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ABSTRACT. The continued use of the positive degree-day (PDD) method to predict ice-sheet melt is
generally favoured over surface energy-balance methods partly due to the computational efficiency of
the algorithm and the requirement of only one input variable (temperature). In this paper, we revisit
some of the assumptions governing the application of the PDD method. Using hourly temperature data
from the GC-Net network we test the assumption that monthly PDD total (PDDM) can be represented by
a Gaussian distribution with fixed standard deviation of monthly temperature (�M). The results presented
here show that the common assumption of fixed �M does not hold, and that �M may be represented more
accurately as a quadratic function of average monthly temperature. For Greenland, the mean absolute
error in predicting PDDM using our methodology is 3.9°C d, representing a significant improvement on
current methods (7.8°C d, when �M = 4.5°C). Over a range of glaciated settings, our method reproduces
PDDM, on average, to within 1.5–8.5°Cd, compared to 4.4–15.7°Cd when �M = 4.5°C. The improvement
arises because we capture the systematic reduction in temperature variance that is observed over
melting snow and ice, when surface temperatures cannot warm above 0°C.

KEYWORDS: glacier mass balance, glacier meteorology, glacier modelling, ice-sheet mass balance,
ice-sheet modelling

INTRODUCTION AND MOTIVATION
Numerous studies indicate that Earth’s cryosphere has been
reacting to increased temperatures over the past century
(e.g. Box and others, 2012; Stroeve and others, 2012;
Vaughan and others, 2013). This includes mass loss for the
Greenland ice sheet and for most of the world’s mountain
glaciers. Accurate determination of ice-sheet and glacier
runoff is fundamental to provide estimates of ice-sheet mass
balance and glacier response to climate change. Rising
surface air temperatures over glaciers and ice sheets are
strongly correlated to ablation rates, but in reality melt
extent is a result of the net energy supplied to the glacier
surface. The governing physics are well understood, but
precise calculation of ablation rates over glacier surfaces
requires computation of all the components of the surface
energy budget: net radiation, sensible and latent heat flux,
and subsurface energy flux.
Although these energy fluxes are simple to calculate, the

accuracy of the final melt calculation is dependent on the
combined uncertainty arising from numerous input par-
ameters (e.g. wind speed, humidity, cloud conditions,
albedo, surface roughness), all of which vary significantly
over the course of a melt season. Measurements of wind,
temperature and humidity are available from automatic
weather stations (AWSs), but this is restricted to point data
covering a small fraction of glaciers and ice sheets. It is
therefore necessary to rely on climate models or inter-
polation/downscaling strategies to estimate spatially-distrib-
uted meteorological fields.
The final calculation of the surface energy budget also

relies partly on assumptions concerning the surface terrain,
boundary layer structure and stability, which govern the
magnitude of sensible and latent heat fluxes in the energy
budget. For Greenland, sensible heat can contribute up to

50% of the energy for melting (Van den Broeke and others,
2011). Surface roughness varies by several orders of
magnitude over snow and ice surfaces; combined with
wind, humidity and temperature conditions in the glacier
boundary layer, these are crucial but difficult factors to
represent accurately in climate models.
An analysis of the performance of the Regional Atmos-

pheric Climate Model version 2 (RACMO2) in Antarctica by
Sanz Rodrigo and others (2013) demonstrated that although
RACMO2 provides a satisfactory, independent representa-
tion of the near-surface (10m) wind characteristics, nor-
malized mean absolute errors (NMAE) in 10m wind speed
of 48�35% (2�) still exist in simulations of the present-day
climate. NMAE in wind speed are also exaggerated at low-
level sites, where wind-tunnelling processes over complex
terrain are not easily modelled. For Greenland, Gorter and
others (2014) report that RACMO2 provides a root-mean-
square error (RMSE) of �2m s–1 for 10m wind speeds at
stations on the western Greenland ice sheet (K-Transect) for
the period 2004–09.
Although accurate measurements of wind, temperature

and humidity are available from AWSs, the final calculation
of the surface energy budget relies partly on assumptions
governing the surface terrain that dictate the proportion of
sensible and latent heat fluxes in the energy budget. For
Greenland, sensible heat can contribute up to 50% of the
energy for melting (Van den Broeke and others, 2011). As
surface roughness varies by several orders of magnitude
over snow and ice surfaces, this, combined with wind and
temperature, is a crucial factor to model accurately in
climate models.
Accurate representation of surface mass balance over ice

sheets requires that these meteorological fields be resolved at
relatively high resolution (e.g. <5 km). Previously, regional
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climate models (e.g. MAR (Fettweis and others, 2013), Polar
MM5 (Box 2006), RACMO (Van Meijgarrd and others,
2008)) with a complete treatment of surface energy balance
operated at resolutions of 11–25 km. However, regional
atmospheric models with spatial resolution between 2 and
5.5 km have recently been used to simulate climate over
the Svalbard (Claremar and others, 2012) and Patagonian
ice fields (Lenaerts and others, 2014). In Claremar and
others (2012), although surface temperatures were repro-
duced consistently at all resolutions between 2.7 and
24 km, summer temperature reconstruction at two sites
produced mean absolute errors of �2°C. Mean absolute
errors in wind speed of 2.2–3.1m s–1 also compound the
accurate calculation of turbulent heat fluxes. Claremar and
others (2012) demonstrated that increased resolution of
mesoscale climate models does not necessarily provide
improved surface reconstructions of climate variables and
that, for the sites in question, spatial resolution of 8 km is
still not sufficient to model climate fields. The necessity of
highly resolved climate fields is again demonstrated by
Lenaerts and others (2014) where resolutions of <50 km are
necessary to faithfully represent climate fields across
southern Patagonia.
Regional climate models also require initial and bound-

ary conditions, typically provided by climate reanalyses,
which are generally unavailable or poorly constrained
outside the historical period. In addition to the compu-
tational intensity, this makes it difficult to apply a full energy
balance in simulations of the paleo- (e.g. Quaternary) or
future evolution of the Greenland ice sheet. Regional
climate models can be applied over all timescales, although,
as Vernon and others (2012) demonstrate, differences of 20–
50Gt a–1 still exist between reconstructions of long-term
average annual surface mass balance for six drainage basins
in Greenland, even when more complex energy-balance
methods are employed. In a similar model-intercomparison,
Hanna and others (2011) demonstrated that relative changes
in Greenland ice-sheet surface mass balance (SMB) over the
period 1990–2008 calculated using the runoff–retention
algorithm of Janssens and Huybrechts (2000) compare well
to the independent RACMO2.1 model output, where melt
energy is calculated using a surface energy-balance pro-
cedure (Van den Broeke and others, 2009). The skill of the
positive degree-day algorithm described in the next section,
compared to energy-balance methods, is demonstrated by
the agreement in melt prediction over the period 1961–90
where RACMO2.1 and Hanna’s SMB1 and SMB2 melt
averages lie within 1� (Hanna and others, 2011).

THE POSITIVE DEGREE-DAY (PDD) METHOD
A simpler, more computationally efficient method of melt
prediction widely used in glaciology is known as the
positive degree-day (PDD) method, where observed melt
is correlated to the PDD sum (defined as the cumulative
temperature above the melting point of 0°C over a given
period) via a constant of proportionality: the degree-day
factor, henceforth denoted f (Braithwaite and Olesen, 1989).
Braithwaite and Olesen (1985, 1989) documented relation-
ships between the PDD total and melt amount in areas in
West Greenland, which form the basis for the methodology
currently employed in ice-sheet models. Ohmura (2001)
argues that PDD models work relatively well for monthly or
seasonal melt because a large fraction of the energy

available for melt is dictated by the incoming longwave
radiation and sensible heat flux, both of which increase with
air temperature. This provides support for the use of PDD
models in ice-sheet-wide applications. The method is
appealing because the only meteorological input field
required is air temperature. This is used to calculate the
PDD sum for a given time period, �PDD, and surface melt,
M, is then estimated by multiplying �PDD by a constant of
proportionality, the degree-day factor for snow (fs) or ice (fi):

M ¼ fs, i
X

PDD ð1Þ

While this relationship is robust over long periods (e.g.
monthly melt totals), if locally calibrated, a methodology is
often required for calculating the total PDD sum with only
daily, monthly or mean annual temperature as input.
An additional, important element of the PDD method,

which we do not attempt to analyse in this study, is the
application of fixed degree-day factors. Typically two melt
factors are used in ice-sheet modelling studies, one for snow
(fs� 3mm°Cd–1) and one for ice (fi� 8mm°Cd–1). The
degree-day factor may be thought of as the susceptibility of
the glacier surface to melting. The degree-day factor for
snow is smaller than the degree-day factor for ice due to
their contrasting surface albedos. Ice has an albedo of 0.1–
0.6, which is dependent on the age, crystal size, concen-
tration of impurities, surface water content and the forma-
tion of superimposed ice (Cuffey and Paterson, 2010). Fresh,
dry snow can have an albedo as high as 0.9, and thus
reflects most of the incoming shortwave radiation, leading to
less energy available for melt.
Measured values of fs and fi vary significantly (Braithwaite,

1995; Hock, 2003) and not in a stepwise fashion as applied
in modelling studies. Measurements of fs on the Greenland
ice sheet are sparse. Jóhannesson and others (1995) report a
value of 2.8mm°Cd–1 for snow using observations over an
elevation range of 370–1410m. Compared to other glaciated
sites, primarily alpine glaciers, this value is low; from a
literature compilation, Hock (2003) reports values of fs from
2.7 to 11.6mm°Cd–1 and fi varies from 5.5 to 20mm°Cd–1.
Over ice, the value fi = 8mm °C d–1 has observational
support in Greenland (Reeh, 1991; Braithwaite, 1995), but
local values much higher than this (�15–40mm°Cd–1) have
been reported (Lefebre and others, 2002; Van den Broeke
and others, 2010).
Variations in local melt rate depend on the magnitude

and interaction of the net radiation and turbulent heat fluxes
(Hock, 2003). Constant melt factors crudely represent
differences between snow and ice, but the conventional
PDD method does not accommodate spatial and temporal
variations in heat transfer processes. Albedo is probably the
most important variable, but variations in surface roughness
and meteorological conditions (e.g. wind, humidity, cloud
cover) also influence melt rate. Due to the uncertainty
attached to the use of an appropriate degree-day factor, it is
often used as a tuning parameter in large-scale modelling
applications (e.g. Simpson and others, 2009).
Here we focus on estimates of monthly positive degree-

day totals, PDDM. Temperature fluctuations about the mean
monthly temperature arise due to seasonal insolation
variations, diurnal temperature cycles, transient weather
systems, and changes in surface conditions. Reeh (1991)
suggests that monthly PDD totals can be modelled by a
Gaussian distribution centred on the mean monthly tem-
perature (TM) with a standard deviation (�M) representing the
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‘spread’ of temperatures over the space of a month:

PDDM ¼
1

�M
ffiffiffiffiffiffi
2�
p

Z t

0

Z 1

0
TMe

ðT� TMÞ
2

2�M dT
� �

dt ð2Þ

From Eqn (2), one can calculate the probability that a
temperature, T, will fall in a given interval between T=0°C
and T=1, and then integrate this over the time interval, t, of
1 month. �M is generally set to 2–5°C, with a value of 4–5°C
commonly adopted in Greenland ice sheet modelling
(Huybrechts and others, 1991; Simpson and others, 2009;
Wake and others, 2009; Hanna and others, 2011). A value
of 4–5°C may be a good representation of temperature
variability in winter months and in the interior of the ice
sheet, where T< 0°C (Marshall and Sharp, 2009). However,
where the ice-sheet surface is at the melting point (summer
months in the ablation zone), glacierized environments
exhibit less temperature variation than this.
This is critical for estimates of ice-sheet melt. Lefebre and

others (2002) note that PDDM is highly influenced by �M,
and an increase from 4.2°C to 5°C can result in a monthly
degree-day (and therefore melt) total that is 10% higher. We
illustrate this sensitivity in Figure 1, which plots PDDM as a
function of mean monthly temperature for �M2 [2,6]°C,
based on Eqn (2). Monthly melt is linearly proportional to
PDDM in PDD melt models (Eqn (1)); for instance, with
fi=8mm°Cd–1 and PDDM=100°Cd, monthly melt equals
800mm. Hence, a 10% error in PDDM maps to a 10% error
in the melt, which is compounded further by uncertainties in
fi. The choice of �M is particularly sensitive for mean
monthly temperatures in the range –2 to 0°C, where melt
potential varies by a factor of about five between the cases
�M=2°C and �M=6°C.
Here we focus on improved estimation of PDDM using a

single input variable of monthly temperature, TM. We have
the following specific objectives:

1. To extend the work of Fausto and others (2011) by
further demonstrating the validity of a variable standard
deviation and Gaussian distribution for monthly tem-
peratures when calculating PDDM in Greenland. This is
achieved through statistical analysis of the distribution of
hourly temperatures on a monthly basis, using data
downloaded from the GC-Net network of AWSs (Steffen
and others, 1996).

2. To develop a new parameterization of standard devi-
ation in PDD models, working with the hypothesis that
temporally varying values will yield improved estimates
of �M (hence, PDDM). This will be tested in two ways,
using parameterizations of �M and distribution descrip-
tors (skew and kurtosis) as a function of surface
temperature.

3. To test our revised parameterization of PDDM with an
independent dataset of hourly temperatures from sites on
the Greenland ice sheet, Antarctica and low- to high-
latitude glaciers. This enables assessment of the spatial
flexibility of the revised algorithm to calculate PDDM in a
wide variety of glaciological settings.

METHODS (I)
We use statistical methods to assess the validity of some of
the assumptions associated with the PDD method. Using
hourly observations of 2m near-surface temperatures from

22 GC-Net stations on the Greenland ice sheet (Steffen and
others, 1996), average monthly temperature (TM), standard
deviation (�M) and distribution characteristics are calculated
from datasets of hourly resolution for each GC-Net station
(Fig. 2a; Supplementary Table S1 (http://www.igsoc.org/
hyperlink/14j116/tab_s1.docx)). Only datasets with 100%
coverage are used. This equates to 672–744 temperature
observations per month. The variation of �M is presented as a
function of time (Fig. 3). We use the Jarque–Bera (Jarque and
Bera, 1987) test to confirm whether a sample, in this case the
hourly temperature values from each station in the GC-Net
network, forms a ‘normal’ distribution over monthly time
frames, a key assumption made when calculating PDDM
(Eqn (2)).
The normality of a sample is easily quantified as a

function of its skewness, S, and kurtosis, K. Nonzero values
of S indicate that a sample possesses a distribution that is
asymmetric with respect to the normal distribution. Positive
skew represents a distribution with a long ‘right’ tail. In the
context of temperature observations, a positively skewed
distribution (S>0) possesses a higher number of obser-
vations that are lower than the sample mean. The opposite is
true for negatively skewed distributions (S<0). For kurtosis,
when K<3, the distribution is broad and flat, with shorter,
narrower tails compared to a normal distribution (K=3). For
K>3, the central peak is sharper than that of normal
distributions with longer, broader tails. With respect to a
temperature distribution, leptokurtic distributions (K>3) and
normal distributions may have identical means, but the
frequency of occurrence of the mean is higher when K>3
(leptokurtic) and lower when K<3 (platykurtic). The Jarque–
Bera test and measures of normality (skew, kurtosis) along
with determination of mean and standard deviation are
calculated using MATLAB® (version 8.1.0.604) software.
The results are presented in Figure 4.

METHODS (II)
The second part of the analysis is concerned with testing the
robustness and applicability of the methods of PDDM
determination using the distribution characteristics pre-
sented in Figure 4. In order to compare the accuracy of the
assumed normal distribution when predicting monthly PDD
totals, observed monthly PDD totals are calculated for each

Fig. 1. Monthly PDD total as a function of average monthly
temperature, for �m2 [2, 6]°C.
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station in the PROMICE (Programme for Monitoring the
Greenland Ice Sheet) network (Ahlstrøm and others, 2008;
Fig. 2a), thus providing an independent test of our methods
for the same ice sheet (Supplementary Table S1 (http://www.
igsoc.org/hyperlink/14j116/tab_s1.docx); Fig. 5). In addition
to calculating PDDM using the common threshold tempera-
ture, TLIM, of 0°C, we follow the methodology of Van den
Broeke and others (2010) and calculate PDDM using a lower
threshold of –5°C. Van den Broeke and others (2010) argued
that the main advantage of using –5°C, rather than
0°C, as a temperature threshold is to introduce spatial
uniformity of degree-day factors.
We use the MATLAB® function pearsrnd to generate

random numbers forming a distribution with a prescribed
TM, �M, skew (S) and kurtosis (K) – the latter three variables
parameterized as a function of TM. These distributions,
consisting of 0.672–0.744� 106 individual values, represent

synthetic samples constructed of observations correspond-
ing to temperature measurements at 3 s intervals over the
duration of one calendar month. Because the pearsrnd
function generates a random sample of temperatures
prescribed by input values of TM, �M, S and K, the function
is called repeatedly until the output synthetic values of S and
K are within 0.01 of their prescribed values and output
synthetic TM and �M are within 0.01°C.
The applicability of current methods of PDDM calculation

to the Antarctic ice sheet is also scrutinized. A wide range of
sites is included in this analysis (Fig. 2b; Supplementary
Table S2 (http://www.igsoc.org/hyperlink/14j116/tab_s2.
docx)). As well as observations from the ice sheet, the
dataset consists of PDD totals collected on ice shelves (e.g.
A10, A12, A14), on land (e.g. A4, A5, A18) and on an
iceberg (A21). Site A22 provides 19 data points on Brown
Glacier, located on Heard Island, southern Indian Ocean.

Fig. 2. (a) Map of the Greenland ice sheet showing positions of AWSs from the GC-Net and PROMICE networks. Details of station positions
and elevations are provided in Supplementary Table S1 (http://www.igsoc.org/hyperlink/14j116/tab_s1.docx). Elevation is contoured at
500m intervals with 1000m (solid), 1500m (dot-dash) and 2000m (dotted) elevation contours. Ice-sheet extent and geometry are taken
from Bamber and others (2013). (b) Map of Antarctica showing positions of AWSs. Station information, including data providers, is provided
in Supplementary Table S2 (http://www.igsoc.org/hyperlink/14j116/tab_s2.docx). Elevation is contoured at 1000m intervals, with 1000m
(solid), 2000m (dot-dash) and 3000m (dotted) shown on map. Surface elevation and ice extent are plotted using BEDMAP2 data (Fretwell
and others, 2013). Detailed maps of boxed area in (a) (West Greenland) and (b) (Ross Sea region) can be found in Supplementary Figure S1
(http://www.igsoc.org/hyperlink/14j116/fig_s1.docx)). (c, d) Positions of AWSs on glaciers in Norway (c) and Canada (d). Station
information, including data providers, is provided in Supplementary Table S3 (http://www.igsoc.org/hyperlink/14j116/tab_s3.docx). Topo-
graphy taken from ETOPO1 (Amante and Eakins, 2009).
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The extent of the ablation zone in Antarctica is small, so
most of the AWS data originate from low-elevation sites,
particularly from the Ross Sea/Ross Ice Shelf area (Fig. 1b;
Supplementary Fig. S1b (http://www.igsoc.org/hyperlink/
14j116/fig_s1.docx)). We repeat the tests and methodology
outlined in the previous paragraph to generate predicted
PDDM to compare with observed PDDM gathered from a
variety of data sources (Supplementary Table S2 (http://
www.igsoc.org/hyperlink/14j116/tab_s2.docx)) providing
measurements of hourly surface temperature. Data from

each AWS are categorized by surface type in order to detect
differences in the performance of the method resulting from
changes in surface properties (Figs 6 and 7).
Observational PDDM values from five mid- to high-

latitude glacier sites in the Northern Hemisphere are also
included in the analysis. Hourly temperature data from
Midtdalsbreen (Giesen and others, 2008), Langfjordjøkelen
(Giesen and others, 2014) and Storbreen (Andreassen and
others, 2008) in Norway (Fig. 2c; Supplementary Table S3
(http://www.igsoc.org/hyperlink/14j116/tab_s3.docx)) and
Haig (Marshall, 2014) and Kwadacha (Schaffer, 2009)
Glaciers in Canada (Fig. 2d; Supplementary Table S3
(http://www.igsoc.org/hyperlink/14j116/tab_s3.docx)) are
analysed. Monthly PDD totals are calculated with respect
to threshold temperatures, TLIM, of –5°C and 0°C.
We test four methods of PDDM generation (M1–M4) for

Greenland. Since method M3 (Fausto and others, 2011) was
generated primarily for use in Greenland we test only M1,
M2 and M4 for Antarctica and mid- and high-latitude
glaciers. The performance of each method for each site is
assessed by computing the mean absolute error (MAE) of
modelled versus observed PDDM, the mean deviation (MD)
and the RMSE. Appropriate statistical tests are applied to
determine significant differences in performance. Finally,
we comment on the impact made on melt estimates when
these new PDD parameterizations are introduced.

RESULTS (I): THE STABILITY OF �M

Figure 3 presents a subset of the data used by Fausto and
others (2011) and an ice-sheet-wide summary of the annual
variation of �M. The station-based estimates of �M in figure 1
of Fausto and others (2011) lie within the range defined here.
However, the majority of observed �M values lie outside the
range, 4–5°C, assumed in modelling studies and display
significant variability. Only 36% of summer �M values lie

Fig. 3. Box plot showing variation of monthly standard deviation
across the Greenland ice sheet for the period 1996–2009, as a
function of month. Black line in the centre of each box plot denotes
the median standard deviation for that month. Dashed lines denote
the region in which 95% of the data points fall. Anomalies are
denoted as crosses outside these regions. Asterisks denote mean
standard deviation. This plot was generated using hourly tempera-
ture data from GC-Net stations (Supplementary Table S1 (http://
www.igsoc.org/hyperlink/14j116/tab_s1.docx)).

Fig. 4. Variation of (a) skewness, S, (b) kurtosis, K, and (c) standard deviation, �M, of monthly temperature distributions as a function of the
mean (TM). This plot was generated using hourly temperature data from GC-Net stations (Supplementary Table S1 (http://www.igsoc.org/
hyperlink/14j116/tab_s1.docx)). (d) The geometry of temperature distributions as a function of monthly temperature using Eqns (3–5).
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within this range, which will result in inaccuracies in melt
prediction. Over the space of a year, standard deviation of
monthly temperature follows a sinusoidal variation, with
the lowest values occurring during the summer months
(�M<4.5°C). Values of �M greater than 6°C are common
outside the summer months. This generally reflects the
relationship noted by Fausto and others (2011). Further
investigation reveals that the samples used to calculate

monthly �M are dominated by observations of temperature
collected at stations above 2000m elevation (60% of the
observations), whereas most of the ablation occurs below
this altitude. Of all �M values contained in Figure 3, only
26% fall in the range 2–5°C, and 57% of these are in the
summer melt season (June–August). In light of these obser-
vations, it is difficult to recommend an ice-sheet-wide
average value for �M for each month.

Fig. 5. Greenland. Modelled minus observed monthly PDD as a function of TM using four methods of parameterization of standard
deviation: M1 (a, c); M2 (e, g); M3 (i, k); and M4 (m, o). Accompanying histograms show the frequency, f, of the deviation of modelled
PDDM values from observed PDD (PDDOBS) for each method, with a bin size of 5°C d. Bin centres are marked on the x-axis. The figure is
split into two panels, each representing the performance of each method when PDD totals are calculated using a threshold temperature
(TLIM) of 0°C and –5°C. Performance indicators MAE (mean absolute error), MD (mean absolute deviation) and RMSE (root-mean-square
error) are noted in Tables 1 and 2 (°C d).
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Figure 4 plots temperature distribution characteristics
(skewness, kurtosis and standard deviation) as a function of
mean monthly temperature. Results from the Jarque–Bera

test (Jarque and Bera, 1987) show that 93% of the data used
in Figure 4a–c do not originate from a normal distribution, at
significance level p<0.05. In addition, we find that the skew

Fig. 6. Antarctica. Modelled minus observed monthly PDD as a function of TM using three methods of parameterization of standard
deviation: M1 (a, c, e, g), M2 (i, k, m, o) and M4 (q, s, u, w). Accompanying histograms show the frequency, f, of the deviation of modelled
PDDM values from observed PDDM (PDDOBS) for each method, with a bin size of 10°C d. Bin centres are marked on the x-axis. The
experiments are subdivided by their surface characteristics (Sheet, Shelf, Land and Other; see Supplementary Table S2 (http://www.igsoc.
org/hyperlink/14j116/tab_s2.docx)). The analysis presented represents PDD totals calculated with respect to TLIM= 0°C. Performance
indicators MAE, MD and RMSE are noted in Tables 1 and 2 (°C d).

Fig. 7. Antarctica. Modelled minus observed monthly PDD as a function of TM using three methods of parameterization of standard
deviation: M1 (a, c, e, g), M2 (i, k, m, o) and M4 (q, s, u, w). Accompanying histograms show the frequency, f, of the deviation of modelled
PDDM values from observed PDDM (PDDOBS) for each method, with a bin size of 5°Cd. Bin centres are marked on the x-axis. The
experiments are subdivided by their surface characteristics (Sheet, Shelf, Land and Other; see Supplementary Table S2 (http://www.igsoc.
org/hyperlink/14j116/tab_s2.docx)). The analysis presented represents PDD totals calculated with respect to TLIM = –5°C. Performance
indicators MAE, MD and RMSE are noted in Tables 1 and 2 (°C d).
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of the distribution remains generally below zero for
temperatures above –30°C and becomes increasingly nega-
tive for higher average monthly temperatures (Fig. 4a). The
linear relation between skewness and temperature is
statistically significant and is given by

S ¼ � 0:024TM � 0:67 ð3Þ

There is a small positive trend in kurtosis associated with
increases in the mean monthly temperature, reflecting a
more leptokurtic distribution at higher temperatures
(Fig. 4b). This, however, is not statistically significant.

K ¼ 0:031TM þ 3:4 ð4Þ

Standard deviations vary more strongly with temperature
(Fig. 4c). Far from a uniform value, the variability of
temperature decreases with increasing temperature. This
has been noted in previous studies (Gardner and others
2009; Marshall and Sharp, 2009; Fausto and others, 2011)
but has not, until recently, been parameterized as a function
of temperature (Seguinot and Rogozhina, 2014). In contrast
to Seguinot and Rogozhina (2014), this analysis shows that
monthly standard deviation may be predicted using the
quadratic relationship

�M ¼ � 0:0042T2M � 0:3TM þ 2:64 ð5Þ

where TM is mean monthly temperature.
Low variability is observed for temperatures close to the

melting point due to thermal heat buffering above a melting
surface, which promotes a stable boundary layer and
suppresses turbulence and temperature fluctuations. Con-
siderable scatter remains at lower temperatures. The
quadratic relationship accounts for 64% of the variation in
the data. This R2 value (coefficient of determination) does
not improve with higher-order polynomial fits but decreases
to 58% with simple linear regression, suggesting that a
quadratic expression is most appropriate to describe the
relationship.
Commonly assumed values for standard deviation in the

range 4–5°C are only applicable to average monthly
temperatures from –9 to –5°C. Reduced standard deviation
at higher temperatures means that the temperature is less
variable and PDDM values estimated from monthly distribu-
tions will be reduced. Data points for TM>5°C are few in
number, so we cannot make recommendations on �M above
this level. For illustrative purposes, in Figure 4d we show
synthetic distributions of monthly temperatures generated
from Eqns (3–5) for TM= [–40, –20, –10, –5, 5]°C.

RESULTS (II): APPLICATION
Greenland
We use the relationships governed by Eqns (3–5) to generate
new calculations of monthly PDD totals and compare them
to an independent dataset of Greenland monthly tempera-
ture and monthly PDD totals assembled from the PROMICE
Greenland AWS network (Ahlstrøm and others, 2008). The
time periods of the PROMICE meteorological records do not
significantly overlap those of GC-Net, so this serves as an
additional test as to where the formulation may be
transferable on a temporal, as well as spatial, scale. The
resulting test dataset is composed of 457 months of data,
with monthly mean temperature in the range –25 to 9°C

(Supplementary Table S1 (http://www.igsoc.org/hyperlink/
14j116/tab_s1.docx)). We compare four methodologies of
PDDM parameterization, as follows:

M1:Monthly PDD totals are predicted using the conven-
tional methodology, assuming a Gaussian distribution of
monthly temperatures with �M=4.5°C, S=0 and K=3.

M2:Monthly PDD totals are predicted assuming a distri-
bution with variable �M (Fig. 2), skewness (S) and
kurtosis (K) parameterized as a function of average
monthly temperature (Eqns (3–5)).

M3:Monthly PDD totals are predicted using a Gaussian
distribution with �M described as a function of latitude,
longitude, elevation and time of year (Fausto and
others, 2011) with S=0 and K=3 and where M is
month number:

�M ¼ �a þ ð�7 � �aÞ cos
2�ðM � 7Þ

12

� �

ð6Þ

M4:Monthly PDD totals are predicted using a Gaussian
distribution (S=0, K=3) with �M described as a linear
function of temperature, derived from European Centre
for Medium-Range Weather Forecasts (ERA-40) re-
analyses of Greenland ice sheet temperature fields
(Seguinot and Rogozhina, 2014):

�M ¼ � 0:15TM þ 1:66 ð7Þ

Figure 5 is a graphical summary of the residual error of each
method in predicting PDDM across Greenland using a
threshold temperature (TLIM) of 0°C (left panel) and –5°C
(right panel). We first discuss results when TLIM = 0°C. In
most cases, M2 outperforms the classical methodology of
assuming a symmetrical normal distribution with �M=4.5°C
(M1). M2 produces a lower RMSE (6.9°Cd) compared to M1
(9.9°Cd) (Table 1). The choice of PDD parameterization
does not matter at low temperatures, below about –5°C, but
the M2 methodology predicts monthly PDD totals more
accurately for average monthly temperatures in the range –5
to 5°C, with 19% of the predicted PDD values lying within
10% of observations, in comparison to 7% when using M1.
Similar improvements are reported using M3 (15%) and M4
(13%). This is mainly due to the introduction of a lower
standard deviation to account for suppression of variability
at higher temperatures. Figure 5b reflects the positive bias of
M1 when predicting PDDM from our dataset. Errors
exceeding +20°Cd are common. M2 exhibits a negative
bias by under-predicting PDDM (Fig. 5e and f), whereas the
M3 deviations produce a more ‘normal’ distribution (Fig. 5j).
Method M4 has the largest bias (–5.1°C d; Fig. 5m and n)
indicating that this method, for this particular dataset,
consistently underestimates PDDM.
For M1,�51% of the data points lie within�5°Cd of their

actual totals. By adopting a temperature- (M2, M4) or tem-
porally and spatially evolving (M3) formulation of �M this
increases to 76%, 70% and 65% respectively. For a degree-
day factor for ice of 8mm°Cd–1, a residual of �5°Cd
translates to an error of �40mm in monthly melt total.
The systematic inaccuracy of M1, especially in the tem-
perature range –3 to +3°C, raises concerns that methods
with time- and space-invariant �M will significantly over-
estimate PDDM.
Since the distribution of the MAE generated from each of

the methodologies is non-normal, the non-parametric
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Wilcoxon rank-sum test (Wilcoxon and others, 1970) is
applied as an alternative to the two-sample t-test to
discriminate which model provides the best fit to the
PROMICE PDD dataset through comparison of median
absolute errors of modelled PDDM to the observed values.
These values are noted next to the MAE values in Tables 1
and 2. However, the two-sample t-test is appropriate to
compare the mean deviation (MD) of each method due to
the pseudo-normality of the distribution of MDs (e.g. Fig. 5b,
d, f, h, j, l, n and p).
To a significance level of p<0.05, the optimal misfit to

this dataset is achieved when M2 is applied, with MD=
–2.3°C d. However, the non-parametric test does not

distinguish the performances of M2 and M4. M1 and M3
produce average positive deviations in obtaining the dataset,
whereas M2 and M4, in general, underestimate PDDM
(Fig. 5, left panel). In summary, for a threshold temperature
of T= 0°C, M1 is outperformed by all methods that
introduce either temporally or spatially evolving �M
(Table 1). These parameterizations are based on Greenland
data, but are calibrated from a different source (GC-Net) to
that which we tested against PROMICE.
For a threshold temperature of –5°C, all methods except

M1 perform significantly worse compared to the choice of
0°C as a limiting temperature (p<0.05). The MAE for M1 is
smaller using TLIM = –5°C, but not significantly so. In all

Table 1. Performance indicators for PDDM replication using TLIM= 0°C for each method across a range of glaciological sites. M3 is not tested
on data from outside Greenland. MAE is mean absolute error, MD is mean deviation and RMSE is root-mean-square error of modelled PDD
against observed PDD. The optimum methods for each site are indicated in bold text. In cases when statistical tests can be used to
demonstrate preference for one model, significant results (p<0.05) are highlighted in italics. Where more than one method is optimal, this is
highlighted by values in boxes

Location (MAE)/(Median absolute error) MD RMSE

M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4

°Cd °Cd °C d °C d °C d °C d °Cd °Cd °Cd °C d °C d °C d

Greenland 7.8/3.5 3.9/1.1 5.4/2.5 5.2/0.93 5.6 –2.3 3.1 -5.1 9.9 6.9 8.2 8.5
Antarctica
(SHEET)

4.4/0.27 1.5/0.12 – 0.57/0.01 4.4 1.3 – –0.41 5.8 2.5 – 0.9

Antarctica
(SHELF)

8.6/4.0 3.1/0.82 – 3.1/2.32 8.4 1.4 – –2.4 10.3 5.3 – 2.4

Antarctica
(LAND)

5.8/0.19 1.8/0.16 – 0.87/0.01 5.7 1.5 – –0.62 6.9 2.9 – 2.2

Antarctica
(OTHER)

10.4/8.9 4.4/2.9 – 7.3/5.1 10.4 –1.6 – –7 8.1 4.6 – 5.6

N1 7.3/5.0 4/1.5 – 5.6/2.1 6.5 –2.4 – –5.5 7.7 6.1 – 7.8
N2 7/4.3 4.3/1.7 – 6.1/1.9 6 –3 – –6.1 7.6 6.7 – 8.7
N3 8.6/6.5 3.3/1.9 – 5.6/3.6 8.2 –2.1 – –5.5 8 5.1 – 6.3
Norway (All) 7.5/5.0 4/1.6 – 5.7/2.2 7 –2.6 – –5.7 7.7 6.1 – 7.8
C1 6.3/2.7 8.5/4.9 – 10.9/5.1 3 –5.7 – –8.5 11.3 12.5 – 14.8
C2 15.7/13.9 4.7/2.7 – 5.8/1.7 15.5 1.6 – –0.6 11.8 9.5 – 10.3

Table 2. As Table 1, for TLIM = –5°C

Location (MAE)/(Median absolute error) MD RMSE

M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4

°Cd °Cd °C d °C d °C d °C d °Cd °Cd °Cd °C d °C d °C d

Greenland 6.9/3.6 6.7/2.2 8.1/3.3 10.9/4.4 –1.9 –4 2.8 –10.3 11 10.7 13.6 13.8
Antarctica
(SHEET)

8.8/2.7 7.4/3.5 – 2.1/0.4 8.4 7.2 – –0.24 8.4 7.4 – 4

Antarctica
(SHELF)

10.5/9.3 7/5.0 – 11.4/10.5 7.9 3.6 – 10.2 10.1 8.5 – 8.1

Antarctica
(LAND)

8.6/3.2 7/2.5 – 2.1/0.61 8.2 6.6 – –0.3 10.2 8.5 – 4.1

Antarctica
(OTHER)

9.9/9.5 5.4/4.4 – 6.8/6.0 7.7 2.7 – –6 9.3 6.3 – 6.4

N1 7/4.4 5.5/2.6 – 8.4/3.4 4 0.86 – –8 8.5 7.9 – 9.5
N2 7.3/4.7 6/2.9 – 9.6/5.6 3.9 0.82 – –8.3 9.5 8.9 – 10.6
N3 8.1/4.3 5.4/2.5 – 6.1/2.0 6.8 3.3 – –5.4 8.5 7.3 – 8.2
Norway (All) 7.3/4.7 5.7/2.6 – 8.3/3.5 5.2 2 – –6.9 8.9 8.2 – 9.6
C1 16.8/11.8 18.6/7.9 – 23.7/5.05 –11 –12.7 – –17.9 20.8 26.1 – 33.5
C2 16.7/16.5 13.6/7.3 – 15.4/1.9 –12.9 –7.4 – –9.1 12.5 17.1 – 22.8
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cases the MD of the modelled values is less positive,
suggesting that moving to a threshold temperature of –5°C
will cause underestimation of melt for M1, M2 and M4
(Table 2; Fig. 5c, g and o). The t-test reveals that M1
produces the lowest MD, but median absolute errors are not
significantly different against the other three models.
Histograms in Figure 5d, h and p reflect the increasingly

negative bias of some of the models for TLIM = –5°C
compared to when TLI = 0°C (Fig. 5b, f and n). Although
M1 and M3 produce high RMSE and MAE, the normality of
the distributions (Fig. 5d and f) suggests that, over time,
errors in PDDM for a time series will even out to be close to
zero. Temperature-parameterized �M produces an under-
estimation of PDDM implying that larger values of �M are
more appropriate to capture the temperature distribution
between –5°C and 0°C. In the following subsections,
methods M1, M2 and M4 are tested for PDDM data
collected in Antarctica, Norway and Canada.
Computation of the Pearson’s linear correlation coef-

ficient, r, shows that PDDM residuals are significantly
correlated with the monthly North Atlantic Oscillation
(NAO) index at some sites in the PROMICE network
(p<0.05). For method M3, anticorrelations (–0.55 < r<
–0.34) are observed at stations in western (G25, G30,
G32), southern (G33) and eastern (G35, G36) Greenland.
M1 records similar but insignificant correlations at these
stations. This suggests that as the NAO reaches a more
negative state, methods M1 and M3 increasingly over-
estimate PDDM. It is likely that this correlation is linked to
the NAO via the observed anticorrelation of temperature
and NAO state (Hanna and Capellen, 2003; Box, 2006).
For M2, significant correlations are also noted, but at only

three stations: r= –0.54, –0.64 and –0.52 at sites G30, G35
and G36 respectively. This suggests that although M3
accounts for sinusoidal variations in �M, which are also
reflected in the annual temperature cycle, M2 provides a
slightly better forecast of PDDM by accounting for synoptic
variations in temperature such as those associated with the
NAO. M4 produces significant correlations (0.39, –0.54,
–0.49, 0.86, 0.85) at five sites (G23, G31, G35, G39, G40;
see Fig. 2a and Supplementary Fig. S1a (http://www.igsoc.
org/hyperlink/14j116/fig_s1.docx)), suggesting that the vari-
ability in �M introduced by M4 may not fully capture NAO-
linked temperature oscillations. These correlations are valid
for the case TLIM = 0°C; when TLIM = –5°C is applied, fewer
significant correlations are detected across each method.

Antarctica
The applicability and transferability of our methods to the
Antarctic ice sheet is tested in this subsection. We split the
Antarctic dataset according to locality: Ice Sheet, Ice Shelf,
Land and ‘Other’ (Fig. 6; Tables 1 and 2). The category
‘Other’ encompasses data collected on a sub-Antarctic
glacier (Brown Glacier, Heard Island) and on an iceberg
(B9B) (Supplementary Table S2 (http://www.igsoc.org/
hyperlink/14j116/tab_s1.docx)). First, the results relating to
the use of TLIM = 0°C are discussed (Fig. 6).
For the Antarctic ice sheet dataset (Fig. 6a, b, i, j, q and r),

it is clear that the use of �M=4.5°C cannot accurately
represent PDDM. Consistent overestimation of PDDM occurs
using M1 (Fig. 6a and b), with PDD totals overestimated by
�20–30°Cd when TM=–4 to 0°C. Positive bias also occurs
using M2, suggesting that �M is also too large to accurately
reconstruct PDDM (Fig. 6c and d). Using the Wilcoxon rank

sum and t-tests, the median absolute error and MD produced
by M4 are significantly different to those of the other
methods, indicating that M4 is more appropriate for PDDM
computation over the Antarctic ice sheet (Fig. 6i and j;
Table 1).
Increasing overestimation of PDDM as a function of TM is

also a feature of methods M1 and M2 over land and ice
shelves in Antarctica. When M2 is used to predict PDDM
over ice shelves, a higher frequency of modelled PDDM
values fall within �2.5°C d of the observed values (Fig. 6l),
compared with M1 andM4 (Fig. 6d and t, respectively). Over
land surfaces, M4 performs significantly better than M1 and
M2, producing the lowest MD of the three methods (Table 1).
The dataset of PDDM gathered from stations on Brown
Glacier and B9B (‘Other’; see Supplementary Table S2
(http://www.igsoc.org/hyperlink/14j116/tab_s2.docx) for
locations) is best reconstructed using M2, producing the
lowest MD of –1.6°C (p<0.05) and lowest median absolute
error of the dataset. Figure 6r, t, v and x show that, as with
Greenland data, M4 underestimates PDDM over all surfaces.
Lowering the threshold temperature for PDDM calcula-

tion to TLIM = –5°C increases the RMSE produced by all
methods over all surfaces (Fig. 7; Table 2). For all sites, M1
produces RMSE in the range 8.4–10.2°C d (Fig. 7a, c, e and
g) and M2 in the range 6.3–8.5°C d (Fig. 7i, k, m and o). The
performance of M4 is more variable, with RMSE in the range
4–8.1°Cd (Fig. 7q, s, u and w).
Methods M2 and M4 produce significantly better repre-

sentations of the Antarctic dataset as a whole (p<0.05),
reinforcing the suggestion that a formulation that produces
lower �M may be more appropriate for the Antarctic ice
sheet. This inference is supported by Seguinot and Rogozhina
(2014) who reported long-term January values of �M for
Antarctica that were lower than those for Greenland by�1°C
in the range –5°C<TM<0°C. The preference for M4 is further
supported by investigation of a subset of Antarctic data (not
shown) which demonstrates that observed �M is generally 1–
2°C lower than that predicted usingM2 for –10°C<TM<0°C.
Over ice shelves, for the sparse data available, M2 is the
more appropriate formulation as with sites outside Ant-
arctica. The ‘Shelf’ and ‘Other’ categorizations contain fewer
observations, so although the statistical tests demonstrate
significant differences between the performance of the top
two methods (Tables 1 and 2), further observations are
required to determine whether the TM–MD relationship is
consistent over all surface types.

Northern Hemisphere glaciers
Finally, we reconstruct observational PDDM from five mid-
to high-latitude glacier sites in the Northern Hemisphere.
Data from Norwegian sites are grouped together and
presented as a single dataset, as we find no significant
difference between the performances of each method on a
site-by-site basis (Fig. 8b, g and j and d, h and l). As with
Greenland and Antarctica, a similar pattern continues at
these sites for TLIM = 0°C. M1 overestimates the observed
PDDM totals, with a peak overestimation of �20°C d for
–2.5°C <TM<2.5°C (Fig. 8a and b), and M2 generally
provides an underestimation of PDDM (Fig. 8e and f). Table 1
shows that M2 reproduces PDDM to greater accuracy
compared to M1 at these sites. Langfjordjøkelen (site N2,
Fig. 2c) may be categorized as a maritime, subpolar glacier
(Giesen and others, 2014) and therefore assumed to be
subjected to significantly different meteorological regimes
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than the observations used to generate the M2 parameter-
ization. However, M2 reproduces 83% of PDDM totals at this
site to within �5°Cd of the observations. This level of
performance falls to 72% at Midtdalsbreen and 70% at
Storbreen. M4 causes significant underestimation of the
dataset if reflected in Figure 8i and j.
When the threshold temperature is lowered to –5°C, all

RMSE values increase for the combined Norway dataset. For
M1 and M2, the distribution of errors is more Gaussian-like
(Fig. 8d and h) compared to the right and left skews of the
distributions in Figure 8b and f respectively. However, M4
still underestimates PDDM (Fig. 8k and l), suggesting that
standard deviations produced by the method are too low to
capture monthly temperature variability at Norwegian sites.
Performance is mixed for the mid-latitude glaciers in

western Canada (Fig. 9). At Haig Glacier (C1), all
methodologies produce large RMSE (Tables 1 and 2), and
M2 and M4 consistently underestimate PDDM using both
threshold temperatures (compare Fig. 9e, g, i and k). Also,
the magnitude of the absolute errors for M2 and M4 is
largest for Haig compared to any other site in this study; this
is the only site considered in this paper in which M1 is
favoured (Tables 1 and 2). Method M2 produces the smallest

overall average MAE at Kwadacha Glacier (C2), but only
11 data points are available for this site and it would be
unwise to discriminate between methods using such a small
dataset. Based on our test of differences between population
median absolute errors, we are unable to advocate for either
M2 or M4 at Kwadacha.
We are not sure what underlies the poor performance of

M2 and M4 at Canadian glacier sites. Both Kwadacha and
Haig are continental glaciers, with large diurnal temperature
cycles. Haig is at a lower latitude than other sites in our
study, and the glacier boundary layer is warm through the
summer melt season, with mean daily temperatures of up to
10°C. Under these conditions, the revised methodology for
estimating monthly PDD totals appears to break down,
instead preferring a higher value of �M as demonstrated by
Figure 9a and c. The strong daytime warming, warm winds
and large diurnal cycles may combine to give a higher
temperature variance than experienced at higher latitudes.

Contribution to melt error
A feature of all scatter plots in Figures 5–9 is the peak (or
trough) in the modelled minus observed PDDM around the
point where TM=TLIM. For both thresholds (i.e. TLIM = [–5°C,

Fig. 8. Norway. Modelled minus observed monthly PDD as a function of TM using three methods of parameterization of standard deviation:
M1 (a, c), M2 (e, g) and M4 (i, k). Accompanying histograms show the frequency, f, of the deviation of modelled PDDM values from
observed PDDM (PDDOBS) for each method, with a bin size of 5°C d. Bin centres are marked on the x-axis. The histograms delineate the
performance of each method at each site (N1–N3). The figure is split into two panels, each representing the performance of each method
when a threshold temperature (TLIM) of 0°C and –5°C is used to calculate PDD. Performance indicators MAE, MD and RMSE are noted in
Tables 1 and 2 (°C d).
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0°C]), maximum error in PDDM will occur when TM
approaches TLIM if �M is incorrectly specified with respect
to the observed values (�o). The reason behind this is
explained in Figure 10. Consider three scenarios where
PDDM is calculated with respect to TLIM = 0°C when
TM= TLIM (Fig. 10a), TM= TLIM – 3 (Fig. 10b) and TM=
TLIM + 3 (Fig. 10c). The cumulative distribution function
(CDF) is produced in each scenario for �M=�o (e.g. the
parameterized standard deviation is equal to the observed
value (�o which is set to 2°C in this example)), �M=2�o and
�M=0.5�o. We consider the following cases:

1. For TLIM =TM, when �M=�o, �M=0.5�o and �M=2�o,
50% of temperatures in the sample are greater than TLIM
in each case. However, when �M=2�o, there is a greater
spread of temperatures above this limit, hence a higher
PDD total is produced. The opposite is true when
�M=0.5�o (Fig. 10a).

2. For TLIM >TM (Fig. 10b) or TLIM <TM (Fig. 10c), the
differences in the ranges of temperatures produced
between TLIM and 1 are partly compensated by the

difference in the number of values falling between these
limits. For example, for Figure 10a, when �M=2�o 50%
of the values fall between 0°C and 17.2°C. For �M=�o
and �M=0.5�o this is 0–6.9°C and 0–3.7°C respectively.
In the case of TLIM > TM (Fig. 10b) the differences
between the ranges of temperatures above TLIM are
reduced: 0–0.5°C for �M=0.5�o; 0–4.15°C for �M=�o;
and 0–6.9 for �M=2�o. Resulting PDD totals from each
method display a smaller range in Figure 10b and c than
in Figure 10a.

These cases present an interesting problem if melt calcula-
tion is reliant on the use of the PDD method. We have
demonstrated that when mean monthly temperature ap-
proaches the threshold temperature applied in the PDD
algorithm, maximum error in forecasted PDD occurs if �M is
incorrectly prescribed compared to observed values.
It is important to place the improvement in PDD pre-

diction into context with the overall effect the improvement
causes on final predicted melt total (Eqn (1)). Equation (8)
reflects the fractional error in melt originating from a given
PDD computation method. The associated error/uncertainty

Fig. 9. Canada. Modelled minus observed monthly PDD (deviation) as a function of TM using three methods of parameterization of standard
deviation: M1 (a, c), M2 (e, g) and M4 (i, k). Accompanying histograms show the frequency, f, of the deviation of modelled PDDM values
from observed PDDM (PDDOBS) for each method, with a bin size of 10°C d. Bin centres are marked on the x-axis. The histograms delineate
the performance of each method at each site (C1 and C2). The figure is split into two panels, each representing the performance of each
method when a threshold temperature (TLIM) of 0°C and –5°C is used to calculate PDD. Performance indicators MAE, MD and RMSE are
noted in Tables 1 and 2 (°Cd).
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on the final melt estimate (�Mn) using a given method of
parameterization of �M (n=1,4) is expressed as

�Mn

Mn
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�fs, i
fs, i

� �2

þ
�PDDMn
PDDOBS

� �2
s

ð8Þ

We define�fs,i as the ‘uncertainty’ attached to the use of the
degree-day factor for snow (s) or ice (i). To assess this
uncertainty we use the values of Hock (2003), with fs varying
between 2.5 and 11.6mm°Cd–1 and fi between 5.4 and
20mm°Cd–1. Using this database, fi=8.7�7.4mm°Cd–1

and fs=5.1� 4.5mm°Cd–1 (�2�). Therefore, the term
�fs, i
fs, i
is

assigned a value of 0.88, i.e. the maximum fractional
uncertainty associated with snow surfaces. PDDOBS is
defined as the observed PDD total for a given data point,
i.e. the ‘correct’ value. �PDDMn is defined as the modelled
minus observed PDD total.

Since this paper focuses on improving the forecasting of
PDDM, we only comment on the relative success of each
method in producing the lowest fractional uncertainties in
melt. Figure 11a and b illustrate the frequency at which each
method produces the lowest fractional error in melt for the
PROMICE dataset used in Figure 5. In Figure 11a and b, M0
signifies occasions where no single method provides the
best melt estimate (grey bars) and when an improvement in
fractional melt error of at least 5% compared to the next best
method does not occur (black bars). Method M1 produces
the lowest error in �Mn

Mn
for 18% of the dataset (grey bars). M2

performs better than M1, with M2 generating the smallest
errors in melt in a higher frequency of instances (24%),
followed by M3. The magnitude of improvement is less
significant, however. In �70% of the cases, the best method
(denoted by the black bars in Fig. 11a) offers no greater than
a 5% improvement in fractional melt error. Greater than 5%
improvement in fractional melt error occurs in only very low
frequencies for each method, the highest of which is for M1
(�10%; Fig. 11a). For TLIM = –5°C (Fig. 11b), the perform-
ance is similar across the methods, with M2 providing the
lowest overall melt error in most cases (23%).
When comparing the performance of the two methods

which parameterize �M as a function of temperature,
Figure 11c and d demonstrate that, in some cases, fractional
melt error can be up to one or two orders of magnitude
higher when using M2 compared to M4; however, this is
generally at lower temperatures (hence low PDDM) when
fractional errors in PDDM are inflated and where M2
predicts larger �M (e.g. 5°C when TM=–10°C; Fig. 4c) than
M4 (3.2°C when TM= –10°C). At higher temperatures
(Fig. 11e), fractional errors in melt lie between 0.89 and
1.25, with M4 producing the larger errors. A similar pattern
is noted in Figure 11f. In Figure 11e and f when the value on
the axes approaches –0.05, this indicates that the error
associated with PDD forecasting is close to zero and that the
error in melt is mainly a function of f. When the value on the
x- or y-axis is close to or larger than 0.1, the error in PDDM
dominates the final melt error. As expected, the smallest
errors are generated for higher temperatures (Fig. 11e and f).
For TLIM = 0°C, the use of M2 causes errors in monthly melt
totals that are largely a function of the error or uncertainty in
applied degree-day factor when TM>–5°C, clearly demon-
strating a need to focus on constraining degree-day factors
in order to provide robust estimates of ice-sheet ablation if
the PDD method is to be applied in future studies.

CONCLUSIONS
The value of �M is central to providing accurate predictions
of ice-sheet and glacier mass balance. Used previously as a
tuning parameter, the value selected in various studies for
�M generally ranges between 4 and 5°C. The work carried
out in this study shows unequivocally that the current
assumption of a stationary �M is not in line with observations
from AWSs on the Greenland ice sheet, as first shown by
Fausto and others (2011), nor elsewhere in the cryosphere.
Using hourly temperature data from the GC-Net network
(Steffen and others, 1996), it is clear that although the
distribution of temperature is partly forced by the diurnal
cycle, there is a relationship with monthly temperature itself
due to the annual cycle, and the limiting effect of a melting
surface on temperature fluctuations. Our results reinforce
and help to explain the findings of Seguinot (2013), Seguinot

Fig. 10.Cumulative distribution functions (solid lines, left y-axis) and
associated cumulative PDDM (dot-dashed lines, right y-axis) as a
function of temperature for a sample where (a) TM = TLIM,
(b) TM< TLIM and (c) TM>TLIM. In each plot, �M=�o (dark grey),
�M=2�o (black) and �M=0.5�o (light grey). For (a) TLIM =0°C,
(b)TLIM= –3°Cand (c)TLIM= 3°C.TLIM is set at 0°C,whereas�o = 2°C.

Wake and Marshall: Assessment of current methods of PDD calculation 341

https://doi.org/10.3189/2015JoG14J116 Published online by Cambridge University Press

https://doi.org/10.3189/2015JoG14J116


and Rogozhina (2014) and Rogozhina and Rau (2014),
which are based on reanalysed data from climate models.
Our analysis of temperature data from a broad array of
glacier and ice-sheet locations demonstrates a systematic
spatial variation in temperature distribution characteristics
and PDD values, largely explicable as a function of mean
monthly temperature. The spatial and seasonal variations
identified in earlier work are also an expression of tempera-
ture conditions (Seguinot and Rogozhina, 2014), which we
attribute to contrasting latent energy effects over melting vs
sub-freezing snow and ice.
For a monthly temperature of 0°C, previous methodology

(M1) assumes a standard deviation of 4–5°C, whereas the
work presented in this paper suggests this value should be
�2.6°C. This results in a monthly PDD total that is 40%
lower than in previous methodologies, a substantial differ-
ence in the energy assumed to be available for melt. We
show that degree-day melt factors need to be revisited to
accommodate this difference, as these are presumably tuned

to be too low in current ice-sheet models. Additionally as
more of the ice sheet enters the critical temperature band
(e.g. between –5°C and 0°C), the importance of accurate �M
will be noticeable. We also evaluated the assumption of
normality of temperature distributions using datasets of
hourly surface air temperature over the Greenland ice sheet
and found that also there is a weak relationship with
temperature, partly explained by decreasing �M at higher
temperatures.
Although this paper does not provide an exhaustive

assessment of the predictive power of M2, it is possible to
firmly state that a temperature, rather than spatio-temporal,
parameterization of �m based on Greenland ice sheet AWS
observations provides greater flexibility of application to
other glacierized regions. The future of ice-sheet models may
be leaning towards increased complexity with respect to the
consideration of all components of the energy budget, but the
favourable performance of the PDD method lends this
technique to wider usage. We have demonstrated the

Fig. 11. Histograms (grey bars) showing frequency at which each method of PDD calculation (M1–M4) produces the lowest fractional error
in melt (Eqn (7)) for data months in the PROMICE dataset using a threshold temperature of TLIM= 0°C (a) and TLIM = –5°C (b). Frequency of
occurrence of M0 signifies when more than one method provides an optimal solution. Black bars on each histogram indicate which method
produces a >5% improvement in fractional melt error compared to the next best method. In this case, M0 represents a <5% difference in
fractional melt error between the top two performing methods. (c, d) Comparison of the logarithm of fractional errors in melt for the two
methodologies parameterizing �M as a function of TM (M2 and M4) when TLIM =0°C (c) and when TLIM = –5°C (d). (e, f) Enlarged versions of
(b, c), where the logarithm of fractional melt error lies between –0.2 and 0.2.
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applicability of this method not only in Greenland, for which
themethodwas derived originally, but also for many areas on
the Antarctic ice sheet and other areas of the cryosphere,
where favourable results are predicted. Further testing is
needed to evaluate the best PDDmethodology at low to mid-
latitudes.
Finally, use of the PDD method includes selection of

appropriate degree-day factors with which to calculate melt.
As shown in Figures 10 and 11, the onus now lies with
providing constrained degree-day factors to produce accur-
ate melt forecasts. This paper demonstrates conclusively
that, as a first step, temperature-evolving values for �M
should be applied in all future ice-sheet mass-balance
studies that employ the PDD method.
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