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Abstract

In this paper, we study the uniqueness of meromorphic functions concerning differential polynomials
sharing nonzero finite values, and obtain some results which improve the results of Yang and Hua, Xu
and Qiu, Fang and Hong, and Dyavanal, among others.
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1. Introduction and main results

Let f (z) be a nonconstant meromorphic function in the whole complex plane. We will
use the standard notation of Nevanlinna’s value distribution theory such as T (r, f ),
N(r, f ), N(r, f ) and m(r, f ), as found in Hayman [4], Yang [9] and Yi and Yang [11].
We denote by S (r, f ) any quantity satisfying S (r, f ) = o(T (r, f )) as r→∞, possibly
outside a set with finite measure.

For any constant a we define

Θ(a, f ) = 1 − lim
r→∞

N(r, 1
f−a )

T (r, f )
,

where N(r, 1/( f − a)) is the counting function which counts zeros of f − a in |z| ≤ r,
ignoring multiplicities.

Let a be a finite complex number and k be a positive integer. We denote by
Nk)(r, 1/( f − a)) the counting function for zeros of f − a with multiplicity at most k,
and by Nk)(r, 1/( f − a)) the corresponding one for which multiplicity is not counted.
Let N(k(r, 1/( f − a)) be the counting function for zeros of f − a with multiplicity
at least k and N(k(r, 1/( f − a)) the corresponding one for which multiplicity is not
counted.
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Set

Nk

(
r,

1
f − a

)
= N

(
r,

1
f − a

)
+ N(2

(
r,

1
f − a

)
+ · · · + N(k

(
r,

1
f − a

)
.

We define

δk(a, f ) = 1 − lim
r→∞

Nk(r, 1
f−a )

T (r, f )
.

Let f and g be two nonconstant meromorphic functions. Let a be a finite complex
number. We say that f , g share the value a CM (counting multiplicities) if f , g have
the same a-points with the same multiplicities, and we say that f , g share the value
a IM (ignoring multiplicities) if we do not consider the multiplicities. We denote by
NL(r, 1/( f − a)) the counting function for a-points of both f and g where f has larger
multiplicity than g, with multiplicity not counted. Similarly, we have the notation
NL(r, 1/(g − a)).

It is assumed that the reader is familiar with the notation of Nevanlinna theory that
can be found in [4, 9, 11].

On uniqueness problems for entire functions sharing one value, Yang and Hua [10]
obtained the following result in 1997.

T A. Let f (z) and g(z) be two nonconstant meromorphic functions, n ≥ 11 an
integer and a ∈C − {0}. If f n f ′ and gng′ share the value a CM, then either f = tg for a
constant t with tn+1 = 1 or g(z) = c1ecz and f (z) = c2e−cz, where c, c1, c2 are constants
satisfying (c1c2)n+1c2 = −a2.

In 2000, Xu and Qiu [7] proved the following result, which generalised Theorem A.

T B. Let f (z) and g(z) be two nonconstant entire functions, n ≥ 12 an integer.
If f n f ′ and gng′ share the value 1 IM, then either f = tg for a constant t with tn+1 = 1 or
f (z) = c1ecz and g(z) = c2e−cz, where c, c1, c2 are constants satisfying (c1c2)n+1c2 = −1.

In 2001, Fang and Hong [2] proved the following result.

T C. Let f (z) and g(z) be two transcendental entire functions, n ≥ 11 a positive
integer. If f n(z)( f (z) − 1) f ′(z) and gn(z)(g(z) − 1)g′(z) share the value 1 CM, then
f (z) ≡ g(z).

In 2004, Lin and Yi [6] proved the following three theorems.

T D. Let f and g be two transcendental entire functions, n ≥ 7 an integer. If
f n( f − 1) f ′ and gn(g − 1)g′ share the value 1 CM, then f (z) ≡ g(z).

T E. Let f and g be two distinct nonconstant meromorphic functions, n ≥ 12
an integer. If f n( f − 1) f ′ and gn(g − 1)g′ share the value 1 CM, then

g =
(n + 2)(1 − hn+1)
(n + 1)(1 − hn+2)

, f =
(n + 2)h(1 − hn+1)
(n + 1)(1 − hn+2)

,

where h is a nonconstant meromorphic function.
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T F. Let f and g be two nonconstant meromorphic functions, n ≥ 13 an integer.
If f n( f − 1)2 f ′ and gn(g − 1)2g′ share the value 1 CM, then f (z) ≡ g(z).

In 2011, Dyavanal [1] proved the following theorems.

T G. Let f (z) and g(z) be two nonconstant meromorphic functions, whose zeros
and poles are of multiplicities at least s, where s is a positive integer. Let n ≥ 2 be an
integer satisfying (n + 1)s ≥ 12. If f n f ′ and gng′ share the value 1 CM, then either
f = tg for a constant t with tn+1 = 1 or g(z) = c1ecz and f (z) = c2e−cz, where c, c1, c2

are constants satisfying (c1c2)n+1c2 = −1.

T H. Let f (z) and g(z) be two nonconstant meromorphic functions, whose zeros
and poles are of multiplicities at least s, where s is a positive integer. Let n be an
integer satisfying (n − 2)s ≥ 10. If f n( f − 1) f ′ and gn(g − 1)g′ share the value 1 CM,
then

g =
(n + 2)(1 − hn+1)
(n + 1)(1 − hn+2)

, f =
(n + 2)h(1 − hn+1)
(n + 1)(1 − hn+2)

,

where h is a nonconstant meromorphic function.

Dyavanal raised the open question in his paper whether the differential polynomials
can be replaced by differential polynomials of the forms ( f n)(k) and ( f n( f − 1))(k) and
whether a CM shared value can be replaced by an IM shared value in Theorem G
and H. In this paper, we solve these problems and obtain the following results.

T 1.1. Let f (z) and g(z) be two nonconstant meromorphic functions whose
zeros and poles are of multiplicities at least l, where l is a positive integer. Let
n ≥ 2k + 1 be an integer satisfying nl > 7k + 12. If ( f n)(k) and (gn)(k) share the value 1
IM, then either f = tg for a constant t with tn = 1 or g(z) = c1ecz and f (z) = c2e−cz,
where c, c1, c2 are constants satisfying (−1)k(c1c2)n(nc)2k = 1.

T 1.2. Let f (z) and g(z) be two nonconstant meromorphic functions, whose
zeros and poles are of multiplicities at least l < (7k/2) + 7, where l is a positive integer.
Let n be an integer satisfying (n + 1)l > 7k + 17. If ( f n( f − 1))(k) and (gn(g − 1))(k)

share the value 1 IM, Θ(∞, f ) > 2/n, then f ≡ g.

R. The following example shows that Theorem 1.2 is sharp. Let

f (z) =
h(z)(1 − hn(z))

1 − hn+1(z)
, g(z) =

1 − hn(z)
1 − hn+1(z)

, (1.1)

where n is a positive integer and h(z) is a nonconstant meromorphic function. We
deduce from (1.1) that f n( f − 1) = gn(g − 1); thus f and g satisfy the conditions of
Theorem 1.2, but f . g. Note that

T (r, f ) = T (r, gh) = nT (r, h) + S (r, f ).
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By the second fundamental theorem, we deduce that

N(r, f ) =

n∑
i=1

N
(
r,

1
h − ai

)
≥ (n − 2)T (r, h) + S (r, f ),

where ai , 1 (i = 1, 2, . . . , n) are distinct roots of the equation hn+1 = 1. Therefore,

Θ(∞, f ) = 1 − lim
r→∞

N(r, f )
T (r, f )

≤
2
n
.

Thus Theorem 1.2 is the best possible in some sense, at least for the case Θ(∞, f ) >
2/n.

T 1.3. Let f (z) and g(z) be two transcendental entire functions whose zeros are
of multiplicities at least l, where l is a positive integer. Let n be an integer satisfying
nl > 4k + 6. If ( f n)(k) and (gn)(k) share the value 1 IM, then either f = tg for a constant
t with tn = 1 or g(z) = c1ecz and f (z) = c2e−cz, where c, c1, c2 are constants satisfying
(−1)k(c1c2)n(nc)2k = 1.

T 1.4. Let f and g be two transcendental entire functions whose zeros are of
multiplicities at least l, where l is a positive integer. Let n be an integer satisfying
(n + 1)l ≥ 4k + 11. If ( f n( f − 1))(k) and (gn(g − 1))(k) share the value 1 IM, then
f (z) ≡ g(z).

2. Some lemmas

L 2.1 (See [9, 11]). Let f (z) be a nonconstant meromorphic function, k a positive
integer and c a nonzero finite complex number. Then

T (r, f ) ≤ N(r, f ) + N
(
r,

1
f

)
+ N

(
r,

1
f (k) − c

)
− N

(
r,

1
f (k+1)

)
+ S (r, f )

≤ N(r, f ) + Nk+1

(
r,

1
f

)
+ N

(
r,

1
f (k) − c

)
− N0

(
r,

1
f (k+1)

)
+ S (r, f ),

where N0(r, 1/ f (k+1)) is the counting function which only counts those points such that
f (k+1) = 0 but f ( f (k) − c) , 0.

L 2.2 (See [12]). Let f (z) be a nonconstant meromorphic function, and let k be
a positive integer. Suppose that f (k) . 0. Then

N
(
r,

1
f (k)

)
≤ N

(
r,

1
f

)
+ kN(r, f ) + S (r, f ).

L 2.3 (See [5]). Let f (z) be a nonconstant meromorphic function and s, k be two
positive integers. Then

Ns

(
r,

1
f (k)

)
≤ kN(r, f ) + Ns+k

(
r,

1
f

)
+ S (r, f ).

Clearly, N(r, 1/ f (k)) = N1(r, 1/ f (k)).
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L 2.4. Let f (z) and g(z) be two nonconstant transcendental meromorphic
functions and k be a positive integer. If f (k) and g(k) share the value 1 IM and if

∆ = (k + 3)Θ(∞, g) + (2k + 3)Θ(∞, f ) + δk+2(0, g) + δk+1(0, g)

+ 2δk+1(0, f ) + Θ(0, f ) > 3k + 10,

then either f (k)g(k) ≡ 1 or f ≡ g.

P. Let

Φ(z) =
f (k+2)

f (k+1)
− 2

f (k+1)

f (k) − 1
−

g(k+2)

g(k+1)
+ 2

g(k+1)

g(k) − 1
. (2.1)

Clearly m(r, Φ) = S (r, f ) + S (r, g). We consider the cases Φ(z) . 0 and Φ(z) ≡ 0.
Let Φ(z) . 0. Then if z0 is a common simple 1-point of f (k) and g(k), substituting

their Taylor series at z0 into (2.1), we see that z0 is a zero of Φ(z). Thus

N1)

(
r,

1
f (k) − 1

)
= N1)

(
r,

1
g(k) − 1

)
≤ N

(
r,

1
Φ

)
≤ T (r, Φ) + O(1)

≤ N(r, Φ) + S (r, f ) + S (r, g).

(2.2)

Here, N1)(r, 1/ f (k) − 1) is the counting function which only counts those points such
that f (k) − 1 = 0 but f (k+1) , 0.

Our assumptions are that Φ(z) has poles, all simple, only at zeros of f (k+1) and
g(k+1) and poles of f and g, and 1-points of f whose multiplicities are not equal to the
multiplicities of the corresponding 1-points of g. Thus, we deduce from (2.1) that

N(r, Φ) ≤ N(r, f ) + N(r, g) + N(k+2

(
r,

1
f

)
+ N(k+2

(
r,

1
g

)
+ N0

(
r,

1
f (k+1)

)
+ N0

(
r,

1
g(k+1)

)
+ NL

(
r,

1
f (k) − 1

)
+ NL

(
r,

1
g(k) − 1

)
.

Here, N0(r, 1/ f (k+1)) has the same meaning as in Lemma 2.1. From Lemma 2.1,

T (r, g) ≤ N(r, g) + Nk+1

(
r,

1
g

)
+ N

(
r,

1
g(k) − 1

)
− N0

(
r,

1
g(k+1)

)
+ S (r, g) (2.3)

since

N
(
r,

1
g(k) − 1

)
= N1)

(
r,

1
g(k) − 1

)
+ N(2

(
r,

1
f (k) − 1

)
. (2.4)
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Thus we deduce from (2.2)–(2.4) that

T (r, g) ≤ 2N(r, g) + N(r, f ) + Nk+1

(
r,

1
g

)
+ N(k+2

(
r,

1
f

)
+ N(k+2

(
r,

1
g

)
+ N0

(
r,

1
f (k+1)

)
+ N(2

(
r,

1
f (k) − 1

)
+ NL

(
r,

1
f (k) − 1

)
+ NL

(
r,

1
g(k) − 1

)
+ S (r, f ) + S (r, g).

(2.5)

From the definition of N0(r, 1/ f (k+1)), we see that

N0

(
r,

1
f (k+1)

)
+ N(2

(
r,

1
f (k) − 1

)
+ N(2

(
r,

1
f (k)

)
− N(2

(
r,

1
f (k)

)
≤ N

(
r,

1
f (k+1)

)
.

This and Lemma 2.2 give

N0

(
r,

1
f (k+1)

)
+ N(2

(
r,

1
f (k) − 1

)
≤ N

(
r,

1
f (k+1)

)
− N(2

(
r,

1
f (k)

)
+ N(2

(
r,

1
f (k)

)
≤ N

(
r,

1
f (k)

)
− N(2

(
r,

1
f (k)

)
+ N(2

(
r,

1
f (k)

)
+ N(r, f ) + S (r, f )

≤ N
(
r, 1

f (k)

)
+ N(r, f ) + S (r, f ).

Substituting the above inequality into (2.5),

T (r, g) ≤ 2N(r, g) + N(r, f ) + Nk+1

(
r,

1
g

)
+ N(k+2

(
r,

1
f

)
+ N(k+2

(
r,

1
g

)
+ N

(
r,

1
f (k)

)
+ N(r, f ) + NL

(
r,

1
f (k) − 1

)
+ NL

(
r,

1
g(k) − 1

)
+ S (r, f ) + S (r, g)

≤ 2N(r, g) + 2N(r, f ) + Nk+2

(
r,

1
g

)
+ N

(
r,

1
f

)
+ N

(
r,

1
f (k)

)
+ NL

(
r,

1
f (k) − 1

)
+ NL

(
r,

1
g(k) − 1

)
+ S (r, f ) + S (r, g).

(2.6)

According to Lemma 2.3,

N
(
r,

1
f (k)

)
= N1

(
r,

1
f (k)

)
≤ Nk+1

(
r,

1
f

)
+ kN(r, f ) + S (r, f ). (2.7)
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Therefore,

NL

(
r,

1
f (k) − 1

)
≤ N

(
r,

1
f (k) − 1

)
− N

(
r,

1
f (k) − 1

)
≤ N

(
r,

f (k)

f (k+1)

)
≤ N

(
r,

f (k+1)

f (k)

)
+ S (r, f )

≤ N
(
r,

1
f (k)

)
+ N(r, f ) + S (r, f )

≤ Nk+1

(
r,

1
f

)
+ (k + 1)N(r, f ) + S (r, f ).

Similarly,

NL

(
r,

1
g(k) − 1

)
≤ Nk+1

(
r,

1
g

)
+ (k + 1)N(r, g) + S (r, g).

Combining this and (2.6),

T (r, g) ≤ (k + 3)N(r, g) + (2k + 3)N(r, f ) + Nk+2

(
r,

1
g

)
+ Nk+1

(
r,

1
g

)
+ 2Nk+1

(
r,

1
f

)
+ N

(
r,

1
f

)
+ S (r, f ) + S (r, g).

Without loss of generality, we suppose that there exists a set I with infinite measure
such that T (r, f ) ≤ T (r, g) for r ∈ I. Hence

T (r, g) ≤ ((k + 3)(1 − Θ(∞, g)) + (2k + 3)(1 − Θ(∞, f )) + (1 − δk+2(0, g))

+ (1 − δk+1(0, g)) + 2(1 − δk+1(0, f )) + (1 − Θ(0, f )) + ε)T (r, g) + S (r, g)

for r ∈ I and 0 < ε < ∆ − (3k + 10). That is, (∆ − (3k + 10) − ε)T (r, g) ≤ S (r, g), or
∆ − (3k + 10) ≤ 0, or ∆ ≤ 3k + 10, which contradicts our hypothesis that ∆ > 3k + 10.

Hence, Φ(z) ≡ 0. Therefore, by (2.1),

f (k+2)

f (k+1)
−

2 f (k+1)

f (k) − 1
≡

g(k+2)

g(k+1)
−

2g(k+1)

g(k) − 1
.

Integrating both sides of this equation, we obtain

1
f (k) − 1

=
bg(k) + a − b

g(k) − 1
, (2.8)

where a , 0 and b are constants.
We now consider three cases.

Case 1. b , 0 and a = b.

(i) If b = −1, then, from (2.8), f (k)g(k) ≡ 1.
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(ii) If b , −1, then, from (2.8),

1
f (k)

=
bg(k)

(1 + b)g(k) − 1
. (2.9)

We can write

N
(
r,

1

g(k) − 1
1+b

)
≤ N

(
r,

g(k)

g(k) − 1
1+b

)
. (2.10)

From (2.9) and (2.10),

N
(
r,

1

g(k) − 1
1+b

)
≤ N

(
r,

1
f (k)

)
. (2.11)

Therefore, from (2.7) and (2.11),

N
(
r,

1

g(k) − 1
1+b

)
≤ kN(r, f ) + Nk+1

(
r,

1
f

)
+ S (r, f ). (2.12)

From (2.12) and Lemma 2.1,

T (r, g) ≤ N(r, g) + Nk+1

(
r,

1
g

)
+ N

(
r,

1

g(k) − 1
1+b

)
− N0

(
r,

1
g(k+1)

)
+ S (r, g)

≤ N(r, g) + Nk+1

(
r,

1
g

)
+ kN(r, f ) + Nk+1

(
r,

1
f

)
+ S (r, f ) + S (r, g)

≤ (k + 3)N(r, g) + (2k + 3)N(r, f ) + Nk+2

(
r,

1
g

)
+ Nk+1

(
r,

1
g

)
+ 2Nk+1

(
r,

1
f

)
+ N

(
r,

1
f

)
+ S (r, f ) + S (r, g).

Thus we obtain

(∆ − (3k + 10))T (r, g) ≤ S (r, g),

a contradiction.

Case 2. b , 0 and a , b.

From (2.8),

f (k) −

(
1 +

1
b

)
=

−a

b2
(
g(k) + a−b

b

) .
This implies that

N
(
r,

1

g(k) + a−b
b

)
= N

(
r, f (k) −

(
1 +

1
b

))
= N(r, f (k)) = N(r, f ). (2.13)

https://doi.org/10.1017/S0004972711003261 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972711003261


288 C. Wu, C. Mu and J. Li [9]

From Lemma 2.1 and from (2.13),

T (r, g) ≤ N(r, g) + Nk+1

(
r,

1
g

)
+ N

(
r,

1

g(k) + a−b
b

)
+ S (r, g)

≤ N(r, g) + Nk+1

(
r,

1
g

)
+ N(r, f ) + S (r, g)

≤ (k + 3)N(r, g) + (2k + 3)N(r, f ) + Nk+2

(
r,

1
g

)
+ Nk+1

(
r,

1
g

)
+ 2Nk+1

(
r,

1
f

)
+ N

(
r,

1
f

)
+ S (r, f ) + S (r, g).

Using the argument as in Case 1, we get a contradiction.

Case 3. b = 0.

From (2.8),

f (k) =
1
a

g(k) + 1 −
1
a
, (2.14)

f =
1
a

g + p(z), (2.15)

where p(z) is a polynomial with degree at most k. If p(z) . 0, then, by the second
fundamental theorem for small functions,

T (r, g) ≤ N(r, g) + N
(
r,

1
g

)
+ N

(
r,

1
g + ap(z)

)
+ S (r, f )

≤ N(r, g) + N
(
r,

1
g

)
+ N

(
r,

1
f

)
+ S (r, f ).

Using the same argument as in Case 2, we get a contradiction. Therefore, p(z) ≡ 0 and,
from (2.14) and (2.15), we obtain a = 1 and so f ≡ g.

This proves the lemma. �

L 2.5. Let f (z) and g(z) be two nonconstant transcendental entire functions, and
k a positive integer. If f (k) and g(k) share the value 1 IM and if ∆ = δk+2(0, g) +

δk+1(0, g) + 2δk+1(0, f ) + Θ(0, f ) > 4, then either f (k)g(k) ≡ 1 or f ≡ g.

P. Since f and g are entire functions, N(r, f ) = 0 and N(r, g) = 0. Proceeding as
in the proof of Lemma 2.4, we obtain the desired result. �

L 2.6 (See [3]). Let f be a nonconstant entire function and k ≥ 2 be an integer.
If f f (k) , 0, then f = eaz+b, where a , 0 and b are two constants.

L 2.7 (See [8]). Let f (z) be a nonconstant meromorphic function. Let k be a
positive integer, and let c be a nonzero finite complex number. Then

T (r, an f n + an−1 f n−1 + · · · + a0) = nT (r, f ) + S (r, f ).
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3. Proof of theorems

3.1. Proof of Theorem 1.1. Let F = f n and G = gn. Consider

N
(
r,

1
F

)
= N

(
r,

1
f n

)
≤

1
ln

N
(
r,

1
F

)
≤

1
ln

(T (r, F) + O(1)).

Therefore,

Θ(0, F) = 1 − lim
r→∞

N(r, 1
F )

T (r, F)
≥ 1 −

1
ln
,

δk+2(0,G) = 1 − lim
r→∞

Nk+2(r, 1
G )

T (r,G)
≥ 1 − lim

r→∞

(k + 2)N(r, 1
G )

T (r,G)
≥ 1 −

k + 2
ln

.

Similarly,

δk+1(0,G) ≥ 1 −
k + 1

ln
, δk+1(0, F) ≥ 1 −

k + 1
ln

,

Θ(∞, F) ≥ 1 −
1
ln
, Θ(∞,G) ≥ 1 −

1
ln
.

Therefore,

∆ = (k + 3)Θ(∞,G) + (2k + 3)Θ(∞, F) + δk+2(0,G) + δk+1(0,G)

+ 2δk+1(0, F) + Θ(0, F) ≥ (3k + 11) −
7k + 12

ln
.

Since nl > 7k + 12, we obtain ∆ > 3k + 10. So, by Lemma 2.4, either F(k)G(k) ≡ 1 or
F ≡G.

Case 1. F(k)G(k) ≡ 1, that is,
( f n)(k)(gn)(k) ≡ 1. (3.1)

We first prove that f , 0,∞ and g , 0,∞. Suppose that f (g) has a zero z0 (with
order p ≥ l). Then z0 is a pole of g( f ) (with order q ≥ l). By (3.1),

np − k = nq + k.

That is, n(p − q) = 2k, which is impossible since n ≥ 2k + 1. Therefore, f , 0 and
g , 0. Similarly, we can prove that f ,∞ and g ,∞. So f and g are entire and
f , 0,∞ and g , 0,∞ holds. From this and (3.1) we obtain ( f n)(k) , 0 and (gn)(k) , 0.
In view of this and (3.1) using Lemma 2.6, we obtain that g(z) = c1ecz and f (z) = c2e−cz,
where c, c1, c2 are constants satisfying (−1)k(c1c2)n(nc)2k = 1, when k ≥ 2.

Next we consider ( f n)(k)(gn)(k) ≡ 1 for the case k = 1, that is,

n2 f n−1 f ′gn−1g′ ≡ 1. (3.2)
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From the above, there exist two entire functions α(z) and β(z) such that f = eα(z),
g = eβ(z). From this and (3.2),

n2α′β′en(α+β) ≡ 1. (3.3)

Thus, α′ and β′ have no zeros and we may set

α′ = eδ(z), β′ = eγ(z), (3.4)

where δ and γ are entire functions. By (3.3) and (3.4),

n2en(α+β)+δ+γ ≡ 1.

Differentiating this yields, in view of (3.4),

n(eδ + eγ) + δ′ + γ′ ≡ 0, (3.5)

that is, neδ + δ′ ≡ −neγ − γ′.
Since δ and γ are entire, we obtain

T (r, δ′) = m(r, δ′) = m
(
r,

(eδ)′

eδ

)
= S (r, eδ),

T (r, γ′) = m(r, γ′) = m
(
r,

(eγ)′

eγ

)
= S (r, eγ).

Thus T (r, eδ) = T (r, eγ) + S (r, eδ) + S (r, eγ), which implies that S (r, eδ) = S (r, eγ) :=
S (r).

Let σ ≡ −(δ′ + γ′). Then T (r, σ) = S (r). If σ . 0, then we rewrite (3.5) as

eδ

σ
+

eγ

σ
≡

1
n
.

From this and the second fundamental theorem,

T (r, eδ) ≤ T
(
r,

eγ

σ

)
+ S (r)

≤ N
(
r,

eγ

σ

)
+ N

(
r,

1
eγ
σ

)
+ N

(
r,

1
eγ
σ
− 1

n

)
+ S (r)

≤ S (r),

which is a contradiction. This shows that σ ≡ −(δ′ + γ′) ≡ 0. From (3.5) we have
α′ + β′ = eδ + eγ = −σ/n ≡ 0, which implies that δ = γ + (2ρ + 1)πi for some integer ρ.
This, together with δ′ + γ′ ≡ 0, implies that δ + γ = t. Taking δ = t1, we get γ = t2,
where t, t1, t2 are constants satisfying t1 + t2 = t. Therefore, α′ and β′ are constants.
From this, α′ + β′ ≡ 0, f = eα(z) and g = eβ(z), we can also obtain the above results.

Case 2. F ≡G.
This gives f n ≡ gn. Hence, f = tg for a constant t with tn = 1. This proves the

theorem.
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3.2. Proof of Theorem 1.2. Let

F = f n( f − 1), G = gn(g − 1).

By Lemma 2.7,

Θ(∞, F) = 1 − lim
r→∞

N(r, F)
T (r, F)

= 1 − lim
r→∞

N(r, f n( f − 1))
T (r, F)

≥ 1 − lim
r→∞

1
l T (r, f )

(n + 1)T (r, f )
≥ 1 −

1
l(n + 1)

,

and similarly, Θ(∞,G) ≥ 1 − 1/(l(n + 1)). Also,

Θ(0, F) = 1 − lim
r→∞

N(r, 1
F )

T (r, F)
= 1 − lim

r→∞

N
(
r, 1

f n( f−1)

)
T (r, F)

≥ 1 − lim
r→∞

2
l T (r, f )

(n + 1)T (r, f )
≥ 1 −

2
l(n + 1)

,

and similarly, Θ(0,G) ≥ 1 − 2/(l(n + 1)). Again,

δk+1(0, F) = 1 − lim
r→∞

Nk+1(r, 1
F )

T (r, F)
≥ 1 − lim

r→∞

(k + 2)T (r, f )
l(n + 1)T (r, f )

≥ 1 −
k + 2

l(n + 1)
,

and similarly, δk+1(0,G) ≥ 1 − (k + 2)/(l(n + 1)), δk+2(0,G) ≥ 1 − (k + 3)/(l(n + 1)).
Therefore,

∆ = (k + 3)Θ(∞,G) + (2k + 3)Θ(∞, F)

+ δk+2(0,G) + δk+1(0,G) + 2δk+1(0, F) + Θ(0, F)

≥ (3k + 6)
(
1 −

1
l(n + 1)

)
+

(
1 −

k + 3
l(n + 1)

)
+

(
1 −

k + 2
l(n + 1)

)
+

(
2 − 2

k + 2
l(n + 1)

)
+

(
1 −

2
l(n + 1)

)
.

Since (n + 1)l > 7k + 17, we get ∆ > 3k + 10, and then, by Lemma 2.4, we obtain
F(k)G(k) ≡ 1 or F ≡G.

Suppose that F(k)G(k) ≡ 1, that is, ( f n( f − 1))(k)(gn(g − 1))(k) ≡ 1. Then f (g) , 0,
f (g) ,∞.

Let f = eα, where α is a nonconstant entire function. Then by induction we get

( f n)(k) = (enα)(k) = p1(α′, α′′, . . . , α(k))enα,

( f n+1)(k) = (e(n+1)α)(k) = p2(α′, α′′, . . . , α(k))e(n+1)α,

where p1(α′, α′′, . . . , α(k)) and p2(α′, α′′, . . . , α(k)) are differential polynomials.
Obviously,

p1(α′, α′′, . . . , α(k)) . 0, p2(α′, α′′, · · · , α(k)) . 0.
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Noting that g is an entire function, we obtain from ( f n( f − 1))(k)(gn(g − 1))(k) ≡ 1 that
( f n( f − 1))(k) , 0. Thus,

p2(α′, α′′, . . . , α(k))eα(z) − p1(α′, α′′, . . . , α(k)) , 0.

Since α is an entire function, T (r, α′) = m(r, α′) = S (r, f ). Thus,

T (r, α( j)) ≤ T (r, α′) + S (r, f ) = S (r, f ) (3.6)

for j = 1, 2, . . . , k. Hence,

T (r, p1) = S (r, f ), T (r, p2) = S (r, f ). (3.7)

Thus, by (3.6) and (3.7),

T (r, f ) ≤ T (r, p2eα) + S (r, f )

≤ N
(
r,

1
p2eα

)
+ N

(
r,

1
p2eα − p1

)
+ S (r, f )

≤ T
(
r,

1
p2

)
+ S (r, f ) = S (r, f ),

which is a contradiction.
Hence F ≡G, that is, ( f n( f − 1))(k) ≡ (gn(g − 1))(k), or f n( f − 1) = gn(g − 1) + p(z),

where p(z) is a polynomial of degree at most k − 1. It follows that T (r, f ) = T (r, g) +

S (r, f ).
If p(z) . 0, by the second fundamental theorem,

T (r, gn(g − 1)) ≤ N
(
r,

1
gn(g − 1)

)
+ N

(
r,

1
gn(g − 1) + p(z)

)
+ N(r, gn(g − 1)) + S (r, g),

that is,

(n + 1)T (r, g) ≤ N
(
r,

1
g

)
+ N

(
r,

1
g − 1

)
+ N

(
r,

1
f

)
+ N

(
r,

1
f − 1

)
+ N(r, g) + S (r, g)

≤

(3
l

+ 2
)
T (r, g) + S (r, g),

which contradicts the assumption that l < (7k/2) + 7 under the condition that (n + 1)l >
7k + 7.

Hence p(z) ≡ 0, that is,
f n( f − 1) = gn(g − 1). (3.8)

https://doi.org/10.1017/S0004972711003261 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972711003261


[14] Uniqueness of meromorphic functions sharing one value 293

Let h = f /g be a constant. Suppose that f . g. Then from (3.8) it follows that
h , 1, hn , 1, hn+1 , 1 and g = (1 − hn)/(1 − hn+1) is a constant, a contradiction. So
we suppose that h is not a constant. Since f . g, we have h . 1. From (3.8),
g = (1 − hn)/(1 − hn+1) and f = h(1 − hn)/(1 − hn+1). Hence,

T (r, f ) = nT (r, h) + S (r, f ).

By the second fundamental theorem of Nevanlinna,

N(r, f ) =

n∑
i=1

N
(
r,

1
h − ai

)
≥ (n − 2)T (r, h) + S (r, f )

where ai , 1 (i = 1, 2, . . . , n) are distinct roots of the equation hn+1 = 1. Then

Θ(∞, f ) = 1 − lim
r→∞

N(r, f )
T (r, f )

≤
2
n
.

which contradicts the assumption that Θ(∞, f ) > 2/n. Thus f ≡ g.
This completes the proof of Theorem 1.2.

3.3. Proof of Theorem 1.3. Since f and g are entire functions, N(r, f ) = N(r, g) = 0.
Proceeding as in the proof of Theorem 1.1 and applying Lemma 2.5, we obtain
Theorem 1.3.

3.4. Proof of Theorem 1.4. Since f and g are entire functions, we have N(r, f ) =

N(r, g) = 0. Proceeding as in the proof of Theorem 1.2 and applying Lemma 2.5, we
can easily prove Theorem 1.4.
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