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Abstract

Transparency has been proposed as a way of handling value-ladenness in machine learning
(ML). This article highlights limits to this strategy. I distinguish three kinds of transparency:
epistemic transparency, retrospective value transparency, and prospective value transpar-
ency. This corresponds to different approaches to transparency in ML, including so-called
explainable artificial intelligence and governance based on disclosing information about
the design process. I discuss three sources of value-ladenness in ML—problem formulation,
inductive risk, and specification gaming—and argue that retrospective value transparency is
only well-suited for dealing with the first, while the third raises serious challenges even for
prospective value transparency.

1. Introduction
Computer ethicists have long argued that computer systems are value-laden
(Friedman and Nissenbaum 1996; Kraemer et al. 2011). Machine learning (ML) is no
exception, as highlighted by investigative journalists and academic studies alike
(Angwin et al. 2016; Obermeyer et al. 2019). Recently, philosophers of science have
begun to address this issue, drawing on parallels with the values in science literature
(Biddle 2020; Johnson, forthcoming). This article further explores these parallels,
focusing on a strategy that has been proposed for managing value-ladenness in both
domains: transparency.

Scientific results are often the result of complex chains of justification. This can
occlude significant value-laden decisions to nonexperts who rely on these results.
Philosophers have argued that to mitigate the impacts of value-ladenness scientists
should make transparent either the uncertainties (Betz 2017) or the values involved in
such decisions (Douglas 2009; Elliott 2017, 2020). Though not uncontested (Nguyen
2021; Schroeder 2021), proponents of transparency argue that it helps secure demo-
cratic legitimacy and autonomy for nonexperts (Elliott 2010).

Similar concerns drive calls for transparency in ML. As with scientific results, the
complexity of modern ML systems, and their ability to discover novel correlations,
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make them epistemically opaque (Burrell 2016; Sullivan 2022; Zednik 2021). A growing
field of technical research, known as “interpretable” or “explainable” artificial intel-
ligence (XAI), seeks to improve the epistemic transparency of ML systems (Zednik
2021; Zerilli 2022). However, many law and technology scholars argue that this focus
is misplaced, proposing instead governance frameworks based on making transparent
the goals and values that ML systems promote (Kroll 2018; Selbst and Barocas 2018).

Drawing on the values in science literature, this article evaluates these different
approaches to transparency in ML. I start by outlining my preferred construal of
value-ladenness and distinguish three types of transparency: epistemic transpar-
ency, retrospective value transparency, and prospective value transparency. Next,
I apply this distinction to transparency in ML. I highlight limitations of XAI as a
means to promoting epistemic transparency. Finally, I consider three sources of
value-ladenness in ML: problem formulation, inductive risk, and specification
gaming. I argue that retrospective value transparency is only well-suited for deal-
ing with the first, while the third raises serious challenges even for prospective
value transparency.

2. Value-ladenness
Scientific inquiry involves choices that could reasonably have been made differently.
Scientists make decisions about how to conceptualize and frame research questions,
what type of models to develop, which hypotheses to test, how to collect data and
design experiments, and what kinds of evidence suffice to accept or reject hypotheses.
There are often several available options, each with advantages and drawbacks, but
no decisive reason to prefer one over the other. In these cases, the decisions scientists
make are contingent (Brown 2020, 57–86): someone in the same epistemic situation—
with the same evidence, background information, methodologies, available equip-
ment, and other resources for inquiry—could reasonably have chosen differently.

A contingent decision is value-laden when the reasonable alternative options dif-
fer in their potential impacts on the things we value and care about. One much-
discussed form of value-ladenness is inductive risk, that is, the risk of inferential
error. Because different types of errors—most saliently false positives and false
negatives—typically differ in their potential impacts, methodological decisions which
affect the balance of inductive risk are often value-laden (Douglas 2009). Another
example concerns the types of evidence different methodologies provide. For exam-
ple, randomized controlled trials tend to be good for assessing whether a given inter-
vention produced some population-level outcome but are relatively uninformative
about distributive consequences. Thus, if most researchers pursue randomized con-
trolled trials, it becomes difficult for policy makers to find evidence relevant to poli-
cies aimed at distributive values, such as equality or priority for the worst-off
(Khosrowi 2019).

There are two things worth noticing about this definition of value-ladenness. First,
it makes decisions the primary locus of value-ladenness. However, products of inquiry,
such as theories, models, or algorithms, can be called value-laden in a derived sense if
they are shaped by and mediate the potential impacts of value-laden decisions. That
is, if some contingent decision had been made differently, the product would been
different in a way that changes its potential impacts on the things we value.
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Second, decisions are defined as value-laden regardless of whether value judg-
ments played any role in reaching or justifying them. As Ward (2021) argues, philos-
ophers have discussed (and often conflated) four distinct kinds of value-ladenness: (i)
decisions consciously motivated by values, (ii) decisions justified by values, (iii) deci-
sions causally influenced by values (e.g., through implicit biases or institutional struc-
tures), and (iv) decisions that impact the things we value. While there are often
complex interactions between these, my use of the term in this article is restricted
to (iv).

Few philosophers would deny that many scientific decisions are value-laden in this
sense (though spelling out exactly how is often not trivial; Ward [2021, 57]). Rather,
framed this way, the main disagreements concern what can and should be done to
manage value-ladenness. I will focus on issues relating to transparency. These arise
when scientific products have been shaped by value-laden decisions in ways that are
unclear to those relying on them. Take randomized controlled trials again: It would be
problematic if contingent decisions about what kinds of evidence to prioritize system-
atically inhibited policy makers from pursuing otherwise legitimate values, especially
if this happened without the awareness of policy makers or the public. More gener-
ally, if nonexperts are unaware of the value-ladenness of the scientific products they
rely on, it risks undermining their ability to determine which values are prioritized in
their own decision making (Betz 2017; Elliott 2010; Schroeder 2021). Concerns of this
kind motivate calls for transparency.

3. Epistemic transparency and value transparency
The concept of transparency is complex (Biddle 2020; Elliott 2020), but generally
involves providing relevant kinds of information to nonexperts. I take this to involve
at least two things:

(a) Openness: communicating (or making accessible) the relevant information to
the right audience.

(b) Comprehensibility: ensuring the audience can understand and use the
information.

These in turn entail a further precondition:

(c) Explicitness: ensuring the communicator is aware of and able to articulate the
information in the right way, i.e., so that it achieves (a) and (b).

Different kinds of transparency can be distinguished based on the type of information
involved. Philosophers have promoted two general kinds of transparency in response
to value-ladenness: epistemic transparency and value transparency.

Epistemic transparency focuses on information about the uncertainties or justifi-
cations involved in contingent decisions. For instance, Betz (2017) proposes full uncer-
tainty disclosure as a strategy for managing inductive risk. Briefly, he argues that
scientists should only endorse claims that are beyond reasonable doubt. Instead of
asserting uncertain conclusions, these should be reframed as “hedged hypotheses,”
where the type and degree of uncertainty are made explicit. When faced with
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contingent choices, rather than picking one option, scientists should analyze as many
as possible, report the consequences of each option, and specify any remaining
uncertainties.

The motivation for epistemic transparency is to leave as many value-laden deci-
sions as possible to those who rely on scientific products. Ideally, scientists should
merely lay out the options and explain uncertainties, leaving it to nonexperts to
decide what risks they are willing to take, given the values they want to prioritize.
However, this strategy faces limitations in relation to each of (a)–(c). First, due to the
number of contingent choices scientists face, it easily becomes intractable to analyze
and communicate all but a small fraction. Second, the technical vocabulary necessary
to accurately specify the relevant uncertainties may not be comprehensible to non-
experts. (Betz for instance mentions “imprecise probabilities, fuzzy logic, or degrees
of possibility” [2017, 104].) Third, parts of scientists’ knowledge are arguably tacit,
situated in know-how, habits, or social structures. Scientists may not themselves
be able to make these fully explicit without distortion (Nguyen 2021). To be sure,
Betz emphasizes that his view is only meant as an ideal norm. But this leaves open
how to manage value-ladenness under nonideal circumstances.

Value transparency focuses on informing nonexperts about the values involved in
value-laden decisions or products. Rather than leaving it to nonexperts to make all
value-laden decisions for themselves, this strategy permits scientists to make such
decisions, provided they inform the nonexperts about the relevant values. Elliott
(2020, 3) outlines several motivations for this kind of transparency. First, it would
warn nonexperts that relying on a given scientific product risks promoting values
they disagree with. Second, it may allow them to reanalyze or reframe results in ways
that better accord with their priorities. Third, it can enable nonexperts to influence
what decisions are made in the first place (Douglas 2009, 153). Finally, it can play an
important role in supporting other strategies for managing value-ladenness, such as
promoting engagement with different publics who might be impacted (Elliott 2017,
137–62).

The preceding characterization is meant to be consistent with all four of Ward’s
senses of value-ladenness. Nonetheless, it is useful to distinguish two subtypes: retro-
spective value transparency, that is, what values motivated and influenced a given deci-
sion (Ward’s first and third senses), and prospective value transparency, that is, what are
the potential impacts on things we value of relying on a given decision/product and,
relatedly, what values would justify doing so (Ward’s second and fourth senses).

Some discussions of value transparency articulate it in mainly retrospective terms
(e.g., Douglas 2009, 153; Elliott 2020, 3; Schroeder 2021, 550). However, the two can
come apart. In many cases, what is directly relevant to nonexperts is what values
they risk promoting prospectively. Knowing what motivated or influenced decisions
(e.g., through conflict-of-interest statements) at most provides an indirect way to
gauge this. Prospective value transparency does not require detailed explanations
of how decisions produce their potential impacts or why certain values would justify
decisions. Rather, the point is to explain the conclusions of such analyses to nonex-
perts, such that they can understand what the potential implications are for the values
they care about.

This is not to say that prospective value transparency is without its challenges.
Explicitness can be especially hard to achieve, as it requires the communicator to
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predict the likely consequences of scientists’ decisions. Moreover, values can be dif-
ficult to express precisely. If scientists and nonexperts have different conceptions of
core value concepts (e.g., justice, freedom, health), miscommunication could eas-
ily ensue.

Ultimately, none of the three types of transparency distinguished in this section is
a panacea. Rather, they are more plausibly seen as complimentary strategies that can
be used within broader efforts to manage value-ladenness. Thus, as Elliott (2020)
argues, evaluating the merits of transparency-based strategies will involve more
detailed questions concerning the benefits of different types of transparency. In
the rest of this article, I will look at some such questions for the case of ML.

4. Explainable AI as epistemic transparency
A prominent objection to using ML in high-stakes decision making, the so-called black
box problem, concerns epistemic opacity.1 In addition to intentional secrecy by the
organizations who control algorithms and lacking technical understanding among
users, many have also argued that there are features specific to advanced ML systems
that make them epistemically opaque.

ML systems are defined as computer programs capable of using data to improve
their performance on some task (Mitchell 1997, 2). This is typically approached as an
optimization problem. For example, many applications of supervised ML are based on
search algorithms (e.g., gradient descent) that iteratively adjust the free parameters
of a model to optimize its performance on a given dataset according to some perfor-
mance measure.

Two things distinguish advanced forms of ML, as far as transparency is concerned,
from this basic picture. First, the complexity of models. This is not just size—though
some ML models are huge, sporting millions or even billions of parameters—but also
the highly nonlinear relations that they are able to represent. When models involve
many parameters that interact nonlinearly, it becomes difficult to disentangle and
make sense of the dependencies between inputs and outputs.

Second, and partly because of this expressive power, ML systems are often able to
discover correlations in datasets that go beyond existing human knowledge and
understanding. While the power of advanced ML systems to a large extent rests
on their ability to find and exploit such correlations, it can also make it difficult
to explain their performance (Sullivan 2022; Zednik 2021). Specifically, it inhibits
our ability to explain what features of the target domain the model is tracking
(because we lack knowledge of what its features are) and why tracking these features
results in the observed model performance (because we lack understanding of the
dependencies between them).

A growing body of technical research, called “explainable AI” (XAI), seeks to
develop tools for mitigating these challenges. These include methods for generating
partial or idealized representations of ML models, as well as more localised represen-
tations of how different inputs relate to a given prediction. The latter are particularly
relevant here. Many of these are based on sensitivity analyses: varying one or more

1 For earlier commentary, which partly informs my discussion, see Burrell (2016), Erasmus et al.
(2021), Selbst and Barocas (2018), Sullivan (2022), Zednik (2021), Zerilli (2022).
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input variables to estimate which inputs made the largest difference to a given pre-
diction. These estimates can be presented as heatmaps for visual data, rankings of
input features, or counterfactuals.2 Another popular approach is to provide uncer-
tainty estimates for predictions, for example, by approximating Bayesian posteriors
(Gal and Ghahramani 2016) or using ensemble techniques to estimate (non-Bayesian)
confidence intervals (Lakshminarayanan et al. 2017).

While of necessity brief, this overview suffices to illustrate the point I want to
make here, namely that most current XAI tools aim at epistemic transparency: They
seek to illuminate the justifications and uncertainties that underpin the predictions
of ML systems. In fact, many XAI techniques aim at something close to what Betz
recommends, by testing the sensitivity of decisions and explicitly reporting uncer-
tainties. Moreover, although different motivations are cited in the XAI literature
for using these techniques, the most important one is arguably to enable those relying
on ML systems to assess whether their decisions are justified: that is, to enable people
to assess whether decisions are made on a basis they consider normatively acceptable
(Selbst and Barocas 2018, 1122–26; Zerilli 2022). Again, this resembles Betz’s motiva-
tion for epistemic transparency, namely to enable nonexperts to make the relevant
value judgments for themselves.

It should therefore not come as a surprise that these techniques, considered as
ways of managing value-ladenness, suffer from many of the same limitations as epi-
stemic transparency in science. First, the sensitivity analyses underlying, for example,
heatmaps and counterfactuals only analyze a small subset of the potential alterna-
tives and may misleadingly suggest that the same factors would also be important
in other, similar cases (Selbst and Barocas 2018, 1113–15). Second, not all audiences
will have the expertise to comprehend probabilistic uncertainty representations or
technical definitions of counterfactuals. Finally, information about the features that
influenced a given output will only allow the audience to evaluate its justification if
paired with additional knowledge of how the features that input and output variables
represent depend on each other, as well as how different kinds of predictions might
impact things we value (Selbst and Barocas 2018, 1126–29). But, as mentioned, it is
exactly the ability to discover correlations beyond our existing knowledge and under-
standing that underpins the reliability and opacity of many ML systems.

To be clear, this is not to say that XAI tools cannot be helpful for managing value-
ladenness in ML. Rather, my point is that they cannot be the whole of the story.

5. The limits of value transparency
Because of these limitations, some law and technology scholars are skeptical of XAI as
a governance tool for ML. Instead, they advocate frameworks based either on provid-
ing information about value-laden decisions in the design of ML systems or assess-
ments of their impacts.

For instance, Selbst and Barocas (2018, 1130) argue that designers should docu-
ment information that can help others understand “(1) the values and constraints
that shape the conceptualization of the problem, (2) how these values and constraints

2 Zednik (2021), Zednik and Boelsen (forthcoming), and Zerilli (2022) discuss examples of these
techniques.
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inform the design of machine learning models and are ultimately reflected in them,
and (3) how the outputs of models inform final decisions.” In other words, this strat-
egy relies on value transparency rather than epistemic transparency. More specifi-
cally, as they highlight values that motivate design choices, it is a version of
retrospective value transparency.

Others have proposed governance schemes that include elements of prospective
value transparency. For instance, Kroll (2018, 1) rejects the idea that ML systems
are uniquely mysterious or unaccountable, arguing instead: “Software systems are
designed to interact with the world in a controlled way and built or operated for
a specific purpose, subject to choices and assumptions. : : : Technologies can always
be understood at a higher level, intensionally in terms of their designs and opera-
tional goals and extensionally in terms of their inputs, outputs and outcomes.” For
Kroll, assessing and monitoring the potential impacts of ML systems against well-
defined criteria provides exactly the kind of transparency we should demand of
any technology.

In the following, I discuss the prospects of both types of value transparency for
managing three sources of value-ladenness in ML systems: problem formulation,
inductive risk, and specification gaming.

5.1 Problem formulation
An important type of contingent decision in designing an ML system concerns what
Passi and Barocas (2019, 39) call problem formulation, that is, “turning amorphous goals
into well-specified problems” that can be solved using ML. While goals and problems
expressed in natural language can often be vague or ambiguous, leaving many implic-
itly understood things unsaid, ML problems have to be fully and explicitly defined.
This requires several decisions. For example: What type of ML problem should the
goals be modeled as (e.g., regression problem, clustering problem, matching prob-
lem)? What target function should the system aim to capture? How are target var-
iables operationalized as measurable data points? How should model performance be
defined and measured? What cost function should optimization algorithms try to
minimize?

Most such decisions are value-laden. Different reasonable implementations of a
given informal problem formulation will prioritize different desiderata and con-
straints. To use Passi and Barocas’s example, to design a system for identifying good
job applicants, designers will need to find a way of specifying what “good” means.
Some aspects of being a good employee (e.g., being personable and good at teamwork)
are difficult to define and measure directly. Designers could ask managers to hand-
label CVs with their judgments of teamwork ability, but those judgments are rarely
completely reliable and could easily reproduce social biases. Instead, designers might
rely on readily measurable things like sales figures, even if this only captures one
aspect of what the company is looking for. These decisions are clearly value-laden:
They will impact whether the ML system is more likely to make reliable predictions
but of a variable that is less faithful to the original problem, or vice versa.

Retrospective value transparency seems promising for managing this type of
value-ladenness. Even if designers are not directly aware of how their decisions
are value-laden, it is relatively close to the surface. Getting them to explain what their
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goals are for the system, why they translated these goals into a particular problem
specification, and what the pros and cons of alternative decisions were, should pro-
vide good evidence of what the operative values are. While it may still take some
analytical work to make these values explicit, in many cases—such as deciding to
operationalize “good employee” in terms of sales figures—it will be relatively
straightforward.

5.2 Inductive risk
Inductive risk is a perennial feature of ML (and indeed any algorithm; Kraemer et al.
2011). All real-life applications will involve some risk of error, and different design
choices will impact what kinds of errors are more likely to occur and who they
are more likely to affect.

For instance, certain variables might be more likely to encode preexisting biases,
as Obermeyer et al. (2019) show for a system deployed to prioritize patients with
higher needs for various public health programs. Here, the designers used healthcare
spending as a proxy for healthcare needs, perhaps because it was a plentiful and read-
ily available dataset. This turned out to systematically disadvantage Black patients, as
they tend to have less money to spend on their healthcare compared to other patients
with the same disease burden. Using more direct measures of healthcare needs, such
as disease burden, might mitigate this (although there could still be disparities in how
they are reported). However, if this data is sparser it could also lead to higher overall
error rates.

Inductive risk can to some extent be addressed through retrospective value trans-
parency. For instance, designers can assign differential weights to false positives and
false negatives in performance measures and objective functions. Similarly, ML
researchers have proposed various statistical measures of “fairness” that can be used
to detect and mitigate disparities, say, in false positive rates between subpopulations
(see Biddle 2020 for discussion). However, these techniques treat labels in the data set
as ground truth; if the data is biased, this will not be reflected in performance meas-
ures (Passi and Barocas 2019, 40). Detecting this kind of bias thus requires an inde-
pendent dataset, ideally one reflecting the real-world impacts directly. This is for
instance what Angwin et al. (2016) tried to do when they looked at whether defend-
ants categorized as high or low risk of recidivism by the COMPAS system in fact went
on to commit new crime.

Fully managing inductive risk and bias thus requires us to look beyond the choices
of designers and evaluate the impacts of ML systems directly. In other words, it also
requires prospective value transparency. To be sure, once a given value-laden impact
has been detected, it will often be possible to backtrack and attribute this to one or
more decisions within the design process. But if those impacts were not predictable at
the time, merely requiring transparency about designers’ choices and motivations are
unlikely to reveal them.

5.3 Unintended solutions and specification gaming
This challenge becomes even more pronounced in the final source of value-ladenness
I want to discuss. As mentioned, the power of advanced forms of ML lies in their abil-
ity to discover and exploit surprising correlations. Such surprises are often exactly
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what designers are looking for: They deploy ML because they lack an explicitly pro-
grammable procedure for solving a problem. Yet the ability to surprise simulta-
neously gives rise to the phenomenon known as specification gaming (Krakovna
et al. 2020): When an ML system discovers a “solution” that satisfies the formal spec-
ifications of the problem formulation, but which is undesirable given the designers’
intended goals.

ML researchers have demonstrated many cases of specification gaming.3 Some
involve ML agents designed to play computer games. For instance, one such agent
learned to exploit bugs in the software, which enabled it to crash the game just before
losing a match. But examples of specification gaming have also been documented in
real-world applications. To take a simple example, a system designed to classify skin
lesions learned that malignant lesions in the training data were more likely to have
been photographed next to a ruler (Patel 2017). Obviously, this correlation would not
have been a robust basis for making predictions.

The illustrative examples of specification gaming involve outright failures (games
crashing, unreliable prediction rules). However, it could equally lead to subtler forms
of value-ladenness, for example, by finding a solution that implicitly prioritizes one
plausible interpretation of the motivating goals.

Specification gaming arises when designers fail to consider the relevance of certain
possibilities (e.g., that there are bugs in the game software) and therefore end up giv-
ing a formal problem specification that implicitly allows the undesirable solutions.
But, as Krakovna et al. point out, the more complex the tasks become that ML systems
are applied to, the harder it becomes for designers to consider every possible impli-
cation of their design choices. Though it might be clear in retrospect how the unin-
tended solutions could have been prevented, they can be highly surprising and
difficult to predict in advance. Therefore, value transparency strategies focused on
designers’ motivations and choices would be unlikely to detect this type of value-
ladenness.

These difficulties should of course not be used as an excuse for complacency.
Rather, it puts even more onus on designers to carefully test and evaluate the impacts
of their systems. Yet prospective value transparency still depends on our ability to
recognize when something has (or preferably, will) go wrong. Again, the ability of
advanced ML systems to find surprising solutions could potentially produce subtler
impacts, or produce them through subtler causal chains, thereby making them more
difficult to discover (explicitness) or explain (comprehensibility).

6. Conclusions
In this article I have distinguished three strategies for managing value-ladenness
in science—epistemic transparency, retrospective, and prospective value transpar-
ency—and argued that these map onto different approaches within the literature
on transparency in ML. I have argued that epistemic transparency faces limitations.
However, so do both forms of value transparency.

3 See this link for a list of more than 60 examples collected by Krakovna et al. (http://tinyurl.com/
specification-gaming). Another example is the “Proxy Problem,” discussed by Johnson (forthcoming, fn
24). Here, an ML system uses a seemingly innocuous attribute (e.g., address) as a proxy for a protected
attribute (e.g., race), which designers had deliberately excluded from the training data.

1062 Rune Nyrup

https://doi.org/10.1017/psa.2022.61 Published online by Cambridge University Press

http://tinyurl.com/specification-gaming
http://tinyurl.com/specification-gaming
https://doi.org/10.1017/psa.2022.61


Some constructive lessons can also be drawn. First, my discussion of transparency
strategies in ML highlights the importance of distinguishing between retrospective
and prospective value transparency strategies. More generally, it illustrates that
the merits of transparency as a strategy for managing value-ladenness cannot be eval-
uated in the abstract. The advantages and drawbacks of different strategies need to be
investigated in specific contexts.
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