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AUTOMATIC CONTINUITY OF
PERTURBATIONS OF CAUSAL OPERATORS

K.J. HARRISON, L-J. EATON AND J.A. WARD

We obtain automatic continuity results for finite-rank perturbations of causal se-
quence space operators, and provide examples to illustrate cases where automatic
continuity does not hold.

1. INTRODUCTION

Let £ be a Banach space and let = (= E(£)) denote the linear space of all doubly
infinite £-valued sequences. For each p, €7 (= £P(£)) is the Banach space consisting

1/
of all £-valued sequences z € E for which ||z|, < oo, where ||z], = (E ||a:n|{p) ? for

1< p< oo, ||z]l, = sup, ||#a|l, and where |[z.|| is the norm of z, in the base space
£.

For each integer k, we introduce the projection Py on E, defined by (Piz),, = zn
if n <k and (Prz), = 0 otherwise. We say that a sequence = € = has a finite past if
and only if Pz = 0 for some integer k, and in particular that z is causalif P_;z =0
so that z,, = 0 if n < 0. We let E¢, denote the set of all sequences in E with finite
past, Z4 the set of all causal sequences and also Zygy the set of all sequences z with a
finite support; that is, for which z,, = 0 off some finite subset of Z.

A sequence space operator is a linear operator between subspaces of Z. We are
interested in the relationship between the notions of stability and continuity for sequence
space operators which arise naturally using the £P subspaces.

Let T be a sequence space operator and let W be a subspace of Z. We say that
T is (p,q)-stable on W if WN £P C D(T), the domain of T, and Tz € #? for each
z € WNEP. We say that T is (p, g)-stable if it is (p, q)-stable on £7. Operators which
are (00, 00)-stable have been considered extensively in the signal processing literature,
where they are said to be bounded-in-bounded-out.

We say that T is (p, q) -continuous on W if it is (p, g)-stable on W and thereis a
number x > 0 such that ||Tz||, < & ||z||, for all z in W N £?. The least such number
x is called the (p,q)-operator norm of T on W. We say that T is (p,q)-continuous
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if it is (p, ¢)-continuous on #P. Operators which are (0o, c0)-continuous have also been
considered extensively in the signal processing literature, where they are said to have
finite gain.

Clearly (p,q)-continuity on W implies (p,q)-stability on W, but the converse is
not true in general. In this paper, we shall be concerned with conditions on T that
guarantee that the reverse automatic continuity result holds when W is one of the

spaces 2, Efp or E.

2. OPERATORS ON CAUSAL SEQUENCES

2.1 CAUSAL OPERATORS. A sequence space operator C is causal on a subspace W
of Z if W C D(C) and if, for each # € W and each integer k, Prz € D(C) and
P,CPrz = P,Cz. Thus C is causal on W if, for any two sequences z and y in W,
the images Cz and Cy agree at the k** coordinate if  and y agree at the k** and
all preceding coordinates.

Our starting point is a version of a well-known automatic continuity result for

causal operators. See, for example, [4].

PROPOSITION 1. If C is causal and (p,q)-stable on {P(£), = £P(€) N By,
where £ is finite dimensional and 1 < p,q < oo, then C is (p, g)-continuous on £P(£), .

PROOF: The neatest proof uses the closed graph theorem. Suppose that z(*) — z
in £P(€), and Cz(™) — y in £9(£), and choose any k > 0. Then

PCz(™ = P.CPiz{™ - P,CPiz = P,Cx,

because C is causal and PxC is continuous on the finite-dimensional space PifP(£) +
But PrCz(™ — Py, and so Pyy = PxCxz. Since k is arbitrary, it follows that y = Cz,
and so C is (p,g)-continuous on £P(£), by the closed graph theorem. 0

Proposition 1 fails if £ is infinite dimensional. To see this, let ¢ be a discontinuous
linear functional on £, let u be a non-zero sequence in ¢4(£),, let Qo = Py — P_;,
and define C on E by Cz = ¢(Qoz)u. Then C is (p, g)-stable, but clearly not (p, g)-
continuous on E;. To see that C is causal observe that, for any z € £7(£), and any
integer k,

P.C Prz = ¢(Qo Prz)Pru, and PyCz = ¢(Qoz)Pru.

Since Qo P = @y if £ > 0 and Pru =0 if k <0, it follows that PCPiz = PrCz for
all z and k. So C is causal on Z.

The following result generalises Proposition 1. It concerns the continuity of causal
operators which are ‘almost’ (p, g)-stable on £P(£), .
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THEOREM 1. Suppose that C is causal on £P(£), and that CEP(£), C 4(&)+V,
where £ is finite dimensional and 1 < p,q € oo, and where V is a finite-dimensional
subspace of Z. Let X denote the stability set of C, that is,

1) X =C (€)= {z: z € £7(£), and Cz € L3(£)}.

Then X is a closed subspace of finite codimension in £7(£) ,, and C is (p, q)-continuous
on X.

PROOF: Let m be a bounded sequence of non-zero numbers with the property
that mz € £9(€) for each z € V, and let M be the sequence space operator defined
by pointwise multiplication by m; that is (My), = mnys for each integer n and each
y in Z. Then M is injective and causal, and My € £%(£) for each y in £(&) + V.
Therefore MCz € M(£9(€) + V) C £9(£) for each = € £P(£), , and so MC is (p,q)-
stable on £P(£), . Furthermore, since M is causal on E and C is causal on £7(£), ,
MC is causal on £(£), . So by Proposition 1, MC is (p, g)-continuous on (&), .

Let ||| be a norm on €9(£) + V with the property that

(2) lylly < llyll for any y € £9(€),

and suppose that z(™ — z in 2(£), and Cz(™ — y in €3(€) + V. Since MC is
(p,q)-continuous on £P(€),, MCz(™ — MCz in £9(€). But M is also continuous as
an operator from £9(£) + V into £9(€). So MCz(™ — My. Therefore My = MCz,
and since M is injective, y = Cz. So by the closed graph theorem, C is continuous
as an operator from £P(£), into £9(£) + V. Therefore there exists x > 0 such that
ICz|l < k|lzl|, for all z € £7(£),,, and it follows from (2) that [|Cz|l, < [|Cz|| < |z||,
for each z € X. So C is (p, g)-continuous on X.

Let {Cz,,Cz3,...,Cz:} be a basis of ran(C) NV, where each z; € £(£),,
and choose any z € £P(£),. Then there exist scalars a;,az,...,a; and y € £(£)
such that Cz = y + i a;Cz;. But this implies that z — i ajz; € X. So X has

0 it
finite-codimension in JlP(E )t - ’

Finally, suppose that z(™ — z in £#(£), and that (™) € X for each n. Since C
is causal and PC is (p,p)-continuous on PfP(£), , for each k,

P.Cz™ = P.CP,z'™ = P,CP,z = P,Cxz.

So Cz(™ — Cz coordinatewise. But C is (p,q)-continuous on X and {”:z:(")"p} is
bounded, and so {“C:c(")”q} is bounded. Therefore ||Cz||, < oo, thatis, z € X. So

X is closed and the theorem is proved. 0
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2.2 FINITE RANK PERTURBATIONS OF CAUSAL OPERATORS. In this section we use The-
orem 1 to establish continuity results for finite-rank perturbations of causal operators.

THEOREM 2. Supposethat C is causal and T is (p, q)-stable on €P(£) , where £
is finite dimensional and 1 < p,q < o0, and suppose that rank(T — C) =d < co. Then
there exists an operator T' which is (p,q)-continuous on £P(£), and which satisfies
rank(T' — T) < d and rank(T' — C) < d.

PROOF: Since T is (p,q)-stable on £#(£), and F = T — C has finite rank, C
satisfies the conditions of Theorem 1. So C is (p, ¢)-continuous on its stability set X,
as defined in (1), and X is a closed subspace of finite codimension in £P(£), . Let Y be
a subspace which is complementary to X in £P(£), , and let T' Be defined on £7(£),
by

(3) T'(z +y)=Cz + Ty for each z € X and each y € ).

Since C is (p,g)-continuous on X and since Y is finite-dimensional, T is (p, q)-
continuous on £P(£), . Furthermore,

(T' - T)z +y)= —Fz and (T' - C)(z + y) = Fz,

and so rank(T' — T) < d and rank(T' — C) < d, as required. |

EXAMPLE 1. Suppose that T and C are defined on ¢P(£), by
Tz = ¢(z)u and Cz = ¢(Qoz)v,

where u and v are causal sequences with ||ull; < co and ||v[|, = oo, where ¢ is a
non-zero linear form on £ and where 3 is a discontinuous linear form on €?(£), . Then
T is (p, q)—stal;le and C is causal on £P(£),, T — C has rank 2, and neither T nor C
is (p, g)-continuous on €P(£), . However the zero operator is a finite-rank perturbation
of both T' and C which is (p, g)-continuous on £P(£), .

The following corollary gives a condition under which a (p,q)-stable finite-rank

perturbation of a causal operator on £P(£), is itself (p, g)-continuous.

COROLLARY 1. Suppose that C is causal and T is (p,q)-stable on £P(£)_,
where € is finite dimensional and 1 < p,q < oo. Suppose also that T — C has
finite rank, and that (T — C)¢P(£), N €4(&) = {0}. Then T is (p,q)-continuous on
P(E), -

Proor: If z € X, then Cz € £9(€). Now Tz € £9(€) because T is (p,g)-stable
on ¢7(£), , and therefore (T — C)z € (T - C)F(E), N£2(E). So by the hypothesis,
Tz = Cz. Therefore T = T, where T" is defined as in (3), and the result now follows
from Theorem 2. 0
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According to Proposition 1, a causal operator on ¢P(£), is (p,g)-continuous on
£P(£), ifitis (p,q)-stable on £P(£), . The final corollary for this section shows how the
stability condition can be relaxed in the presence of a stable finite-rank perturbation.

COROLLARY 2. Suppose that C is causal and T is (p,q)-stable on £P(£),,
where £ is finite dimensional and 1 < p,q < oo. Suppose also that T — C has
finite rank, and that C is (p,q)-stable on =4 NEZgq. Then C is (p,q)-continuous on
(E), .

PRrOOF: Let X be the stability set of C, as defined in (1). By Theorem 1 it
is enough to prove that X = P(£),. According to the hypotheses of the corollary,
E4 NEgo C X.

Consider first the case p < co. Then E; N Ey is dense in £P(£), and since X
is closed, X = ¢P(£), . For the case p = co we use the causality of C. Suppose that
z € £°°(£')+. Then Pz € Z°°(E)+ M Zg0, and so

|PeCzl|, = ||PC Piz||, < ||CPiz|l, < & || Pez|, for each k,

where & is the (00, g)-operator norm of C restricted to X'. Since ||Prz| — |z
and ||PxCz||, — ||Cz||, as k — oo, taking limits as k — oo gives ||Cz||, < £||z],-
Thus C is (oo, g)-continuous on £%°(£), . 1]

3. OPERATORS ON FINITE PAST AND TWO-SIDED SEQUENCES

It is natural to look for results similar to Proposition 1 which apply to sequence
space operators which are causal on other subspaces of #P(£), such as the whole space
£€P(£) or the subspace €P(£),, = Eysp N LP(E) of finite past sequences in £P(£). The
following examples show that an operator may be (p,q)-stable and causal on these
spaces without being (p, ¢)-continuous on the space. This extends a result obtained in

[2] for the scalar-valued (oo, c0)-case.

EXAMPLE 2. There is a causal operator defined on Z which, for each 1 € p,q € o0, is
(p, q)-stable but not (p, g)-continuous.

PROOF: To comstruct the desired operator T, first choose a Hamel basis B of &
which contains a Hamel basis of Zf, and choose a sequence z in £!(£) with infinite
past. Let T' be the unique linear operator on = which satisfies

Tz = z and Tz = 0 for each z € B\{z}.

Since z € £9(£) and the range of T is spanned by z, T is (p, g)-stable.

Now Tz = 0 for each vector z in the Hamel basis of Z5,, and so T =0 on Ey,.
Hence T is causal because for any integer k and any sequence y in Z, (1 — Pr)y € Z¢p
and PkT(l - Pk)y = PkO =0.
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Finally, since z € £(£), |Pezl|l, — 0 as k —» —oco. But TPz = Tz —
T(1 — Pe)z = z # 0, for each integer k, and so T is not (p,q)-continuous. 1]
EXAMPLE 3. There is a causal operator defined on £ which, for each 1 < p,q € o0, is
(p, g)-stable on Z;p but not (p,q)-continuous on Zy,.

PROOF: Let T be the operator defined on = as follows: for each z = (z,) in Z,
Tz =y = (yn), where y, = 27"z, for each n.

Since T' commutes with each projection P, PiyTP; = P,T and so T is causal.

To see that T is (p,q)-stable on Zy, for each 1 < p,g < o0, choose z = (z,) €
£7(£);, and an integer N such that z, =0 forall n < N. Let y = (yn) = Tz. Then
Yn =0 for n < N and |y,| <277 |z,]| < 27" |||, for n > N, and so

lyll, € > 27 [|zlly = 2"V ||z]| o < oo
nz2N

So Tz € £*(£) C £9(€), and hence T is (p,gq)-stable on Zy,.
On the other hand, T is not (p,g)-continuous on Ey, because ||Tz||, = 27" ||z|,

if 2 =(Pp— Pp—1)z,and 27" — 00 as n — —o0. a

4. SHIFT-COMMUTING OPERATORS

The (forward) shift operator S is defined on E by the formula:
for each z = (2,) in E, Sz = y = (yn), where y, = 2,_; for each n.

The shift § is causal and an isometric isomorphism of each of the spaces ¢P(£) for

1 € p € co. It intertwines the projections P; in the sense that
S™ Py = PyynS™ for all integers n and k.

A set M of sequences is said to be shift-invariant if £ € M implies that Sz € M.
A linear form ¢ defined on a set of sequences is shift-invariant if its domain D(¢) is
shift-invariant, and for each z in D(¢), ¢(Sz) = ¢(z).

For the remainder of this paper, we shall be concerned with sequence space oper-
ators which commute with the shift. In the signal processing literature, operators of
this type are said to be shift- or time-invariant. We avoid this notation, preferring to

reserve the term ‘shift-invariance’ for subsets of = and linear forms.
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4.1 ON CAUSAL SEQUENCES. It follows immediately from Proposition 1 that a shift-
commuting linear operator T' which is causal and (p, g)-stable on Z4, where 1 < p,¢ <

co and £ is finite dimensional, is (p, g)-continuous on Z;. In Theorem 3 we extend
this result to the case where £ is infinite dimensional.

THEGREM 3. If T is causal, shift-commuting and (p,q)-stable on ¢P(£), , where
1 < p,q € oo, then T is (p, q)-continuous on = .

ProOOF: The following is a ‘gliding hump’ argument of the type that can be used
to establish basic automatic continuity results such as Proposition 1.

Suppose that T is not (p, g)-continuous on Z,. Then there exist sequences z(™
in £P(£), such that for all positive integers n

“z(")” < 27" and ”Tz(") >2% + Z ”Ta:<j)“ .
P q i<n q

Choose positive integers kj, k2,... such that for all positive integers n,

> e 0] >4 320
q . q
i<n

andlet z= Y S*%z("). Then z € £#(£), and so Tz € £9(£).
izl
Now let m = 2k,,. Since T is causal,

PpTz = P,TP,z = P,,.TP,,,(

Z Ski :z:("))

izl
n n
= PnTPn (Z S"iz(")) = PmT(Z Sk :c(")>
3=1 i=1
and so
IPnTzl|, > IIP,,,TS"“::(")” = ||Pstka<i>”
T ia 2
2 “S""Pk,,Tz(“)“ - Z ”S”"Tz(j)H > 2™,
T i ]
Hence ||Tz||, = oo, which is a contradiction, and T must be (p,g)-continuous on
E 0
|—0+ .

A shift-commuting linear operator T' which maps causal sequences to causal se-

quences must be causal, since for any integer k,
P,T(1 — Pt) = S*P,S™*TS*(1 -~ P,)S™* = S*P,T(1 - B)S~* =0.

Hence we have the following corollary.
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COROLLARY 3. Suppose that T is shift-commuting and maps causal sequences
to causal sequences. If T is (p,q)-stable on €P(£),, where 1 < p,q < oo, then it is
(p, g)-continuous on £P(£), .

In Section 2.2 we extended the automatic continuity result of Proposition 1 to
finite rank perturbations of causal operators on £P(£) +- There is a similar extension of
Theorem 3, with ¢ = oo being an exceptional case.

THEOREM 4. Suppose that C is causal and T is (p,g)-stable on £P(£), , where
1<p<ooandl < q< oo. Suppose also that T' — C has finite rank, and that T is
shift-commuting. Then T is causal and (p,q)-continuous on £P(£), .

PROOF: Suppose that T is not causal on £P(£), . Since T is shift-commuting,
this means that £P(£), is not invariant under T', and there exists = € £7(£), such
that y = PyT(1 - Py)z # 0. Then y € £4(£), and for any n > 0,

Sty = S"PoT(l — Po)-’b‘ = PnT(l - Pﬂ)Sﬂz = P"f(n)’

where f(®) = (T - C)(1 ~ P,)S™z.
Since P,f(") = S™y, ”_f(")”q > ”y"q > 0 for each integer n > 0. Furthermore,
for each j < n,
P;f™) = PP, ™) = P;S"y = S"P;_ny,
and so ”ij(")”q = ||P_,-_,.y|lq — 0 as m — oo, since ¢ < .
Now let e(®) = f(»)/ ||f(")”q. Then (e(")) is a sequence of unit vectors in the

finite dimensional range of T — C. So, by taking a subsequence if necessary, we may

assume that e(®) — e as n — oo, where llelig = 1. For each integer j,

_ .(n)” “ (n)
=B /s

as n — 00. So Pje = 0 for each integer j, and e = 0, which is a contradiction. So we
conclude that y = 0 and T is causal. Hence, by Theorem 3, T is (p, g)-continuous on
(E), . a

To show that Theorem 4 does not extend to the case ¢ = co, we first need to show
that there are discontinuous, shift-invariant linear forms on each of the spaces £7(£), .
This is done by applying a well-known result concerning shift-invariant forms on the

=

<||Bir™|| /i, -0
q q

‘two-sided’ scalar sequence spaces, £7(C).

LEMMA 1. For each p in [1,00] and each Banach space £, there exists a dis-
continuous, shift-invariant linear form v on €P(£), with the property that ¢ = 0 on
£P(€), NEqo.-

PROOF: By a result of Saeki [3] there are discontinuous shift-invariant forms ¢;
and ¢, on £P(C), with the property that each non-zero linear combination of ¢; and ¢,
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is discontinuous. Let § be a scalar sequence with just one non-zero term. If ¢,(6) =0
let ¢ = ¢;; otherwise, let ¢ = ¢2(86)d1 — p1(6)¢2. Then ¢(8) = 0, and since ¢ is linear
and shift-invariant, ¢(z) = 0 for each z in Zgo(C).

Now let w be a continuous non-zero linear form on £. We can regard w as a
linear mapping from Z(&) into E(C) by defining w(z) = (w(z,)) for each &-valued
sequence £ = (Z,). Then w is shift-commuting, commutes with each projection Py,
and is continuous as a map from £?(£) into ¢P(C). Furthermore, the composite map
7 = ¢w is a discontinuous, shift-invariant form on #P(£) with the property that =0
on Ego(£).

Let 74+ and 7- be the restrictions of 7 to £P(£), and to €P(£)_ = (8,
respectively. Since £7(£) 4 is shift-invariant, 74 is shift-invariant, and since 7 = 0 on
Z00{€), n— is shift-invariant. Now let 3; = n4 and ¥, = n_-W, where W is the
involution defined on Z(£) by

—00,0]

Wz =y = (ya), where y, = z_, for each n, for each z in E(£).

Both 1, and 3, are linear forms on £P(£) +» and 7y is shift-invariant. To see that i,
is also shift-invariant, note that for any z in £2(£),,

¥2(Sz) = n-W(Sz) = -5 'Wz = n_Wz = ,(z).

Since 7 is discontinuous, at least one of 4 and 7_ is discontinuous, and so at least
one of 1; and 1, has the desired properties. 1
This lemma can be used to show that Theorem 4 does not extend to the case
g =oo.
EXAMPLE 4. There is a shift-commuting rank one operator which is (p, co)-stable, but
not (p, c0)-continuous on £P(£), , for each 1 < p < 0.
PRrooF: Let Tz = 3(z)e for each z in £P(£),, where 1 < p < oo, where 3
is a discontinuous shift-invariant linear form on ¢P(£),, and where e is a non-zero

constant &-valued sequence. Clearly T has rank one and is (p,o0)-stable, but not
(p,00)-continuous on £P(£), . Finally, T is shift-commuting since

STz = (z)Se = ¢(z)e = P(Sz)e = T'Sz for each z in £P(£), . 0

The zero operator is a causal finite-rank perturbation of T' which shows that The-

orem 4 does not extend to the case ¢ = oo.

4.2 ON FINITE PAST SEQUENCES.
The isometric nature of the shift operator can be used to extend the automatic
continuity results for operators on causal sequences to shift-commuting operators on
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finite past sequences. Thus, for example, if T is shift commuting and z € £P(£) e
then S*z € ¢7(£), for some integer k, and so

ITzll, = ||$*T<||, = | TS*=]], -

So T is (p,q)-stable on £P(£),, if and only if T is (p,q)-stable on ¢7(£),,.

LEMMA 2. Supposethat T is shift-commuting on €P(£),, andis (p,q)-continuous
on £P(€), , where 1 < p,q < co. Then T is (p,q)-continuous on £7(£),,.

PROOF: If z € £P(£), then S*z € £(£), for some integer k, and
»
|Tzl, = “S"Ta:”q = ”TS"::“q <K “S"z”p =&zl ,

where & is the (p,g)-norm of T restricted to £7(£),,. 0

The first corollary, which is an analogue of Proposition 1 for shift-commuting,
causal operators on () fp» is an immediate consequence of Lemma 2 and Theorem
3. The second corollary, which is an analogue of Theorem 2, follows immediately from
Lemma 2 and Theorem 4.

COROLLARY 4. If T is shift-commuting, causal and (p,q)-stable on £7(£)
where 1 € p,q < oo, then it is (p, g)-continuous on () gy

fp?

COROLLARY 5. Supposethat T is afinite rank perturbation of a causal operator
which is shift-commuting and (p, q)-stable on ¢P(£),,, where 1< p< oo and 1 < ¢ <
co. Then T is (p,q)-continuous on £P(€),.

4.3 ON TWO-SIDED SEQUENCES.

There is a well-established automatic continuity theory for shift-commuting se-
quence space opérators. It follows from a result of Johnson [1] that there are shift-
commuting operators which are (p,q)-stable, but not (p,q)-continuous if and only if
there is a discontinuous rank-one operator F on €7(£) of the form

Fz = 1(z)y for each z in £7(£),

where 9 is a discontinuous shift-invariant form on €P(£), and where y is a non-zero
vector in £9(&) for which y = Sy.

However, only £°(£) contains vectors y of this type, and so each shift-commuting
(p, g)-stable operator is (p, g)-continuous if § < co. On the other hand, it follows from
a result of Saeki [3] that there are non-zero discontinuous shift-invariant forms on £7(£)
for each p in [1,00]. So for each such p there are shift-commuting operators which
are (p,oo)-stable but not (p,o0)-continuous. Our final example shows that there is a
discontinuous (p,o0)-stable operator which is both shift-commuting and causal.
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EXAMPLE 5. There is a rank-one, shift-commuting causal operator on ¢P(£), where
1 € p < oo, which is (p,00)-stable but not (p,o0)-continuous.

PROOF: Let 9 be a discontinuous, shift-invariant linear form on ¢P(€), , with
the property that ¢ = 0 on £P(£), N Egp, and let ¥ = (1 —F). Then ¥ is a
discontinuous linear form on ¢P(£) and ¥P; = 0 for each integer j. Furthermore, ¥

is shift-invariant since
US=¥Y(1-P)S=9(1-P)S=¢vSQ1—-PF)=v(1 - F)=1V.

Now let ® = YW, where W is the involution introduced in the proof of Lemma
1, and let Fz = ®(z)y, where y is a non-zero constant £-valued sequence. Clearly
F is a rank-one operator which is (p, co)-stable but not (p, oc)-continuous. It is shift-

commuting because ¥ is shift-invariant and so
S =IWS =USWS =IWS™!1S=0W = &.
Finally, F is causal. To see this, we observe that for each integer 7,
=YW =¥(1—-P_;_, )W =9WP; = ®F;,
and so for each z in £P(£),

PjF(]. — P,-):c = @((1 — Pj)z)Pjy =0. O
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