 𝜋𝑖) ≠ 0. An equivalence class 𝔅 ∈ Irradm

𝐺 /∼ is called a
block of Modl adm

𝐺,𝜁 (O). There is a natural decomposition

Modl adm
𝐺,𝜁 (O) �

∏
𝔅∈Irradm

𝐺 /∼

Modl adm
𝐺,𝜁 (O) [𝔅],

where Modl adm
𝐺,𝜁 (O) [𝔅] denotes the full subcategory of representations with irreducible constituents in

𝔅. A complete list of blocks containing an absolutely irreducible representation can be found on the
beginning of p. 3 of [Paš16].

The semi-simple mod p correspondence gives a bijection between isomorphism classes of 2-
dimensional absolutely semi-simple F-representations �̄�𝔅 of 𝐺Q𝑝 and blocks containing an absolutely
irreducible representation. It should be mentioned that det �̄�𝔅 ≡ 𝜁𝜀𝑝mod 𝜛. Let 𝑅ps,𝜁 𝜀𝑝

�̄�𝔅
be the defor-

mation ring parametrising all of the 2-dimensional continuous determinants (in the sense of [Che14])
of 𝐺Q𝑝 lifting (tr�̄�𝔅, det �̄�𝔅) with (usual) determinant 𝜁𝜀𝑝 . Here is a summary of results of Paškūnas
and Paškūnas–Tung that we will use later.

Theorem 6.3.3. Suppose 𝔅 contains an absolutely irreducible representation. Let 𝑍𝔅 be the Bernstein
centre of Modl adm

𝐺,𝜁 (O) [𝔅].

(1) There is a finite O-algebra homomorphism

𝑅
ps,𝜁 𝜀𝑝
�̄�𝔅

→ 𝑍𝔅

compatible with Colmez’s functor (see [PT21, Theorem 1.2] for the precise statement). Hence,
Modl adm

𝐺,𝜁 (O) [𝔅] admits a 𝑅
ps,𝜁 𝜀𝑝
�̄�𝔅

-module structure from this map.
(2) There is a faithful 𝑅

ps,𝜁 𝜀𝑝
�̄�𝔅

-linear contravariant exact functor m from Modl adm
𝐺,𝜁 (O) [𝔅] to the

category of 𝑅
ps,𝜁 𝜀𝑝
�̄�𝔅

-modules sending admissible representations to finitely generated 𝑅
ps,𝜁 𝜀𝑝
�̄�𝔅

-
modules.

Proof. Both claims follow from [PT21, Theorem 1.2, 1.3]. In fact, Paškūnas and Tung show that
Modl adm

𝐺,𝜁 (O) [𝔅] is anti-equivalent to the category of right pseudo-compact 𝐸𝔅-modules for some
pseudo-compact ring 𝐸𝔅 and construct a map 𝑅

ps,𝜁 𝜀𝑝
�̄�𝔅

→ 𝑍𝔅 ⊆ 𝐸𝔅 which makes 𝐸𝔅 into a finitely
generated 𝑅

ps,𝜁 𝜀𝑝
�̄�𝔅

-module. The functor m is defined by passing the action of 𝐸𝔅 to 𝑅
ps,𝜁 𝜀𝑝
�̄�𝔅

. �

6.3.4. Next we turn to the global side. Fix a tame level 𝐾 𝑝 from now on. Let 𝔪 be a maximal
ideal of T(𝐾 𝑝) ⊗Z𝑝 O. We may assume the residue field of 𝔪 is F by enlarging E. Recall that there
is a 2-dimensional determinant of 𝐺Q valued in T(𝐾 𝑝) and we extend it to a determinant valued
in T(𝐾 𝑝) ⊗Z𝑝 O. Denote by 𝐷 𝑝 its restriction to 𝐺Q𝑝 and by �̄� 𝑝 its reduction modulo 𝔪. Again
enlarging E if necessary, we may assume that �̄� 𝑝 arises from a 2-dimensional semi-simple representation
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�̄�𝔪, 𝑝 : 𝐺Q𝑝 → GL2(F). Fix a continuous character 𝜁 ′ : A×𝑓 /det(𝐾 𝑝)Q×>0 → O× such that 𝜁 = 𝜁 ′ |Q×𝑝 :
Q×𝑝 → O× is congruent to (det �̄�𝔪, 𝑝)𝜔−1 modulo 𝜛 via local class field theory. For ? = 𝐸,O, 𝐸/O, let
�̃�1 (𝐾 𝑝 , ?)𝜁 ′,𝔪 be the subspace of (�̃�1 (𝐾 𝑝,Z𝑝)⊗Z𝑝?)𝔪 on which the centre A×𝑓 acts via 𝜁 ′ and let T be
the image of (T(𝐾 𝑝) ⊗ O)𝔪 inside End(�̃�1 (𝐾 𝑝 , 𝐸/O)𝜁 ′,𝔪). Then 𝐷 𝑝 induces a natural map

𝑅
ps,𝜁 𝜀𝑝
�̄�𝔪, 𝑝

→ T.

Hence, the faithful Hecke action of T induces an action of 𝑅
ps,𝜁 𝜀𝑝
�̄�𝔪, 𝑝

on �̃�1(𝐾 𝑝 , 𝐸/O)𝜁 ′,𝔪 by our
discussion. We denote this action by 𝜏𝑝 .

On the other hand, �̄�𝔪, 𝑝 determines a block 𝔅𝔪 of Modl adm
𝐺,𝜁 (O). Now we can state the main result

of this subsection.

Theorem 6.3.5. Let 𝔪 be a maximal ideal of T(𝐾 𝑝) ⊗Z𝑝 O.

(1) �̃�1(𝐾 𝑝 , 𝐸/O)𝜁 ′,𝔪 ∈ Modl adm
𝐺,𝜁 (O) [𝔅𝔪]. Hence, by Theorem 6.3.3, there is a natural action 𝜏𝑝 of

𝑅
ps,𝜁 𝜀𝑝
�̄�𝔅𝔪

= 𝑅
ps,𝜁 𝜀𝑝
�̄�𝔪, 𝑝

on �̃�1(𝐾 𝑝 , 𝐸/O)𝜁 ′,𝔪.

(2) Two actions 𝜏𝑝 and 𝜏𝑝 of 𝑅ps,𝜁 𝜀𝑝
�̄�𝔪, 𝑝

are the same.

Before giving a proof, we show that this result implies a (weak) form of local–global compatibility
which will be enough for our applications. Recall that by [CDP14, Theorem 1.1], there is a bijection
between the isomorphism classes of the following two sets:

◦ 2-dimensional absolutely irreducible representation of 𝐺Q𝑝 over E;
◦ nonordinary admissible unitary E-Banach representations of GL2 (Q𝑝).

Here, a Banach representation is nonordinary if it is not a subquotient of a parabolic induction of a unitary
character. This bijection is compatible with taking finite extensions of E. Hence, we can extend this
bijectionQ𝑝-linearly to a map (not bijection) from the isomorphism classes of 2-dimensional irreducible
representation of 𝐺Q𝑝 over Q𝑝 to the isomorphism classes of Q𝑝-representations of GL2 (Q𝑝). We
denote this map by 𝜌 ↦→ Π(𝜌).

Corollary 6.3.6. Suppose 𝜌 = 𝜌𝜆 is pro-modular and irreducible for some tame level 𝐾 𝑝. Then
�̃�1 (𝐾 𝑝 ,Q𝑝) [𝔭𝜆] ≠ 0; that is, 𝜌 is pro-cohomological. Moreover, we have the following description of
�̃�1 (𝐾 𝑝 ,Q𝑝) [𝔭𝜆] as a representation of GL2(Q𝑝):

◦ If 𝜌 |𝐺Q𝑝 is irreducible, then �̃�1 (𝐾 𝑝,Q𝑝) [𝔭𝜆] � Π(𝜌 |𝐺Q𝑝 )
⊕𝑑 for some d.

◦ If 𝜌 |𝐺Q𝑝 is reducible, then �̃�1(𝐾 𝑝 ,Q𝑝) [𝔭𝜆] has an ordinary subrepresentation.

Remark 6.3.7. For later application (Theorem 6.4.7), all we need is that �̃�1(𝐾 𝑝 ,Q𝑝) [𝔭𝜆] is nonzero
and contains an irreducible admissible representation.

Proof. We denote by m0 the 𝑅
ps,𝜁 𝜀
�̄�𝔪, 𝑝

-module obtained by applying the faithful functor m in Theorem
6.3.3 to �̃�1(𝐾 𝑝 , 𝐸/O)𝜁 ′,𝔪. Then the admissibility of �̃�1(𝐾 𝑝 , 𝐸/O)𝜁 ′,𝔪 implies that m0 is a finitely
generated 𝑅

ps,𝜁 𝜀
�̄�𝔪, 𝑝

-module. Since the action 𝜏𝑝 agrees with 𝜏𝑝 which factors through T by Theorem 6.3.5,
we conclude that m0 is a faithful finitely generated T-module. In particular, m0 ⊗T 𝑘 (𝔭) ≠ 0 for any
𝔭 ∈ SpecT, where 𝑘 (𝔭) denotes the residue field of𝔭. From this, we easily deduce �̃�1(𝐾 𝑝 ,Q𝑝) [𝔭𝜆] ≠ 0
in the corollary. Using 𝜏𝑝 = 𝜏𝑝 , our description of �̃�1(𝐾 𝑝 ,Q𝑝) [𝔭𝜆] follows from Paškūnas’s work on
Banach representations [Paš13, Theorem 1.10, 1.11], [Paš16, Corollary 2.24]. �

Proof of Theorem 6.3.5. We can replace𝐾 𝑝 by an open subgroup and assume𝐾 𝑝GL2 (Z𝑝) is sufficiently
small. After twisting a character of A×𝑓 /Q

×
>0, we may assume 𝜁 (𝑥) = 𝑥𝑘 , 𝑥 ∈ Z×𝑝 for some integer k. We

denote by �̃�1(𝐾 𝑝 ,Q𝑝)𝑘 ⊂ �̃�1(𝐾 𝑝 ,Q𝑝) the subspace on which the centre Z×𝑝 ⊂ GL2 (Q𝑝) acts via kth
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power. It has a norm induced from �̃�1(𝐾 𝑝 ,Z𝑝). Then after enlarging E if necessary, there is a natural
decomposition

�̃�1(𝐾 𝑝 ,Q𝑝)𝑘 ⊗Q𝑝 𝐸 =
⊕
(𝔪′,𝜁 ′′)

�̃�1(𝐾 𝑝 , 𝐸)𝜁 ′′,𝔪′ ,

where 𝔪′ runs through all maximal ideals of T(𝐾 𝑝) ⊗ O and 𝜁 ′′ : A×𝑓 /det(𝐾 𝑝)Q×>0 runs through
all continuous characters satisfying 𝜁 ′′(𝑥) = 𝑥𝑘 , 𝑥 ∈ Z×𝑝 . In particular, (𝔪, 𝜁 ′) appears inside this
decomposition. Note that there are only finitely many (𝔪′, 𝜁 ′′).

Lemma 6.3.8. The GL2(Z𝑝)-algebraic vectors in �̃�1(𝐾 𝑝 ,Q𝑝)𝑘 are dense in �̃�1 (𝐾 𝑝 ,Q𝑝)𝑘 .

Lemma 6.3.9. The Hecke action of T(𝐾 𝑝) on the GL2(Z𝑝)-algebraic vectors in �̃�1 (𝐾 𝑝 ,Q𝑝) is semi-
simple.

We will give proofs of both lemmas at the end. Assuming these results, we deduce from the natural
decomposition above that the GL2 (Z𝑝)-algebraic vectors in �̃�1(𝐾 𝑝 , 𝐸)𝜁 ′,𝔪 are dense. Now one can
argue in exactly the same way as proof of Proposition 5.5 of [Pas18]. We only give a sketch here. It should
be mentioned that these algebraic vectors correspond to cohomology of certain standard local systems
on Y𝐾 𝑝GL2 (Z𝑝) . Let S ⊂ SpecT[ 1

𝑝 ] be the subset of maximal ideals 𝔭 for which �̃�1(𝐾 𝑝 , 𝐸)𝜁 ′,𝔪 [𝔭]
has nonzero GL2(Z𝑝)-algebraic vectors. We write Π(𝔭) as the smallest 𝐸 [𝐺]-stable closed subspace
containing the GL2(Z𝑝)-algebraic vectors in �̃�1 (𝐾 𝑝, 𝐸)𝜁 ′,𝔪 [𝔭]. Let Π(𝔭)𝑜 ⊂ Π(𝔭) be its open unit
ball. By our density result and the semi-simplicity of Hecke action on the GL2 (Z𝑝)-algebraic vectors
in �̃�1 (𝐾 𝑝 , 𝐸)𝜁 ′,𝔪, it suffices to prove that for any 𝔭 ∈ S,

Π(𝔭)/Π(𝔭)𝑜 ∈ Modl adm
𝐺,𝜁 (O) [𝔅𝔪]

and both actions 𝜏𝑝 , 𝜏𝑝 are the same on it. Both claims are really formal consequences of classical local–
global compatibility and uniqueness of the universal unitary completion in this case ([BB10, Corollarie
5.3.4], [BE10, Proposition 2.2.1]) and the compatibility between p-adic and classical local Langlands
correspondence [CDP14, Theorem 1.3]. This finishes the proof of Theorem 6.3.5. �

Proof of Lemma 6.3.8. As pointed out by a referee, the following argument was sketched by Matthew
Emerton in [Eme11, Remark 5.4.2].

We begin the proof by recalling a complex computing �̃�𝑖 (𝐾 𝑝 ,Q𝑝). Let �̃�𝑖𝑐 (𝐾 𝑝 ,Z𝑝) be the completed
cohomology with compact support, which is defined by

�̃�𝑖𝑐 (𝐾
𝑝,Z𝑝) := lim

←−−
𝑛

lim
−−→
𝐾𝑝

𝐻𝑖𝑐 (𝑌𝐾 𝑝𝐾𝑝 (C),Z/𝑝
𝑛).

Since 𝑌𝐾 𝑝𝐾𝑝 is a noncompact Riemann surface, it is easy to see that �̃�𝑖𝑐 (𝐾 𝑝 ,Z𝑝) = 0, 𝑖 ≠ 1. There
is a spectral sequence (coming from the Poincaré duality) relating �̃�• and �̃�1

𝑐 (Subsection 1.3 of
[CE12]) as follows. Let Λ be the completed group ring Z𝑝 [[GL2(Z𝑝)]]. Then �̃�1

𝑐 (𝐾
𝑝 ,Z𝑝)

𝑑 :=
HomZ𝑝 (�̃�1

𝑐 (𝐾
𝑝 ,Z𝑝),Z𝑝) admits a resolution by finite free Λ-modules:

· · · → Λ⊕𝑑−1 → Λ⊕𝑑0 → Λ⊕𝑑1 → �̃�1
𝑐 (𝐾

𝑝 ,Z𝑝)
𝑑 → 0.

Taking HomΛ (•,Λ) of this resolution, where Λ is viewed as a left module of itself, we obtain a complex
of right Λ-modules (using the right Λ-module structure of Λ)

· · · ← Λ⊕𝑑−1 ← Λ⊕𝑑0 ← Λ⊕𝑑1 .
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We can view this sequence as a complex of left Λ-modules by applying the main involution 𝑔 ↦→ 𝑔−1 of
Λ. Now taking Homcont

Z𝑝
(•,Q𝑝), we get a GL2 (Z𝑝)-equivariant complex

𝐶• = · · · → 𝒞(GL2(Z𝑝),Q𝑝)
⊕𝑑−1 → 𝒞(GL2(Z𝑝),Q𝑝)

⊕𝑑0 → 𝒞(GL2 (Z𝑝),Q𝑝)
⊕𝑑1 ,

where 𝒞(GL2 (Z𝑝),Q𝑝) denotes the space of Q𝑝-valued continuous functions on GL2 (Z𝑝). The result
in Subsection 1.3 of [CE12] says that this complex computes �̃�𝑖 (𝐾 𝑝,Q𝑝) as a GL2(Z𝑝)-representation.
For a Z𝑝 [GL2(Z𝑝)]-module M, we denote by 𝑀𝑘 the subspace on which the centre Z×𝑝 acts via kth
power. We claim that

𝐶•𝑘 = · · · → 𝒞(GL2(Z𝑝),Q𝑝)
⊕𝑑−1
𝑘 → 𝒞(GL2 (Z𝑝),Q𝑝)

⊕𝑑0
𝑘 → 𝒞(GL2 (Z𝑝),Q𝑝)

⊕𝑑1
𝑘

computes �̃�𝑖 (𝐾 𝑝 ,Q𝑝)𝑘 . Assuming this, �̃�1 (𝐾 𝑝,Q𝑝)𝑘 is a GL2(Z𝑝)-equivariant quotient of
𝒞(GL2 (Z𝑝),Q𝑝)

⊕𝑑1
𝑘 . Hence, we get the density statement in Lemma 6.3.8 because GL2 (Z𝑝)-algebraic

vectors are dense in 𝒞(GL2(Z𝑝),Q𝑝)𝑘 ([Pan19, Proposition 3.2.9]).
To see that 𝐶•𝑘 computes �̃�𝑖 (𝐾 𝑝 ,Q𝑝)𝑘 , it is enough to show that

𝐻
𝑗
cont (Z

×
𝑝 ,𝒞(GL2(Z𝑝),Q𝑝) ⊗ 𝑧−𝑘 ) = 𝐻

𝑗
cont (Z

×
𝑝 , �̃�

0 (𝐾 𝑝 ,Q𝑝) ⊗ 𝑧−𝑘 ) = 0, 𝑗 ≥ 1,

where 𝑧−𝑘 = Q𝑝 with Z×𝑝 acting via (−𝑘)th power. Since everything is over a characteristic zero field,
it suffices to prove this after replacing Z×𝑝 by an open subgroup. Let 𝐻 = 1 + 𝑝2Z𝑝 ⊂ Z

×
𝑝 . Using the

description of �̃�0(𝐾 𝑝 ,Q𝑝) in [Eme06b, 4.2], it is easy to see that as Banach representations of H, both
𝒞(GL2 (Z𝑝),Q𝑝) and �̃�0 (𝐾 𝑝 ,Q𝑝) are of the form 𝒞(𝐻 × 𝑅,Q𝑝) for some profinite set R with trivial
H-action. Hence, their tensor products with 𝑧−𝑘 have no higher cohomology. �

Proof of Lemma 6.3.9. By Emerton’s description [Eme06b, 4.3.4] of the GL2(Z𝑝)-algebraic vectors
in �̃�1(𝐾 𝑝 ,Q𝑝), it suffices to show that the Hecke action on 𝐻1 (𝑌𝐾 𝑝GL2 (Z𝑝) (C),VW) is semi-simple
for any irreducible algebraic representation W of GL2 over Q𝑝 , where VW denotes the local system
corresponding to W. This result is presumably well-known for experts. We sketch a proof here. We may
change the coefficient field of the local system to C. Then using the Shimura isomorphism, it suffices
to prove the semi-simplicity of the Hecke action on the space of classical modular forms. This is clear
for cusp forms because 𝑇𝑙 , 𝑙 ∉ 𝑆 are normal operators with respect to the Petersson inner product. The
theory of Eisenstein series then provides an eigenbasis for the orthogonal complement of cusp forms.
See, for example, Weisinger’s thesis [Wei77, Chap. 1].

Here is a more conceptual argument suggested to me by Matthew Emerton using polarisations. For
simplicity, we assume W is the trivial local system. But the argument can be generalised for any W.
Let 𝑌 = 𝑌𝐾 𝑝GL2 (Z𝑝) (C) and 𝑋 = 𝑋𝐾 𝑝GL2 (Z𝑝) (C). By the Poincaré duality, it is enough to consider
𝐻1
𝑐 (𝑌,C). There is a natural exact sequence

C⊕ |C | → 𝐻1
𝑐 (𝑌,C) → 𝐻1 (𝑋,C) → 0.

(Recall that C denotes the set of cusps in X.) The Hecke operators 𝑇𝑙 , 𝑙 ∉ 𝑆 are normal on 𝐻1(𝑋,C)
(respectively C⊕ |C |) with respect to the Riemann form (respectively standard Hermitian form on C⊕ |C |).
Hence, the Hecke actions of T(𝐾 𝑝) on both spaces are semi-simple. Now our claim follows from the
Manin–Drinfeld theorem as it implies that 𝐻1

𝑐 (𝑌,C) → 𝐻1 (𝑋,C) has a natural splitting; cf. [Elk90]. �

6.4. Colmez’s Kirillov model

6.4.1. Let 𝜌 = 𝜌𝜆 be as in Corollary 6.3.6. Suppose L is a finite extension of Q𝑝 containing 𝜆(T(𝐾 𝑝)).
Then Corollary 6.3.6 implies that �̃�1 (𝐾 𝑝 , 𝐿) [𝔭𝜆] = �̃�1(𝐾 𝑝 ,Q𝑝) [𝔭𝜆] ∩ �̃�1(𝐾 𝑝 , 𝐿) contains an ir-
reducible admissible Banach representation Π of GL2(Q𝑝) over L. To apply our previous results
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(Theorem 5.4.2, Theorem 6.2.2), it is crucial to know whether its locally analytic vectors Πla admit
nonzero 𝔫-invariants and whether its 𝑁0-invariants have a𝑈𝑝-eigenvector. Thanks to the beautiful work
of Colmez, both questions have affirmative answers by his Kirillov model [Col10, Chap. VI]. We first
give a brief review of his work. A nice summary can be found in Subsections 7.3 and 7.4 of [DLB17].
I would like to thank Matthew Emerton for sharing his unpublished notes [EPW] with Robert Pollack
and Tom Weston on this subject.

6.4.2. Let E be a finite extension of Q𝑝 and V a 2-dimensional representation of 𝐺Q𝑝 over E.
By Fontaine’s work [Fon04], we can study 𝑉 ⊗Q𝑝 𝐵+dR by Sen’s method. As a result, we ob-
tain a free 𝐸 [[𝑡]] ⊗Q𝑝 Q𝑝 (𝜇𝑝∞)-module 𝐷+dif (𝑉) of rank 2 equipped with a semi-linear action of
Γ = Gal(Q𝑝 (𝜇𝑝∞)/Q𝑝). Let 𝐷dif (𝑉) := 𝐷+dif (𝑉) [

1
𝑡 ] and

𝐷−dif (𝑉) := 𝐷dif (𝑉)/𝐷
+
dif (𝑉),

a torsion Q𝑝 (𝜇𝑝∞) [𝑡]-module. We denote by 𝒞𝑐 (Q
×
𝑝 , 𝐷

−
dif (𝑉))

Γ the space of functions 𝜙 : Q×𝑝 →
𝐷−dif (𝑉) with compact support satisfying

𝜙(𝑎𝑥) = 𝜎𝑎 (𝜙(𝑥)), 𝑎 ∈ Z
×
𝑝 , 𝑥 ∈ Q

×
𝑝 ,

where 𝜎𝑎 ∈ Γ is inverse image of a under 𝜀𝑝 : Γ ∼
−→ Z×𝑝 . In particular, 𝜙 is completely determined by

{𝜙(𝑝𝑛)}𝑛∈Z. Let 𝑃 =

(
Q×𝑝 Q𝑝

0 1

)
, the mirabolic subgroup of GL2(Q𝑝). One can define an action of P on

𝒞𝑐 (Q
×
𝑝 , 𝐷

−
dif (𝑉))

Γ by the formula

(

(
𝑎 𝑏
0 1

)
𝜙) (𝑥) = 𝜀′(𝑏𝑥)𝑒𝑡𝑏𝑥𝜙(𝑎𝑥),

where 𝜀′ : Q𝑝 → 𝜇𝑝∞ is an additive character with kernel Z𝑝 and 𝑒𝑡𝑏𝑥 is understood as
∑
𝑛≥0

(𝑏𝑥)𝑛

𝑛! 𝑡𝑛.
(One can view Q𝑝 → (Q𝑝 [[𝑡]] ⊗Q𝑝 Q𝑝 (𝜇𝑝∞))

×, 𝑥 ↦→ 𝜀′(𝑥)𝑒𝑡 𝑥 as an additive character.) This is
Colmez’s Kirillov model.

Now we assume

◦ V is absolutely irreducible.

We denote by Π(𝑉)𝐸 the irreducible unitary E-Banach representation of GL2 (Q𝑝) associated to V via
the p-adic local Langlands correspondence ([CDP14, Theorem 1.1]) and by Π(𝑉)la𝐸 its locally analytic
vectors.

Theorem 6.4.3. There is a P-equivariant embedding 𝒞𝑐 (Q
×
𝑝 , 𝐷

−
dif (𝑉))

Γ → Π(𝑉)la𝐸 .

Proof. See Proposition 7.6 of [DLB17]. �

The following corollary and remark were first pointed out to me by Matthew Emerton.

Corollary 6.4.4. Π(𝑉)la,𝑁0
𝐸 ≠ 0 and has a nonzero vector annihilated by 𝑈𝑝 .

Proof. This is a standard formal consequence of the Kirillov model. More precisely, let 𝑣 ∈ 𝐷−dif (𝑉)

be a nonzero element annihilated by t. Consider 𝜙 ∈ 𝒞𝑐 (Q
×
𝑝 , 𝐷

−
dif (𝑉))

Γ defined by 𝜙(1) = 𝑣 and

𝜙(𝑥) = 0, 𝑥 ∉ Z×𝑝 . Clearly, 𝜙 is fixed by
(
1 1
0 1

)
. Moreover,

(𝑈𝑝 · 𝜙) (𝑥) =
𝑝−1∑
𝑖=0
(

(
𝑝 𝑖
0 1

)
𝜙) (𝑥) =

𝑝−1∑
𝑖=0

𝜀′(𝑖𝑥)𝜙(𝑝𝑥).
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If 𝑝𝑥 ∉ Z×𝑝 , this is zero for trivial reason. If 𝑥 = 1
𝑝 , this is essentially the sum over all pth roots of unity,

which is again zero. Hence, 𝜙 is annihilated by 𝑈𝑝 . �

Remark 6.4.5. It is easy to see that all the vectors in 𝒞𝑐 (Q
×
𝑝 , 𝐷

−
dif (𝑉))

Γ,𝑁0 annihilated by 𝑈𝑝 (which
we denote by 𝒞𝑐 (Q

×
𝑝 , 𝐷

−
dif (𝑉))

Γ,𝑁0 ,𝑈𝑝=0) are of this form; that is,

𝒞𝑐 (Q
×
𝑝 , 𝐷

−
dif (𝑉))

Γ,𝑁0 ,𝑈𝑝=0 = 𝐷+dif (𝑉) ·
1
𝑡
/𝐷+dif (𝑉) = 𝐷Sen (𝑉 (−1)).

Here 𝐷Sen (𝑉 (−1)) is a free 𝐸 ⊗Q𝑝 Q𝑝 (𝜇𝑝∞)-module of rank 2 equipped with a semi-linear action of Γ
associated to 𝑉 (−1) in Sen’s theory.

In Colmez’s work, it is also possible to describe the image of 𝒞𝑐 (Q×𝑝 , 𝐷−dif (𝑉))
Γ inside Π(𝑉)la𝐸 . In

fact, one can show that this image contains (Π(𝑉)la𝐸 )
𝑁0 ,𝑈𝑝=0. Hence,

Π(𝑉)
la,𝑁0 ,𝑈𝑝=0
𝐸 � 𝐷Sen (𝑉 (−1)),

which identifies the action of
(
Z×𝑝 0
0 1

)
on the left-hand side with the action of Γ on the right-hand side.

Therefore, let 𝑎, 𝑏 be the Hodge–Tate–Sen weights of V. Since Π(𝑉) has central character det(𝑉)𝜀−1
𝑝

([CDP14, Corollary 1.2]), we conclude that both

(Π(𝑉)la𝐸 )(−𝑎−1,−𝑏) , (Π(𝑉)
la
𝐸 )(−𝑏−1,−𝑎)

are nonzero. Moreover, let 𝑃0 =

(
Z×𝑝 Z𝑝

0 1

)
. We have

dim𝐸 Π(𝑉)
la,𝑃0 ,𝑈𝑝=0
𝐸 = dim𝐸 (𝑉 (−1) ⊗Q𝑝 𝐶)

𝐺Q𝑝 ,

which gives a representation-theoretic way to determine whether 𝑉 (−1) is Hodge–Tate of weight 0, 0
or not. We will use this to give another proof of Corollary 6.4.9.

Corollary 6.4.6. Suppose Π is an irreducible admissible unitary Banach representation of GL2 (Q𝑝)
over some finite extension of Q𝑝 . Then Πla,𝑁0 ≠ 0 and has a nonzero 𝑈𝑝-eigenvector.

Proof. We may enlarge the field of coefficients E and assume that Π is absolutely irreducible by [DS13,
Theorem 1.1]. If Π is nonordinary, then this follows Corollary 6.4.4 as Π = Π(𝑉)𝐸 for some absolutely
irreducible Galois representation V by [CDP14, Theorem 1.1]. If Π is ordinary – that is, a subquotient of
a parabolic induction of a unitary character – then up to twist by a character 𝜂 ◦det, the representation Π
is either trivial representation 1, unitary Steinberg representation Ŝt or Π is a unitary parabolic induction
of a unitary character. Recall that Ŝt = (IndGL2 (Q𝑝)

𝐵 1)/1, the universal unitary completion of the usual
Steinberg representation. In all of these cases, it is easy to check that Πla,𝑁0 ≠ 0 and has a nonzero
𝑈𝑝-eigenvector. �

We obtain the following classicality result by combining Corollary 6.4.6, Corollary 6.3.6 and Theorem
6.2.2.

Theorem 6.4.7. Suppose 𝜌 = 𝜌𝜆 is pro-modular and irreducible. Assume

◦ 𝜌 |𝐺Q𝑝 is Hodge–Tate of weight 0, 0.

Then 𝜌 is classical; that is, 𝑀1 (𝐾
𝑝) [𝔭𝜆] ≠ 0 for some tame level 𝐾 𝑝 .

Proof. Suppose 𝜌 is pro-modular for some tame level 𝐾 𝑝 . We have

�̃�1 (𝐾 𝑝 ,Q𝑝) [𝔭𝜆·𝑡 ] = �̃�1 (𝐾 𝑝,Q𝑝) [𝔭𝜆] · 𝑡 ≠ 0
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by Corollary 6.3.6. Recall that 𝑡 ∈ �̃�0(𝐾 𝑝 ,Z𝑝) is an invertible function, so �̃�1(𝐾 𝑝 ,Q𝑝) [𝔭𝜆] · 𝑡 is
understood as a subspace of �̃�1(𝐾 𝑝 ,Q𝑝). Here 𝜆 · 𝑡 was defined in proof of Theorem 6.2.2. Corollary
6.4.6 then implies that �̃�1 (𝐾 𝑝, 𝐶)la [𝔭𝜆·𝑡 ]𝑁0 ,𝑈𝑝=𝛼 ≠ 0 for some𝛼 ∈ Q𝑝 . By our result on the infinitesimal
character (Proposition 6.1.5), (ℎ + 1)2 = 0 on this space. Hence, the weight-(0, 1) subspace

�̃�1 (𝐾 𝑝, 𝐶)la(0,1) [𝔭𝜆·𝑡 ]
𝑁0 ,𝑈𝑝=𝛼 ≠ 0.

Now assume 𝜌 is not classical. As in the proof of Theorem 6.2.2, we have

�̃�1(𝐾 𝑝 , 𝐶)la(0,1) [𝔭𝜆·𝑡 ] = 𝑀†1 (𝐾
𝑝) [𝔭𝜆] · 𝑒

−1
1 𝑡.

However, this means that 𝑀†1 (𝐾
𝑝) [𝔭𝜆]𝑁0 ,𝑈𝑝=𝑝𝛼 ≠ 0, which contradicts Theorem 6.2.2. Hence, 𝜌 has

to be classical. �

We quote the following result ([Eme11, Theorem 1.2.3], which is based on previous work of Böckle,
Diamond–Flach–Guo, Khare–Wintenberger, Kisin) on promodularity of a Galois representation. For

simplicity, we exclude the case �̄� |𝐺Q𝑝 � 𝜂 ⊗

(
𝜔 ∗
0 1

)
, a nonsplit extension. As a corollary, we give a new

proof of the Fontaine–Mazur conjecture in the irregular case under conditions below.

Theorem 6.4.8. Let 𝑝 > 2 be a prime number and 𝜌 : 𝐺Q → GL2 (Q𝑝) be a continuous 2-dimensional
irreducible odd representation which is unramified outside of finitely many primes. Assume

(1) �̄� |𝐺Q(𝜇𝑝 ) is irreducible;
(2) ( �̄� |𝐺Q𝑝 )

𝑠𝑠 is either irreducible or of the form 𝜂1 ⊕ 𝜂2 for some characters 𝜂1, 𝜂2 satisfying 𝜂1/𝜂2 ≠

1, 𝜔±1.

Then 𝜌 is pro-modular.

Corollary 6.4.9. Let 𝜌 be as in Theorem 6.4.8. If 𝜌 is Hodge–Tate of weight 0, 0, then 𝜌 comes from a
cuspidal eigenform of weight 1.

Proof. A combination of the previous two results. �

Remark 6.4.10. The assumptions in this result could possibly be removed in the following way. Let 𝜌 be
a continuous 2-dimensional irreducible odd representation 𝜌 : 𝐺Q,𝑆 → GL2 (Q𝑝) which is unramified
outside of finitely many primes. In [Pan19], it is proved that 𝜌 |𝐺𝐹 is irreducible and pro-modular for a
solvable totally real field extension 𝐹/Q in which p completely splits, under the assumption

◦ 𝑝 > 2;
◦ If 𝑝 = 3, then ( �̄� |𝐺Q𝑝 )

𝑠𝑠 is not of the form 𝜂 ⊕ 𝜂𝜔.

Hence, one can prove Corollary 6.4.9 under these assumptions, if Theorem 6.4.7 can be extended to the
case of Hilbert modular variety over a totally real field F in which p completely splits. It seems (at least
to me) that it is reasonable to expect such a generalisation.

We can also determine the possible systems of Hecke eigenvalues appearing in spaces of overcon-
vergent modular forms.

Theorem 6.4.11. Suppose 𝜌 = 𝜌𝜆 is irreducible and pro-modular for some tame level 𝐾 𝑝. Let 𝑎, 𝑏 be
the Hodge–Tate–Sen weights of 𝜌 |𝐺Q𝑝 .

(1) If 𝑀†
(𝑛1 ,𝑛2)

(𝐾 𝑝) [𝔭𝜆] ≠ 0, then (𝑛1, 𝑛2) = (−𝑎,−𝑏 − 1) or (−𝑏,−𝑎 − 1). In particular, if
𝑀†𝑘 (𝐾

𝑝) [𝔭𝜆] ≠ 0 for some 𝑘 ∈ Z, then {𝑎, 𝑏} = {0, 𝑘 − 1}.
(2) Conversely, if 𝜌 |𝐺Q𝑝 is irreducible, then 𝑀†

(𝑛1 ,𝑛2)
(𝐾 𝑝) [𝔭𝜆] ≠ 0 for (𝑛1, 𝑛2) = (−𝑎,−𝑏 − 1) and

(−𝑏,−𝑎 − 1).
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Proof. To see the first part, if 𝑀†
(𝑛1 ,𝑛2)

(𝐾 𝑝) [𝔭𝜆] ≠ 0 and 𝑛1 ≠ 𝑛2 + 1, then by Theorem 5.4.2, we have
�̃�1 (𝐾 𝑝 , 𝐶)la

(𝑛1−1,𝑛2+1)
[𝔭𝜆] ≠ 0. Hence, Proposition 6.1.5 implies that 𝜌𝜆 has Hodge–Tate–Sen weights

−𝑛1,−1 − 𝑛2. The case 𝑛1 = 𝑛2 + 1 can be proved in a similar way. We omit the details here.
For the second part, if 𝑎 = 𝑏 = 0, the proof of Theorem 6.4.7 shows that 𝑀†

(0,−1) (𝐾
𝑝) [𝔭𝜆] ≠ 0. For

the general case 𝑎 = 𝑏, one can twist by some 𝑡𝑎 as in Section 5.3.9 to reduce to the case 𝑎 = 0.
Now assume 𝑎 ≠ 𝑏. By Theorem 6.3.6 and Remark 6.4.5, both

�̃�1(𝐾 𝑝 , 𝐶)la(−𝑎−1,−𝑏) [𝔭𝜆] and �̃�1 (𝐾 𝑝, 𝐶)la(−𝑏−1,−𝑎) [𝔭𝜆]

are nonzero. By symmetry, it is enough to consider �̃�1 (𝐾 𝑝, 𝐶)la
(−𝑎−1,−𝑏) [𝔭𝜆]. Theorem 5.4.2 provides a

natural decomposition of this space according to the Hodge–Tate–Sen weights. Since �̃�1 (𝐾 𝑝,Q𝑝) [𝔭𝜆] is
𝜌𝜆 (−1)-isotypic, the Hodge–Tate–Sen weight-(𝑏+1) component of �̃�1 (𝐾 𝑝, 𝐶)la

(−𝑎−1,−𝑏) [𝔭𝜆] is nonzero.
Hence, 𝑀†

(−𝑎,−𝑏−1) (𝐾
𝑝) [𝔭𝜆] ≠ 0 if −𝑎 ≠ −𝑏 − 1 by Theorem 5.4.2 (i.e., 𝑘 ≠ 2). If −𝑎 = −𝑏 − 1, then

we claim we still have 𝑀(−𝑎−1,−𝑏) ,𝑤 [𝔭𝜆] � 𝑀†
(−𝑎,−𝑏−1) (𝐾

𝑝) [𝔭𝜆] (as T(𝐾 𝑝)-modules). This is because
the difference between 𝑀(−𝑎−1,−𝑏) ,𝑤 and 𝑀†

(−𝑎,−𝑏−1) (𝐾
𝑝) is essentially 𝑀0 (𝐾

𝑝) · 𝑡−𝑎, which can be
decomposed as

⊕
𝔮∈Max(T(𝐾 𝑝) [ 1

𝑝 ])

𝑀0 (𝐾
𝑝) · 𝑡−𝑎 [𝔮]

as a Hecke-module, and 𝑀0 (𝐾
𝑝) · 𝑡−𝑎 [𝔭𝜆] = 0 since 𝑀0 (𝐾

𝑝) · 𝑡−𝑎 [𝔭𝜆′ ] ≠ 0 only when 𝜌𝜆′ is reducible.
This proves the second part. �

Remark 6.4.12. We sketch another proof of Theorem 6.4.7 in the nonordinary case (i.e., 𝜌 |𝐺Q𝑝 is
irreducible) without using our work on the Sen operator (Theorem 5.1.11). Suppose 𝜌 is not classical.
Then as in the proof of Theorem 6.2.2, we have the following exact sequence by Theorem 5.4.6:

0→ 𝑀†1 (𝐾
𝑝) [𝔭𝜆] · 𝑒

−1
1 𝑡 → �̃�1 (𝐾 𝑝 , 𝐶)la

(0,1) [𝔭𝜆·𝑡 ] → 𝑀†1 (𝐾
𝑝) [𝔭𝜆] · 𝑒

−1
1 𝑡.

For simplicity, let us assume 𝐾 𝑝 =
∏
𝑙≠𝑝 GL2(Z𝑙). In general, we can use Hecke operators at ramified

places as in Lemma 6.2.6. Now the key point is that �̃�1(𝐾 𝑝 , 𝐶) [𝔭𝜆·𝑡 ] contains a copy of 𝜌 ⊗ Π(𝜌(1)).
Hence, by Remark 6.4.5 (with 𝑉 (−1) = 𝜌 here),

�̃�1(𝐾 𝑝 , 𝐶)la(0,1) [𝔭𝜆]
𝑃0 ,𝑈𝑝=0 = �̃�1(𝐾 𝑝 , 𝐶)la [𝔭𝜆]

𝑃0 ,𝑈𝑝=0

has dimension (over C) at least (dim
Q𝑝

𝜌) × (dim
Q𝑝
(𝜌 ⊗ 𝐶)𝐺Q𝑝 ) = 4. But this contradicts the exact

sequence above as dim𝐶 (𝑀†1 (𝐾
𝑝) [𝔭𝜆] · 𝑒−1

1 𝑡)𝑃0 ,𝑈𝑝=0 = 1 by q-expansion principle and taking 𝑃0-
invariants and kernel of 𝑈𝑝 are left-exact. Hence, 𝜌 has to be classical.
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[CDP14] P. Colmez, G. Dospinescu and V. Paškūnas, ‘The 𝑝-adic local Langlands correspondence for 𝐺𝐿2

(
Q𝑝

)
’, Camb. J.

Math. 2(1) (2014), 1–47. MR 3272011.
[Del71] P. Deligne, ‘Formes modulaires et représentations 𝑙-adiques’, in Séminaire Bourbaki. Vol. 1968/69: Exposés 347–363,

Lecture Notes in Math., Vol. 175 (Springer, Berlin, 1971), 139–172. MR 3077124.
[DS74] P. Deligne and J.-P. Serre, ‘Formes modulaires de poids 1’, Ann. Sci. École Norm. Sup. (4) 7 (1974), 507–530.

MR 379379.
[DLLZ18] H. Diao, K.-W. Lan, R. Liu and X. Zhu, Logarithmic Riemann-Hilbert Correspondences for Rigid Varieties, Preprint,

2018, URL: https://www-users.cse.umn.edu/~kwlan/articles/log-RH.pdf.

https://doi.org/10.1017/fmp.2022.1 Published online by Cambridge University Press

https://perso.ens-lyon.fr/vincent.pilloni/HigherColeman.pdf
https://arxiv.org/abs/2102.13099
https://www-users.cse.umn.edu/{{~}}kwlan/articles/log-RH.pdf
https://doi.org/10.1017/fmp.2022.1


Forum of Mathematics, Pi 81

[DLLZ19] H. Diao, K.-W. Lan, R. Liu and X. Zhu, Logarithmic Adic Spaces: Some Foundational Results, 2019, Preprint, URL:
https://www-users.cse.umn.edu/~kwlan/articles/log-adic.pdf.

[Dos12] G. Dospinescu, ‘Actions infinitésimales dans la correspondance de Langlands locale 𝑝-adique’, Math. Ann. 354(2)
(2012), 627–657. MR 2965255.

[DLB17] G. Dospinescu and A.-C. Le Bras, ‘Revêtements du demi-plan de Drinfeld et correspondance de Langlands 𝑝-adique’,
Ann. Math. (2) 186(2) (2017), 321–411. MR 3702670.
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