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Elastoviscoplastic (EVP) fluid flows are driven by a non-trivial interplay between the
elastic, viscous and plastic properties, which under certain conditions can transition the
otherwise laminar flow into complex flow instabilities with rich space–time-dependent
dynamics. We discover that under elastic turbulence regimes, EVP fluids undergo dynamic
jamming triggered by localised polymer stress deformations that facilitate the formation
of solid regions trapped in local low-stress energy wells. The solid volume fraction φ,
below the jamming transition φ < φJ , scales with

√
Bi, where Bi is the Bingham number

characterising the ratio of yield to viscous stresses, in direct agreement with theoretical
approximations based on the laminar solution. The onset of this new dynamic jamming
transition φ � φJ is marked by a clear deviation from the scaling φ ∼ √

Bi, scaling as
φ ∼ exp Bi. We show that this instability-induced jamming transition – analogous to that
in dense suspensions – leads to slow, minimally diffusive and rigid-like flows with finite
deformability, highlighting a novel phase change in elastic turbulence regimes of complex
fluids.

Key words: viscoelasticity, plastic materials, shear-flow instability

1. Introduction
Complex non-Newtonian fluids are well-known to be subject to unpredictable flow
instabilities (Steinberg 2021; Datta et al. 2022), a problem whose motivations originated
from industry over 60 years ago due to production quality issues in processing operations
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involving polymeric fluids (Petrie & Denn 1976), which has continued to intrigue the
scientific and industrial communities since (Dubief, Terrapon & Hof 2023). In particular,
elastoviscoplastic fluids (EVP) characterised by their ability to exhibit elastic, viscous
and plastic behaviours depending on applied stress are ubiquitous in various processes
in nature (such as lava and landslide flow (Jerolmack & Daniels 2019; Abdelgawad,
Cannon & Rosti 2023) and certain biological substances (Bertsch et al. 2022)) and
industry, including materials such as pastes and gels (Balmforth, Frigaard & Ovarlez
2014; Nicolas et al. 2018). The EVP materials, a class of non-Newtonian ‘yield stress’
fluids, behave as elastic solids with finite deformations below their yield criteria and
above which flow like complex viscoelastic fluids (Bonn et al. 2017; Nicolas et al.
2018). Understanding the dynamics of EVP fluid flows remains an essential area of
research that bridges fundamental science and practical applications. A fascinating and
challenging aspect of EVP fluid flows is the occurrence of instabilities driven by a delicate
balance between this solid-like and liquid-like behaviour that is highly localised and time-
dependent (Nicolas et al. 2018; Varchanis et al. 2020). Flow instabilities in EVP fluids are
prominent when subjected to deformation rates near their material yield stress, making
their applications unpredictable and difficult to control (Balmforth et al. 2014; Nicolas
et al. 2018). Insights into these pave the way for innovations in material design and process
optimisation, addressing challenges across a wide range of industries and disciplines,
from the production of fast-moving consumer goods (Balmforth et al. 2014; Bonn et al.
2017) to emerging technologies, such as three-dimensional (3-D) printing soft biomaterials
(Bertsch et al. 2022; Smith & Hashmi 2024; Zhang, Dolatshahi-Pirouz & Orive 2024).

Unlike inertial instabilities that arise in Newtonian fluid flows, such as turbulent flows,
viscoelastic fluid flow instabilities arise even without inertial effects in the low-Reynolds-
number regime Re = ρV �/μ� 1 (Groisman & Steinberg 2000). Inertialess instabilities
can manifest in various forms (Datta et al. 2022), including shear banding (Cochran et al.
2024), where regions of differing shear rates develop, and elastic instabilities, where
the fluid’s elastic nature leads to flow irregularities. The viscous to elastic effects are
measured by the Weissenberg number Wi = λV/� � 1, and the viscoelastic to inertial
effects are characterised by the elasticity number El ≡ Wi/Re = λμ/(ρ�2) � 1. Here, λ
is the longest polymer relaxation time, the characteristic length scale is �, ρ is density,
μ is total viscosity, and the characteristic velocity is V . The additional property, a yield
stress criteria σy , traditionally referred to as a jamming transition in EVP material (i.e.
the transition from a jammed solid state to a fluid-like state) (Bonn et al. 2017), and
its ratio to the viscous stress is characterised by the Bingham number Bi = σy�/(μV ).
Time-dependent EVP flows often lead to non-homogeneity with complex flow patterns
and transitions (Abdelgawad et al. 2023; Dzanic, From & Sauret 2024). More specifically,
the elastic property generates an anisotropic stress contribution, which, in extreme cases
(i.e. Re � 1), can transition the flow to a chaotic self-sustaining state, known as elastic
turbulence (ET), initially discovered to be triggered by linear hoop stress instabilities
in curvilinear geometries (Groisman & Steinberg 2000; Steinberg 2021). Later studies
identified ET in rectilinear geometries – such as, notably, in viscoelastic Kolmogorov
flow by Boffetta et al. (2005b) – have recently been shown to be triggered by the
mechanism known as a centre-mode instability (Kerswell & Page 2024; Lewy & Kerswell
2025), giving rise to ‘arrowhead’ structures (Page, Dubief & Kerswell 2020) that interact
chaotically, transitioning the flow to ET through a bursting scenario. Plasticity on its
own (i.e. viscoplasticity where there is negligible elasticity) can dramatically impact
fluid flows. Notably, recent work (Abdelgawad et al. 2023) demonstrated that plasticity
Bi > 1 significantly alters both the energy distribution and intermittency of inertial
turbulence Re � 103, altering Kolmogorov’s well-known inertial and dissipative 5/3
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scaling exponent to a new scaling exponent of 2.3. On the other hand, the study of
instabilities in inertialess EVP fluid flows, combining both elastic and plastic behaviours,
is limited. Our recent work on EVP extensional flows in the ET regime (Dzanic et al.
2024) illustrated that the regions of unyielded material increase – indicated by a higher
solid volume fraction (φ) – as Bi increases. We found that the impact of plasticity on the
dynamic behaviour, including transitions to periodic, aperiodic and chaotic regimes, is
highly dependent on the flow geometry.

In this work, we discover that EVP fluid flows transition to a jammed state with Bi. The
connection to jamming has not previously been made for EVP fluid flows. This elastic-
plastic-induced jamming phenomenon is notably distinct from the traditional intuition
of jamming transitions in EVP fluids defined as the material’s yield stress criterion σy
(Nicolas et al. 2018; N’Gouamba et al. 2019). To gain a better understanding of the
nature and impact of this phase transition, we demonstrate the direct analogue features of
jamming in inertialess EVP flows in the ET regime. We show that intermediate φ-regimes
approaching jamming from below φ → φJ follow a square-root scaling behaviour φ ∼√

Bi, reminiscent of scaling behaviour in dense suspensions. Beyond the jamming
transition φ > φJ , the scaling behaviour transitions dramatically – a key signature of a
phase transition – growing exponentially as φ ∼ exp Bi.

2. Methods
We numerically study inertialess EVP instabilities with the well-known Kolmogorov flow
problem in a two-dimensional (2-D) domain x with double periodic boundary conditions.
The dimensionless governing equations of the EVP fluid are given by the incompressible
Navier–Stokes equation,

∇ · u = 0, Re
Du
Dt

= −∇P + β�u + ∇ · σ + F0, (2.1)

coupled with the polymer stress tensor, σ = Wi−1(1 − β)( f C − I ), described by a space–
time dependent conformation tensor (C ) constitutive equation,

DC
Dt

= C · (∇u) + (∇u)T · C − F
Wi

( f C − I ) + κ�C. (2.2)

The functions f = (L2 − tr I )/(L2 − trC ) and F(σv , Bi) = max(0, (σv − Bi)/σv) are
constitutive polymer models, namely the finite extensible nonlinear elastic Peterlin
(FENE-P) model (Peterlin 1961) and the Saramito yield stress model (Saramito 2007), for
the elastic and plastic non-Newtonian behaviour, respectively. The yield stress is defined
by σv = √

σJ2 (Saramito 2007), where σJ2 = (1/2)(σ d : σ d) is the second invariant
of the deviatoric part of the stress tensor σ d = σ − I(tr σ/ tr I ). The model predicts
recoverable Kelvin–Voigt viscoelastic deformation in the unyielded state (F = 0 for
σv � Bi), whereas the FENE-P viscoelastic model is retained beyond yielding (0 �

F � 1 for σv > Bi), and in the purely viscoelastic limit Bi = 0 ⇒F = 1. Here, L is
the maximum polymer extensibility (L2 > trC ), which we set to L = 50, characteristic
polymer concentration β = νs/(νs + νp) = 0.9 as in Rosti et al. (2018); Abdelgawad
et al. (2023), νs and νp are the solvent and polymer viscosity, respectively, I is
the identity tensor (tr I = 2), u is the velocity field, P the pressure, and F0 is the
external driving force (total force F = F p + F0, where F p = ∇ · σ ). Equations (2.1)
and (2.2) are solved using a symmetric positive-definite conserving numerical solver
developed in-house (Dzanic et al. 2024, 2022a,b,c,d), comprising the lattice Boltzmann
method coupled with a high-order finite-difference scheme. Let n be the level of
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periodicity in each direction, where setting nx , ny > 1 results in nx × ny unit cells.
For all simulations, we set nx = 6 and ny = 4, ensuring unicity is conserved, with
N 2 = 1282 grid points in each unit cell, i.e. spatial resolution of 2π/N (we present grid
convergence test in the supplementary material, § S1.3, figures S1 and S2). Numerical
regularity is added to (2.2) through an additional term κ�C with a specified artificial
diffusivity κ . While this numerical regularity strategy remains highly debated (Dzanic
et al. 2022b; Couchman et al. 2024; Yerasi et al. 2024), it is essential to simulate ET
flow regimes due to inherent steep polymer stress gradients (Dzanic et al. 2022c; Gupta &
Vincenzi 2019). We minimise κ and any associated artefacts by setting the admissible
Schmidt number Sc = νs/κ = 103 as in Berti et al. (2008), resulting in κ = 1.6 × 10−4,
which is smaller than that in recent work (Nichols, Guy & Thomases 2025), an order of
magnitude of those realistically expected from the diffusion of the polymer’s centre of
mass in kinetic theory (Morozov 2022). Full details on the employed methodology are
reported in the supplementary material, § S1.

The Kolmogorov shear flow is driven by a constant external force F0 = (Fx , Fy),
given by Fx (y) = F0 cos(K y), Fy = 0, with an amplitude F0 = V νK 2, scaled with the
characteristic peak laminar velocity V in the absence of polymer stress diffusion (κ = 0)
imposing a constant pressure gradient ∂x P = F0 cos(K y), where K = 2 is the spatial
frequency � = 1/K and the turnover time T = νs K/F0. (Note, the base laminar flow,
maxy(ux (y)), is approximately V ; however, the deviation is negligible with the small but
finite diffusivity κ =O(10−4) since maxy(ux (y)) → V in the limit κ → 0.) The flow is
in the inertialess ET regime, and, as such, we set Re = 1 and Wi = 20, such that elastic
effects are dominant over inertial effects El = 20. In doing so, we limit all the observed
changes to the well-known viscoelastic Kolmogorov flow (Boffetta et al. 2005b; Berti et al.
2008; Berti & Boffetta 2010; Kerswell & Page 2024; Lewy & Kerswell 2025) to be due to
the introduction of plasticity, which we vary by Bi.

3. Results
When dealing with EVP fluids in practice, a macroscopic point of view of the yield
transition is usually adopted, where it is assumed that an applied shear above the yield
criteria σy will sufficiently shear-thin the material, allowing it to flow (Dennin 2008;
Bonn et al. 2017). Here, we will model directly how much of the domain remains solid
(unyielded) under the imposed flow field. The solid volume fraction is calculated by
φ(t) = VF=0(t)/V = |{k : F(xk , t) = 0}|/(nx ny N 2) where ‘:’ denotes the set formed by
the unyielded regions (F = 0) of k, and ‘|·|’ denotes cardinality (Dzanic et al. 2024). The
polymer stretching tr C field at various Bi is shown in figure 1. (See supplementary movies
1–4 for Bi = 0, 0.5, 2 and 3, respectively.) The volume fraction φ time series and statistics
are shown in figure 2(a) and (b,c), respectively. Here, φ increases with Bi non-trivially,
with fluctuations of φ(t) (yielding and unyielding) in the statistically homogenous region t̄
varying non-monotonically with Bi (figure 2b,c). At Bi = 3, the flow slowly transitions to a
nearly completely jammed state, arresting the flow (as shown figure 2a and supplementary
movie 4).

A notable feature of viscoelastic Kolmogorov flow is the formation of coherent
structures (CS) of the stress field, the aforementioned arrowhead structures (Page et al.
2020), which are well-known for the purely viscoelastic case (Bi = 0) at Wi > 10 (Boffetta
et al. 2005b; Berti et al. 2008; Berti & Boffetta 2010; Lewy & Kerswell 2025) and
manifest as travelling elastic waves in the streamwise direction t � 300T (see Bi = 0
case in figure 1 and supplementary movie 1). For EVP cases, similar CS appear due to
viscoelastic instabilities of high elasticity, where the addition of spatiotemporal interplay
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100T
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Bi = 0 Bi = 0.25

2 500 1000 1500
tr

Bi = 0.5 Bi = 1 Bi = 2 Bi = 3

Figure 1. The EVP Kolmogorov flow in the ET regime. Representative snapshots of the polymer stretching tr C
field x = [0, 6 × 2π) and y = [0, 4 × 2π) at various Bingham numbers, from Bi = 0 to 3 (columns), at different
instances in time (rows): from the initial steady state ∼100T (top) to the transition ∼300T (middle), and
the statistically homogenous regime t � 600T (bottom). The grey areas represent the instantaneous unyielded
F = 0 regions. The first column Bi = 0 corresponds to a purely viscoelastic ET. Note, the colour bar is truncated
below the true maximum at tr(C) = 1500 for visual clarity.

1.0

(a) (b) (c)

(d ) (e) ( f )

0.8

0.6
φ

φ
 −

 φ∼

0.4

0.4

0.4

0.60.3

0.2

〈ε i
〉 t̄/
FV 〈εν〉t̄/〈εi〉t̄

〈ε′
i〉t̄

〈εp〉t̄/〈εi〉t̄

〈ε′
p〉t̄

�〈
φ

 −
 φ̄

〉 t2

0.1

0
0 2.501.500.50 0 2.501.500.50 0 2.501.50

BiBiBi
0.50

3.002.001.000.25 3.002.001.000.25

1 × 10−10

0.2

0
500 1000

t/T
1500

0.1

0.05

0.04

0.03

0.02

4

2

−2

−4

0∂E
k′ /∂
t

∂E
k/
∂t

0.01

0

0

−0.1

〈ε′
ν〉t̄

Figure 2. The solid (unyielded) volume fraction (a) time series φ(t) and its fluctuation statistics in the
statistically homogeneous regime t � 600T , including (b) violin distribution density superimposed with
box-whisker statistics relative to the median φ̃ (white line) and (c) the root-mean-squared fluctuations,
where φ is the temporal mean. The colour scheme in (a) refers to Bi > 0 as in (b) and (c). In (b), the
box plots summarise the lower and upper quartile range of φ(t � t) with violins visualising the density
and shape of the distribution. Notably, the strongest and broadest distribution of fluctuations in φ(t � t)
is at Bi = 2. The system energy balance of the spatiotemporal mean for (d) instantaneous kinetic energy
(3.1), (e) the viscous dissipation εν and elastic dissipation εp , and (f) their corresponding fluctuations
(3.2). The directory including the data and the notebook that generated this figure can be accessed at
https://www.cambridge.org/S0022112025104588/JFM-Notebooks/files/Figure_2/Fig2.ipynb.
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between its viscoelastic-solid and-fluid behaviour leads to further dynamic structural stress
deformations of the CS arrowheads (see supplementary movies). These modifications to
the CS, which manifest even through the introduction of minimal plasticity at Bi = 0.25
(figure 1), immediately imply modifications to the modes of elastic waves, altering the
transition route to the chaotic self-sustaining ET state (Kerswell & Page 2024; Lewy &
Kerswell 2025). The spectral scaling exponent E ∝ k−α at Bi = 0 follows the exponent
α = 4 in agreement with Lellep, Linkmann & Morozov (2024), Lewy & Kerswell (2025)
and all cases Bi � 2.5 are within the ET regime, as shown in supplemetary material, § S2,
figure S3. Notably, increasing Bi progressively flattens the scaling exponent 4 > α > 3
and reduces the length of the inertial subrange. The unyielded (viscoelastic-solid) regions
initially (t ∼ 100T , top row in figure 1) form between shear layers (i.e. low-shear-rate
regions) before manifesting behind the CS front t � 300T . These low-shear regions
effectively act as low-energy wells (Donley et al. 2023) that facilitate the formation of
unyielded regions where, due to mass conservation, the stress is redistributed between
shear layers (see the middle row ∼300T in figure 1). During the initial transition ∼300T ,
the length of the unyielded regions in the CS increases with Bi due to a combination of
greater φ (a consequence of increased yield criteria) and increased elastic effects with
increasing Bi (at a given constant Wi), causing longer streaks. This behaviour is also
apparent in the shape of unyielded regions as they become increasingly deformed and
elongated. In the statistically homogeneous regime t � 600T for Bi = 0.25 to 2.5, the
unyielded regions manifest as local rearrangements with a broad distribution of sizes
and shapes leading to further deformations of the CS (see figure 1 and figure 2b–c) –
concomitant with the view that plastic events lead to a redistribution of elastic stresses
in the system (Nicolas et al. 2018; N’Gouamba et al. 2019). For Bi � 1, unyielded
regions interact across shear layers, merging or splitting each other, where increasing Bi
increasingly disorganises the base flow until at the extreme Bi = 3 where the polymers are
stretched in thin and highly localised regions. Notably, Bi = 3 is the only case with two
distinct transitions at ∼300T and ∼800T , reaching a statistically homogeneous regime
t � 1000T (figure 2a).

Increasing Bi decreases the overall energy (figure 2d), inferring a shift in the
instantaneous kinetic energy balance ∂ Ek/∂t ≈ 0 in the statistically homogeneous regime,

∂ Ek

∂t
= 〈εi 〉t̄ − 〈εν〉t̄ − 〈εp〉t̄ = 0, t � t̄ , (3.1)

where εi = 〈u · F0〉x is the energy input from the Kolmogorov forcing (F0 =
(F0 cos(y/�y), 0)), which is dissipated due to contributions from both the viscous
Newtonian component εν = 2μs〈D : D〉x and the non-Newtonian polymer component
εp = 〈u · (∇ · σ )〉x . Here, D = (1/2)(∇u + ∇uT) is the rate-of-strain tensor. The
contributions of εp (elastic and plastic behaviour) increase with Bi and eventually
dominate for Bi � 2.5, absorbing more energy than the dissipation of viscous kinetic
energy (figure 2e). Fluctuations of the kinetic energy,

∂ Ek
′

∂t
= 〈εi

′〉t̄ − 〈εν
′〉t̄ − 〈εp

′〉t̄ = 0, t � t̄ , (3.2)

in which the production term εi
′ = 〈ui

′u j
′((∂ui )/(∂x j ))〉x ≈ 0 (figure 2f ) due to

negligible inertial (Re = 1) contributions to the velocity fluctuations u′ = u − u (Gotoh &
Yamada 1984; Boffetta et al. 2005a), where u = 〈u〉t̄ . Instead, the fluctuating non-
Newtonian polymer term εp

′ = 2μs〈D ′ : D ′〉x is the positive source term to sustain
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Figure 3. Features of jamming. Spatiotemporal mean of the velocity components: (a) the mean streamise
flow profile 〈Ux (y∗)〉 = (K ny)

−1 ∑K ny−1
k=0 |〈ux (y∗ + kπ)〉x | along y∗ ∈ [0, π), (b) 〈uy(y)〉x and (c) the

spatiotemporal mean of the polymer force 〈∇ · σ 〉x = 〈F p〉x . In (a), velocity profiles are superimposed (grey
dashed lines) with base sinusoidal profile scaled by the amplitude of each Bi case, i.e. maxy(〈Ux (y)〉) cos(K y).
(d) Influence of plasticity on the energy injection rate per unit area, measured by flow resistance R, the
ratio between the power injected in the statistically homogeneous regime to the base laminar fixed point.
(e) Volume fraction φ(t) as a function of Bingham number Bi, comparing (diamonds) the temporal mean
φ̄ = 〈φ〉t numerical simulations and (circles) the theoretically approximated φ (3.3). For φ < φJ , we find
that φ ∼ √

Bi (blue line) with the linear fit φ = 0.387
√

Bi − 9.7 × 10−2 with a squared correlation coefficient
R2 = 0.991. Beyond the jamming transition φJ � 0.54 at Bi = 2 (red dash-dot line) φ ∼ exp Bi (green line)
with the linear fit φ = 3.2 × 10−2 exp Bi − 0.24 with R2 = 0.999. The directory including the data and the
notebook that generated this figure can be accessed at https://www.cambridge.org/S0022112025104588/JFM-
Notebooks/files/Figure_3/Fig3.ipynb.

and counteract the fluctuating viscous dissipation εν
′ = 〈u′ · (∇ · σ ′)〉x , which vary non-

monotonically with Bi (figure 2f ). Interestingly, the viscous εν
′ and elastic dissipation εp

′
contributions to the energy budget clearly indicate a transition at Bi = 2, which aligns
directly with the strongest and broadest distribution of fluctuations in φ(t) (figure 2b
and c). Fluctuations in the dissipation then decrease for Bi > 2 (figure 2f ) due to the
polymer dissipation exceeding the viscous dissipation (figure 2e), i.e. the system becomes
unable to sustain the flow due to strong fluctuations. The non-monotonic relationship
between Bi and the fluctuations φ(t) along with the impaired flow energy for Bi � 2 are
clear features of a typical phase transition – such a phase transition from a fluid-like to
solid-like state is specifically known as jamming (Bonn et al. 2017).

A remarkable feature of the Kolmogorov flow is that even in the chaotic ET regime, the
mean velocity (figure 3a) and conformation tensor are accurately described by sinusoidal
profiles of the base flow with smaller amplitudes with respect to the laminar fixed point
(Boffetta et al. 2005a,b; Berti & Boffetta 2010). We observe the 〈Ux 〉 profile for all Bi
retain this feature (see figure S4 in the supplementary material) with the velocity front
decreasing as Bi increases (figure 3a). Cases for Bi � 0.5 show traces of CS (figure 1)
resembling purely elastic flow behaviour. The decreasing front velocity amplitude 〈Ux 〉 is
minor for Bi � 1 but abruptly shifts for Bi � 2 decreasing dramatically, approaching static
rest 〈Ux 〉 → 0 at Bi = 3 in figure 3a (see supplemetary movie 4). This infers a shift in
the energy balance, in particular energy dissipation (figure 2d–f ), further evident from the
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increase in the transverse velocity component 〈uy(y)〉x and the polymer force F p = ∇ · σ
with increasing Bi in figures 3(b) and 3(c), respectively. The deformation and locality
of plastic events redistribute stresses anisotropically (Nicolas et al. 2018) as observed in
figures 1 and 2, where the growth of these unyielded regions is strongly correlated with
secondary flow effects (figures 3b and 3c), leading to a departure from the Kolmogorov
base sinusoidal flow profile as Bi increases (figure 3a). Notably, the small transverse loads
Fp,y for Bi > 1 in figure 3(c) arise due to finite deformability (figure 1), which is a well-
known feature of traditional jamming in dense suspension flows (see e.g. Cates et al. 1998).

We estimate the jamming transition for the present Kolmogorov flow configuration to
be at the transition Bi = 2, φJ � 0.54 (figure 3e), a value common in many traditional
jammed systems, such as dense suspensions (Peters, Majumdar & Jaeger 2016; Bonn et al.
2017). Approaching the jamming transition from below φ → φJ (Bi < 2), we find that
φ ∼ √

Bi in figure 3(e). Above jamming φ � φJ is a clear deviation from φ ∼ √
Bi, scaling

as φ ∼ exp Bi; such a dramatic change in behaviour further supports the features of phase
transition observed in figure 2. To theoretically approximate φ in figure 3(e), we derive the
laminar solution (see supplementary material, § S3),

Clam(y) =

⎛
⎜⎜⎜⎝

f −1
(

1 + 2K 2Wi2

F2 f
sin2(K y)

)
K

Wi

F f
sin(K y)

K
Wi

F f
sin(K y) 1

⎞
⎟⎟⎟⎠. (3.3)

Figure 3(e) shows the scaling behaviour, prior to and above φJ , is in direct agreement
with φ approximated by the laminar solution (3.3). The close agreement at intermediate
Bi � 2.5 is surprising given the drastic flow deformations (figure 1). Interestingly, for
Bi = 3, while (3.3) does not predict 〈φ〉t̄ in t � 1000T (figure 3e), it is consistent with
〈φ〉t in the initial steady-state region 500T � t � 800T (figure 2a). Analogue scaling
behaviour φ ∼ √

Bi for φ � φJ is commonly observed in traditional jamming transitions
of dense suspensions (Peters et al. 2016; Bonn et al. 2017). Recent findings by Abdelgawad
et al. (2023) showed that EVP fluids in inertial turbulence (Re � 103), with subdominant
elastic effects Wi � 1, plasticity Bi > 1 increases intermittency. We find their results for
Bi > 1 agree with our scaling φ ∼ √

Bi approaching the jamming transition (as shown in
supplementary material, figure S5). Whether an analogue exponential scaling beyond the
jamming transition φ > φJ is relevant in such inertia-dominated turbulent regimes remains
to be observed.

The potential implications in practical applications of this elastic-plastic-induced
jamming will be inferred by measuring the flow resistance to the power injected (Berti
et al. 2008). The energy injection rate per unit area (power injected), Pinj = 〈u · F〉x ,
with F = F0 + Fp. In the laminar steady state, denoted by ·̂, ∂x P̂ is constant and
〈ux 〉x ≈ û, where P̂inj = (1/2)V F0 (see supplemetary material, § S3.1). Due to the body
force and the energy dissipated by the elastic-plastic-viscous effects, the flow resistance,
R=Pinj/P̂inj = 〈u · F〉x/(1/2V F0), gradually increases for Bi � 1 before shifting as a
consequence of the jamming phase change (figure 3d). Moreover, our jamming transition
scaling behaviour φ ∼ √

Bi has a potentially direct connection with other known scaling,
namely, the Fanning friction factor in channel flows (Rosti et al. 2018) and the pressure
drop in porous media flows (De Vita et al. 2018).

The macroscopic point of view of jamming in EVP materials is typically considered
as the yield criteria, an immediate shift to a flow state once a certain stress threshold
is reached, e.g. if the flow applied induces sufficiently high shear (Dennin 2008;
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Bonn et al. 2017). We demonstrate the statistically homogenous dynamics of EVP
Kolmogorov flows in the ET regime (dominant elastic instabilities) across a range of
Bi (φ) align with the laminar scaling prediction below and above the transition φJ , i.e.
φ ∼ √

Bi and φ ∼ exp Bi, respectively (figure 3e). The connection to jamming in this work
has profound implications on EVP fluid flows; it describes plastic events, such as plastic
‘plugs’ in channel flows (Rosti et al. 2018; Izbassarov et al. 2021; Villalba et al. 2023), as
a phase-change phenomenon, whose consequences in dynamic behaviour are analogous
to traditional jamming but different in the sense that it is induced by dynamic structural
stress deformations arising from viscoelastic flow instabilities. This dependency on the
locality of these plastic-induced stress deformations is all important as these depend on
the local geometry and flow field, implying that the nature of this jamming transition
φ → φJ varies from one configuration to another. For example, for the square-root scaling
in the form φ ∼ c1

√
Bi + c2 (see e.g. figure 3), the constants c1 and c2 depend on the

flow configuration, Wi , and Re. Similarly, the exponential scaling φ ∼ exp Bi may also
be influenced by such factors, and its precise form could vary across flow configurations.
In support of this, our previous work (Dzanic et al. 2024) found that two extensional
flow benchmark problems, with the same dimensionless variables and similar flow-type
distribution, result in very different dynamic responses to plasticity with different φ across
a range of Bi. The consequence of this dependency, for example, is that the bulk shear
rheology characterisation of the material (Cheddadi, Saramito & Graner 2012; Varchanis
et al. 2020) – commonly performed in Couette-type geometries – will be subject to
jamming dynamics different from those experienced in the actual flow configuration of the
application, making their performance in practice unpredictable. Such issues in translating
rheological characterisation to quantify flow performance in actual flow configurations
have recently been reported as major challenges in predicting the flow performance of
functional EVP materials (Bertsch et al. 2022). Predicting and controlling jamming is
crucial in, e.g. 3-D extrusion biomaterial printing, where the jamming of soft materials
during extrusion has a negative impact on both the print quality and cell viability (Xin
et al. 2021).

4. Discussion
We have studied inertialess instabilities of EVP fluid flows in the ET regime and
discovered these to transition towards jamming, featuring rich dynamics with a delicate
balance between solid-like and liquid-like behaviour. We show that in the formation
of spatiotemporal arrowhead structures, highly localised polymer stress regions act as
local low-stress energy wells, facilitating the formation of unyielded solid regions. These
localised unyielded structures, in turn, deform and redistribute stresses anisotropically,
leading to an interplay between viscoelastic and plastic behaviour, which dominates and
absorbs more energy than viscous dissipation. Consequently, increasing plastic effects
leads to jamming transition, sharing features directly analogous to traditional jamming
of dense suspensions characterised by a drastic change in flow behaviour that is slow,
minimally diffusive and rigid-like with finite deformability leading to transverse loads.
In particular, we find the volume fraction scales as φ ∼ √

Bi until the ‘jamming’ phase
transition φJ � 0.54 where the behaviour changes dramatically, scaling as φ ∼ exp Bi.
Viscoelastic Kolmogorov flow in 2-D has recently been shown to differ from 3-D
(Lellep et al. 2024), suggesting limited experimental realisability of the plasticity-induced
modifications to the arrowhead structures in our simulations due to 3-D dependencies.
Nevertheless, key findings in this work are that shear-dependent problems in the ET regime
reach a jammed state with increasing Bi, scaling as φ ∼ √

Bi and φ ∼ exp Bi beyond
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the jamming transitions. Moreover, we demonstrated our φ ∼ √
Bi scaling to hold for

inertia-dominated turbulent flows by Abdelgawad et al. (2023) (supplementary material,
figure S5) and, as such, suspect our findings to hold in shear flows where elasticity
and inertia are dominant, i.e. within the elasto-inertial turbulence regime. The exact
interactions between the flow and elastic scales with the plastic events remain unclear, and
more work is required to understand the effect of elasticity Wi on the scaling behaviour
beyond the jamming transition φ > φJ . In particular, a rigorous understanding of the
φ ∼ exp Bi scaling may benefit from asymptotic analysis or dimensionless modelling in
the limit of large Bi.

The complex intermittent nature of inertialess EVP fluid flows makes their applications
unpredictable and difficult to control, such as with the formation of plugs leading to
increased flow resistance in practice. Indeed, previous works on EVP fluid flows describe
the increase in volume fraction as a general effect of increasing the Bingham number Bi.
However, no previous work has connected this phenomenon to jamming – this connection
crucially reclassifies it as a phase-change phenomenon – and the analogous features
which describe the impact of this transition. The dependence of plasticity-induced stress
deformations on local conditions implies that the jamming behaviour observed in one
configuration may differ significantly in another. Consequently, bulk shear rheology
measurements may fail to predict the jamming dynamics and flow performance of EVP
materials in more application-relevant configurations – ranging from industrial food,
cosmetic and mining processes (e.g. moulding, extrusion, silo clogging, etc.) to emerging
technologies (e.g. printing biomaterials), where unexpected jamming can lead to extreme
events, disrupt performance or lead to critical failures.

Supplementary material and movies. Supplementary material, movies and Computational Notebook files
are available at https://doi.org/10.1017/jfm.2025.10458. Computational Notebooks can also be found online at
https://www.cambridge.org/S0022112025104588/JFM-Notebooks.
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