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Abstract. Let p be a prime number, Qp the field of p-adic numbers, K a finite field
extension of Qp, K̄ a fixed algebraic closure of K , and Cp the completion of K̄ with
respect to the p-adic valuation. We discuss some properties of Lipschitzian elements,
which are elements T of Cp defined by a certain metric condition that allows one to
integrate Lipschitzian functions along the Galois orbit of T over K with respect to the
Haar distribution.
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1. Introduction. Let p be a prime number, Qp the field of p-adic numbers, K a
fixed finite field extension of Qp, K̄ a fixed algebraic closure of K , and Cp the completion
of K̄ with respect to the p-adic valuation. We denote by |.| the p-adic absolute value
on Cp, normalized by |p| = 1

p . We also denote by OCp the ring of integers of Cp and
by GK the group of continuous automorphisms of Cp over K . In what follows, by a
Galois orbit over K we mean a set of the form CK (T) := {σ (T) : σ ∈ GK}, with T in
Cp. Associated to each such Galois orbit CK (T) we have a Haar distribution (in the
sense of Mazur and Swinnerton-Dyer [7]) on CK (T), call it πK,T , which is the unique
distribution on CK (T) with values in Qp, normalized by πK,T (CK (T)) = 1, which is
GK−invariant, in the sense that for any ball B in CK (T) and any σ ∈ GK one has
πK,T (σ (B)) = πK,T (B). For any element α of K̄ , and any subfield L of K̄ containing α,
which is a finite extension of K , consider the ratio

TrK (α) = TrL/K (α)
[L : K ]

.

This element of K depends on α and K only, but not on the choice of the field L. The
significance of TrK (α) is that of the arithmetic mean of the conjugates of α over K .
A generalization of this notion of trace is obtained if one replaces the above ratio by
an appropriate integral over the corresponding Galois orbit with respect to the Haar
distribution. Following [3] one may define the trace of an element T of Cp over K by
the formula

TrK (T) =
∫

CK (T)
x dπK,T (x),

provided that the integral on the right side is well defined. This certainly is the case
when T = α is algebraic over K , and in such case this notion of trace coincides with the
one defined above. In this case the Haar distribution πK,T = πK,α coincides with the
arithmetic mean of Dirac measures supported at the conjugates of α over K . The trace
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TrK (T) is also well defined for any element T of Cp for which the Haar distribution
πK,T is bounded, that is, for which πK,T is a measure. In such case any continuous
function f : CK (T) → Cp is integrable with respect to πK,T . For such an element T , it
follows from the general theory of p-adic Cauchy transform (see the work of Barsky
[5]) that the trace function FK (T, z) defined by

FK (T, z) =
∫

CK (T)

1
1 − zx

dπK,T (x),

is well defined and rigid analytic on almost the entire Cp. This is an analytic object that
embodies a significant amount of algebraic data. For instance, recall that by Galois
theory in Cp, as developed by Tate [9], Sen [8] and Ax [4], closed subgroups of the
Galois group GK are in one-to-one correspondence with the closed subfields of Cp

which contain K . If E is a closed subfield of Cp, containing K , on which the trace
map TrK is defined and it is continuous, and if T is a generating element of E over
K (see [6], [1], [2]), then the trace map TrK on the entire field E is determined by its
values at 1, T, . . . , Tn, . . . . All these values are in turn determined by the trace function
FK (T, z), as they appear as coefficients in the Taylor series expansion of FK (T, z) about
z = 0,

FK (T, z) =
∞∑

n=0

TrK (Tn)zn.

A larger class of elements T was defined in [3], in terms of a metric condition. For any
real number ε > 0, the Galois orbit CK (T) of T can be written as a finite disjoint union
of open balls of radius ε. We denote by NK,T,ε the number of these balls. We say that
T is Lipschitzian over K provided that

lim
ε→0

ε

|NK,T,ε | = 0,

where the absolute value in the denominator on the left side is the p-adic absolute
value. As explained in [3], this condition is very useful in integration theory along
Galois orbits in Cp. Any Lipschitzian function f : CK (T) → Cp is integrable with
respect to the Haar distribution πK,T provided that T is Lipschitzian over K , even if
πK,T is not bounded. In particular, any element T of Cp which is Lipschitzian over K
has a trace TrK (T) and a trace function FK (T, z) over K . In light of these nice properties
of Lipschitzian elements, it would be valuable to have a general theory that studies
such classes of elements of Cp. In the present paper we establish some properties of
Lipschitzian elements. More specifically, we discuss the following three basic questions.
Firstly, if we have a Lipschitzian element T over K , how can we find other elements
U in the field generated by T over K , or in its topological closure, which are also
Lipschitzian over K? Secondly, with T as above, if we find such a new Lipschitzian
element U over K , how can we relate the integrals of Lipschitzian functions along
CK (U) to integrals along CK (T)? And thirdly, with T as above, do these Lipschitzian
elements (or families of elements) U have any natural algebraic structure, besides the
metric structure which is built into the definition of Lipschitzian elements? In order to
state our results, we first introduce some notation. Let T be an element of Cp and let
E be the topological closure of the field K(T) in Cp. For any element U of E one has a
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canonical map hK,T,U : CK (T) → CK (U), given by

hK,T,U (σ (T)) = σ (U),

for any σ ∈ GK . We set

AK,T = {
U ∈ OCp ∩ E : |σ1(U) − σ2(U)| ≤ |σ1(T) − σ2(T)|,

for any automorphisms σ1, σ2 ∈ GK
}
.

We also set

LipK,T = {U ∈ E : hK,T,U is a Lipschitzian function}.
Then we prove the following results.

THEOREM 1. Let T be an element of Cp which is Lipschitzian over K. Then any
element of LipK,T is Lipschitzian over K.

As a consequence of Theorem 1 above, if T is Lipschitzian over K and if U is an
element of LipK,T , then one can integrate Lipschitzian functions defined on either one
of the two Galois orbits CK (T) and CK (U). The next theorem provides a transformation
formula for such integrals.

THEOREM 2. Let T be an element of Cp which is Lipschitzian over K and let U be an
element of LipK,T . Then for any Lipschitzian function f : CK (U) → Cp,

∫
CK (U)

f dπK,U =
∫

CK (T)
f ◦ hK,T,U dπK,T . (1)

In particular, from Theorem 2 we see that one can recover the trace of U over K
by integrating the canonical map hK,T,U along the Galois orbit CK (T).

COROLLARY 1. Let T be an element of Cp which is Lipschitzian over K. Then, for
any element U of LipK,T ,

TrK (U) =
∫

CK (T)
hK,T,U dπK,T . (2)

The next theorem is concerned with the algebraic structure of the sets LipK,T and
AK,T .

THEOREM 3. Let T be an element of Cp which is Lipschitzian over K and let E denote
the topological closure of K(T) in Cp. Then

(i) LipK,T is a dense subfield of E which contains K(T), and
(ii) AK,T is a closed subring of Cp, with field of fractions LipK,T .

2. Proofs of the results. Let p be a prime number, and let Qp, K , K̄ , Cp, and GK

be as in the introduction. For any element T of Cp we denote as above the Galois orbit
of T over K by CK (T). Choose such an element T and denote by E the topological
closure of K(T) in Cp. Then E is a closed subfield of Cp and T is a so called generating
element of E. It is known (see [6], [1], [2]) that, conversely, any closed subfield of Cp

is of this type, that is, it has a generating element. Let now T be an element of Cp, let
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E be the topological closure of K(T) in Cp, and let U be any element of E. One has a
canonical map hK,T,U : CK (T) → CK (U), given by

hK,T,U (σ (T)) = σ (U),

for any σ ∈ GK . The map hK,T,U is well defined, since U belongs to E. Indeed, if
σ1 and σ2 are elements of GK such that σ1(T) = σ2(T), then σ−1

2 σ1 is a continuous
automorphism of Cp over K for which σ−1

2 σ1(T) = T , thus any element of the closed
subfield E is fixed by this automorphism. In particular σ−1

2 σ1(U) = U , and hence
σ1(U) = σ2(U). This shows that the map hK,T,U is well defined. Next, we define the sets
AK,T and LipK,T as above,

AK,T = {U ∈ OCp ∩ E : |σ1(U) − σ2(U)| ≤ |σ1(T) − σ2(T)|, σ1, σ2 ∈ GK},

and

LipK,T = {U ∈ E : hK,T,U is Lipschitzian}.

We will use the following terminology. We will say that a subset B of a Galois orbit
CK (T) is an open ball of radius δ in CK (T), provided that B is a subset of the form

B = B(y, δ) = {z ∈ CK (T) : |z − y| < δ},

for some y in CK (T). Let us remark that the same subset B of CK (T) may be an open
ball of radius δ1 of CK (T), and at the same time it may be an open ball of radius δ2

of CK (T), for some strictly positive real numbers δ1 �= δ2. In other words, the above
definition of an open ball B of radius δ does not force δ to coincide with the diameter
of the set B, defined as usual by

diameter (B) = sup{|x − y| : x, y ∈ B}.

For any element T of Cp and any element U of LipK,T there exist real numbers M > 0
such that

|σ1(U) − σ2(U)| ≤ M|σ1(T) − σ2(T)| (3)

for any automorphisms σ1, σ2 ∈ GK . Let us denote by MK,T,U the infimum of the set of
those real numbers M for which the inequality (3) holds for any σ1, σ2 ∈ GK . Evidently
we will then have

|σ1(U) − σ2(U)| ≤ MK,T,U |σ1(T) − σ2(T)|, (4)

for any σ1, σ2 ∈ GK .
We first prove the following result.

LEMMA 1. Let T be an arbitrary element of Cp, and let U be an element of LipK,T .
Then, for any ε > 0 there exists a positive integer number NK,T,U,ε with the following
property. For any open ball B of radius ε in CK (U), h−1

K,T,U (B) is the disjoint union of
exactly NK,T,U,ε open balls of radius ε

MK,T,U
in CK (T).

Proof. Let T and U be as in the statement of the lemma. Fix a real number ε > 0
and choose an open ball B of radius ε in CK (U). Let us fix an element y of h−1

K,T,U (B). For
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any element z of CK (T) satisfying the inequality |z − y| < ε
MK,T,U

, relation (4) applied
for some automorphisms σ1 and σ2 for which σ1(T) = y and σ2(T) = z, shows that

|hK,T,U (z) − hK,T,U (y)| ≤ MK,T,U |z − y| < ε.

Since hK,T,U (y) belongs to B, which is an open ball of radius ε in CK (U), it follows that
hK,T,U (z) belongs to B, and hence z belongs to h−1

K,T,U (B). We conclude that the open
ball of radius ε

MK,T,U
in CK (T) which contains an arbitrary element y of h−1

K,T,U (B), is
entirely contained in h−1

K,T,U (B). This means that h−1
K,T,U (B) is a union of balls of radius

ε
MK,T,U

in CK (T).
Next, hK,T,U being continuous, and B being closed in CK (U), it follows that

h−1
K,T,U (B) is a closed subset of CK (T), and hence it is compact. Therefore h−1

K,T,U (B)
is compact covered by open balls of radius ε

MK,T,U
. This shows that one has a finite

covering with such balls. Let us denote the number of open balls of radius ε
MK,T,U

in
CK (T) whose disjoint union coincides with h−1

K,T,U (B), by NK,T,U,ε(B).
In order to finish the proof of the lemma, it remains to show that for any two open

balls B1 and B2 of radius ε in CK (U), one has NK,T,U,ε(B1) = NK,T,U,ε(B2). Let B1, B2

be such balls. There exists an automorphism σ0 ∈ GK such that σ0(B1) = B2. Let us
choose an arbitrary element z of h−1

K,T,U (B1). There exists an automorphism σ ∈ GK

such that σ (T) = z. Thus hK,T,U (z) = σ (U). On the other hand σ0(z) = σ0σ (T), and
therefore

hK,T,U (σ0(z)) = hK,T,U (σ0σ (T)) = σ0σ (U) = σ0(hK,T,U (z)).

Since hK,T,U (z) belongs to B1, it follows that

hK,T,U (σ0(z)) = σ0(hK,T,U (z)) ∈ σ0(B1) = B2,

which means that σ0(z) belongs to h−1
K,T,U (B2). Hence we have the inclusion

σ0
(
h−1

K,T,U (B1)
) ⊆ h−1

K,T,U (B2).

By a similar reasoning, the equality B1 = σ−1
0 (B2) implies the inclusion

σ−1
0

(
h−1

K,T,U (B2)
) ⊆ h−1

K,T,U (B1),

which is equivalent to the inclusion

h−1
K,T,U (B2) ⊆ σ0

(
h−1

K,T,U (B1)
)
.

By the above inclusions we obtain the equality

h−1
K,T,U (B2) = σ0

(
h−1

K,T,U (B1)
)
.

Now we know that CK (T) can be written as a disjoint union of NK,T,δ open balls
of radius δ, where we let δ = ε

MK,T,U
, and that σ0 produces a permutation of these

balls. Hence the same number of balls occur in h−1
K,T,U (B1) as in σ0(h−1

K,T,U (B1)), which
coincides with h−1

K,T,U (B2). This completes the proof of the lemma.
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As a consequence of the above lemma let us remark that each of the NK,U,ε open
balls of radius ε in CK (U) produces NK,T,U,ε open balls of radius ε

MK,T,U
in CK (T).

Therefore CK (T) is a disjoint union of NK,U,εNK,T,U,ε open balls of radius ε
MK,T,U

. We
thus obtain the following corollary.

COROLLARY 2. For any element T of Cp, any element U of LipK,T , and any ε > 0,

NK,U,εNK,T,U,ε = NK,T, ε
MK,T,U

. (5)

COROLLARY 3. For any element T of Cp, any element U of LipK,T , and any open ball
B in CK (U),

πK,U (B) = πK,T
(
h−1

K,T,U (B)
)
. (6)

Proof. Let T and U be as in the statement of the corollary. If B is an open ball of
radius ε > 0 in CK (U), then by the definition of the Haar distribution πK,U we have

πK,U (B) = 1
NK,U,ε

. (7)

On the other hand we know that h−1
K,T,U (B) is a disjoint union of exactly NK,T,U,ε open

balls of radius ε
MK,T,U

in CK (T), and the Haar measure of each of these balls equals
1/NK,T, ε

MK,T,U
. This implies that

πK,T
(
h−1

K,T,U (B)
) = NK,T,U,ε

NK,T, ε
MK,T,U

. (8)

The equality (6) now follows from (7), (8) and (5).

We are now ready to prove the results stated in the introduction.

Proof of Theorem 1. Let T be a Lipschitzian element of Cp, and let U be an element
of LipK,T . By the equality (5) we deduce that for any ε > 0 we have

ε∣∣NK,U,ε

∣∣ = ε
∣∣NK,T,U,ε

∣∣∣∣∣NK,T, ε
MK,T,U

∣∣∣ ≤ ε∣∣∣NK,T, ε
MK,T,U

∣∣∣ , (9)

where the absolute value in each of these expressions is the normalized p-adic absolute
value. Since T is Lipschitzian, we know that

lim
ε→0

ε
MK,T,U∣∣∣NK,T, ε

MK,T,U

∣∣∣ = 0. (10)

By (9) and (10) it follows that

lim
ε→0

ε∣∣NK,U,ε

∣∣ = 0, (11)

and hence U is Lipschitzian. This completes the proof of Theorem 1.
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Proof of Theorem 2. Let T be a Lipschitzian element of Cp, let U be an element
of LipK,T , and let f : CK (U) → Cp, f Lipschitzian. By Theorem 1 we know that U
is Lipschitzian, and therefore the integral on the left hand side of equality (1) is
well defined. Moreover, f and hK,T,U being Lipschitzian functions, their composition
f ◦ hK,T,U will be Lipschitzian. Thus the integral on the right hand side of (1) is also
well defined, since T is Lipschitzian. Now that we know that the two integrals are well
defined, in order to show that they are equal it would be enough to find sequences
of Riemann sums associated to the two integrals, which are close enough to each
other. Therefore what we do is the following. We choose an ε > 0, and we break the
Galois orbit CK (U) as a disjoint union of open balls of radius ε, denote them by Bj,
1 ≤ j ≤ NK,U,ε . Inside each of these balls Bj we choose a point xj, and consider the
corresponding Riemann sum

S =
∑

1≤j≤NK,U,ε

f (xj)πK,U (Bj) = 1
NK,U,ε

∑
1≤j≤NK,U,ε

f (xj). (12)

We know that S will be as close to the integral
∫

CK (U) f dπK,U as we please, for ε

small enough. In order to finish the proof of the theorem it remains to show that for ε

sufficiently small, S is as close as we please to the integral
∫

CK (T) f ◦ hK,T,U dπK,T . Next,
in order to prove this, we break the Galois orbit CK (T) as a disjoint union of open
balls of radius ε

MK,T,U
. We know by Lemma 1 that these balls can be arranged in sets

consisting of NK,T,U,ε balls each, to form the open subsets h−1
K,T,U (Bj). Let us denote

these NK,T, ε
MK,T,U

open balls of radius ε
MK,T,U

by Bj,m, 1 ≤ j ≤ NK,U,ε , 1 ≤ m ≤ NK,T,U,ε ,

so that we have

h−1
K,T,U (Bj) = ∪1≤m≤NK,T,U,ε

Bj,m, (13)

for j = 1, 2, . . . , NK,U,ε . Next, inside each ball Bj,m we choose an element yj,m, and form
the corresponding Riemann sum

S∗ =
∑

1≤j≤NK,U,ε

1≤m≤NK,T,U,ε

( f ◦ hK,T,U ) (yj,m)πK,T (Bj,m)

= 1
NK,T, ε

MK,T,U

∑
1≤j≤NK,U,ε

1≤m≤NK,T,U,ε

f (hK,T,U (yj,m)).
(14)

We know that for ε small enough, S∗ is as close as we please to the integral from the
right hand side of equality (1). It remains to show that for ε small, |S − S∗| is small.
By the relations (12), (14) and (5) we see that S − S∗ can be written in the form

1
NK,T, ε

MK,T,U


NK,T,U,ε

∑
1≤j≤NK,U,ε

f (xj) −
∑

1≤j≤NK,U,ε

1≤m≤NK,T,U,ε

f (hK,T,U (yj,m))




(15)
= 1

NK,T, ε
MK,T,U

∑
1≤j≤NK,U,ε

∑
1≤m≤NK,T,U,ε

(f (xj) − f (hK,T,U (yj,m))).
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It follows that

|S − S∗| ≤ 1∣∣∣NK,T, ε
MK,T,U

∣∣∣ max
1≤j≤NK,U,ε

1≤m≤NK,T,U,ε

|f (xj) − f (hK,T,U (yj,m))|. (16)

Now f being Lipschitzian, there exists a real number Mf > 0 with the property that

|f (x) − f (x′)| ≤ Mf |x − x′|, (17)

for any elements x and x′ of CK (U). By the inequalities (16) and (17) we deduce that

|S − S∗| ≤ Mf∣∣∣NK,T, ε
MK,T,U

∣∣∣ max
1≤j≤NK,U,ε

1≤m≤NK,T,U,ε

|xj − hK,T,U (yj,m)|. (18)

For any j and any m with 1 ≤ j ≤ NK,U,ε and 1 ≤ m ≤ NK,T,U,ε , xj belongs to Bj and
hK,T,U (yj,m) belongs to hK,T,U (Bj,m), which is contained in Bj, hence

|xj − hK,T,U (yj,m)| < ε. (19)

By (18) and (19) we obtain

|S − S∗| <
εMf∣∣∣NK,T, ε

MK,T,U

∣∣∣ . (20)

This finishes the proof of the theorem, since in (20) the right hand side tends to zero
as ε → 0, T being Lipschitzian.

Proof of Theorem 3. Let T be a Lipschitzian element of Cp.
We first prove (i). Let U and V be two elements of LipK,T . We need to show that U − V
and UV belong to LipK,T , and, if V is nonzero, then U

V also belongs to LipK,T . We
start by observing that for any automorphisms σ1, σ2 ∈ GK we have

|hK,T,U−V (σ1(T)) − hK,T,U−V (σ2(T))| = |σ1(U − V ) − σ2(U − V )|
= |σ1(U) − σ2(U) − σ1(V ) + σ2(V )|
≤ max{|σ1(U) − σ2(U)| , |σ1(V ) − σ2(V )|}
≤ max{MK,T,U , MK,T,V } · |σ1(T) − σ2(T)| ,

by (4). This shows that U − V belongs to LipK,T , and that moreover we have

MK,T,U−V ≤ max{MK,T,U , MK,T,V }. (21)

We further have

|hK,T,UV (σ1(T)) − hK,T,UV (σ2(T))| = |σ1(UV ) − σ2(UV )|
= |σ1(U)σ1(V ) − σ1(U)σ2(V ) + σ1(U)σ2(V ) − σ2(U)σ2(V )|
≤ max{|σ1(U)| · |σ1(V ) − σ2(V )| , |σ2(V )| · |σ1(V ) − σ2(V )|}
≤ max{|U| · MK,T,V , |V | · MK,T,U} · |σ1(T) − σ2(T)| .

Hence UV belongs to LipK,T , and moreover

MK,T,UV ≤ max{|V |MK,T,U , |U|MK,T,V }. (22)
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Let now V �= 0. It will be sufficient to show that 1
V belongs to LipK,T , because then U

V
will also be an element of LipK,T . We have

∣∣∣hK,T, 1
V

(σ1(T)) − hK,T, 1
V

(σ2(T))
∣∣∣ =

∣∣∣∣σ1

(
1
V

)
− σ2

(
1
V

)∣∣∣∣
=

∣∣∣∣σ2(V ) − σ1(V )
σ1(V )σ2(V )

∣∣∣∣
= 1

|V |2 |σ2(V ) − σ1(V )|

≤ MK,T,V

|V |2 |σ2(T) − σ1(T)| .

Therefore 1
V belongs to LipK,T , and

MK,T, 1
V

≤ MK,T,V

|V |2 . (23)

Note that if we apply the inequality (23) with V replaced by 1
V , then we obtain

MK,T,V ≤ |V |2MK,T, 1
V
. (24)

By combining the inequalities (23) and (24), we find that

MK,T, 1
V

= MK,T,V

|V |2 . (25)

We conclude that LipK,T is a field. Evidently T belongs to LipK,T , and

MK,T,T = 1. (26)

It is also clear that we have the inclusion K ⊆ LipK,T , and that

MK,T,U = 0, (27)

for any element U of K . Therefore K(T) ⊆ LipK,T , which completes the proof of part
(i).

We now proceed to prove part (ii). We clearly have the inclusion AK,T ⊆ LipK,T . It
is easy to see that

AK,T = {
U ∈ LipK,T ∩ OCp : MK,T,U ≤ 1

}
. (28)

By combining (21), (22), (27) and (28) it follows that AK,T is a subring of LipK,T which
contains OK . Let us also observe that for any element U of LipK,T and for any integer
number m we have

MK,T,pmU = ∣∣pm
∣∣ MK,T,U . (29)

In fact, for any element a of K and any element U of LipK,T we have

MK,T,aU = |a| MK,T,U . (30)
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Therefore, for a fixed element U of LipK,T we indeed have pmU ∈ AK,T for all large
enough natural numbers m. This shows that the field of fractions of AK,T coincides with
LipK,T . It remains to show that AK,T is topologically complete. Let U be an element
of Cp and let (Um)m∈N be a sequence of elements from AK,T with the property that

U = lim
m→∞ Um. (31)

This already implies that U belongs to OCp . It remains to show that U belongs to LipK,T ,
and that MK,T,U ≤ 1. Let E denote the topological closure of K(T) in Cp. Let us note
in the first place that since Um belongs to E for any m, we also have that U belongs to E.
Thus the map hK,T,U is well defined. Next, let us fix arbitrary automorphisms σ1, σ2 ∈
GK . Then, choose an arbitrary ε > 0. For all m large enough we have |Um − U| ≤ ε.
This in turn implies that |σ1(Um) − σ1(U)| ≤ ε and |σ2(Um) − σ2(U)| ≤ ε. It follows
that

|hK,T,U (σ1(T)) − hK,T,U (σ2(T))| = |σ1(U) − σ2(U)|
≤ max{|σ1(U) − σ1(Um)| , |σ1(Um) − σ2(Um)| , |σ2(Um) − σ2(U)|}
≤ max{ε, MK,T,Um · |σ1(T) − σ2(T)|} ≤ max{ε, |σ1(T) − σ2(T)|},

where we have used the fact that MK,T,Um ≤ 1 for all m. Since the above inequality
holds for any ε > 0, we obtain

|hK,T,U (σ1(T)) − hK,T,U (σ2(T))| ≤ |σ1(T) − σ2(T)| .
Since this last inequality holds for any automorphisms σ1, σ2 ∈ GK , it follows that
MK,T,U ≤ 1. In conclusion, U belongs to AK,T , and this completes the proof of the
theorem.
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