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Abstract. Let G be a complex linear algebraic group and�:G ! GL(V ) a finite dimensional
rational representation. Assume thatG is connected and reductive, and thatV has an openG-orbit.
Let f in C [V ] be a non-zero relative invariant with character� 2 Hom(G; C � ), meaning that
f � �(g) = �(g)f for all g in G. Choose a non-zero relative invariantf_ in C [V _], with character
��1, for the dual representation�_:G! GL(V _). Roughly, the fundamental theorem of the theory
of prehomogeneous vector spaces due to M. Sato says that the Fourier transform ofjf js equals
jf_j�s up to some factors. The purpose of the present paper is to study a finite field analogue of
Sato’s theorem and to give a completely explicit description of the Fourier transform assuming that
the characteristic of the base fieldFq is large enough. Nowjf js is replaced by�(f), with � in Hom
(F�q ; C

� ), and the factors involve Gauss sums, the Bernstein–Sato polynomialb(s) of f , and the
parity of the split rank of the isotropy group atv_ 2 V _(Fq ). We also express this parity in terms
of the quadratic residue of the discriminant of the Hessian of logf_(v_). Moreover we prove a
conjecture of N. Kawanaka on the number of integer roots ofb(s).

Mathematics Subject Classifications (1991): Primary 11L05, 11T24, 14G15; Secondary 11E76,
14G10, 20G40, 11M41.

Key words: Character sums, exponential sums, finite fields, prehomogeneous vector spaces, linear
algebraic groups, Bernstein–Sato polynomials,`-adic cohomology.

1. Introduction

1.1. LetG be a connected complex linear algebraic group, and�:G! GL(V ) a
finite dimensional rational representation. A triple(G; �; V ) is called aprehomo-
geneous vector spaceif V has an openG-orbit, sayO0. From now on, we always
assumeG reductive, except in (1.10). Let 06= f 2 C [V ] be a relative invariant with
the character� 2 Hom(G; C�); f(gv) = �(g)f(v) for all g 2 G andv 2 V . Let
�_ : G ! GL(V _) be the dual of�. Then it is known that(G; �_; V _) also has
an openG-orbit, sayO_0 , and that there exists a relative invariant 06= f_ 2 C [V _]
whose character is��1 (cf. [Gyo1, 1.5]).

Roughly, the fundamental theorem of the theory of prehomogeneous vector
spaces due to M. Sato says that

Fourier transform ofjf js = jf_j�s � (some factors) (1)
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274 JAN DENEF AND AKIHIKO GYOJA

for s 2 C . The purpose of this paper is to study a finite field analogue of (1) and to
give an explicit description of the Fourier transform assuming that the characteristic
of the base field is large enough.

1.2. In order to state our main result more precisely, let us briefly review the theory
of prehomogeneous vector spaces.

(1) There exists a uniqueG-orbitO1 (resp.O_1 ) which is closed in
 := V nf�1(0)
(resp.
_ := V _nf_�1(0)) [Gyo1, 1.4, (1)]. PutF := grad logf andF_ :=
grad logf_. ThenF (
) = O_1 andF_(
_) = O1 [Gyo1, 1.18, (2)].

(2) dim V = dimV _ =: n, dim O1 = dimO_1 =: m [Gyo1, 1.18, (3)],
degf = degf_ =: d [SatKim, pp. 71–72], [Gyo1, 1.5, (2)].

(3) f_(gradx)f(x)
s+1 = b(s)f(x)s andf(grady)f

_(y)s+1 = b(s)f_(y)s with
someb(s) 2 C [s] [SatKim, p. 72], [Gyo1, 1.6].

(4) b(s) = b0
Qd
j=1(s+�j)with someb0 2 C� and�j 2 Q>0 [Kas1], (cf. [Gyo1,

2.5.12]).
(5) bexp(t) :=

Qd
j=1(t�exp(2�

p�1�j)) =
Q
j>1(t

j�1)e(j) with somee(j) 2 Z.
(For example, see [Gyo4].)

1.3. Now assume that every geometric object so far is defined overQ, and let
us consider its ‘reduction modulop’ assumingp � 0. (HereQ may be replaced
with any algebraic number field.) Thus we can consider
(Fq ), O_1 (Fq ) etc. for
a finite fieldFq if p = char(Fq ) � 0. Take a non-trivial additive character 2
Hom(Fq ; C�). For any multiplicative character� 2 Hom(F�q ; C

�), putG(�;  ) :=P
t2F�q

�(t) (t).

THEOREM A1. If the characteristic ofFq is sufficiently large, then we have for
all � 2 Hom(F�q ;Ql

�
) that

q�n
X

v2
(Fq)

�(f(v)) (hv_; vi)

= q�m=2
Y
j>1

 
G(�j ;  )p

q

!e(j)
� �
 
b0f
_(v_)�1Q

j>1(j
j)e(j)

!
� �_(v_);

for v_ 2 O_1 (Fq ), where�_(v_) = �1 depends onv_ but not on�. Moreover the
above sum vanishes ifv_ 2 (
_nO_1 )(Fq ).

THEOREM A2.If the characteristic ofFq is sufficiently large, then we have for all
� 2 Hom(F�q ;Ql

�
) that

q�m
X

v_2O_1 (Fq)

�(f_(v_)) (hv_; vi)
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= q�m=2
Y
j>1

 
G(�j ;  )p

q

!e(j)
� �
 

b0f(v)
�1Q

j>1(j
j)e(j)

!
� �_(F (v));

for v 2 
(Fq ), with the same�_ as in TheoremA1.

Moreover forv_ 2 (V _n
_)(Fq ), resp.v 2 (V n
)(Fq ) the character sum in
Theorem A1, resp. Theorem A2, vanishes when the order of� is different from the
order inQ=Z of each�j in (1.2, (4)), see (5.2.3.3) and (7.6) below.

1.4. To state our second result, let us introduce the following notation.

r := cardfjj�j 2 Zg=P
j>1 e(j).

r( ) := rank= dimension of a maximal torus.
s( ) := split rank= dimension of a maximal split torus, cf. [Bor2, V, 15.14].
Gv_ = isotropy group atv_ 2 V _(Fq ).
r(v_) := r(G)� r(Gv_).
s(v_) := s(G)� s(Gv_).

THEOREM B.Assume thatchar(Fq )� 0. Then

�_(v_) = (�1)r(v
_)�s(v_);

for v_ 2 O_1 (Fq ).
1.5. Assume that the characteristic ofFq is not 2, and let�1=2 be the unique
non-trivial character ofF�q of order 2, i.e., the Legendre symbol. Forv_ 2
O_1 (Fq ), let h_(v_) be the discriminant of the quadratic formQ determined
by ((@2 log f_=@yi@yj)(v_)), i.e., the discriminant of the quadratic form on
V _(Fq )=(radical ofQ) induced byQ. Cf. (9.1.0, (4)). (Herefy1; : : : ; yng denotes
a linear coordinate system ofV _.) Since h_(v_) is an element ofF�q =F

�2
q ,

�1=2(h
_(v_)) is well-defined. We defineh(v) for v 2 O1(Fq ) similarly using

f instead off_. It is known that(m+ r)=2 is an integer. (See [Gyo2, 7.6], where
the proof is based on the mixed Hodge theory. See (5.2.1.3) for an alternative
proof.)

THEOREM C.Assume thatchar(Fq )� 0. Then

�_(v_) = �1=2

0@(�1)(m+r)=2
Y
j>1

je(j) � h_(v_)
1A ;

for v_ 2 O_1 (Fq ).
1.6. In the course of the proof of Theorem B, we obtain in (6.3) that

r(v_) = r(= the number of the integer roots ofb(s)counting multiplicity);
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276 JAN DENEF AND AKIHIKO GYOJA

for v_ 2 O_1 , which was originally conjectured by N. Kawanaka [Kaw2, (3.4.7),
(ii)], [GyoKaw, 3, Remark].

1.7. Note that the character sums of the form
P
v �1(f1(v)) � � � �l(fl(v)) (hv_; vi)

with relative invariantsf1; : : : ; fl, are actually dealt with in the above Theorems.
In fact, we can take� andai 2 Z>0 so that�i = �ai for all i, and then we haveQ
i �i(fi(v)) = �(f(v)) with f :=

Q
i f

ai
i .

1.8. OUTLINE OF THE PROOF

The proof of the Theorems A–C roughly goes as follows.

(1) We start from theD-module theory [Gyo1, Sect. 3], [Gyo3, Sect. 6], especially
the regular holonomicD-modules related to the complex powers of relative
invariants,

(2) second, proceed to the study of perverse sheaves onV (C ) etc. by the Riemann–
Hilbert correspondence [Gyo1, Sect. 3], [Gyo3, Sect. 6],

(3) third, proceed to the study ofl-adic étale perverse sheaves onV (Fq ) etc. by
the ‘reduction modulop’ (cf. the proof of (3.5.3)),

(4) and then, obtain results concerningC -valued functions onV (Fq ) etc. by con-
sidering the Frobenius trace.

Since aD-module is nothing but a system oflinear partial differential equations,
we can intuitively say that we are studying functions via the linear differential
equations characterizing them. Therefore the ambiguity of multiplication by a
scalar is inevitable, and our main problem is to explicitly determine this scalar.

Our present approach to the determination of the scalar is based on the Laumon’s
product formula (cf. (3.1.5)) expressing the Frobenius determinant as a product of
local constants. We shall give a slightly more detailed explanation of this approach
in (1.9) below, in the course of explaining the overall structure of the present paper.

An alternative approach to the determination of the scalar is considered in
[Gyo2] (see [Gyo4] for the detail), where the mixed Hodge modules due to
M. Saito are considered in place ofD-modules in the step (1), and then the Weil
estimate is obtained in the step (4) via the calculation of the weight filtrations in
the step (3) and via the famous work of P. Deligne on the Weil ‘conjecture’. In this
way, we can explicitly determine the archimedean absolute value of the scalar. At
present, we can not completely eliminate the remaining ambiguity of the argument
of the scalar by this approach.

1.9. CONTENT

This paper consists of 9 sections.
Section 1. Introduction.
Section 2 is devoted to the review of the theory of prehomogeneous vector

spaces.
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Section 3. We shall study the character sums usingl-adic étale sheaves via
the Grothendieck–Lefschetz trace formula. As we shall see in (3.5), (an essential
part of) the sheaf of our concern is smooth and of rank one. Therefore, the trace
and the determinant of the Frobenius are in fact the same, and thus the Frobenius
determinant becomes of our main interest. In this section, first we review the
product formula of G. Laumon (3.1.5) which describes the Frobenius determinant
in terms of the local constants. Next, we review a formula (3.2.1), which describes
geometrically how the Frobenius determinant varies when the coefficient sheaf is
twisted by the Lang torsor. Using this formula together with a generality concerning
the Deligne–Fourier transformation (3.3), we obtain an expression for the ratio of
the twisted and the untwisted Frobenius determinant in terms of global monodromy
etc. (3.4.5). In the final stage, the twisted Frobenius determinant becomes the
character sum appearing in Theorem A1 (or rather the one appearing in (5.2.1.0)),
and the untwisted one corresponds to the case where� is the trivial character.

Section 4. What is important as for the expression (3.4.5) is that there is an
expression (4.1.4) for the determinant of the difference operator on the Aomoto
complex (4.1.2), and this expression highly resembles (3.4.5). Moreover, we can
explicitly determine the determinant of the difference operator at least in the situ-
ation of our concern (cf. (4.2.4), (4.2.5) and (4.3.3)).

Section 5. Thus, comparing (3.4.5) and (4.1.4), we obtain enough information
concerning the ratio of the twisted and the untwisted Frobenius determinant, and
this enables us to prove Theorem A1. In the course of the proof, we obtain Theorem
A1y in (5.2.3.2), which refines both Theorems A1 and (3.5.3, (2)). In particular,
Theorem A1y gives an expression of the values of the character sum appearing in
Theorem A1 for allv_ 2 V _(Fq ) in terms of the trace of the Frobenius, whose
explicit determination is still open.

Section 6 is devoted to the proof of Theorem B. The basic idea is (6.2, (9)),
which enables us to express the right-hand side of Theorem B using the operation
jq 7!q�1 = (the substitution ofq by q�1).

Section 7. Here we show that Theorem A2 follows from Theorem A1. In the
same time, we also obtain Theorem A2y whose meaning is similar to Theorem
A1y.

Section 8 contains a formula (Proposition (8.2.3)) which yields in (9.3) an
expression for the untwisted Frobenius determinant in terms of the Hessian of the
restriction off to fv 2 O1jhv_; vi = 1g. This formula is an easy consequence of
some known facts which are first reviewed.

Section 9. In Lemma (9.1.7) we relate the above Hessian withh_(v_). Finally
we prove Theorem C in (9.3).

1.10. HISTORICAL REMARK, MOTIVATION , AND RELATED WORKS

The character sums studied in the present paper were first taken up in 1981 by
Z. Chen [Che] in the general setting, although some special cases had already
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278 JAN DENEF AND AKIHIKO GYOJA

been discussed in, e.g., [Sta], [Tsa]. In 1983, N. Kawanaka [Kaw1] has taken
up the same character sums, independently of Z. Chen. His motivation lies in the
theory of complex linear representations ofG(Fq )with reductiveG: he showed that
these character sums actually appear in the character tables of the finite reductive
groups, i.e., the groups of the rational points of connected reductive groups overFq
[Kaw2]. Since the explicit determination of the character tables is the main problem
in the representation theory of finite reductive groups (an open problem, at least
in May 1996), it is more or less inevitable to study these character sums. Later
the second named author started to work jointly with N. Kawanaka. The result
of this joint work was announced in [GyoKaw]. Using the result of [GyoKaw],
F. Sato [SatF1] studied theL-functions obtained by twisting the�-functions of
prehomogeneous vector spaces by Dirichlet characters. In particular, he obtained
the functional equations satisfied by them, where our character sums appear in the
same way as the classical Gauss sums appear in the functional equations of the
Dirichlet L-functions. Some progress after [GyoKaw] was announced in [Gyo2],
where two conjectures were formulated, which are now the main theorems of the
present paper.

Although our main interest here is the finite field analogue of (1.1, (1)), let
us give a short sketch of what is known when the base field is a local field of
characteristic zero.

Archimedean local fields (R; C )

The functional equation of the form (1.1, (1)) was first proved by M. Sato [SatM]
under the assumptions

(1) thatG is a reductive group,
(2) that every irreducible component ofV nO0 is of codimension one,

together with some additional mild assumptions. Indeed, this result is the very origin
of the theory of prehomogeneous vector spaces. F. Sato [SatF2] obtained a similar
functional equation forjf1js1; : : : ; jfljsl , where he did not assume (1). In [Gyo1],
another generalization was obtained where only (1) is assumed. These results do not
give the explicit form of ‘(some factors)’ in (1.1, (1)). In theC -case, these factors
are explicitly determined already in [SatM] up to signature, and in [Igu2] without
ambiguity. Both works assume (1), (2) and some mild assumptions. In theR-case,
an algorithm based on the microlocal analysis to calculate these factors is given in
[Kas2], [KasKimMur]. Actual calculation has been done for some special cases by
T. Suzuki and M. Muro using this algorithm. Besides, functional equations of the
form (1.1, (1)) for some special cases have been obtained by various methods by
many authors including I. M. Gelfand–G.E. Shilov, M. Sato, T. Shintani, F. Sato,
B. Datskovski–D. J. Wright, I. Muller, I. Satake–J. Faraut, T. Suzuki, Y. Teranishi,
S. Rallis–G. Schiffmann, E. M. Stein, S. S. Gelbart, R. Godement–H. Jacquet.
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Non-archimedean local fields (finite extensions ofQp)

For these fields a functional equation of the form (1.1, (1)) was first proved by
J. I. Igusa [Igu1] assuming the ‘Finite Orbit Condition’ and some other restrictions.
Some of these restrictions were removed in [SatF1] and [Kim]. However, very little
is known about the explicit form of ‘(some factors)’ in (1.1, (1)), except in some
examples (see, e.g., [SatF1]), or in the case thatG(Qp) acts transitively on
(Qp),
which has been investigated by J. I. Igusa [Igu2].

2. Prehomogeneous vector spaces

In this section, we review the theory of prehomogeneous vector spaces [Gyo1],
[Gyo2], [Gyo3]. We keep the notation of (1.1) and (1.2).

2.1. LEMMA [Gyo1, Lemma 1.8]. (1)For v 2 
; f_(F (v)) = b0f(v)
�1. (2) For

v_ 2 
_, f(F_(v_)) = b0f
_(v_)�1.

2.2. LEMMA [Gyo1, Theorem 1.18].Let (TO_1 )
? be the conormal bundle ofO_1 ,

i.e.,

(TO_1 )
? = f(v; v_) 2 V � V _jv_ 2 O_1 ; v ? Tv_O_1 (� V _)g:

(1) We have an isomorphism� making the following diagram commutative.

(TO_1 )
? �= � - 

QQQQQprojection s +��

��
�

F

O_1

Here�(v; v_) := v + F_(v_).
(2) The inverse of� is given by	(v) := (v � F_F (v); F (v)) for v 2 
.
(3) All these morphisms areG-equivariant.
(4) By these isomorphisms,O1 � 
 corresponds to the zero section of(TO_1 )

?.
(5) In particular,F induces an isomorphismO1! O_1 , whose inverse is given by

F_.
(6) The isotropy subgroupGv_ ofG at v_ 2 O_1 is reductive.

Interchanging symbols with_ and those without_, we define�_ and	_.

2.3. DOUBLE COVERING ~O1! O1 AND LOCALLY CONSTANT SHEAFL(!) = C !

For a local coordinate systemfz1; : : : ; zmg of O1, put

!2 := det

 *
F�

�
@

@zi

�
;
@

@zj

+!
� (dz1 ^ � � � ^ dzm)
2: (1)
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Here@=@zj denotes the vector field onO1 defined byzj , andF�(@=@zj) denotes
the corresponding vector field onO_1 . Then!2 is independent of the choice of the
local coordinates, and gives rise to a global section of the line bundle(

Vm T �O1)

2

which is everywhere non-vanishing [Gyo1, 3.12]. Let� : ~O1! O1 be the two-fold
covering ofO1 determined by! :=

p
!2, cf. [Gyo1, 3.14]. Them-form ! onO1

is defined only locally (with respect to the classical topology), but its pull-back
��! =: e! is defined globally on~O1. Define!_2, !_, ~!_, and�_: eO_1 ! O_1 ,
replacingO1 andf with O_1 andf_. LetL(!_) denote the isotypic part of�_� C ~O_1

corresponding to the non-trivial character of Gal( ~O_1 =O
_
1 ). ThenL(!_) is a locally

constant sheaf onO_1 , andL(!_) = C !_. (Although!_ is not globally defined,
the ambiguity is only the multiplication by�1. Hence the totality of its scalar
multiplesC !_ is globally well-defined and gives a locally constant sheaf onO_1 .
The meaning ofC f� etc. below should be understood in the same way.) Define
L(!) = C ! in the same way.

LetO1
i- 


j- V andO_1
i_- 
_

j_- V _ be the inclusion mappings.

2.4. THEOREM.LetFgeomdenote the Sato–Fourier transformation[SatKasKaw]
(cf. [BryMalVer], [HotKas], [KasSch]). Then

Fgeom(Rj�C f
� [n]) = j_! i

_
� (C f

_�� 
 L(!_))[m]; (1)

Fgeom(j!C f
� [n]) = Rj_� i

_
� (C f

_�� 
 L(!_))[m]; (2)

Fgeom(Rj
_
� i
_
� C f

_��[m]) = j!(C f
� 
 F �L(!_))[n]; and (3)

Fgeom(j
_
! i
_
� C f

_��[m]) = Rj�(C f
� 
 F �L(!_))[n]: (4)

See [Gyo1, 3.23] for (1) and (2). See [Gyo3, 6.22] for (3) and (4). We need (3) and
(4) only in the proof of Theorem A2 in Section 7.

For the convenience of the readers, we recall that for a bounded complex
K of sheaves onV the Sato–Fourier transformFgeom(K) of K is defined by
Fgeom(K) := Rpr_! (pr

�K 
h i�L�)[n], whereL� is the sheaf onA 1
C obtained by

extending by zero the constant sheafC Z onZ := fz 2 C jRe(z) 6 0g, wherepr
andpr_ are the projections ofV _�V onV andV _, and whereh i : V _�V ! A 1

C

is the natural pairing.

3. Determinant of Frobenius action and monodromy

Let k be a field. We denote by�k an algebraic closure ofk. In all what follows` is
a prime number different from the characteristic of the base field we are working
with (for the momentk). For any separated Noetherian schemeX over k we
denote byDb

c(X;Q`) the category defined by Deligne [Del3, (1.1.1)–(1.1.3)]. Its
objects are ‘bounded complexes’ whose cohomology are constructibleQ` -sheaves.
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We will use the standard notation from the theory of derived categories as in
[Lau1]. In particular whenC is a complex of vector spaces with bounded and finite
dimensional cohomology andE an endomorphism ofC, we use the following
notation

rankC =
X
i

(�1)i dimHi(C);

tr(E;C) =
X
i

(�1)i tr(E;Hi(C));

det(E;C) =
Y
i

det(E;Hi(C))(�1)i ;

where tr and det denote the trace and the determinant. Often a sheaf (complex) and
a restriction of it will be denoted by the same symbol, without mentioning. As usual
A nk andPnk denote then-dimensional affine and projective space overk, considered
as schemes, andGm;k = A 1

knf0g. We denotef0;1;2; : : :g (resp.f1;2;3; : : :g) by
N (resp.N0).

3.1. LAUMON’S PRODUCT FORMULA

3.1.1. Letk be any field. Lets be a closed point ofP1
k, i.e. s 2 jP1

kj, and�s a
geometric point ofP1

k with images. The Henselization ofP1
k ats is denoted byTs.

Let �s be the generic point ofTs, and��s a generic geometric point ofTs.
We denote byGs, resp.Is, the fundamental group ofTsnf0g, resp.Ts
 �knf0g,

i.e. the arithmetic, resp. geometric, monodromy group ats. With aGs, resp.Is,
module we always mean a module in the sense of [Lau1, 2.1.2], i.e. a smooth
Q` -sheaf onTsnf0g, resp.Ts 
 �knf0g.

LetK 2 Db
c(U;Q`), whereU = P1

kn ffinite number of pointsg. We denote by
[K��0] the image of

P
i(�1)iHi(K)��0 in the Grothendieck groupKI0 of I0-modules.

Similarly [K��1 ] := [(��K)��0], where� is the mapx 7! x�1. Note that[K��0] and
[K��1 ] are completely determined by the geometric monodromy at 0 and1 of the
cohomology sheaves ofK.

Whens 2 jU j, the total drop ofK ats is defined by

a�s(K) := rank(K��s)� rank(K�s) + swan conductor(K��s);

see [Lau1, 3.1.5.2] where it is denoted bya(Ts;K). ForN 2 N0, putVN = �N�Q` ,
where�N is the mapP1

k ! P1
k : x 7! xN , and denote the image of(VN )��0 in KI0

by [VN ].

3.1.2. Let 2 Hom(Fq ;Q`
�
)nf1g and� 2 Hom(F�q ;Q`

�
). Denote byL ,

resp.L�, the associatedQ` -sheaf (= Lang torsor, [Del4, p. 171]) onA 1
Fq

, resp.
Gm;Fq . Thus the geometric Frobenius endomorphism Frobq over Fq at x 2 Fq ,
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resp.x 2 F�q , acts on the stalkL ;x, resp.L�;x, as the multiplication by (x), resp.
�(x). We recall that

G(�; ) :=
X
x2F�q

�(x) (x):

Whenf : X ! Gm;Fq is a morphism of schemes we will sometimes denotef�L�
byL(�(f)), abusively.

3.1.3. For any separated schemeX of finite type overFq andK 2 Db
c(X;Q`) one

defines

"(X;K) := det(�Frobq; R�(X 
 Fq ;K))�1;

and

"0(X;K) := det(�Frobq; R�c(X 
 Fq ;K))�1:

3.1.4. Assume the notation of (3.1.1) withk = Fq . Let ! 6= 0 be a rational
differential form onP1

Fq
and as in (3.1.2). Fors 2 jP1

Fq
j andK 2 Db

c(Ts;Q`) one
defines thelocal constant

" (Ts;K; !) 2 Q`
�
; (1)

as in [Lau1, 3.1.5.4] (cf. also [Del5, 4.1]). It equals 1 when the cohomology
sheaves ofK are smooth and! has no pole and no zero ats. Moreover for
K 2 Db

c(Tsnf0g;Q`), e.g., aGs-module, we put

" ;0(Ts;K; !) = " (Ts; js!K;!); (2)

wherejs is the immersionTsnf0g ! Ts. We have

" ;0(T0; L�; dx) = �(�1)G(�; ); " (T0;Q` ; dx) = 1; (3)

wherex is the standard coordinate onA 1
Fq

, see [Lau1, p. 199]. Here and in Section 8
we will repeatedly use the fundamental properties of the local constant which are
summarized in [Lau1, p. 186]. (Although there is some restriction on the additive
character in [Lau1, (0.2)], the results of loc. cit. remain valid for general with
obvious adaptation in loc. cit. (3.1.5.4, (iv)).) Moreover, if! has a simple pole at
0 and ifK;K 0 are tameG0-modules having the same image in the Grothendieck
group ofI0-modules, then

" ;0(T0;K; !) = " ;0(T0;K
0; !): (4)

(See [Lau1, 2.1.4] for the definition of tameness.)
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This follows directly from [Sai1, Lemma 1.(1)]. (Alternatively: Assertion (4)
follows from [Lau1, 3.1.5.6] when rankK = 1. The general case reduces to this
by an argument similar to [Lau1, p. 198 line 5–13].)

3.1.5. THEOREM (Laumon’s Product Formula [Lau1, Thm 3.2.1.1]).For any
K 2 Db

c(P
1
Fq
;Q`) we have

"(P1
Fq
;K) = qrank(K��0)

Y
s2jP1

Fq
j

" (Ts;K; !):

3.1.6. LetX be any separated scheme of finite type overFq andK 2 Db
c(X;Q`).

Suppose for allx 2 jXj that the characteristic polynomial of the Frobenius action on
Kx has coefficients inQ. Then"0(X;K) 2 Q. Indeed the associatedL-function (see
e.g. [Lau1, 3.1]) belongs then toQ (t). But "0(X;K) can be rationally expressed
in terms of thatL-function.

3.2. FROBENIUS DETERMINANT OF A TWIST

The next Proposition goes back to Loeser [Loe, Cor. 5.5] which is similar, see also
[DenLoe1, Prop. 2.4.1] and [DenLoe2]. It is also very much related to the material
in [Sai1] which goes much deeper.

3.2.1. PROPOSITION.Assume the notation of(3:1:1) with k = Fq .
LetK 2 Db

c(Gm;Fq ;Q`) and supposeHi(K) has tame ramification at0 and at
1, for all i. Assume that

[K��0] =
X
N2N

(N;q)=1

�N [VN ] and [K��1 ] =
X
N2N

(N;q)=1

�N [VN ];

where the integers�N ; �N are zero for almost allN . Then

"0(Gm;Fq ;K 
 L�)="0(Gm;Fq ;K)

= q
P

�N 6=1
�N�

0BB@
0B@ Y
s2Fq

�

sas(K)

1CA Y
N2N

(N;q)=1

N�N(�N��N )

1CCA
�

Y
N2N

(N;q)=1

(�G(�N ;  ))�N��N :

Proof. From Laumon’s Product Formula (3.1.5) forj!K and forj!(K 
 L�)
with j the immersion ofGm;Fq into P1

Fq
, and from [Lau1, 3.1.5.6] we get

"0(Gm;Fq ;K 
 L�)
"0(Gm;Fq ;K)

= c0c1�

0B@ Y
s2Fq

�

sas(K)

1CA ; (1)
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where

c0 =
" ;0(T0;K 
 L�; x�1 dx)
" ;0(T0;K; x�1 dx)

and

c1 =
" ;0(T1;K 
 L�; x�1 dx)
" ;0(T1;K; x�1 dx)

:

The Proposition follows now directly from (3.1.4, (4)), Lemma 3.2.2 below, and
from the formula

G(��1;  ) = q�(�1)G(�; )�1 if � 6= 1: (2)

2

3.2.2. LEMMA. If gcd(N; q) = 1, then

" ;0(T0; VN 
 L�; x�1 dx)
" ;0(T0; VN ; x�1 dx)

= ��N (N�1)G(�N ;  );

and

" ;0(T1; VN 
 L�; x�1 dx)
" ;0(T1; VN ; x�1 dx)

= ���N (�N�1)G(��N ;  ):

Proof.The first formula follows from [Lau1, 3.1.5.4. (iv)] withK1 the sum of
j!L�N in degree 0 andj!Q` in degree 1 and withf the mapx 7! xN , and from
(3.1.4, (3)) and [Lau1, 3.1.5.5]. The second formula follows directly from the first
by [Lau1, 3.1.5.5] witha = �1. 2

3.3. DELIGNE–FOURIER TRANSFORM OF A�-HOMOGENEOUS COMPLEX

3.3.1. LetV = A nFq , V _ the dual space ofV , andh i : V _ � V ! A 1
Fq

the natural
pairing.
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3.3.2. Consider the following diagram

A 1
Fq

V _ � V � f0g b - V _ � V � A 1
Fq

6
a

� c
V _ � V � (A 1

Fq
� f0g)

���
��
��
��
��
��

�_

HHHHHHHHHHHH

�

j
V _�

pr_
V _ � V
?

d

pr - V
YHHHHHHHHHHHH

pr_Q

��
��
��
��
��
��

prQ

*

Q

6

e

whereQ = f(v_; v) 2 V _ � V jhv_; vi = 1g anda is defined bya(v_; v; t) =
t(hv_; vi�1). The remaining morphisms are inclusions, projections, or their com-
positions.

3.3.3. Define a functor:F : Db
c(VFq ;Q`)! Db

c(V
_
Fq
;Q`)byF (�) = Rpr_! (pr

�(�)

h i�L )[n], which is called theDeligne–Fourier transformation, see [KatLau].

3.3.4. Defineh: Gm;Fq � V ! V by h(t; v) = tv. For � 2 Hom(F�q ;Q`
�
), a

complexK 2 Db
c(V;Q`) is called�-homogeneousif h�K = L� 
K.

3.3.5. Put�(�; ) = R�c(Gm;Fq ; L�
L )[1] �= Q` (cf. [Del4, 4.2], note however
that this isomorphism does not preserve the Frobenius action).

3.3.6. Assume thatK 2 Db
c(V;Q`) is�-homogeneous. Consider the distinguished

triangle

R�_! (�
�K 
 c!c

�a�L ) ! R�_! (�
�K 
 a�L )

! R�_! (�
�K 
 b�b�a�L ) +1�! : (1)

Let us look at this triangle more closely. Let' : V (Fq )! Q` be a function such that
'(tv) = �(t)'(v) for t 2 F�q andv 2 V (Fq ). Consider the following calculation:

0@ X
v2V (Fq)

'(v) (hv_; vi)
1A
0B@X
t2F�q

��(t) � (t)

1CA
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=
X

v2V (Fq);t2F
�
q

'(t�1v) (hv_; vi � t)

=
X

v2V (Fq);t2F
�
q

'(v) (t(hv_ ; vi � 1));

where�� = ��1 and � =  �1. Following this calculation, we get

R�_! (�
�K 
 c!c

�a�L )[n+ 1] = F (K)
R�c(Gm;Fq ; L�� 
 L � )[1]: (2)

Next consider the following calculationX
v2V (Fq);t2Fq

'(v) (t(hv_ ; vi � 1)) = q
X

v2V (Fq);hv_;vi=1

'(v):

Following this calculation, we get

R�_! (�
�K 
 a�L ) = R(pr_Q)!pr

�
QK(�1)[�2]; (3)

where(�1) is the Tate twist. Last, we can show that

R�_! (�
�K 
 b�b�a�L ) = Rpr_! pr

�K: (4)

By (1)–(4), we get the following

3.3.7. LEMMA.Assume the above notation and letK 2 Db
c(V;Q`)be�-homogeneous.

Then we have a distinguished triangle

R(pr_Q)!pr
�
QK(�1)[�2]

r�! Rpr_! pr
�K ! F (K)[�n]
 �(��; � ) +1�! : (1)

3.3.8. Let us describe the morphismr appearing in (3.3.7) independently of the
additive character . Note thatr is the morphism

R�_! (�
�K 
 a�L )! R�_! (�

�K 
 b�b�a�L );

induced from the natural morphism

a�L ! b�b
�a�L : (1)

Since

R�_! (�
�K 
 a�L ) = Rpr_! (pr

�K 
Rd!a
�L );

R�_! (�
�K 
 b�b�a�L ) = Rpr_! (pr

�K 
Rd!b�b
�a�L );
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Rd!a
�L = e�Q` ;Q(�1)[�2]; and

Rd!b�b
�a�L = Q` ;V _�V ;

(1) induces a morphism

e!e
!Q` ;V _�V = e�Q` ;Q(�1)[�2] r0�! Q` ;V _�V ; (2)

and (2) inducesr. Since

RHomV _�V (e!e
!Q` ;Q`) = RHomQ(e

!Q` ; e
!Q`)

= RHomQ(Q` ;Q`) = Q` ;

(2) is a scalar multiple of the morphism
 induced by the adjointness, i.e., the
natural morphism
 : e!e

!Ql = R�Q(Ql ) ! Ql . If (2) is zero, thenr is also zero
for anyK, and hence

F (K)[�n]
 �(��; � ) = R(pr_Q)!pr
�
QK(�1)[�1]�Rpr_! pr�K:

(The third term of the triangle in (3.3.7) is the mapping cone ofr = 0.) If we take the
constant sheafQ` ;V asK, the left-hand side is supported byf0g, although the direct
summandRpr_! pr

�K of the right-hand side is not. Thus we get a contradiction,
and hence (2) is non-zero, i.e.,

r0 = 
 � (non-zero scalar): (3)

3.3.9. LEMMA. Consider the morphism
 : e!e
!Q` ! Q` induced by the adjoint-

ness. Put! = cone(
). Then for any�-homogeneousK 2 Db
c(V;Q`) we have

F (K) 
 �(��; � ) �= R(K) whereR(K) := Rpr_! (pr
�K 
 !)[n] is the Radon

transform.
Proof.

F (K)[�n]
 �(��; � )

= cone(Rpr_! (pr
�K 
 e�Q` ;Q(�1)[�2]) r�! Rpr_! pr

�K) by (3:3:7)

= cone(Rpr_! (pr
�K 
 e!e

!Q`)
r�! Rpr_! (pr

�K 
 Q`))

= Rpr_! (pr
�K 
 cone(e!e

!Q`
r0�! Q`))

�= Rpr_! (pr
�K 
 !) by (3:3:8; (3)): 2

3.3.10. REMARK. If� = 1, our ‘Radon transformationR( )’ given in (3.3.9)
relates to the one given in [Bry, 9.13] as follows. Letg:V � := V nf0g ! P and
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g_:V _� := V _nf0g ! P_ be the natural morphisms to the projective spaces of
V andV _. For ~K 2 Db

c(P;Q l ), let�( ~K) 2 Db
c(P

_;Ql ) be its Radon transform
in the sense of loc. cit., andK 2 Db

c(V;Ql ) the zero extension ofg� ~K. Then we
have a distinguished triangle

R�(P; ~K)[n� 1]!R(K)! g_��(fK)(�1) +1�!

in Db
c(V

_�;Ql ), where the first term means the ‘constant sheaf’ in the obvious
sense. Thus the difference between the two ‘Radon transformations’ is almost
trivial.

3.4. DISCRETEFOURIER TRANSFORM OF�(f)

3.4.1. We use the notation of (3.3.1). Letf : V ! A 1
Fq

be a homogeneous
polynomial overFq of degreed := degf . PutU = V nf�1(0) and consider the
open immersionj:U ! V . Let K 2 Db

c(V;Q`) be �-homogeneous for some
� 2 Hom(F�q ;Q`

�
), cf. (3.3.4).

Forv_ 2 V _(Fq )nf0g, put

H(v_) = fv 2 V jhv_; vi = 1g:
3.4.2. Assume now also the notation of (3.1.2) and (3.3.3). We are interested in
the character sum

S_K(�; v
_) :=

X
v2U(Fq)

tr(Frobq;Kv)�(f(v)) (hv_; vi); (1)

for v_ 2 V _(Fq ). By the Grothendieck–Lefschetz trace formula we have

S_K(�; v
_) = tr(Frobq;F (K 
 j!f�L�[�n])v_): (2)

WhenK = Q` , the sumS_K(�; v
_) equals the discrete Fourier transform (multi-

plied with qn=2) of the mapv 7! �(f(v)) with the convention that�(0) = 0.

3.4.3. LEMMA. Suppose thatRif!K has tame ramification at0 and at1 for all
i, and that

[(Rf!K)��0] =
X
N2N

(N;q)=1



N
[VN ];

where the integers
N are zero for almost allN . Then the rank ofR�c(U
Fq ;K

f�L�) is 0 and

"0(U;K 
 f�L�) = q
�
P

�N=1


N :
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Proof.Note thatR�c(U 
 Fq ;K 
 f�L�) = R�c(Gm;Fq ; (Rf!K) 
 L�). By
homogeneity, the cohomology sheaves ofRf!K are smooth onGm;Fq . Moreover
they are tame at 0 and1. Hence we get the first equality, and in the Grothendieck
group of smoothQ` -sheaves onGm;Fq we haveX

i

(�1)iRif!K =
X
N2N

(N;q)=1


NVN :

(Indeed eachI0-module canonically determines a smoothQ` -sheaf onGm;Fq which

is tame at1, cf. [Lau1, 2.2.2].) Thus by (3.1.5) and (3.1.4, (4)) with! = x�1 dx
we get

"0(U;K 
 f�L�) =
Y
N

"0(Gm;Fq ; VN 
 L�)
N

=
Y
N

"0(Gm;Fq ; L�N )


N =

Y
�N=1

q�
N ;

which yields the Lemma. 2

3.4.4. LEMMA. Assume the hypothesis of Lemma(3:4:3) and let 0 6= v_ 2
V _(Fq ). Then

det(Frobq;F (K 
 j!f�L�[�n])v_)

= "0(U \H(v_);K 
 f�L�)q���+
P

�N=1


N �G(��d;  )�;

where� := rankF (K 
 j!f�L�[�n])v_ does not depend on�, and�� = 1 if
��d = 1 and zero otherwise.

Proof.Note thatK
 j!f�L� is ��d-homogeneous. Taking the stalk atv_ of the
triangle in Lemma (3.3.7) withK replaced byK 
 j!f�L� we get a distinguished
triangle

R�c(H(v_)
 Fq ;K 
 j!f�L�)(�1)[�2]

! R�c(U 
 Fq ;K 
 f�L�)

! F (K 
 j!f�L�[�n])v_ 
 �(�� ��d; � ) +1�! : (1)

Thus by (3.4.3) we have

rankR�c(H(v_)
 Fq ;K 
 j!f�L�) = ��; (2)

and

"0(U;K 
 f�L�)
= "0(U \H(v_);K 
 f�L�)q�

�"0(fv_g;F (K 
 j!f�L�[�n])v_)(�G(�� ��d; � ))��: (3)
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The Lemma follows now from (3.4.3) and the formula

q=G(�� ��d; � ) = G(��d;  )q�� :

In fact, we can see that� does not depend on�, by applying the formula of
Grothendieck–Ogg–̌Safarevǐc to

R�c(H(v_)
 Fq ;K 
 j!f�L�) = R�c(Gm 
 Fq ; R(f jH(v_))!K 
 L�)
(cf. [Lau1, 3.1.5.3]). 2

3.4.5. PROPOSITION.Assume the notation of(3:4:1) and (3:4:2), and let0 6=
v_ 2 V _(Fq ). Suppose thatRi(f jH(v_))!K andRif!K have both tame ramifica-
tion at0 and at1, for all i, and that

[(R(f jH(v_))!K)��0] =
X
N2N

(N;q)=1

�N [VN ]; (1)

[(R(f jH(v_))!K)��1 ] =
X
N2N

(N;q)=1

�N [VN ]; (2)

[(Rf!K)��0] =
X
N2N0
(N;q)=1


N [VN ]; (3)

where the integers�N ; �N ; 
N are zero for almost allN . Put� = rankF (K 

j!f
�L�[�n])v_ , and

a_(v_) =
Y

s2Fq
�

sas(R(f jH(v_))!K) 2 F�q : (4)

Then� does not depend on�, and

det(Frobq;F (K 
 j!f�L�[�n])v_)

= (�1)
P

N
(�N��N )q

P
N
�N "0(U \H(v_);K)

�q���+
P

�N=1
(
N��N )

�

0BB@a_(v_) Y
N2N

(N;q)=1

N�N(�N��N )

1CCA
�G(��d;  )�

Y
N2N

(N;q)=1

G(�N ;  )�N��N ; (5)
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where�� = 1 if ��d = 1 and zero otherwise.
Suppose moreover thatj�K is pure of weight zero, and thatF (K
j!f�L�[�n])

is locally atv_ a smooth̀ -adic sheaf shifted to degreem. Then for any embedding
of Q` into C we have

j"0(U \H(v_);K)j = pq�(m�1)�
P

N
(�N+�N ): (6)

If in addition � = �1, then� = (�1)m, and(�1)m(S_K(�; v
_))(�1)m equals the

right-hand side of(5).

REMARK. Unlike a_(v_), the integers�N and�N (if they exist) are constant for
v_ in a suitable Zariski dense subset ofV _(Fq ), when all data are obtained by
reduction modp from data overQ for p� 0. Indeed(Ri(f jH(v_))!K)s is the stalk
at (s; v_) of a constructibleQ` -sheaf onA 1

Fq
� V _. Hence outsidef0g � V _, the

restriction of this sheaf to a suitableétale neighbourhood inA 1
Fq
�V _ of a suitable

point (0; v_0 ) is smooth and equal to the pullback of a sheaf onA 1
Fq

(because of
tame ramification at(0; v_0 ) whenp � 0). However this remark will not be used
in the sequel.

Proof. The formula (5) follows directly from Lemma (3.4.4) and Proposition
(3.2.1) withK replaced byR(f jH(v_))!K. Clearlyj�K 
 f�L� is pure of weight
0. Moreoverj!(j�K 
 f�L�) = Rj�(j

�K 
 f�L�) for sufficiently general�.
Indeed this follows from [KatLau, 6.5 and 6.5.2] applied to the direct images of
the cohomology sheaves ofj�K under the map

U ! V � Gm;Fq :x 7! (x; f(x)):

Thus for these�;K 
 j!f
�L� is pure of weight zero and hence alsoF (K 


j!f
�L�[�n]), by [KatLau, 2.2.1]. We conclude that the absolute value of the left

hand side of (5) equals
p
q�m, when� is sufficiently general. This yields (6), replac-

ing if necessaryFq by a finite extension to have a general enough� available. 2

3.5. APPLICATION TO PREHOMOGENEOUS VECTOR SPACES

3.5.1. Assume the notation of (1.1) and (1.2), with all objects defined overQ.
In particular (G; �; V ) is a prehomogeneous vector space defined overQ and
f 2 Q[V ]; f_ 2 Q[V _] are corresponding relative invariants of(G; �; V ) and its
dual. Moreover
 = V nf�1(0);
_ = V _nf_�1(0); O1, resp.O_1 , is the closed
G-orbit in
, resp.
_ andn = dimV;m = dimO1.

If p = char(Fq ) � 0, we denote by the subscriptFq the result of applying
reduction modp and base changeFp ! Fq , e.g. VFq . If there is no fear for
confusion we may omit the subscripts, e.g.
(Fq ) instead of
Fq(Fq ), or even

instead of
Fq , etc.
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In (2.3) and (1.2) we introduced the immersionsj:
! V; i:O1! 
; j_:
_ !
V _; i_:O_1 ! 
_, and the mapF :
! O_1 .

3.5.2. LetL(!_) denote the smooth rank oneQ` -sheaf on(O_1 )Fq constructed in
the same way as the sheafL(!_) in (2.3), after reduction modp. Moreover we
define the sheafL(!) on(O1)Fq similarly, replacing each object by its dual (e.g.V
by V _, etc.).

3.5.3. THEOREM.Assume the above notations. If the characteristic ofFq is suffi-
ciently large, then we have for all� 2 Hom(F�q ;Q`

�
) that

F (Rj�f�L�[n]) �= j_! i
_
� (f
_�L��1 
 L(!_))[m] onV _Fq 
 Fq ; (1)

F (j!f�L�[n]) �= Rj_� i
_
� (f
_�L��1 
 L(!_))[m] onV _Fq 
 Fq ; (2)

F (Rj_� i_� f_�L��1[m]) �= j!(f
�L� 
 F �L(!_))[n] onVFq 
 Fq ; (3)

F (j_! i_� f_�L��1[m]) �= Rj�(f
�L� 
 F �L(!_))[n] onVFq 
 Fq ; (4)

whereF andL� are as in(3.1.2)and(3.3.3). (Note that the above isomorphisms
do not have to preserve the Frobenius action.)

Proof.In principle we want to obtain this theorem from (2.4) by reduction modp.
But since the definition of the Sato–Fourier transformation involves the halfspace,
we cannot consider its reduction modp. Also since the definition of the Deligne–
Fourier transformation involves the Artin–Schreier sheafL , we cannot obtain it
as a result of reduction modulop. We avoid these difficulties as follows: Since
j!f
�L� (resp.Rj�f�L�, etc.) is�d-homogeneous, its Deligne–Fourier transform

equals its Radon transform by Lemma (3.3.9). Thus it is enough to prove the

‘Radon version on(VFq )et and (V _
Fq
)et’ (A)

of the above statement, where ( )et denotes théetale site. Since the Radon transfor-
mation is compatible with reduction modp for almost allp, it is enough to prove
the

‘Radon version on(VC )et and (V _C )et’ : (B)

More precisely we obtain (A) from (B) as follows. LetLC (resp.RC ) be the left (resp.
right)-hand side of the relevant equality of (B), and putXC = V _C (resp.XC = VC )
if we consider (1) or (2) (resp. (3) or (4)). Consider the similar construction
for S-schemes whereS = SpecZ[N�1] with sufficiently divisibleN > 1, and
indicate the result by the suffixS. In particular we obtain in this wayLS (resp.
RS) in Db

c(XS ;Ql ). Moreover we indicate the result of base changeS0 ! S by
replacing the suffixS by S0. Let aS:XS ! S be the natural morphism. Note that
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LS andRS are reflexive for sufficiently divisibleN [KatLau, (3.2)]. By [KatLau,
Sect. 3], enlargingN we may assume thatH(�; �0)S := R0(aS)�RHom(�S ; �0S)
is smooth for all choices of�; �0 2 fL;Rg, and thatH(�; �0)S0 := b�H(�; �0)S =
R0(aS0)�RHom(�S0 ; �0S0) for any base changeb : S0 ! S with S0 ‘bon’ in the
sense of [KatLau, (1.0)]. (Note that, for reflexive objects,RHomcan be expressed
in terms of
L and the relative dualizing functor overS, cf. [KatLau, (1.1.1)].)
For a closed pointx 2 S and a geometric pointx ! x, let Sx be the strict
Henselization. Put� := Spec(C ), and lift � ! S to � ! Sx. Then we get

H(L;R)�
�= � �(Sx;H(L;R)Sx)

�=�! H(L;R)x becauseH(L;R)S is smooth.
Moreover we have the following commutative diagram of natural maps

Hom
Db
c(XC;Ql)

(LC ; RC ) ======= R
0�(XC ; RHom(LC ; RC )) ========= H(L;R)�

Hom
Db
c(XS

x
;Ql)

(LS
x
; RS

x
)

6

==== R
0�(XS

x
; RHom(LS

x
; RS

x
))

6

==== �(Sx;H(L;R)S
x
)

6
�=

Hom
Db
c(Xx

;Ql)
(Lx; Rx)

?
======= R

0�(Xx; RHom(Lx; Rx))

?
======== H(L;R)x :

?

�=

To understand the last equality in the second row of this diagram, note that the
functor�(Sx;�) is exact sinceSx is strictly Henselian. Hence the isomorphism
given by (B) induces the desired isomorphismLx �= Rx. Thus we get (A). Note
that the above argument gives a uniform upper bound, independently of�, for the
set of ‘bad primes’.

Next by the comparison theorem for the classical topology and theétale topology
(cf. [BeiBerDel, 6.1.2]), we can reduce the proof to the

‘Radon version onV (C )cl and V _(C )cl ’ ; (C)

where( )cl denotes the classical site. Now we adapt the proof of Lemma (3.3.9) to
the setting of the Sato–Fourier transform. Then the proof reduces to the

‘Fourier version onV (C )cl and V _(C )cl ’ ; (D)

which is nothing but (2.4). The adaptation goes as follows:
In (3.3.4), define ‘�-homogeneity’ (� 2 C ) replacingL� by the locally constant

sheafL� := C t� on (C�)cl.
In (3.3.5), replace(Gm;Fq )et by (C�)cl; L� byL�; andL byL�. Here we use

the notation of (2.4). Then we get

�(�;L�) := R�c(C
� ; L� 
 L�)[1]

= R�c(C
� \ Z;L�)[1] �= R�c(C

� \ Z; C )[1]
= R�c([�1

2�;
1
2�]� R>0; C )[1] = R�c(R>0; C )[1] �= C :
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In (3.3.6)–(3.3.9), the necessary adaptation will be obvious once we note that

R�c(C ; L�) �= R�c(Z; C ) = R�c(R � R>0; C )

�= R�c(R>0; C )[�1] = 0: 2

In Section 5 we will need the following

3.5.4. LEMMA.Assume the above notations and letv_ 2 O_1 (Fq ). Then

tr(Frobq; L(!
_)v_) = �1=2(h

_(v_));

where�1=2 andh_ are as in(1.5).
Proof.This follows directly from the definitions by a straightforward calculation

(see also (6.1.4, (4))). 2

4. The Aomoto complex and Bernstein polynomials

4.1. DETERMINANT OF THE AOMOTO COMPLEX

4.1.1. LetX be a smooth quasi-projective algebraic variety overC of pure dimen-
sion dimX. Denote byOX , resp.DX , the sheaf of regular rational functions,
resp. algebraic differential operators, onX, and by
�X the complex of sheaves of
regular rational differential forms onX. LetDb

h(DX) be the derived category of
bounded complexes of quasi-coherentDX -modules with holonomic cohomology,
andDb

c(X(C ); C ) the derived category of bounded complexes of sheaves ofC -
vector spaces onX(C ) with (algebraically) constructible cohomology. We denote
by DR the de Rham functorDR:Db

h(DX) ! Db
c(X(C ); C ) appearing in the

Riemann–Hilbert correspondence, so normalized thatDR(OX) = C [dimX], cf.
[Bor1, Chap. VIII]. Note that this normalization differs form [Gyo1] and [Gyo2]
by a shift.

4.1.2. Letf :X ! Gm;C be a morphism,M a holonomicDX -module andM� 2
Db
h(DX). Denote byMf s the holonomicC (s)
C DX-moduleC (s) 
CM where

the action ofDX is twisted byf s in the obvious way, i.e.

@

@xi
('(s) 
m) = '(s)
 @m

@xi
+ s'(s)
 f�1 @f

@xi
m; (1)

when'(s) 2 C (s);m 2 M. For ease of notation we will denote'(s) 
m by
'(s)mf s. Similarly we defineM�f s 2 Db

h(DX
C(s)) andM�f� 2 Db
h(DX) for

� 2 C , in the obvious way.
Let

pX :X � Spec(C (s)) ! Spec(C (s))

be the natural projection.
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The Aomoto complexAf(M�) is the complex ofC (s)-vector spaces defined
[And], [LoeSab] by

Af (M�) = (pX)+M�f s; (2)

where(pX)+ denotes as usual the direct image underpX , cf. [Bor1, Chap. VI]. This
complex has finite dimensional cohomology (overC (s)) (cf. [Bor1, VII 10.1]), and
is quasi-isomorphic to the complex

R�(X 
 C (s);
�X 
OX M�f s[dimX]); (3)

see [Bor1, VI 5.3.2]. Here
�X
OXM�f s denotes the algebraic de Rham complex
ofM�f s; its differential is the one of
�X twisted byM�f s. In particular whenX
is affine (3) implies thatAf (M�) is quasi-isomorphic to

�(X 
 C (s);
�X 
OXM�f s)[dimX]: (4)

The translation� : s 7! s+ 1 acts onM�f s by

�('(s)mf s) = '(s+ 1)(fm)f s:

This action is linear overC , but only semi-linear overC (s). It induces an action on
the Aomoto complexAf (M�) via its action on
�X 
OXM�f s (which commutes
with the differential), cf. [LoeSab, Sect. 1.3]. Put

det(�;Af (M�)) :=
Y
i

det(�;Hi(Af (M�)))(�1)i :

Note however that det(�;Af (M�)) is only defined up to a factorh(s + 1)=h(s),
with h(s) 2 C (s)� , because� is only semi-linear overC (s), see [LoeSab].

4.1.3. We use the notation of (3.1.1), withk = C . LetK 2 Db
c(X;Q`) and suppose

that we can write

[(Rf!K)��0] =
X
N2N0

�N [VN ] and [(Rf!K)��1 ] =
X
N2N0

�N [VN ];

where�N ; �N 2 Z. This is for example the case when the pull back ofK to
a suitable degree 2 cover ofX is a geometrically constant sheaf. Indeed the
eigenvalues of the monodromy action are roots of unity which are permuted by
Galois conjugation, since we can work in this case withQ instead ofQ` .

After choosing an embedding ofQ` into C , K determines a complexKa 2
Db
c(X(C ); C ) and hence via the Riemann–Hilbert correspondence a regular holo-

nomicK� 2 Db
h(DX) with DR(K�) = Ka. The next theorem is a direct conse-

quence of a result of Anderson [And] and Loeser and Sabbah [LoeSab]. (Indeed
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[(Rf�K)��s ] = [(Rf!K)��s ] for s 2 jP1
C j, by [Lau2].) It can be used to determine

the�N � �N in terms of det(�;Af (K�)).

4.1.4. THEOREM ([And], [LoeSab]).Assume the notation of(4.1.2)and (4.1.3).
Then we have

det(�;Af (K�))�1 =
h(s+ 1)
h(s)

c
Y
N2N0

NY
k=1

�
s� k

N

��N��N
(1)

with h(s) 2 C (s)� and

c =
Y
t2C�

tat(Rf!K): (2)

See (3.1.1) for the definition ofat. In [LoeSab] one assumes thatX is affine, but
this is not necessary. Note that the right-hand side of (1) completely determines the
�N � �N andc.

4.1.5. LEMMA.LetM� 2 Db
h(DX) be regular holonomic. Then for all but count-

ably many� 2 C we have for anyi 2 Z

dimC(s)H
i(Af (M�)) = dimCH

i(X;DR(M�)
 C f�): (1)

Proof. There exists a countable algebraically closed subfieldk of C such that
X; f andM� are obtained by base change from a varietyXk overk, a morphism
fk : Xk ! Gm;k and a complexM�k ofDXk

-modules. Let� 2 C be transcendental
overk. Then we have

dimC(s)H
i(Af (M�))

= dimC(s)H
i(X 
 C (s);
�X 
OX M�f s[dimX]);by (4:1:2; (3))

= dimk(s)H
i(Xk 
 k(s);
�Xk


OXk M
�
kf

s
k [dimX])

= dimCH
i(X;
�X 
OX M�f�[dimX]);by consideringk(s)! C : s 7! �

= dimCH
i(�+(M�f�))where�is the projectionX ! Spec(C ):

This implies the Lemma because the Riemann–Hilbert correspondence yields

�+(M�f�) = DR(�+(M�f�)) = R��(DR(M�f�))
= R�(X;DR(M�)
 C f��): 2

REMARK. The above Lemma appears implicitly in [LoeSab, p. 471] with a dif-
ferent proof yielding the stronger result that (1) holds for� in the complement of
the set of all integer translates of a suitable finite subset ofC .
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4.1.6. Letg : X ! A 1
C be a morphism,M a holonomicDX -module, andM� 2

Db
h(DX). Denote byMeg the holonomicDX-module obtained fromMby twisting

the action ofDX by eg in the obvious way, i.e.

@

@xi
meg =

�
@m

@xi

�
eg +m

@g

@xi
eg:

Similarly we defineM�eg 2 Db
h(DX).

4.1.7. Assume the notation of (4.1.2) and (4.1.6). LetY be a smooth quasi-
projective algebraic variety overC , and� : Y ! X a morphism. Then

�!(M�egf s) = �!(M�)eg��(f � �)s; (1)

D (M�egf s) = D (M�)e�g(f�1)s; (2)

whereD denotes the duality functor, and

�+(M�egf s) = �+(M�)eg��(f � �)s: (3)

Indeed (1) follows directly from the definitions of the concepts involved, because
Fegf s is a freeDX
C(s) -module wheneverF is a freeDX-module. Moreover
(2) follows from the next lemma withX (resp.F) replaced byX 
 C (s) (resp.
OX
C(s)egf s), and (3) follows directly from (1) and (2), since�+ = D � �! � D .

4.1.8. LEMMA. For a smooth quasi-projective varietyX, let Db
coh(DX) be the

bounded derived category of quasi-coherent leftDX-modules whose cohomology
sheaves are coherent. Then for a leftDX -moduleF which is coherent overOX ,
and forM� 2 Db

coh(DX), we have a canonical isomorphism

� : D (M�)
OX D (F)  D (M� 
OX F):
Proof. In general, for a morphism' : Z ! Y of smooth quasi-projective

varieties, and forN � 2 Db
coh(DY ) with respect to which' is non-characteristic

(cf. [KasSch, 11.2.11]), we have a canonical isomorphism� : L'�(DN �)  
D (L'�N �). Here '� is the usual pull-back ofO-modules, and henceL'� =
'![dimY � dimZ]. (For the isomorphism�, see [SatKasKaw, Theorem 3.5.6,
pp. 414–417], replacingCZjY byR�[Z](OY )[dimY � dimZ], PZ!Y byDZ!Y ,
PY by DY etc., with obvious adaptation in loc. cit. pp. 406–417.) Then applying
this to the diagonal morphismi : X ! X � X andN � = M� � F , we get the
desired isomorphism by [Bor1, VIII Sect. 21.1, (4), p. 346]. 2

4.2. THE EXPONENTIAL AOMOTO COMPLEX

4.2.1. LetV = A nC ; V
_ the dual space ofV , andh i : V _ � V ! A 1

C the natural
pairing. Forv_ 2 V _(C )nf0g, put

H(v_) = fv 2 V jhv_; vi = 1g:
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Choose a basisfv_1 ; : : : ; v_ng for the vector spaceV _, considerv_1 ; : : : ; v
_
n as

linear functions onV and denote them byx1; : : : ; xn. Thusx1; : : : ; xn are affine
coordinates forV .

Let f :V ! A 1
C be a nonzero polynomial overC . PutU = V nf�1(0), and

consider the immersionj:U ! V .

4.2.2. For� 2 C and f homogeneous, we say thatM� 2 Db
h(DU ) is �-

homogeneousif h+M� = OGm;C t
� �M�[�1], whereh is the map fromGm;C �U

to U given by h(t; x) = tx. This is equivalent with requiring thath!M� =
OGm;C t

� �M�[1], becauseh is smooth.

4.2.3. Ford 2 N0 and� 2 C , let �d;� be theC (s) vector space generated by the
classical gamma function�(ds + � + 1). The action of the� operator on�d is
given by

�(�(ds+ �+ 1)) := (ds+ �+ d)(ds+ �+ d� 1)

: : : (ds+ �+ 1)�(ds+ �+ 1):

Denoting bytd the mapGm;C ! Gm;C : t 7! td, we see thatAtd(OGm;C t
�e�t) is

quasi-isomorphic to�d;� respecting� . Indeed, this exponential Aomoto complex
is represented by the complexA� = (� � � ! 0 ! A�1 ! A0 ! 0 ! � � �) with
A�1 = A0 = C (s)[t; t�1]tds+�e�t, which is quasi-isomorphic toH0(A�), and the
latter is easily shown to be isomorphic to�d;� by the usual argument to prove the
functional equation�(s+ 1) = s�(s).

4.2.4. PROPOSITION.Assume the notation of(4.2.1)and (4.2.3), with f homo-
geneous of degreed. Suppose thatM� 2 Db

h(DU ) is regular holonomic and
�-homogeneous for some� 2 C . Let 0 6= v_ 2 V _(C ), and denote by
 the
immersion
 : U \H(v_)! U . Then there exists a quasi-isomorphism

Af jU (M�e�v
_
)! Af jU\H(v_)(
+M�[�1])
C(s) �d;�; (1)

which respects the� action. Moreover for all but countably many� 2 C we have
for anyi 2 Z

dimC(s)H
i(Af jU (M�e�v

_
))

= dimCH
�i(Fgeom(j!(D (DR(M�))
 C f� [�n]))v_); (2)

whereD (�) denotes the Verdier dual andFgeom the Sato–Fourier transformation.
Proof.We may suppose thatv_ = v_1 in the notation of (4.2.1). Put

Z := fv 2 U jhv_1 ; vi = 0g = f(x1; : : : ; xn) 2 V jx1 = 0; f(x) 6= 0g
and consider the immersionsa:UnZ ! U and b:Z ! U . We have an exact
triangle [Bor1, VI 8.3]

b+b
!(M�e�x1f s)!M�e�x1f s ! a+((M�e�x1f s)jUnZ) +1�! :
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Let pU ; pUnZ ; pZ be the natural projections ofU 
 C (s); (UnZ) 
 C (s); Z 
 C (s)
on Spec(C (s)). Applying (pU )+ to the above triangle we see that in order to prove
(1) it suffices to show that

(pZ)+b
!(M�e�x1f s) = 0; and (3)

(pUnZ)+((M�e�x1f s)jUnZ) = Af jU\H(v_
1
)
(
+M�[�1])
C(s) �d;�: (4)

From (4.1.7) we obtain

(pZ)+b
!(M�e�x1f s) = (pZ)+((b

!M�)(f jZ)s) = Af jZ (b!M�): (5)

PutK := R(f jZ)�DR(b!M�). The�-homogeneity ofM� and the homogeneity
of f imply thatK is locally constant onGm;C . Hence for all but countably many
� 2 C

R�(Z;DR(b!M�)
 C f� ) = R�(Gm;C ;K 
 C t� ) = 0: (6)

Together with (5) and Lemma (4.1.5), this implies (3). We now turn to the proof of
(4). Consider the isomorphism

h0 : Gm;C � (U \H(v_1 ))
�=�! UnZ

: (t; (1; x2; : : : ; xn)) 7! (t; tx2; : : : ; txn)

and the morphismh : Gm;C � U ! U : (t; x) 7! tx. We have

h+0 ((M�e�x1f s)jUnZ)
= (Id; 
)+h+(M�e�x1f s)

= ((Id; 
)+h+M�)e�t(tdf)s; by (4:1:7; (3))

= ((Id; 
)+(OGm;C t
�
�M�[�1]))e�t(tdf)s

= OGm;C t
�e�ttds � (
+M�[�1])f s: (7)

Thus sinceh0 is an isomorphism we conclude by (4.1.2, (4)) that

Af jUnZ ((M�e�x1)jUnZ)

= Atd(OGm;C t
�e�t)
C(s) Af jU\H(v_)(
+M�[�1]):

This proves (4) and hence also (1).
We now turn to the proof of (2). Replacingh+0 ; h

+; 
+ by h!
0; h

! ; 
! in the
argument leading to (7), and comparing with (7), we get


!M�[1] = 
+M�[�1]: (8)
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(This follows also from the�-homogeneity and [KasSch, 5.4.13].)
The reasoning that gave (6) also shows that for all but countably many� 2 C

R�c(V; j!(D (DR(M�))
 C f� )) = 0:

Hence the analogue of the triangle (3.3.7) for the Sato–Fourier transform yields

Fgeom(j!(D (DR(M�))
 C f� ))v_ [�n]
�= R�c(U \H(v_); 
�(D (DR(M�))
 C f� ))[�1]:

Applying Verdier duality theorem and taking cohomology we get

H�i(Fgeomj!(D (DR(M�))
 C f� [�n])v_)
�= (Hi(U \H(v_); 
!DR(M�)[1]
 C f�� ))_:

The assertion (2) follows now directly from (1), (8) and Lemma 4.1.5 with
X = U \H(v_). 2

4.2.5. PROPOSITION.Assume the notation of(4.2.1). LetM be a holonomicDU -
module generated by the single elementw 2 �(U;M); i.e.M = DUw. Suppose
that there exists a polynomialf_:V _ ! A 1

C andB(s) 2 C (s)� such that

f_(gradx)(wf
s+1) = B(s)wf s in �(U;Mf s): (1)

Fix v_ 2 V _(C ) with f_(v_) 6= 0. Assume thatAf jU (Me�v
_
) is concentrated in

degree0 and has dimension1 overC (s). Then

det(�;Af jU (Me�v
_
)) =

h(s+ 1)
h(s)

B(s)

f_(v_)
; (2)

with h(s) 2 C�(s).

Note the analogy betweenB(s) and Bernstein’s polynomial.
Proof.SinceU is affine we have by (4.1.2, (4)) that

Af jU (Me�v
_
) = �(U;
�U 
OU Me�v

_
f s)[n]: (3)

Every global section
e�v
_
f s ofMe�v

_
f s determines an element
e�v

_
f sdx1^

: : : ^ dxn of �(U;
nU
OU Me�v
_
f s). When two such global sections
e�v

_
f s

and
0e�v
_
f s determine elements with the same cohomology class inH0(Af jU (M

e�v
_
)) we will write 
e�v

_
f s � 
0e�v_f s.

If 
e�v
_
f s 2 (@=@xi)Me�v

_
f s for somei, then
e�v

_
f s � 0. Because of our

hypothesis onAf jU (Me�v
_
) it suffices to prove that there exists a global section


 ofM such that
e�v
_
f s 6� 0 and


e�v
_
f s+1 � f_(v_)�1B(s)
e�v

_
f s: (4)
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We claim that there existsg 2 C [x1; : : : ; xn] such thatgwe�v
_
f s 6� 0. Choose

such ag with minimal degree. LetP = f_ (gradx) andP � the adjoint differential
operator ofP , i.e.P � = f_ (�gradx). Then

P �(ge�v
_
) = f_(v_)ge�v

_
+ he�v

_
;

with h 2 C [x1; : : : ; xn] having degree smaller than degg. Thushwe�v
_
f s � 0,

and hence alsohwe�v
_
f s+1 � 0, by formally replacings by s+ 1. So we obtain

gwe�v
_
f s+1 � f_(v_)�1wf s+1P �(ge�v

_
)

� f_(v_)�1P (wf s+1)ge�v
_

� f_(v_)�1B(s)gwe�v
_
f s; by (1):

This yields (4) for
 = gw.
It remains to prove the claim. Because of our hypothesis onAf jU(Me�v

_
), there

exists a global section
 of M such that
e�v
_
f s 6� 0. We can write
 = Rw,

with R 2 �(U;DU ). Then
e�v
_
f s � wR�(e�v

_
f s) whereR� is the adjoint dif-

ferential operator ofR. This yields the claim becauseR�(e�v
_
f s) is aC (s)-linear

combination of elements of the formge�v
_
f s�k with g 2 C [x1; : : : ; xn]; k 2 N,

and becausegwe�v
_
f s�k 6� 0 impliesgwe�v

_
f s 6� 0. 2

4.3. APPLICATION TO PREHOMOGENEOUS VECTOR SPACES

4.3.1. Assume the notation of (1.1), (1.2) and (2.3). In particular(G; �; V ) is a
prehomogeneous vector space andf; f_ are corresponding relative invariants of
(G; �; V ) and its dual. Moreover
 = V nf�1(0);
_ = V _nf_�1(0); O1, resp.
O_1 , is the closedG-orbit in 
, resp.
_, andn = dimV;m = dimO1. We also
have the immersionsj:
 ! V; i:O1 ! 
; j_:
_ ! V _; i_:O_1 ! 
_. For
v_ 2 V _(C ); v_ 6= 0, putH(v_) = fv 2 V jhv_; vi = 1g. Finally letL(!) = C !
be the sheaf onO1(C ) introduced in (2.3).

4.3.2. The sheafL(!) is homogeneous, meaning thath�L(!) = C �L(!), where
h : Gm;C � O1 ! O1 is given byh(t; v) = tv. Indeed from the homogeneity of
f and the definition of!2 it follows that (dt ^ h�!)2 = (dt ^ ��!)2, where�
is the projection ontoO1. This implies the claim. Thus by the Riemann–Hilbert
correspondence, ifM is the regular holonomicD
-module withDR(M) =
i�L(!)[m], thenM is 0-homogeneous in the sense of (4.2.2). Moreover the dual
ofM equalsM because the pullback ofL(!) to a suitable degree 2 cover ofO1

is constant, cf. (2.3).
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4.3.3. THEOREM.LetM be a regular holonomicD
-module withDR(M) =
i�L(!)[m]. For anyv_ 2 
_(C ) we have

det(�;Af j
(Me�v
_
)) =

h(s+ 1)
h(s)

(�1)d
b(�s� 1)
f_(v_)

;

where the Bernstein polynomialb is as in(1.2, (3)), andd = degf .
Proof.For� 2 C letDf_� be theDV _-module introduced in [Gyo1, 2.3.1], with

V; f replaced byV _; f_. (Actually in loc. cit.Df_� is a�(V _;DV _)-module, but
we consider it here as aDV _-module in the obvious way.) It is regular holonomic
[Gyo1, 2.8.6] and generated by a single element which is denoted in [Gyo1, 2.3.1]
by f_�. In particular for� = 0, we have theDV _-moduleDf_0 generated by
f_0 (not to be confused with 1). The Fourier transformF(Df_0) of Df_0 is
a regular holonomicDV -module [Gyo1, 3.19], generated by the single element
u := F(f_0), cf. [Gyo1, 2.7.1]. By Theorem 3.23 of [Gyo1] and the Riemann–
Hilbert correspondence we haveDf_0 = j_! O
_ andF(Df_0) = j+M. (Indeed
0 2 A+, whereA+ is defined in loc. cit. 2.3.6.). ThusM = F(Df_0)j
 andM is
generated by the restriction ofu to
 which we denote byw. Moreover by [Gyo1,
3.1] we have the functional equation

f_(gradx)(wf
s+1) = (�1)db(�s� 1)wf s in �(
;Mf s):

Applying the Sato–Fourier transformation to both sides of (2.4, (1)) yields

Fgeom(j!(DR(M)
 C f� [�n])) = Rj_� C f
_�� ;

for any� 2 C . Thus Proposition (4.2.4, (2)) and (4.3.2) imply thatAf j
(Me�v
_
)

is concentrated in degree 0 and has dimension 1 overC (s). The Theorem follows
now from Proposition (4.2.5). 2

4.3.4. Assume the notation of (4.3.1) and (3.1.1). Let 06= v_ 2 V _(C ). There
exist integers�N ; �N such that

[(R(f jH(v_))!j!i�L(!))��0] =
X
N2N0

�N [VN ]; and (1)

[(R(f jH(v_))!j!i�L(!))��1 ] =
X
N2N0

�N [VN ]; (2)

because the pullback ofL(!) to a suitable degree 2 cover ofO1 is constant, cf.
(4.1.3) and (2.3). Put

a_(v_) =
Y
t2C�

tat(R(f jH(v_))!j!i�L(!)); (3)
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whereat is as in (3.1.1). Unlikea_(v_), the integers�N and�N are constant for
v_ in a dense open subset ofV _(C ).

Theorem (4.1.4) withX = 
 \H(v_);K = i�L(!)j
\H(v_) andf replaced
by f j
\H(v_), together with Proposition (4.2.4) for� = 0 and Lemma (4.3.3), can
now be used to compute the�N � �N anda_(v_). This yields the following

4.3.5. PROPOSITION.Assume the notation of(4.3.1)and (4.3.4). Suppose that
v_ 2 
_(C ). Then for anyN 2 N0 we have

(�1)m(�N � �N ) =
(
e(N) if N 6= d;

e(N)� 1 if N = d;

and

a_(v_) =
�
b0d
�df_(v_)�1

�(�1)m

;

whered = degf ande(N); b0 are as in(1.2, (4), (5)).

5. Proof of Theorem A1

From now on we choose a field isomorphism betweenC andQ` . Then the complex
valued characters� and appearing in Section 1 determineQ` -valued characters
again denoted by�;  , and we can study the character sums in Section 1 by`-adic
methods.

5.1. THE MONODROMY AT INFINITY

5.1.1. LetV = A nC , V _ the dual space ofV , andh i : V _ � V ! A 1
C the natural

pairing. Forv_ 2 V _ put

H(v_) := fv 2 V jhv_; vi = 1g; and H0(v
_) := fv 2 V jhv_; vi = 0g:

Let� 2 Q, and denote byL� the sheafCx� onGm;C or the correspondingQ` -sheaf
onGm;C . We say thatK 2 Db

c(V;Q`) is�-homogeneousif h�K �= L� �K where
h is the map fromGm;C � V to V given byh(t; v) = tv.

5.1.2. PROPOSITION.Let f : V ! A 1
C be a homogeneous polynomial overC of

degreed, and letK 2 Db
c(V;Q`) be�-homogeneous. Assume thatv_ 2 V _(C ) is

general enough. Then with the notation of(3.1.1)

[(R(f jH(v_))!K)��1 ] = [(Rf!K)��1 ]� �[(Vd 
 L�=d)��1 ]; (1)

where� is the Euler characteristic�(H(v_)nf�1(0);K) for cohomology with
coefficients inK.
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Proof.By Lemma (5.1.4) below, it suffices to prove that

[(R(f jH0(v_))!K)��1 ] = [(Rf!K)��1 ]� �[(Vd 
 L�=d)��1 ]: (2)

Actually we will show that (2) even holds without assuming thatv_ is general
enough. By Lemma (5.1.5) below, applied toK and to the extension by zero of
KjH0(v_) we see it is sufficient to prove that

d�1�(f�1(1) \H0(v
_);K) = d�1�(f�1(1);K)� �;

which is equivalent to

d�1�(f�1(1)nH0(v
_);K) = � := �(H(v_)nf�1(0);K): (3)

We claim that the map

� : f�1(1)nH0(v
_)! H(v_)nf�1(0) : v 7! v=hv_; vi

is an unramified cover of degreed. Moreover��K is locally (for theétale topol-
ogy) isomorphic with the restriction ofK to f�1(1)nH0(v

_), becauseK is �-
homogeneous. Hence

�(H(v_)nf�1(0);K) = d�1�(f�1(1)nH0(v
_); ��K)

= d�1�(f�1(1)nH0(v
_);K);

which yields (3).
It remains to prove the claim. Ifv 2 f�1(1)nH0(v

_); w 2 H(v_)nf�1(0) and
�(v) = w, thenw = v=hv_; vi; v = �w with � 2 C� , 1 = f(v) = f(�w) =
�df(w), � = f(w)�1=d and hencev = wf(w)�1=d. This proves the claim. 2

5.1.3. LEMMA. LetX be a proper scheme overC ; f : X ! P1
C a morphism, and

K 2 Db
c(X;Q`). LetL be a general member of a linear system onX which has no

base points inf�1(1). Then[(R(f jL)!K)��1 ] only depends onX; f;K and the
setL \ f�1(1).

Concerning linear systems we use the terminology of [GriHar, p. 137] (working
instead with Cartier divisors whenX is not smooth).

Proof. We may suppose thatX is reduced andK is zero onf�1(1). By
restriction to the support ofHi(K) and stratification, we may further suppose that
K = j!F , with j:Y ,! X an open immersion,Y smooth,f�1(1) � XnY , and
F a smooth sheaf onY . Considering an embedded resolution of singularities [Hir]
ofXnY inX we may moreover assume thatX is smooth and thatXnY has normal
crossings inX (meaning that the irreducible components ofXnY are smooth and
intersect transversally). ThenL is smooth andL[ (XnY ) has normal crossings in
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a neighbourhood off�1(1), by Bertini’s Theorem (cf. [GriHar, p. 137]). Hence
for anya 2 L(C ) \ f�1(1) we have

	f jL;a(j!F) �= 	f;a(j!F); (1)

where	f (K) denotes the complex of nearby cycles onf�1(1) of K, cf. [Del1].
IndeedX, resp.Y , is locally ata isomorphic withL � A 1

C , resp.(Y \ L) � A 1
C ,

andf corresponds under this isomorphism to the projection ofL � A 1
C ontoL

composed withf jL. The lemma follows now from (1) and the isomorphism (cf.
[Del1, (2.1.7.1) and (2.1.8)])

(R(f jL)!K)��1
�= R�(L \ f�1(1);	f jL(K)): 2

5.1.4. LEMMA. Let f : V ! A 1
C be a polynomial overC , andK 2 Db

c(V;Q`).
Assume thatv_ 2 V _(C ) is general enough. Then

[(R(f jH0(v_))!K)��1 ] = [(R(f jH(v_))!K)��1 ]:

Proof.There exists a proper schemeX overC and morphisms

PnC
� � X f̂�! P1

C

such that� is an isomorphism overV = A nC � PnC , andf̂(x) = f(�(x)) when
�(x) 2 V . Indeed take e.g. forX the closure inPnC � P1

C of the graph off in
V � A 1

C , and for�; f̂ the projections.
PutH1 := PnC nV and letH0, resp.H, be the closure ofH0(v

_), resp.H(v_),
in PnC . Note that��1(H0), resp.��1(H), is a general member of a linear system on
X with no base points in��1(H1). (Indeed the same holds when we omit��1.)
Sincef̂�1(1) � ��1(H1) we have

��1(H0) \ f̂�1(1) = ��1(H0) \ ��1(H1) \ f̂�1(1)

= ��1(H0 \H1) \ f̂�1(1);

and similarly

��1(H) \ f̂�1(1) = ��1(H \H1) \ f̂�1(1):

Thus��1(H0) \ f̂�1(1) = ��1(H) \ f̂�1(1), becauseH0 \H1 = H \H1.
The Lemma follows now from Lemma (5.1.3) withf replaced byf̂ , K replaced
by the extension by zero of the pullback ofK on��1(V ), andL by ��1(H0) and
��1(H). 2
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5.1.5. LEMMA. Let f :V ! A 1
C be a homogeneous polynomial overC of degree

d, and letK 2 Db
c(V;Q`) be�-homogeneous. Then

[(Rf!K)��1 ] = �[(Vd 
 L�=d)��1 ];

where� = d�1�(f�1(1);K).
Proof.TensoringK with j!f�L��=d, wherej is the immersionV nf�1(0)! V ,

we may assume thatK is 0-homogeneous. By the homogeneity off andK it
suffices to prove that

[(Rf!K)��0] = �[Vd]:

The monodromy action around 0 onH �c(f
�1(1);K) coincides with the endomor-

phism induced by


 : V ! V : v 7! e2�i=dv

and a suitable morphism' : 
�K ! K obtained from the 0-homogeneity ofK.
Thus it suffices to show for allj 2 N that

tr(
j ; R�c(f
�1(1);K)) = 0 if d - j; and (1)

= �d if djj: (2)

Indeed the right-hand side of (1), resp. (2), equals the trace of thejth power of
the monodromy action onV ��d . Assertion (2) is clear and (1) follows from a
generalization of the Lefschetz Fixed Point Theorem, see e.g. [KasSch, (9.6.2) and
(9.6.16)]. Indeed ifd - j, then
j : V ! V has no fixed points different from 0
and extends to an endomorphism of the compactification(P1

C )
n of V whose graph

intersects the diagonal transversally. Thus assertion (1) follows by applying the
Fixed Point Theorem to this endomorphism and the extension by zero ofKjf�1(1)

to (P1
C )
n. 2

5.2. PROOF OF THEOREM A1

5.2.0. Notation and conventions

(1) From now on till the end of the paper we assume the notation of Section 1 and
of (3.5.1).

(2) We always assume that the characteristicp of Fq is sufficiently large.
(3) We have chosen an isomorphism betweenC andQ` . Thus the complex valued

characters and� in Section 1 becomeQ` -valued and we have the sheaves
L ; L�; f

�L� = L(�(f)) from (3.1.2) and the Deligne–Fourier transforma-
tionF . Moreover the sheavesL(!_) andL(!) are defined in (3.5.2).
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(4) For a constantc 2 Q`
�, we denote by the same letterc the Frobq-moduleQ`

on which Frobq acts as the multiplication byc.
(5) PutE = E(f; f_) := b0=

Q
j>1(j

j)e(j), with b0 ande(j) as in (1.2). Recall
thatr :=

P
j>1 e(j), cf. (1.4).

(6) Put

�� = ��(f) := (�1)mq�m=2
Y
j>1

 
G(�j;  )p

q

!e(j)
;

wherem andG(�; ) are as in (1.2, (2)) and (1.3).
(7) The dimension shift, resp. Tate twist, is denoted by[n], resp.(n).
(8) �� = ��1 and � =  �1.
(9) H(v_) = fv 2 V jhv_; vi = 1g andH_(v) = fv_ 2 V _jhv_; vi = 1g.

5.2.1. Evaluation of the character sum onO1 twisted by�1=2(h(v))

5.2.1.0. Our proof of Theorem A1 is somewhat indirect, first evaluating

S_h (�; v
_) :=

X
v2O1(Fq)

�1=2(h(v))�(f(v)) (hv_ ; vi);

where�1=2 andh are as in (1.5).

5.2.1.1. Note that the sheafL(!) is �-homogeneous with� the trivial character
(compare with (4.3.2)). We will use Proposition (3.4.5) and its notation withK =
j!i�L(!). ThusS_K(�; v

_) from (3.4.2) equalsS_h (�; v
_) by Lemma (3.5.4), and

we will use the notations�N ; �N ; 
N ; �; a_(v_); �� from (3.4.5). Fix~v_ 2 
_(Q)
in the open orbitO_0 of G, and letv_ 2 
_(Fq ) be the reduction modp of ~v_.
Applying the Deligne–Fourier transformation to both sides of (3.5.3, (1)) we obtain,
forgetting the Frobenius action

F (j!i�(L(!)
 f�L�[�n])) �= Rj_� f
_�L��1[�m] onV _ 
 Fq ; (1)

cf. [Lau1, 1.2.2.1]. This together with (4.1.3) implies that the hypotheses of Propo-
sition (3.4.5) are satisfied and that� = (�1)m. Moreover

�(H(v_)nf�1(0);K) = ��; (2)

by (3.4.4, (2)).

5.2.1.2. Using the notation of (3.1.3), put

"_0 (v
_) := "0(O1 \H(v_); L(!)): (1)

From (3.1.6) and Lemma (3.5.4) it follows that

"_0 (v
_) 2 Q� : (2)
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Thus we can consider the sign of"_0 (v
_) and denote it by sign("_0 (v

_)) 2 f1;�1g.
From Proposition (3.4.5, (6)) we then get

"_0 (v
_) = sign("_0 (v

_))
p
q(�1)m(m�1)�

P
N
(�N��N )q�

P
N
�N : (3)

Combining this with (2) yieldsX
N

(�N � �N ) � m� 1 mod 2: (4)

Together with (3) and Proposition (4.3.5) we get

"_0 (v
_) = sign("_0 (v

_))
p
q(�1)m(m�r)q�

P
N
�N ; (5)

and also the following

5.2.1.3. LEMMA.Assume the notation of(1.2, (2))and(1.4). Thenm � rmod 2.

5.2.1.4. BecauseO_0 (C ) is a homogeneous space under the action ofG, we easily
deduce from (5.2.1.1, (2)) and Proposition (5.1.2) that

��� +
X
�N=1

(
N � �N ) = 0; (1)

with the notation of (3.4.5), especially�� = 1 if �d = 1 and zero otherwise. Now
we apply Proposition (3.4.5,(5)) and obtain by (5.2.1.2, (4) and (5)) and (1) that

S_h (�; v
_) = �sign("_0 (v

_))
p
qm�r�((a_(v_))(�1)m

��
 Y
N

N�N(�1)m(�N��N )

!

�G(�d;  )
Y
N

G(�N ;  )(�1)m(�N��N ):

Together with Proposition (4.3.5) and the notation (5.2.0, (5) and (6)) one concludes
that

q�mS_h (�; v
_) = �(�1)m sign("_0 (v

_))���(Ef
_(v_)�1); (2)

for v_ as in (5.2.1.1).

5.2.2. The Deligne–Fourier transform ofj!i�(L(!)
 f�L�)
5.2.2.0. It is not possible to prove Theorem A1 by taking the Fourier transform
of both sides of equation (5.2.1.4,(2)) because this equation may not hold when
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f_(v_) = 0. To overcome this problem we will determineF (j!i�(L(!)
f�L�))
onV _. In order to reduce the complexity of the expression, we shall use the abusive
notationL(�(')) := '�L� for a morphism' : X ! Gm;Fq of schemes.

5.2.2.1. LetX be a scheme of finite type overFq such thatX 
 Fq is connected.
Then a smooth sheaf onX is uniquely determined by specifying the Frobenius
action on the stalk of a singleFq -rational point and by knowing the restriction
of the sheaf toX 
 Fq . Hence (5.2.1.1, (1)) implies that there exists a constant
c = c(�) 2 Q` such that

F (j!i�(L(!)
 L(�(f))(m)[m])) �= c
 L(�(f_( )�1))[n] on
_: (1)

Here and below, we always assume that the isomorphisms are compatible with
the Frobenius action unless otherwise stated. Considering the trace of the Frobe-
nius action on both sides of (1), and comparing with (5.2.1.4, (2)) we getc =
�sign("_0 (v

_))���(E). Hence sign("_0 (v
_)) is constant on
_(Fq ). Put

�_ := �sign("_0 (v
_)) for anyv_ 2 
_(Fq ): (2)

Then we can write (1) as

F (j!i�(L(!)
 L(�(f))(m)[m]))
�= �_�� 
 L(�(Ef_( )�1))[n] on
_: (3)

5.2.2.2. The above isomorphism (5.2.2.1, (3)) extends to an isomorphism

' : F (j!i�(L(!)
 L(�(f))(m)[m]))
! �_�� 
Rj_� L(�(Ef_( )�1))[n] onV _; (1)

because of Lemma 5.2.2.3 below, since both members of (1) are isomorphic to
each other if we forget the Frobenius action, by (5.2.1.1, (1)).

5.2.2.3. LEMMA.LetX be a scheme of finite type overFq ; j : U ! X an open
immersion,K 2 Db

c(X;Q`), andF 2 Db
c(U;Q`). Assume thatK andRj�F are

isomorphic when we forget the Frobenius action, i.e.KjX
Fq �= (Rj�F )jX
Fq .
Then any isomorphism'0 : j�K ! F extends to an isomorphism' : K ! Rj�F .

Proof. Certainly'0 induces a morphism' : K ! Rj�F . By Verdier duali-
ty it suffices to show that the induced morphismD (') : D (Rj�F ) ! D (K) is
an isomorphism. Note that the restriction ofD (') to U equalsD ('0), which is
an isomorphism since'0 is an isomorphism. MoreoverD (Rj�F ) = j!DF and
(DK)jX
Fq �= (DRj�F )jX
Fq . Hence cohomologies ofD (Rj�F ) and DK are
zero onXnU . ThusD (') is an isomorphism. 2
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5.2.3. Proof of Theorem A1

5.2.3.1. Applying Verdier duality and the Deligne–Fourier transformation to the
above isomorphism' we obtain that

F (j_! L(�(f_))(n)[n])
�= �_�� 
Rj�i�(L(�(Ef( )�1))
 L(!))[m] onV; (1)

cf. [Lau1, 1.3.2.2 and 1.2.2.1]. Replacing the triple(G; �; V )by its dual(G; �_; V _)
yields

F (j!L(�(f))(n)[n])
�= ��� 
Rj_� i_� (L(�(Ef_( )�1))
 L(!_))[m] onV _; (2)

where (with the notation of (3.1.3))

� := �sign("0(O
_
1 \H_(v); L(!_))) for anyv 2 
(Fq ): (3)

Note that� does not depend on the choice ofv 2 
(Fq ), cf. (5.2.2.1). Theorem A1
follows now directly from (2) and Lemma (3.5.4), with

�_(v_) = ��1=2(h
_(v_)): (4)

It is convenient to put

L(�_) := � 
 L(!_); (5)

so that

tr(Frobq; L(�_)v_) = �_(v_); for all v_ 2 O_1 (Fq ): (6)

With this notation we reformulate (2) as Theorem A1y which refines both (3.5.3,
(2)) and Theorem A1

5.2.3.2. THEOREM A1y. Assume the notation of(3.1.2)and (5.2.3.1,(5)). If the
characteristic ofFq is sufficiently large, then we have for all� 2 Hom(F�q ;Q`

�
)

that

F (j!L(�(f))(n)[n])
�= (�1)mq�(m+r)=2

Y
j>1

G(�j;  )e(j)


Rj_� i_�
(
L

 
�

 
b0Q

j>1(j
j)e(j)

f_( )�1

!!

 L(�_)

)
[m] onV _:
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5.2.3.3. REMARK. Assume that the characteristic ofFq is sufficiently large and let
� 2 Hom(F�q ; C

�). Suppose that

(order of�)�1 6� �j modZ; (1)

for each�j in (1.2, (4)). (This is equivalent with the requirement that the order
of � is different from the order inQ=Z of each�j , because of (1.2, (5)).)Then
the character sum in TheoremA1 vanishes forv_ 2 (V _n
_)(Fq ). This follows
from the following argument due to N. Kawanaka: By the Plancherel formula, the
norm inL2(V _(Fq )) of the discrete Fourier transformFdiscr(� � f) of � � f equals
the norm inL2(V (Fq )) of � � f , and is thus equal toj
(Fq )j1=2. But on the other
hand the norm inL2(
_(Fq )) of Fdiscr(� � f) can be calculated by Theorem A1
and equals(qn�mjO_1 (Fq )j)1=2 = j
(Fq )j1=2, because

P
�j=1 e(j) = 0 by (1), and

because of Lemma (2.2, (1)). Thus the norms ofFdiscr(��f) inL2(V _(Fq )) and in
L2(
_(Fq )) are the same, and we conclude thatFdiscr(� � f) vanishes onV _n
_.
Actually even more is true:If (1)holds thenF (j!L(�(f))) is zero onV _n
_. This
is a direct consequence of Theorem (3.5.3, (1)) and the fact thatRj�f

�L� = j!f
�L�

which follows from [Gyo1, (3.23, (5) and (6))]. Indeed if� 2 Q has order inQ=Z
equal to the order of�, then (1) implies that�� 2 A+ \ A� with the notation of
loc. cit., and henceRj�C f� = j!C f

� .

6. Proof of Theorem B

In this section, we prove Theorem B. The basic idea of our proof is (6.2, (9)), which
gives an expression of(�1)s(Gv_) for v_ 2 O_1 (Fq ) in terms ofjGv_(Fq )j and the
operation ‘q 7! q�1’. We keep the notation and the assumption of Section 1, and
suppose that all geometric objects are defined over a finite fieldFq . Moreover, we
fix an algebraic closureFq of Fq and identify any algebraic variety overFq with ‘the
set ofFq -rational points together with the Frobenius action�(x) = Frob�1

q := xq

(x 2 Fq )’.

6.1. PROOF OF THEOREM B(FIRST STEP)

Put

6:1:1: �_(v_) := (�1)r(v
_)�s(v_) (v_ 2 O_1 (Fq )):

Theorem B asserts that�_ � �_ onO_1 (Fq ), where�_ is the function appearing
in Theorem A1. As a first step, we shall prove here that

6:1:2: �_ � C�_ on O_1 (Fq );

with C = +1 or C = �1. As for �_, the following equality is already proved
(5.2.3.1, (4)).

6:1:3: �1=2(h
_) � �_ or � ��_ on O_1 (Fq ):
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6.1.4. First, let us study how�1=2(h
_(v_)) varies whenv_ 2 O_1 (Fq ) moves.

Takev_ 2 O_1 (Fq ) and putv := F_(v_) 2 O1. Take linear basesfv1; : : : ; vmg
of TvO1, and fvm+1; : : : ; vng of (Tv_O_1 )

?. Assume that all thevi’s are Fq -
rational. Since(F�)v : TvO1 ! Tv_O

_
1 is an isomorphism (2.2, (5)), and since

(F�)vj(Tv_O_1 )? � 0 (2.2, (1)), we have

V = (TvO1)� (Tv_O
_
1 )
?: (1)

(Here(F�)v : Tv
(= V )! TF (v)V
_(= V _) denotes the linear mapping induced

by F : 
 ! V _.) In particular,fv1; : : : ; vng gives a linear basis ofV . Let
fv_1 ; : : : ; v_ng be its dual basis ofV _. Thenfv_1 ; : : : ; v_mg (resp.fv_m+1; : : : ; v

_
ng)

gives a linear basis ofTv_O_1 (resp.(TvO1)
?). Considerv_i (resp.vj) as a linear

function onV (resp.V _), and denote it byxi (resp.yj). Thenfx1; : : : ; xng (resp.
fy1; : : : ; yng) is a linear coordinate system ofV (resp.V _), and

h(F_� )v_(v_i ); v_j i

=

*
(F_� )v_

�
@

@yi

�
;
@

@yj

+

=

*
nX
k=1

@(log f_)yk
@yi

(v_) � @

@xk
;
@

@yj

+

=
@2 log f_

@yi@yj
(v_): (2)

Note that the most left member vanishes ifi > m or j > m;

@2 log f_

@yi@yj
(v_) = 0 if i > morj > m: (3)

(Indeed,(F_� )v_ j(TvO1)
? � 0 and, especially,(F_� )v_(v

_
i ) = 0 for i > m.)

Hence

h_(v_) = det

 
@2 log f_

@yi@yj
(v_)

!
16i;j6m

in F�q =F
�2
q : (4)

(See (1.5) forh_.) Take another pointv_0 of O_1 (Fq ). Then there existsg 2 G(Fq )
such thatv_0 = gv_. Let fy01; : : : ; y0ng be a linear coordinate system constructed
as above usingv_0 instead ofv_. Denote the morphism(V _; v_) ! (V _; gv_)
induced by the action ofg by the same letterg. Since(g�f_)(v_) = f_(gv_) =
�(g)�1f_(v_),

@2 log f_

@yi@yj
=

@2 log(g�f_)
@yi@yj
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=
X
i0

@2(g�y0i0)

@yi@yj
� g�

 
@ log f_

@y0i0

!

+
X
i0;j0

@g�y0i0

@yi
� @g

�y0j0

@yj
� g�

 
@2 log f_

@y0i0@y
0
j0

!
: (5)

Note also that

@2(g�y0i0)

@yi@yj
(v_) = 0: (6)

(Recall thatyi andy0i0 are linear functions onV .) By (3), (5) and (6), we get 
@2 log f_

@yi@yj
(v_)

!
i;j

=

�
@g�y0i0

@yi
(v_)

�
i;i0

 
@2 log f_

@y0i0@y
0
j0
(gv_)

!
i0;j0

 
@g�y0j0

@yj
(v_)

!
j0;j

; (7)

wherei, j, i0 andj0 run overf1; : : : ;mg. Now take any linear bases� of Tv_O_1
and�0 of Tgv_O_1 which areFq -rational. Consider the dual bases�_ and�0_ of
the dual spaces(Tv_O_1 )

_ and(Tgv_O_1 )
_, respectively. Then we can define

�(g) := det(gjTv_O_1 ! Tgv_O
_
1 )

= det(g�j(Tv_O_1 )_  (Tgv_O
_
1 )
_) 2 Fq

�
; (8)

whereg� denotes the transpose ofg and(�)_ denotes the dual space. If we change
� or �0, then the value of�(g) is multiplied by some element ofF�q . Hence

(�(g)modF�q ) is well-defined: (9)

If we take�_ = f(dy1)v_ ; : : : ; (dym)v_g and�0_ = f(dy01)gv_ ; : : : ; (dy0m)gv_g,
then

�(g) � det
�
@g�y0i0

@yi
(v_)

�
16i;i06m

modF�q : (10)

By (4), (7) and (10), we get

h_(v_) � �(g)2h_(gv_)modF�2
q : (11)

Sinceh_(v_), h_(gv_) 2 F�q =F
�2
q ,

�(g)2 2 F�q =F
�2
q : (12)
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Therefore,�1=2(�(g)
2) is well-defined, and

�1=2(h
_(v_)) = �1=2(�(g)

2)�1=2(h
_(gv_)); (13)

wheneverv_; gv_ 2 O_1 (Fq ) andg 2 G(Fq ).
6.1.5. Next, let us show that�_(v_) varies in the same way as�1=2(h

_(v_)) when
v_ 2 O_1 (Fq ) moves. More precisely, we shall show that

�_(v_) = �1=2(�(g)
2)�_(gv_) (1)

wheneverv_; gv_ 2 O_1 (Fq ) andg 2 G(Fq ). (See (6.1.1) for�_.)

6.1.6. In general, for a (not necessarily connected) reductive groupG0 over Fq ,
let B = B(G0) be the totality of Borel subgroups of(G0)0. (Here and below( )0

denotes the identity component.) Let Mor(B1; B2) (B1; B2 2 B) be the totality of
' 2 Hom(B1; B2) which come from inner automorphisms of(G0)0, and consider
B as a category. Put

X = X(G0) := lim
 �

B2B(G0)

Hom(B; Gm ) = lim
�!

B2B(G0)

Hom(B; Gm): (1)

(Note that all elements of Mor(B1; B2) induce the same morphism Hom(B2; Gm)!
Hom(B1; Gm ) by [Bor2, IV, 11.16].) Thus an element� 2 X is of the form

� = (�B)B2B; �B 2 Hom(B; Gm): (2)

Take a Borel subgroupB0 of (G0)0 defined overFq , and a maximal torusT 0 of
B0 also defined overFq [SprSte, I, 2.9]. ThenX(G0) is canonically isomorphic to
Hom (B0; Gm) = X(T 0). (We needX(G0) to work without specific choice ofB0

andT 0.) Now � = �q := Frob�1
q , where Frobq is the geometric Frobenius, acts

naturally onB(G0), and it also acts onX(G0) by the transpose: if� = (�B)B2B
andb 2 B 2 B, then(���)B(b) = ��B(�b). We have

det(��jX(G0)) = (�1)r(G
0)�s(G0)qr(G

0): (3)

Indeed, the eigenvalues ofq�1�� on X(G0) are roots of unity among which 1
appears with multiplicitys(G0), cf. [Bor2, III, 8.15].

6.1.7. LEMMA. Let G0 be a connected reductive group defined over an alge-
braically closed fieldk, andA 2 Aut(G0). Denote by the same letter the induced
automorphism ofLie(G0) =: g0.

(1) If g 2 G0 andA = Ag (:= inner automorphism byg), thendet(Ajg0) = 1 and
det(A�jX(G0)
 k) = 1.

(2) Generally, det(Ajg0) = det(A�jX(G0)
 k).
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Proof.(1) Define a rational character�0 of G0 by�0(g) = det(Agjg0). LetT 0 be
a maximal torus ofG0 andt0 := Lie(T 0). Considering the root space decomposition
g0 = t0� (L� g0(�)), we can see that�0jT 0 � 1. Hence�0 � 1 onG0 by [Bor2, IV,
11.10]. The second equality is obvious.

(2) Take a Borel subgroupB0 � G0 and a maximal torusT 0 � B0. We may
assume by (1) thatA(B0) = B0 andA(T 0) = T 0. Define an automorphismA of
the dual space oft0 so thathA�;AXi = h�;Xi for � 2 Hom(t0; k) andX 2 t0.
(In particular, we can considerA� for any root�.) Take 06= X� 2 g0(�) for each
root� so that[X�; X��] = �_ (2 t0), where�_ denotes the coroot associated with
�. (If � is a root, the corresponding coroot�_ is characterized as follows: there

is a homomorphismu : SL2 ! G0, which maps the algebraic subgroups
�

1 �
0 1

�
and

�
1 0
� 1

�
isomorphically onto the root subgroupsU� andU��, respectively.

Thendu: sl2 ! g0 maps
�

1 0
0 �1

�
to �_.) ThenA(g0(�)) = g0(A�), and hence

AX� = c�XA� with some 06= c� 2 k. Since

(A�)_ = A(�_) = [AX�; AX��]

= [c�XA�; c��X�A�] = c�c��(A�)
_;

it follows

c�c�� = 1: (3)

If we define an order of roots so that Lie(B0) � g0(�) (� > 0), then

A� > 0 whenever � > 0: (4)

By (3) and (4), det(Ajg0) = det(Ajt0) = det(A�jHom(t0; k)) = det(A�jX(G0) 

k). 2

6.1.8. Proof of (6.1.5, (1)). Since(�g)v_ = �(gv_) = gv_, it follows c :=
g�1 � (�g) 2 Gv_ and�(gbg�1) = gc(�b)c�1g�1 for b 2 B 2 B(Gv_). Put

A(x) = Ag(x) := gxg�1 for x 2 G. ThenA inducesB(Gv_)
�=�! B(Ggv_),

which we denote by the same letterA = Ag. Put �g = A�1
g � � � Ag. Then

�g = A�1
g �A�g � � = Ac � � and hence we get the commutative diagrams
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B(Gv_)
�=

Ag
- B(Ggv_)

B(Gv_)

Ac��

?
�=

Ag
- B(Ggv_)

?

� and

X(Gv_) �
�=

A�g
X(Ggv_)

X(Gv_)

���A�c

6

� �=

A�g
X(Ggv_):

6
�� (1)

Hence

det(��jX(G))

det(��jX(Ggv_))
= �_(gv_)qr

0
by (6:1:6; (3))

=
det(��jX(G))

det(��jX(Gv_))det(A�c jX(Gv_))
by (1)

= �_(v_)qr
0 � det(A�c jX(Gv_))

�1 by (6:1:6; (3)) again; (2)

wherer0 = r(v_) = r(gv_). (Cf. (1.4) forr(v_).) Thus in order to prove (6.1.5,
(1)), it suffices to show that

det(A�c jX(Gv_)) = �1=2(�(g)
2): (3)

We have

det(A�c jX(Gv_)) = det(AcjLie(Gv_)) by (6:1:7; (2))

=
det(AcjLie(G))
det(cjTv_O_1 )

= det(cjTv_O_1 )�1 by (6:1:7; (1)): (4)

(Note thatG is connected, butGv_ is not in general.) Take linear bases, say� and
�0, of Tv_O_1 andTgv_O_1 , respectively, which areFq -rational. Then (the inverse
of) the last member of (4) is equal to

det(g�1 � �(g)jTv_O_1 )

= det(g�1j(Tv_O_1 ; �) (Tgv_O
_
1 ; �

0))

�det(�(g)j(Tv_O_1 ; �)! (Tgv_O
_
1 ; �

0))

= �(g)�1 � �(�(g)) = �(g)q�1 = (�(g)2)(q�1)=2

= �1=2(�(g)
2) by (6:1:4; (12)): (5)
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Now (3) follows from (4) and (5), and hence the proof of (6.1.5, (1)) is now com-
plete. 2

6.1.9.Proof of(6.1.2). By (6.1.3), it suffices to show that

�1=2(h
_) � �_ or � �_ onO_1 (Fq ): (1)

Fix v_1 2 O_1 (Fq ). Then anyv_ 2 O_1 (Fq ) can be expressed asv_ = gv_1 with
someg 2 G(Fq ). By (6.1.4, (13)) and (6.1.5, (1)), we get

�1=2(h
_(v_))

�_(v_)
=
�1=2(h

_(v_1 ))

�_(v_1 )
; (2)

where the right-hand side is= �1, and independent ofv_. Hence we get the
result. 2

Before concluding (6.1), let us record a result which can be proved using the
technique given in (6.1.4).

6.1.10. LEMMA.For v_ 2 O_1 (Fq ), h_(v_) = h(F_(v_)) in F�q =F
�2
q , whereh_

andh are as in(1.5).
Proof. Take linear coordinatesfx1; : : : ; xng (resp.fy1; : : : ; yng) of V (resp.

V _) as in (6.1.4). Then onO_1 , we have

@2 log f_

@yi@yj
=
@2 log F_�(b0f

�1)

@yi@yj
by (2:1)

= �@
2 log F_�f
@yi@yj

= �
8<:X

i0

@2F_�xi0

@yi@yj
� F_�

�
@ log f
@xi0

�

+
X
i0;j0

@F_�xi0

@yi
� @F

_�xj0

@yj
� F_�

 
@2 log f
@xi0@xj0

!9=;
= �

8<:X
i0

@3 log f_

@yi@yj@yi0
� yi0

+
X
i0;j0

@2 log f_

@yi@yi0
� @

2 log f_

@yj@yj0
� F_�

 
@2 log f
@xi0@xj0

!9=; by (2:2; (5))
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= 2
@2 log f_

@yi@yj
�
X
i0;j0

@2 log f_

@yi@yi0
� @

2 log f_

@yj@yj0
� F_�

 
@2 log f
@xi0@xj0

!

by Euler0s identity;

wherei, j, i0 andj0 run overf1; : : : ; ng. However, as far as we are concerned with
the value atv_, we may assume that they run overf1; : : : ;mg. (Cf. (6.1.4, (3)).)
Hence 

@2 log f_

@yi@yj
(v_)

!
i;j

=

 
@2 log f_

@yi@yi0
(v_)

!
i;i0

 
@2 log f
@xi0@xj0

(F_(v_))

!
i0;j0

 
@2 log f_

@yj0@yj
(v_)

!
j0;j

;

wherei, j, i0 andj0 run overf1; : : : ;mg. By (6.1.4, (4)), we get the result. 2

6.2. PROOF OF THEOREM B(SECOND STEP)

Taking the trivial character as� in Theorem A1y (5.2.3.2), and considering the
Verdier dual, we get

F (Rj�Q`(n)[n]) �= (�1)m+rq(m+r)=2
 j_! i_�L(�_)(m)[m]: (1)

Cf. [Lau1, 1.3.2.2]. Put

'00(v
_) = tr(Frobq;F (Rj�Q`(n)[n])v_)

for v_ 2 V _(Fq ). Then by (1), we have

'00(v
_) = 0 if v_ 62 O_1 (Fq ); (2)

and (6.1.2) yields

'00(v
_) = C � q(�m+r)=2(�1)r(�1)r(v

_)�s(v_) if v_ 2 O_1 (Fq ): (3)

SinceG andGv_ (v_ 2 O_1 ) are reductive (cf. (2.2, (6)), we have dimG =
r(G) + 2N with N the number of positive roots, and a similar formula holds for
Gv_ as well. Hence

r(v_) := r(G)� r(Gv_) � dimG� dimGv_ =: m mod 2: (4)

By (5.2.1.3) (or alternatively, by [Gyo2, 7.6]), and by (4), we get

r(v_) � rmod 2: (5)
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(Later in (6.3), we shall see thatr(v_) = r without using (5).) Hence (3) can be
written as follows

'00(v
_) = C � q(�m+r)=2(�1)s(v

_) if v_ 2 O_1 (Fq ): (6)

Let h'1; '2iX :=
P
x2X '1(x)'2(x) for any setX and functions'1, '2 on it. By

(2) and (6), we get

h'00;1iV _(Fq) = Cq(�m+r)=2
X

v_2O_1 (Fq)

(�1)s(v
_)

= Cq(�m+r)=2
X

v_2O_1 (Fq)=G(Fq)

(�1)s(v
_) jG(Fq )j
jGv_(Fq )j : (7)

We know thatjG(Fq )j can be expressed as

jG(Fq )j = qN
Y
i

�i(q)� (q � 1)s(G); (8)

whereN is the number of positive roots, and the�i(q)’s are some cyclotomic
polynomials6= q� 1, cf. [Ste, 11.16] and (6.4) below. This polynomial expression
of jG(Fq )j may depend onq, but its polynomial degree is always equal to dimG.
Hence

jG(Fq )jq 7!q�1 = (�1)s(G)jG(Fq )jq�dimG�N ; (9)

and similarly for jGv_(Fq )j. (This argument is motivated by [Kaw2]. Justifica-
tion concerningjq 7!q�1 will be given in (6.4), where we shall understand every
expression( )jq 7!q�1 appearing in (6.2) except for (10e) as a specialization of some
polynomial which we shall explicitly specify. In particular, wedo notneed that
( )jq 7!q�1 has a canonical meaning. However, if the reader wants, this operation
in (9) and (10b)–(10d) can be understood as follows. In these places,( )jq 7!q�1 is
applied to quantities each of which has a natural polynomial expression, sayf(q),
and which has the same expressionf(qe) if Fq is replaced byFqe , whenevere
is close enough to 1 in lim

 �
Z=nZ. Therefore the polynomialf is uniquely deter-

mined, and hencef(q)jq 7!q�1 = f(q�1) has a canonical meaning.) Postponing the
justification until (6.4), we get from (7) and (9) that

h'00;1iV _(Fq) (10a)

= Cq(�m+r)=2

8<: X
v_2O_1 (Fq)=G(Fq)

 
jG(Fq )j
jGv_(Fq )j

!
q 7!q�1

9=;
�qm+(m�r(v_))=2 (10b)
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= Cq(r�r(v
_))=2qmfjO_1 (Fq )jq 7!q�1g (10c)

= Cq(r�r(v
_))=2qmf(q�n+mj
(Fq )j)q 7!q�1g by (2:2; (1)) (10d)

= Cq(r�r(v
_))=2qn tr(Frobq; R�c(

 Fq ;Q`))q 7!q�1 (10e)

= Cq(r�r(v
_))=2tr(Frobq; R�(

 Fq ;Q`))by the Poincar�e duality: (10f)

(Recall that
 = V nf�1(0).) Put

'0(v) := tr(Frobq; (Rj�Q`)v) = (�1)nqn tr(Frobq; (Rj�Q`(n)[n])v)

for v 2 V (Fq ). Thus by [Lau1, (1.2.1.2)],'00(v
_) = q�n

P
v2V (Fq) '0(v) (hv_; vi),

and hence

h'00;1iV _(Fq) = '0(0) = tr(Frobq; (Rj�Q`)0): (11)

Because of (10) and (11), in order to proveC = 1, it suffices to show that

tr(Frobq; R�(V 
 Fqnf�1(0);Q l )) = tr(Frobq; (Rj�Ql )0); (12)

and thatX
v_2O_1 (Fq)

(�1)s(v
_) 6= 0 (13)

(i.e., (7), (10) and (11) are non-zero). Here recall thatC = �1. The proof of
(12) and (13) will be given later in (6.5) and (6.6). Note that we have obtained
the following theorem in the same time, which was originally conjectured by
N. Kawanaka [Kaw2, (3.4.7), (ii)], [GyoKaw, 3, Remark].

6.3. THEOREM.The numberr of integer roots ofb(s) (counting multiplicity)
equalsr(v_) for anyv_ 2 O_1 .

(Our argument to obtain (6.3) would seem to depend on (6.2, (5)), but in reality it
does not. In fact, if we do not use (6.2, (5)), we should replaceC by (�1)r+r(v

_
)C

everywhere in (6.2, (6)–(10)), but it does not affect the absolute values of (10) and
(11).)

6.3.1. REMARK. By [Gyo5], the most important case would be the case where
dimG = dimV . In this case, we can construct a special type of relative invariant
following [SatKim, Sect. 4, Prop. 16] as follows. Fix linear bases ofg = Lie(G)
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andV , and putf(v) := det(g! V ;A 7! Av) for v 2 V , and�0(g) := det(V !
V ; v 7! gv) for g 2 G. Then

f(gv) = det(g! V ;A 7! Agv)

= det(g! g;A 7! g�1Ag) � det(g! V ;A 7! Av)

�det(V ! V ; v 7! gv)

= 1 � f(v) � �0(g):

Cf. (6.1.7, (1)). (For example, if(G; �; V ) is irreducible, then such a relative
invariant is irreducible, and every relative invariant can be obtained as a scalar
multiple of a power off .) By the definition off ,O0 = V nf�1(0), and especially
O0 = 
 = O1. (See (1.1) and (1.2) for notation.) Hence, in [Gyo1, (3.11, (5))], the
defining equations ofDu00� become

�Au00� = (�+ 1)�0(A)u
00
� for allA 2 g:

Hence(Du00�)[f
_�1] = (Df_���1)[f_�1], and by [Gyo1, (3.11, (5))] again, we

get

F(Df�)[f_�1]
�=�! (Df_���1)[f_�1]; F(f�) 7! f_���1: (1)

By [Gyo1, (3.1)],

f(grad)(f_s+1F(f�1)) = (�1)db(�s� 2)f_sF(f�1): (2)

By (1) and (2), we get

f(grad)f_s+1 = (�1)db(�s� 2)f_s; i:e:;

b(s) = (�1)db(�s� 2): (3)

Cf. [SatM, Chap. 2, Thm. 4, (ii)]. Sinceb(s) = b0
Qd
j=1(s+�j) with b0 2 C� and

�j 2 Q >0, (3) implies that 0< �j < 2. Hence, in this special case, (6.3) implies
that

#fjj�j = 1g = rankG� rankGv1 = rankG for v1 2 O1: (4)

Now, regard theb-function as a kind of�-function, and (3) as the functional equation
satisfied byb(s). (This standpoint would be justifiable by the resemblance of (3) to
the usual functional equation of�-functions, and also by the deep relation ofb(s)
with the �-functions of the prehomogeneous vector space. In fact, (1) is theD-
module version of the functional equation of the�-function in the sense of M. Sato
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and T. Shintani.) Sincef�s, instead off+s, is used in the definition of�-function,
let us consider�(s) := b(�s). Then

�(s) = (�1)d�(2� s); (30)

and the reflection point of (30) (i.e., the fixed point ofs $ 2� s) is 1. Moreover,
(4) can be read as

(the order of zero of�(s)ats = 1)

= rankG� rankGv1

=: (rank of the prehomogeneous vector space): (40)

It is amusing to note the resemblance between(30)+(40) and the famous conjecture
of B. Birch and H. P. F. Swinnerton–Dyer, which says the order of zero ats = 1 of
the zeta function of an elliptic curve, sayE, overQ would be equal to the rank of
E(Q).

6.4. JUSTIFICATION OF‘q 7! q�1’

6.4.1. First, we need to prepare some notation. For any setX on which� acts,X�

denotes the set of�-fixed points. (Recall that� = Frob�1
q .) PutW := (B(G) �

B(G))=G (= the Weyl group ofG). In order to specify the dependence of the
split rank s(G) on theFq -structure, we sometimes writes(G;�) for s(G). Fix
v_ 2 O_1 (Fq ), recall thatG0

v_ is the identity component ofGv_ , and put�0(Gv_) :=
Gv_=G

0
v_ . For a group� on which� acts as an automorphism, letH1(�;�) denote

the quotient set of� by the equivalence relation

a � b, ‘a = c�1 � b � �(c) for somec 2 �’

for anya; b 2 �.

6.4.2. Next, let us review the (natural) one-to-one correspondence betweenO_1 (Fq )=
G(Fq ) andH1 := H1(�; �0(Gv_)). Forc 2 Gv_ , let [c] denote its class inH1. Let
c0 = 1; c1; : : : ; cl 2 Gv_ be a complete set of representatives ofH1. Takegi 2 G
so thatg�1

i ��(gi) = ci [SprSte, I, 2.2]. Thenfv_i := giv
_j0 6 i 6 lg is a complete

set of representatives ofO_1 (Fq )=G(Fq ) [SprSte, I, 2.7].

6.4.3. Now we explain the justification concerning ‘q 7! q�1’. Put

'(t;G;�) := (�1)s(G;�)
X

w2W�

tl(w)+N � det(1� tq�1��jX 
 Q);

whereN is the number of positive roots andl(w) is the length ofw 2W , especially
l(w) +N is the dimension of theG-orbitw � B(G)� B(G). See (6.1.6, (1)) for
X = X(G). Then

jG(Fq )j = '(q;G;�) (cf: [Ste; 11:10 and 11:11]):
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This follows from the Bruhat decomposition and the fact that for a maximal torus
T of G defined overFq , we have

jT (Fq )j = jdet(1� ��jX 
 Q)j = (�1)s(G)det(1� ��jX 
 Q);

the first equality following from the duality betweenT andX, and the second from
the argument which gave (6.1.6, (3)). PutGi := Gv_i ,Bi := B(Gi),Xi := X(Gi),
Wi := Bi � Bi=Gi, and

 (t;�) :=
lX
i=0

1
j�0(Gi)�j �

'(t;G;�)

'(t;G0
i ; �)

:

(A priori, we only know that (t;�) 2 Q(t), but after (8) and (11) below, we can
easily see that (t;�) 2 Q[t], and therefore we can substitute any number fort.)
Then by [SprSte, I, 2.11],

jO_1 (Fq )j =  (q;�):

TakeM 2 N0 (= f1;2; : : :g) so that the following conditions are satisfied

G andGi (0 6 i 6 l) split overFqM ; (1)

�M acts trivially onW andWi (0 6 i 6 l); (2)

�M (gi) = gi (0 6 i 6 l); (3)

�M acts trivially on�0(Gi) (0 6 i 6 l): (4)

By (1),��M = qM (2 End(X)). Hence

det(1� tq�Mk�1��Mk+1jX 
 Q) = det(1� tq�1��jX 
 Q) (5)

for anyk 2 N (= f0;1;2; : : :g). Since, by (6.1.6, (3)),(�1)s(G;�) is the leading
coefficient of det(1� tq�1��) 2 Q[t],

(�1)s(G;�) = (�1)s(G;�
Mk+1): (6)

By (2),

W � =W �Mk+1
: (7)

By (5)–(7),

'(t;G;�) = '(t;G;�Mk+1): (8)
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Hence

jG(FqMk+1 )j = '(qMk+1;G;�Mk+1) = '(qMk+1;G;�): (9)

By (3), g�1
i � �Mk+1(gi) = g�1

i � �(gi) = ci. Hence

fv_i j0 6 i 6 lg is also a complete set of representatives

ofO_1 (FqMk+1 )=G(FqMk+1): (10)

Applying (8) toG0
i , we get

'(t;G0
i ; �) = '(t;G0

i ; �
Mk+1) (0 6 i 6 l): (11)

By (4), (8), (10) and (11), we get

 (t;�) =  (t;�Mk+1): (12)

Hence

jO_1 (FqMk+1 )j =  (qMk+1;�Mk+1) =  (qMk+1;�): (13)

The precise meaning of the left side of (6.2, (9)) is'(q�1;G;�). The meaning of
the inside off g in (6.2, (10b) and (10c)) is (q�1;�). Since

j
(FqMk+1 )j = (qMk+1)n�mjO_1 (FqMk+1 )j

= (qMk+1)n�m (qMk+1;�); (14)

(n = dimV , m = dimO_1 ) by (2.2, (1)), we can understand the meaning of (6.2,
(10d)) similarly as above; the inside off g means (q�1;�) again. As for (6.2,
(10e)), we need to understand it in two ways. On the one hand, we understand it as

tr(Frobq; R�c(
;Ql ))jq 7!q�1 = q�(n�m) (q�1;�): (15)

On the other hand, in order to get ‘(10e) = (10f)’, we need to understand it as

tr(Frobq; R�c(
;Ql ))jq 7!q�1 =
X

��1
i �

X
��1
j ; (16)

where the�i’s (resp.�j ’s) are the eigenvalues of Frobq on Heven
c (
;Ql ) (resp.

Hodd
c ) including multiplicities. Then our task is to show that (15) is equal to (16).

By (14),X
�Mk+1
i �

X
�Mk+1
j = (qn�m (q;�))jq 7!qMk+1;
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and our task is to show thatX
��1
i �

X
��1
j = (qn�m (q;�))jq 7!q�1:

Thus it is enough to prove the following lemma.

6.4.4. LEMMA.Letci 2 R, 0 6= �i 2 C (1 6 i 6 N),M 2 N0, and assume that

NX
i=1

ci�
Mk+1
i = 0 for anyk 2 N: (1)

Then

NX
i=1

ci�
�1
i = 0: (2)

Proof. Express (1) as
PN
i=1 ci�i(�

M
i )k = 0. Considering the Vandermonde

determinant, we getX
�Mi =�

ci�i = 0 for any 06= � 2 C : (3)

Put
i := �ij�j�1=M . Thenj
ij = 1 and
i = 
�1
i . Considering

(complex conjugate of((3)� j�j�1=M ))� j�j�1=M ;

we get (2). 2

6.5. PROOF OF(6.2, (13))

We use the notation of (6.4). SinceO_1 is absolutely irreducible, we have limq!1
q�mj O_1 (Fq )j = 1, and similarly forG andG0

i . Considering (6.4.3, (13)) for
k !1, we see that

lX
i=0

1
j�0(Gi)� j = 1: (1)

From (6.2, (8)), we get

q�N jG(Fq )j � (�1)s(G) modqZp; (2)

wherep = char(Fq ), and similarly forG0
i . Suppose now thatq does not divide

j�0(Gv_)j for one (and hence for all)v_ 2 O_1 . (We may assume this becausep�
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0.) Putni := j�0(Gi)
�j andAi := (�1)s(vi)(q�N jG(Fq )j) � (q�N0jG0

i (Fq )j)�1,
whereN (resp.N0) is the number of positive roots ofG (resp.Gv). Thenq does
not divideni,Ai = 1+ qai with someai 2 Zp by (2), and

q�(N�N0)
X

v_2O_1 (Fq)

(�1)s(v
_)

=
lX
i=1

Ai
ni

by (6:2; (7)) and(6:4:2)

=
lX
i=1

1
ni

+
lX
i=1

q

ni
ai � 1 modpZp by (1):

Now the proof of (6.2, (13)) is complete. 2

6.6. PROOF OF(6.2, (12))

In this paragraph, the notation is not compatible with the remainder of Section 6.
The content must be well known, but is included for the sake of convenience of the
readers.

6.6.1. LetV := A n
Fq

, V � := V nf0g, P be the projective space consisting of lines

passing through 02 V , ~V the blow-up ofV with centerf0g, i.e., ~V := f(v; L) 2
V � P jv 2 Lg, and

~V
p2 - P

�
�
�
�
�

~j

�

P �
�

V �
j
- V
?

p1

the natural morphisms. Then (6.2, (12)) follows immediately from the next lemma.

6.6.2. LEMMA. Assume the above notation and letK 2 Db
c(V

�;Ql ). If j!K is
�-homogeneous for some� 2 Hom(F�q ;Ql

�
), then the natural morphism

R�(V �;K) = R�(V;Rj�K)! R�(f0g; Rj�K) = (Rj�K)0

is an isomorphism.
Proof.First consider the case wheren = 1 andK = Ql . In this case, we can get

the result, comparing the spectral sequencesErs2 = Hr(X;Rsj�Ql ) for X = V
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andX = f0g, and noting thatj�Ql = Ql and that suppRsj�Ql � f0g (s > 0).
Second, ifn = 1 andK = L� with � 6= 1, then both members vanish.

The general case can be reduced to these two cases as follows. By the proper
base change theorem, we have

(Rj�K)0 = (R(p1)�R~j�K)0 = R�(p�1
1 (0); R~j�Kjp�1(0)):

On the other hand, we have

R�(V �;K) = R�(P;R(p2)�R~j�K):

Hence it suffices to prove that the natural morphism

R(p2)�R~j�K ! R~j�Kjp�1
1 (0) (1)

is an isomorphism, wherep�1
1 (0) is identified withP via p2. Sincep2 : ~V ! P is

a line bundle, we may identify

V �
~j�! ~V

p2�! P; p�1
1 (0); andK onV �

with

Gm � P
~j�! A 1 � P p2�! P; f0g � P; and

K �= L� � s
�K onGm � P;

locally onP . Heres is a local section ofV �
p2~j�! P . Thus the proof of (1) reduces

to the first two cases. 2

7. Proof of Theorem A2

In this section, we show that Theorem A2 can be obtained from Theorem A1.

7.1. We keep the notation and the conventions of (5.2.0). We record Theorem A1y

in (5.2.3.2) in the following form

F (j!L(��1(Ef( )�1))(n)[n])

= �� 
Rj_� i_� (L(�(f_( )�1))
 L(�_))[m] (1)�

onV _.

7.2. From (3.5.3, (4)) and (5.2.3.1, (5) and (6)), we can show that there exists a
constantC = C(�) 6= 0 such that

q�m
X

v_2O_1 (Fq)

�(f_(v_)) (hv_; vi)

= C � (�1)m�� � �(Ef(v)�1) � �_(F (v)) (1)
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for v 2 
(Fq ), and

F (j_! i_�L(�(f_))(m)[m]) �= C�� 
 L(�(Ef( )�1))
 F �L(�_)[n] (2)

on
. We can extend the isomorphism (2) to the whole spaceV in a similar fashion
as (5.2.2.2), using (3.5.3, (4)):

F (j_! i_�L(�(f_))(m)[m])
= C�� 
Rj�(L(�(Ef( )�1))
 F �L(�_))[n] (3)

onV . Our purpose is to prove thatC = 1. ApplyingF � to both members of (3),
and changing�! �0, we get by [Lau1, 1.2.2.1]

C��0 
F � (Rj�(L(�
0(Ef( )�1))
 F �L(�_))(n)[n])

= j_! i
_
�L(�

0(f_))(m)[m] (4)�0

onV _.

7.3. Now consider theQ` -valued functions onV _ obtained from (7.1, (1)�) and
(7.2, (4)�0) by taking the trace of Frobq. Next consider theirL2-inner product using
the fact that the Fourier transformation preserves theL2-inner product. Then we
get

C��0q
�n

X
v2
(Fq)

(��1�0)(Ef(v)�1)�_(F (v))

= ��q
�m

X
v_2O_1 (Fq)

(��1�0)(f_(v_))�_(v_): (1)

(Remark. In (1), except for the factor��=��0 , everything depends only on��1�0.
So, it might seem strange at first glance, but for almost all��1�0, both sums vanish,
and it is not absurd.) In particular, taking� = �0, we get

Cq�n+m
X

v2
(Fq)

�_(F (v)) =
X

v_2O_1 (Fq)

�_(v_): (2)

By (2.2, (1)), (2) can be written as

(1� C)
X

v_2O_1 (Fq)

�_(v_) = 0: (3)

By Theorem B, which is proved already in Section 6, we have�_(v_) = (�1)r(v
_)�s(v_)

for v_ 2 O_1 (Fq ). Hence (3) can be also written as

(1� C)
X

v_2O_1 (Fq)

(�1)s(v
_) = 0: (4)
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Hence by (6.2, (13)), we getC = 1, and we have proved Theorem A2. 2

7.4. We record (7.2, (3)) (withC = 1) as a theorem, which refines both (3.5.3, (4))
and Theorem A2.

THEOREM A2y. Assume the notation of(3.1.2) and (5.2.3.1, (5)). If the char-
acteristic ofFq is sufficiently large, then we have for all� 2 Hom(F�q ;Q`

�
)

that

F (j_! i_�L(�(f_))(m)[m])
�= (�1)mq�(m+r)=2

Y
j>1

G(�j;  )e(j)


Rj�
(
L

 
�

 
b0Q

j>1(j
j)e(j)

f( )�1

!!

 F �L(�_)

)
[n] onV: (1)

7.5. REMARK. The character sum in Theorem A2 can also be calculated differ-
ently, following the method used to determine the sumS_h (�; v

_) in (5.2.1). For
this, one has to replace in the statement of Lemma (4.3.3) and Proposition (4.3.5)
the sheafL(!) by the constant sheafCO1 onO1, and the Bernstein polynomialb(s)
by b(s; F_��!) which is defined in [Gyo3, (6.11.3) and (6.14)]. Moreover in the
proof of Lemma (4.3.3), one has to replacef_� by f_�+kF_��!, with k 2 N big
enough, and use [Gyo3, (6.21) and (6.19)] instead of [Gyo1, (3.23) and (3.1)]. An
argument as in (5.2.1), withL(!) replaced byCO1 , then yields an expression forP
v_2O_1 (Fq)

�(f_(v_)) (hv_; vi) involving b(s; F ��!_). Comparing with Theo-
rem A2, we conclude thatthe rootsmodZof b(s; F ��!_) are the same as the roots
modZ of b(s).

7.6. REMARK. Assume the characteristic ofFq is sufficiently large and let� 2
Hom(F�q ; C

�). Suppose that

(order of�)�1 6� �j modZ; (1)

for each�j in (1.2, (4)). Then the character sum in Theorem A2 vanishes for
v 2 (V n
)(Fq ). The proof is the same as in Remark (5.2.3.3). Actually, even
more is true:If (1) holds, thenF (j_! i_�L(�(f_))) is zero onV n
. This is a direct
consequence of Theorem (3.5.3, (4)) and the fact thatRj�(f

�L� 
 F �L(!_)) =
j!(f

�L� 
 F �L(!_)) which follows from [Gyo3, (6.21, (1) and (2))] (withL and
u0 as in loc. cit. (6.11.3)). Indeed if� 2 Q has order inQ=Z equal to the order of
�, then (1) and Remark (7.5) imply that� 2 A+ \A� with the notation of loc. cit.
and henceRj�(C f� 
 F �C!_) = j!(C f

� 
 F �C !_).
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8. Frobenius determinant and the Hessian

8.1. FURTHER APPLICATION OF LAUMON’S PRODUCT FORMULA

8.1.1. LetX be a scheme of finite type overFq ; f : X ! P1
Fq

a morphism, and

K 2 Db
c(X;Q`). Let u 2 jXj be a closed point ofX. We denote by�f;u(K)

the stalk atu of the complex of vanishing cycles onf�1(f(u)) associated tof
andK, cf. [Del1]. Note that�f;u(K) is aGf(u) module (in the sense of (3.1.1)
with s = f(u)), hence we can consider the local constant" ;0(Tf(u);�f;u(K); !)

introduced in (3.1.4), for any rational differential form! 6= 0 onP1
Fq

. The following
lemma is a direct consequence of Laumon’s Product Formula (3.1.5).

8.1.2. LEMMA. Let X be a scheme,f :X ! Gm;Fq a proper morphism and
K 2 Db

c(X;Q`). Suppose thatRif!K has tame ramification at0 and1 for all i,
and that

[(Rf!K)��0] =
X
N2N

(N;q)=1

�N [VN ]; and [(Rf!K)��1 ] =
X
N2N

(N;q)=1

�N [VN ]; (1)

where the integers�N ; �N are zero for almost allN . Moreover suppose that
�f;u(K) is zero for allu 2 jXj outside a finite subset� of jXj. Then

"0(X;K) = q
P

N
N�N

Y
N

(" ;0(T0; VN ; x
�1 dx)�N

�" ;0(T0; VN ;�x�1 dx)�N )

�
Y
u2�

" ;0(Tf(u);�f;u(K); x�1 dx): (2)

(See (3.1.3) for the definition of"0, and (3.1.1) forVN ).
Proof.For anys 2 jGm;Fq j we have a distinguished triangle

(Rf!K)s ! (Rf!K)��s !
M
u2�

f(u)=s

�f;u(K)
+1�! (3)

of Gs-modules, cf. [Del1, (2.1.2.4)]. Hence

" ;0(Ts; Rf!K;!)

= " ;0(Ts; (Rf!K)s; !)
Y
u2�

f(u)=s

" ;0(Ts;�f;u(K); !); i:e:;

" (Ts; Rf!K;!)

= " (Ts; (Rf!K)s; !)
Y
u2�

f(u)=s

" ;0(Ts;�f;u(K); !):
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Thus if! has no pole and no zero ats, then

" (Ts; Rf!K;!) =
Y
u2�

f(u)=s

" ;0(Ts;�f;u(K); !); (4)

by [Lau1, (3.1.5.6)] withK = Q` . Here note that the action ofIs on (Rf!K)s is
trivial by definition. Apply Laumon’s Product Formula (3.1.5) to the differential
x�1dx and the complexj!(Rf!K), with j the immersionGm;Fq ! P1

Fq
. The Lem-

ma follows now directly from (3.1.4, (4)). 2

The following lemma is a special case of Lemma 1 of [Sai1], see also the last three
lines on page 401 of loc. cit. (Note however that the"-factors in loc. cit. are with
respect to a Haar measure which isq times the one used in [Lau1, 3.1.5.8], and
hence differ from our"-factors" ;0(T0;K; !) by a factorqrankK , cf. [Del5, 5.3].)

8.1.3. LEMMA. Assume the notation of(3.1.4) with q odd, and letN 2 N be
coprime withq. Then

" ;0(T0; VN ; x
�1 dx) = �q�NG(�1=2;  )

N�1�1=2(2
N�1N); (1)

" ;0(T0; VN ;�x�1 dx) = �q�NG(�1=2;  )
N�1�1=2((�2)N�1N): (2)

(See (1.5) for the definition of�1=2 and (3.1.2) forG(�1=2;  ).)

REMARK. We briefly sketch a different proof of Lemma (8.1.3): As in [Sai1,
p. 402 line 14–19] one easily reduces to the caseN odd, by induction on ord2N
and [Lau1, 3.1.5.4(iv)]. Thus suppose thatN is odd. It is an elementary exercise
to verify that detVN is unramified and that det (Frobq; (VN )1) =

� q
N

�
, where� q

N

�
denotes the Jacobi symbol. Hence by [Lau1, 3.1.5.5] and the quadratic reci-

procity law, it suffices to prove that" ;0(T0; VN ; dx) = �q(N�1)=2. LetC be an
irreducible component ofVN . ThenC is ‘induced’ by a multiplicative character
� of F�qr , for somer, see e.g. [Lau1, p. 198 line 5–10]. Letm be the order of�.
Then the order ofq in (Z=mZ)� equalsr, becauseC is irreducible. By loc. cit.
we have" ;0(T0; C;dx) = �(�1)Gr(�; ), with Gr(�; ) the Gauss sum over
Fqr . Note that�(�1) = 1, sincem is odd. When the irreducible componentC of
VN , ‘induced’ by��1, does not coincide withC, thenC �C yields a contribution
Gr(�; )Gr(��; ) = qr. But if C = C andm > 1, thenr is even,qr=2 � �1
modm, and a result of Stickelberger (see [BerEva, (10.3)] or [BauMcE, last line
of p. 165]) yieldsGr(�; ) = qr=2. Multiplying all these contributions (together
with �1 for the componentV1 of VN ) we obtain" ;0(T0; VN ;dx) = �q(N�1)=2,
whenN is odd. 2
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8.1.4. For any smoothQ` -sheafF on Gm;Fq , with tame ramification at 0 and1,
we have

" ;0(T0;F ;dx) = "0(Gm;Fq ;F 
 L ):

(See (3.1.2) forL , recalling that =  �1.) Indeed this follows by straightforward
adaptation of the proof of (3.5.3.1) in [Lau1, p. 198]: We may assume thatF is
irreducible. In the notation of loc. cit., take a finite extensionk1 (� Fq =: k) of
Fq =: k and a smoothQl -sheafF1 of rank 1 onGm;k1 such thatf�F1 = F . Here
f : Gm;k1 ! Gm;k is the morphism induced byf : Spec(k1) ! Spec(k). Then we
have, with obvious notation, the following isomorphisms

R�c(Gm;k 
k k;F 
 L )
�= R�c(Gm;k1 
k k;F1 
 f�L )
�= f�R�c(Gm;k1 
k1 k;F1
 L �Tr); (1)

which are compatible with the Frobenius action. Cf. [Del4, (1.7.7)]. Here Tr denotes
the tracek1! k. SinceF1 is isomorphic to a Kummer torsor onGm;k (cf. ``:20–23
of [Lau1, p. 198]), we can determine the rank of (1), and we get"0(Gm;k ;F
L ) =
"0(Gm;k1 ;F1 
 L �Tr). Then the remaining adaptation is easy and hence omitted.

8.2. FROBENIUS DETERMINANT FOR A NON-DEGENERATE CRITICAL POINT

8.2.1. LetX be a scheme of finite type overFq , with q odd, f : X ! A 1
Fq

a morphism andu 2 X(Fq ). Suppose thatX is smooth atu (over Fq ) and of
dimensionm. Choose a regular system of parametersx1; x2; : : : ; xm for OX;u.
Assume thatu is a non-degenerate critical point off , meaning thatu is a critical
point and the Hessian

�u(f) := det

 
@2f(u)

@xi@xj

!
i;j=1;:::;m

is non-zero. Note that the image of�u(f) in F�q =F
�2
q does not depend on the

choice ofx1; : : : ; xm. Finally letK 2 Db
c(X;Q`) be smooth atu, meaning that the

cohomology sheaves ofK are smooth in a neighborhood ofu.
The following lemma is implicit in [Sai2, proof of Lemma 7], and is an easy

consequence of the material in [Del2].

8.2.2. LEMMA.Assume the notation and hypothesis of(8.2.1). Then

" ;0(Tf(u);�f;u(K);dx)(�1)m�1
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= det(Frobq;Ku)((�1)m�1�1=2((�2)m�u(f))G(�1=2;  )
m)rank(Ku) (1)

and whenf(u) 6= 0 we also have

" ;0(Tf(u);�f;u(K); x�1 dx)(�1)m�1

= det(Frobq;Ku)

�((�1)m�1�1=2((�2)mf(u)m�u(f))G(�1=2;  )
m)rank(Ku): (2)

Proof.It is well-known that�f;u(Q`)[m�1] is concentrated in degree zero, has
rank 1, and has the same geometric monodromy asL�m1=2

at 0, cf. [Del2]. Hence
from [Lau1, 3.1.5.5], it follows that (1) implies (2). Moreover by [Lau1, 3.1.5.6] we
may suppose thatK = Q` . Clearly we can assume thatX = AmFq ; f =

Pm
i=1 aix

2
i ,

andu = 0. It is an easy exercise to calculate the action ofGf(u) on�f;u(Q`), using
the material in [Del2], and to deduce (1) from it. However we will give a different
proof of (1): Althoughf is not proper, we have a distinguished triangle (8.1.2, (3))
with s = 0 and� = f0g, see [Del2, Prop. 2.2.3] and [Del1, Prop. 2.1.9]. Hence
(8.1.2, (4)), (8.1.4) and [Lau1, 3.1.5.4(iii)] yield

" ;0(T0;�f;0(Q`);dx) = " (T0; Rf!Q` ;dx)

= "0(A
1
Fq
; (Rf!Q`)
 L )

= "0(A
m
Fq
; f�L ):

This gives (1), becauseH �c(A
m
Fq
; L( (�Pm

i=1 aix
2
i ))) is concentrated in degreem

with dimension 1 and eigenvalue of Frobenius equal to(�1)m�1=2((�1)m
Q
i ai)�

G(�1=2;  )
m. 2

8.2.3. PROPOSITION.Assume the notation and hypothesis of Lemma(8.1.2), with
q odd and� = fug; u 2 X(Fq ). Suppose thatX andK are smooth atu, that
X has dimensionm at u, and thatu is a non-degenerate critical point off . Put
� = rank(Ku). Then

m�+
X
N

(�N � �N ) � 0 mod 2;and (1)

"0(X;K) = (�1)�qw=2�1=2(c)det(Frobq;Ku)
(�1)m�1

; (2)

where

w = �m�(�1)m �
X
N

(�N + �N ); (3)
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c = (�1)(m�+
P

N
(�N��N ))=2(

Y
N

N�N��N )(f(u)m�u(f))
�: (4)

Proof.Consider the determinant ofL�1=2

Rf!K. This is aQ` -sheaf onGm;Fq

which is smooth outsidef(u). Its geometric monodromy at respectively 0; f(u);1
equals the geometric monodromy of respectively

(L�1=2
)

P

N
�N ; (L�1=2

)
�m; (L�1=2
)

P

N
�N

at 0, because the determinant ofVN has the same geometric monodromy at 0 as
L�N�1

1=2
, and because of (8.1.2,(3)), and the first sentence in the proof of (8.2.2).

This directly implies assertion (1). Using (8.1.2), (8.1.3), (8.2.2) and the formula
G(�1=2;  )

2 = �1=2(�1)q, we obtain an expression for"0(X;K), which simplifies
drastically by using the congruence (1) and the relation
rank(Rf!K)��0 =

P
N N�N =

P
N N�N . This yields the assertion (2). 2

9. Proof of Theorem C

9.1. CALCULATION OF THE HESSIAN OFf jH(v_0 )\O1
AT ITS CRITICAL POINT

The main purpose of (9.1) is to provide (9.1.7, (1)) as a preliminary for the proof
of Theorem C.

9.1.0. Notation and conventions

We continue to assume the notation of Section 1 and of (3.5.1).

(1) H(v_0 ) := fv 2 V jhv_0 ; vi = 1g for 0 6= v_0 2 V _.
(2) sing(f jH(v_0 )\O1

) := fcritical points off jH(v_0 )\O1
g. (We shall show in (9.1.1)

thatH(v_0 ) \O1 is always a non-singular variety.)
(3) Bv_0 (y; y

0) := hy; (F_� )v_0 (y0)i for v_0 2 
_ and y; y0 2 V _. (Recall that
(F_� )v_0 : Tv_0 


_(= V _) ! TF_(v_0 )V (= V ) is the linear mapping induced
byF_ : 
_ ! V .)

(4) For a symmetric matrixA 2Mn(Fq ), if tXAX = diag(a1; : : : ; am;0; : : : ;0)
with X 2 GLn(Fq ) andai 2 F�q , then we put�(A) :=

Qm
i=1 ai (2 F�q =F

�2
q ),

and call it the discriminant ofA. This definition of ‘discriminant’ is equivalent
to the one given in (1.5).

(5) If q is odd, for two symmetric matricesAi 2Mni(Fq ) (i = 1;2), we define the
equivalence relationA1 � A2 as follows. Put kerAi := fx 2 Fniq jAix = 0g,
and letQi be the non-degenerate quadratic form onFniq =kerAi induced byAi.
If Q1 andQ2 are equivalent as quadratic forms, then we defineA1 � A2. In
particular, ifn1 = n2 = 1, (i.e.,A1 andA2 are scalars), thenA1 � A2 ,
A1 = A2� (square inF�q ). As is well known,A1 � A2, ‘rankA1 = rankA2

and�(A1) � �(A2)’ for two symmetric matricesA1 andA2.

comp4144.tex; 22/09/1998; 13:47; v.7; p.62

https://doi.org/10.1023/A:1000404921277 Published online by Cambridge University Press

https://doi.org/10.1023/A:1000404921277


CHARACTER SUMS ASSOCIATED TO PREHOMOGENEOUS VECTOR SPACES 335

(6) For a function'(x1; : : : ; xn) on a non-singular variety with local coordinates
x1; : : : ; xn, and for a critical point u of ', put Hessu(') :=� @2'
@xi@xj

(u)
�

16i;j6n and�u(') := � (Hessu(')). Here' is a regular function,

or more generally any function such that the@2'=@xi@xj are defined.
(7) Throughout (9.1), every variety, sayX, and every morphism is assumed to be

defined overFq , andX is identified withX(k), wherek is a (fixed) algebraic
closure ofFq . We always assume that charFq � 0.

9.1.1. LEMMA. For any 0 6= v_0 2 V _, H(v_0 ) intersectsO1 transversally. In
particularH(v_0 ) \O1 is a non-singular variety.

Proof. We may and do assume thatm := dimO1 is strictly smaller than
n := dimV . Sincek�O1 = O1 [Gyo1, (1.4, (2))], any affine hyperplane tan-
gent toO1 contains the origin ofV . HenceH(v_0 ) is not tangent toO1. 2

9.1.2. LEMMA.For v_0 2 
_, sing(f jH(v_0 )\O1
) = fug, whereu := d�1 �F_(v_0 )

with d := degf .
Proof.Forv 2 O1, consider the following conditions

(1) v 2 sing(f jH(v_0 )\O1
),

(2) F (v) 2 kv_0 + (TvO1)
?,

(3) v 2 H(v_0 ) \O1,
(4) F (v) 2 d � v_0 + (TvO1)

?,
(5) d � v_0 2 F_�1(v),
(6) d�1 � F_(v_0 ) = v:

Sincekv_0 + (TvO1)
? = (Tv(H(v_0 ) \ O1))

? by (9.1.1), we get (1), [(2) and
(3)]. Assume (2) and (3). ThenF (v) 2 cv_0 + (TvO1)

? for somec 2 k. Since
k� � v � O1,

v 2 TvO1: (7)

Henced = hF (v); vi = hcv_0 ; vi = c, and especially [(2) and (3)], [(3) and (4)].
Define an isomorphism�_ : (TO1)

? ! 
_ as in (2.2), and let� : (TO1)
? ! O1

be the projection. Then

F (v) + (TvO1)
? = �_(��1(v)) = F_�1(v) (8)

by (2.2). Hence (4), (5) , (6). If (6) is satisfied, thenhv_0 , vi = d�1

�h v_0 ; F_(v_0 )i = 1. Hence (1), [(3) and (6)], (6). 2

9.1.3. LEMMA.Letv_1 2 O_1 andv_ 2 F_�1F_(v_1 ) (= v_1 + (TF_(v_1 )O1)
? by

(9.1.2, (8)). Then
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(1) kerBv_ = kerBv_1 = ker (F_� )v_ = ker (F_� )v_1 = (TF_(v_1 )O1)
?, and

(2) Bv_ is non-degenerate onTv_1 O
_
1 .

Proof. (1) By (2.2, (1)), we get ker(F_� )v_ = ker(F_� )v_1 = (TF_(v_1 )O1)
?. By

(9.1.0, (3)), we get kerBv_ = ker(F_� )v_ for anyv_ 2 
_. Since

V _ = (Tv_1 O
_
1 )� (TF_(v_1 )O1)

? (3)

(cf. (6.1.4, (1))), (2) follows from (1). 2

9.1.4. LEMMA.Letv_1 2 O_1 (Fq ), u_i ; w_i 2 V _(Fq ) (1 6 i 6 m), and'(v_) :=
det (Bv_(u_i ; w

_
j ))16i;j6m for v_ 2 
_. If '(v_1 ) 6= 0, then'(v_) = '(v_1 ) for

v_ 2 F_�1F_(v_1 ). In particular,(Bv_(u_i ; u
_
j ))16i;j6m � (Bv_1 (u

_
i ; u

_
j ))16i;j6m,

if v_ is Fq -rational.
Proof.By (9.1.3, (1) and (3)), we may assume from the beginning that

u_i ; w
_
i 2 Tv_1 O

_
1 : (1)

Then fu_1 ; : : : ; u_mg and fw_1 ; : : : ; w_mg are linear bases ofTv_1 O
_
1 . For g 2

Gv_1 = GF_(v_1 ), letg�1u_i =
Pm
j=1 aij(g)u

_
j , g�1w_i =

Pm
j=1 bij(g)w

_
j ,A(g) :=

(aij(g))16i;j6m, andB(g) := (bij(g))16i;j6m. Then

'(gv_) = det(Bgv_(u
_
i ; w

_
j )) = det(Bv_(g

�1u_i ; g
�1w_j ))

= detA(g) � '(v_) � detB(g): (2v_)

Dividing (2v_) by (2v_1 ), we get

'(gv_)='(v_1 ) = '(v_)='(v_1 ) for v_ 2 F_�1F_(v_1 ): (3)

(Note thatgv_1 = v_1 .) SinceF_(O_0 ) = O1 [Gyo1, (1.18, (2))],Gv_1 acts homoge-

neously on the open dense subsetO_0 \F_�1F_(v_1 ) of F_�1F_(v_1 ), and hence
(3) implies that'(v_)='(v_1 ) = 1 for all v_ 2 F_�1F_(v_1 ). 2

9.1.5. REMARK. Letfu_i g andfw_i g be linear bases ofTv_1 O
_
1 . Then'(v_1 ) 6= 0

by (9.1.3, (2)),' � '(v_1 ) onF_�1F_(v_1 ) by (9.1.4), and detA(g) = detB(g) =
det(g�1jTv_1 O_1 ) for g 2 Gv_1 . Hence (9.1.4, (2)) yields

det(gjTv_1 O
_
1 )

2 = 1 (g 2 Gv_1 ): (1)

SincehF_(v_1 ); v_1 i = d 6= 0, it follows that

Tv_1 O
_
1 = kv_1 � (F_(v_1 )

? \ Tv_1 O
_
1 ) (2)
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det(gjTv_1 O
_
1 ) = det(gjF_(v_1 )? \ Tv_1 O

_
1 ) (g 2 Gv_1 ): (3)

9.1.6. LEMMA. Takeu 2 O1(Fq ), v_0 2 
_(Fq ) and v_1 2 O_1 (Fq ) so that
F_(v_0 ) = F_(v_1 ) = d � u with d = degf . Then

Hessu(f jH(v_1 )\O1
) � Hessu(f jH(v_0 )\O1

): (1)

Proof. First we take asv_1 an arbitrary point ofO_1 . Let fv_2 ; : : : ; v_mg be a
linear basis ofF_(v_1 )

? \ Tv_1 O_1 , andxi := hv_i ; i � hv_i ; ui (1 6 i 6 m). Then
fv_1 ; v_2 ; : : : ; v_mg is a linear basis ofTv_1 O

_
1 by (9.1.5, (2)), andfx1; : : : ; xmg

gives a local coordinate system ofO1 atu, sincev_i = dxi � 0 on(Tv_1 O
_
1 )
? and

(TuO1) � (Tv_1 O
_
1 )
? = V . (Cf. (9.1.3, (3)).) Forv_ 2 F_�1F_(v_1 ), putzv

_

1 :=

hv_; i � 1 andzv
_

i := xi (2 6 i 6 m). Thenfzv_i g16i6m (resp.fzv_i g26i6m)
gives a local coordinate system ofO1 (resp.H(v_) \ O1) at u. (Note thatv_ 2
F_�1F_(v_1 ) = (TF_(v_1 )O1)

? + F (F_(v_1 )) = (TuO1)
? + v_1 , by (9.1.2, (8))

and hencev_1 � v_ is perpendicular toTuO1, i.e., (dx1)u = (dzv
_

1 )u. Note also
that

zv
_

1 (u) = hv_; ui � 1= hv_1 ; ui � 1 sinceu 2 TuO1?(v_1 � v_)
= hv_1 ; d�1 � F_(v_1 )i � 1 = 0

by Euler’s identity.) Fixg 2 Gv_1 and putz0i(v) := zgv
_

i (gv). Thenfz0ig16i6m (resp.

fz0ig26i6m) is a local coordinate system ofO1 (resp.H(v_) \ O1) at g�1u = u.
Moreover we haveH(v_)\O1 = fzv_1 = 0g = fz01 = 0g. Forv_ 2 F_�1F_(v1),
put

�(v_) := det

 
@2(f jH(v_)\O1

)

@zv
_

i @zv
_

j

(u)

!
26i;j6m

: (2)

Sincef_(v_1 ) = f_(gv_1 ) = �(g)�1f_(v_1 ) 6= 0, we have�(g) = 1 andf(gv) =

f(v). In other words, the functionf (resp.zgv
_

i ) onH(gv_)\O1 is identified with

f (resp.z0i) onH(v_) \ O1, via g : H(v_) \ O1
�=�! H(gv_) \ O1. Therefore,

noting thatgu = u is a critical point off jH(v_)\O1
by (9.1.2), we get

�(gv_) = det

 
@2(f jH(v_)\O1

)

@z0i0@z
0
j0

(u)

!
i0;j0

= det

 
@zv

_

i

@z0i0
(u)

!
i0;i

� det

 
@2(f jH(v_)\O1

)

@zv
_

i @zv
_

j

(u)

!
i;j

�det

 
@zv

_

j

@z0j0
(u)

!
j;j0

; (3)
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wherei, j, i0 andj0 run overf2; : : : ;mg. Since(dzv
_

i )u = v_i and(dz0i)u = g�1v_i
for 2 6 i 6 m,

det

 
@zv

_

i

@z0i0
(u)

!
26i;i06m

= det(gjF_(v_1 )? \ Tv_1 O
_
1 ): (4)

By (3), (4), and (9.1.5, (1) and (3)),

�(gv_) = �(v_) (v_ 2 F_�1F_(v_1 ); g 2 Gv_1 ): (5)

SinceGv_1 acts prehomogeneously onF_�1F_(v_1 ) (cf. the argument at the end
of the proof of (9.1.4)), (5) implies that�(v_) is independent ofv_. Thus we get
the result, if we assume

�(v_1 ) 6= 0; (6)

which will be proved in the course of proving the next lemma. 2

9.1.7. LEMMA.Letv_0 2 
_(Fq ),u := d�1�F_(v_0 ),H(v_0 ) := fv 2 V jhv_0 ; vi =
1g, andfy1; : : : ; yng be a linear coordinate system ofV _ defined overFq . Thenu
is a non-degenerate critical point off jH(v_0 )\O1

, and

�d � f(u)m�1�u(f jH(v_0 )\O1
) � �

 
@2 log f_

@yi@yj
(v_0 )

!
16i;j6n

: (1)

(See(9.1.0, (5)and(6)) for � and�u.)
Proof.By Euler’s identity, we can show that

nX
i;j=1

yi � @
2 log f_

@yi@yj
� yj = �d: (2)

In particular,Bv_1 (v
_
1 ; v

_
1 ) = �d 6= 0, wherev_1 is the unique element ofO_1 \

F_
�1F_(v_0 ). Note thatv_1 is Fq -rational. By (9.1.2, (7)),v_1 2 Tv_1 O

_
1 . By

(9.1.3),Bv_1 jTv_1 O
_
1 is non-degenerate. Hence we can take anFq -rational linear

basisfv_1 ; : : : ; v_mg of Tv_1 O
_
1 which containsv_1 , and such that

(Bv_1 (v
_
i ; v
_
j ))16i;j6m = diag(a1; : : : ; am) (ai 6= 0; a1 = �d): (3)

Let fv_m+1; : : : ; v
_
ng be anFq -rational linear basis of(TF_(v_1 )O1)

?. By (9.1.3,
(3)), fv_1 ; : : : ; v_ng is a linear basis ofV _. Let fv1; : : : ; vng be its dual basis,

xi := hv_i ; i and yi := hvi; i: (4)
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Then

(Bv_1 (v
_
i ; v
_
j ))16i;j6n = diag(a1; : : : ; am;0; : : : ;0) by (9:1:3; (1)); (5)

(F_� )v_1 (v
_
j ) = ajvj ;whereaj := 0 (j > m) (6)

(cf. (5) and (9.1.0, (3))), and 
@2 log f_

@yi@yj
(v_0 )

!
16i;j6n

= (Bv_0 (v
_
i ; v
_
j ))16i;j6n by (6:1:4; (2))

� (Bv_0 (v
_
i ; v

_
j ))16i;j6m by (9:1:3; (1))

� (Bv_1 (v
_
i ; v

_
j ))16i;j6m by (9:1:3; (2)) and(9:1:4): (7)

On the other hand, sinceFF_jO_1 is the identity,

v_j = (F�)F_(v_1 )(F
_
� )v_1 (v

_
j ) = (F�)F_(v_1 )(ajvj) (1 6 j 6 m); (8)

by (6). Hence

a2 : : : am � (a2 : : : am)
�1

= det(hvi; (F�)F_(v_1 )(vj)i)26i;j6m

= det

 
@2 logf
@xi@xj

(F_(v_1 ))

!
26i;j6m

: (9)

Since every@2 logf=@xi@xj is homogeneous of degree�2,

a2 : : : am � det

 
@2 logf
@xi@xj

(u)

!
26i;j6m

6= 0: (10)

(Note thatu = d�1 � F_(v_0 ) = d�1 � F_(v_1 ).) Take a local coordinate system
fz1; : : : ; zng of V atu so that

z1 := hv_1 ; i � 1(= x1� 1); (11)

zi = hv_i ; i � hv_i ; ui (= xi � hv_i ; ui) (2 6 i 6 m); (12)

(dzi)u = v_i (= dxi) (m+ 16 i 6 n); and (13)

O1 = fzm+1 = � � � = zn = 0g: (14)
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ThenH(v_1 ) \O1 = fz1 = zm+1 = � � � = zn = 0g. Now, let us calculate

@2 logf
@zi@zj

=
X

16i0;j06n

@xi0

@zi
� @

2 logf
@xi0@xj0

� @xj0
@zj

+
X

16i06n

@ logf
@xi0

� @
2xi0

@zi@zj
(15)

atu for 2 6 i; j 6 m. By (11)–(13),

@xi0

@zi
(u) = �i;i0 (1 6 i; i0 6 n): (16)

By (11) and (12)

@2xi0

@zi@zj
= 0 (1 6 i0 6 m): (17)

Since f_(F (v)) = b0f(v)
�1 by (2.1), f is constant onF�1F (u) = u+

(TF (u)O
_
1 )
? = u+(Tv_1 O

_
1 )
?. (Indeed,F (u) = F (d�1�F_(v_0 )) = d�FF_(v_0 ) =

d � v_1 , andO_1 = d � O_1 .) Sinceu + (Tv_1 O
_
1 )
? can be expressed asfxj = cj

(1 6 j 6 m)g with some constantsfcjg,
fxi0 (u) = 0 (m+ 1 6 i0 6 n): (18)

By (15)–(18)

@2 logf
@zi@zj

(u) =
@2 logf
@xi@xj

(u) (2 6 i; j 6 m): (19)

Thus we get 
@2 logf_

@yi@yj
(v_0 )

!
16i;j6n

� diag(�d; a2; : : : ; am) by (3) and (7)

� (�d)�
 
@2 logf
@xi@xj

(u)

!
26i;j6m

by (10)

= (�d)�
 
@2 logf
@zi@zj

(u)

!
26i;j6m

by (19)

� (�d)� Hessu(logf jH(v_1 )\O1
): (20)
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Comparing the second and the last members of (20), we can see that the rank of
Hessu(logf jH(v_1 )\O1

) is m � 1, and hence we get (9.1.6, (6)). In particular, we
get (9.1.6, (1)), which together with (20) yields

�

 
@ logf_

@yi@yj
(v_0 )

!
� (�d)�(Hessu(logf jH(v_0 )\O1

))

= (�d)�(f(u)�1 � Hessu(f jH(v_0 )\O1
))

� (�d)f(u)m�1�u(f jH(v_0 )\O1
):

(The equality in the second line can be proved by a direct calculation using the fact
thatu is a critical point off jH(v_0 )\O1

). 2

9.2. EXISTENCE OF A GOOD COMPACTIFICATION

9.2.1. LEMMA. Assume the notation of(5.1.1). LetK 2Db
c(V;Q`) be�-homo-

geneous andf :V ! A 1
C a homogeneous polynomial overC of degreed. Let

v_ 2V _(C ) be general enough. Thenf jH(v_)nf�1(0) has a compactification

H(v_)nf�1(0) � - Z

=�
�
�
�
�
�

�

Gm;C ;

f

?

withZ a scheme overC , � proper,� an open immersion making the above diagram
commutative, and� locally acyclic relative to�!(KjH(v_)nf�1(0)) at each pointu
outside the image of� in Z. (This means that the stalk��;u(K) atu, of the complex
of vanishing cycles on��1(�(u)) associated toK, is zero(cf. [Del1]).)

Proof.Put

Y = f(x0:x1 : � � � : xn; t)2PnC � Gm;C j f(x1; : : : ; xn) = xd0tg:

ThusY is the part ‘above’Gm;C of the closure inPnC �A 1
C of the graph inV �A 1

C of
f . Hence the natural projectionp:Y ! Gm;C is proper and yields a compactification
of f jV nf�1(0) via the diagram

V nf�1(0) i - Y
Z
Z
Z
Z
Z
Z

f
~
Gm;C ;
?

p
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wherei is the open immersion defined by(x1; : : : ; xn) 7! (1:x1 : � � � : xn; f(x1; : : : ;
xn)). Put

Z := f(x0:x1 : � � � : xn; t)2Y j hv_; (x1; : : : ; xn)i = x0g � Y:

Then� := pjZ is a compactification off jH(v_)nf�1(0). It suffices to prove that� is
locally acyclic relative toi!(KjV nf�1(0)) onZ1 := Z\ (locus ofx0 = 0). Put

X := f(x0:x1 : � � � : xn)2PnC j f(x1; : : : ; xn) = xd0g;
X1 := X \ (locus ofx0 = 0); Y 0 := X � Gm;C ;

Z 0 := f(x0:x1 : � � � : xn; t)2 Y 0 j hv_; (x1; : : : ; xn)i = x0t
�1g � Y 0;

Y 01 := Y 0 \ (locus ofx0 = 0) = X1 � Gm;C ;

Z 01 := Z 0 \ (locus ofx0 = 0):

Let

p0:Y 0! Gm;C ; and �0:Z 0! Gm;C

be the natural projections. We have a commutative diagram

Y 0
� - Y

Gm;C

p0

?
�d- Gm;C ;

?

p

where� is given by(x0:x1 : � � � : xn; t) 7! (x0 : tx1 : tx2 : � � � : txn; td), and�d by
t 7! td. Note that� is locally bianalytic, inducing a locally bianalytic map fromZ 0

ontoZ. Moreover, sinceK is�-homogeneous,

��i!(KjV nf�1(0)) = i0!(Kjf�1(1) � L�);

wherei0 is the open immersion

i0: f�1(1)� Gm;C !Y 0: (x1; : : : ; xn; t) 7! (1:x1 : � � � : xn; t):

Hence it suffices to prove that�0 is locally acyclic onZ 01 relative to (the restriction
toZ 0 of) i0!(Kjf�1(1) � L�).

By stratification it suffices to prove, for anyQ` -sheafF onX which is smooth
on a locally closed smooth subschemeW � XnX1 = f�1(1) but zero outside
W , that�0 is locally acyclic onZ 01 relative to (the restriction fromY 0 to Z 0 of)
F � Q` .
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LetW be the closure ofW inX. By embedded resolution of singularities [Hir],
there exists a smooth schemeeX overC and a proper morphismh: eX !W which
is an isomorphism aboveW , such thath�1(WnW ) has normal crossings ineX
(meaning that its irreducible components are smooth and intersect transversally).
Consider

eY := eX � Gm;C ; g : eY ! Y 0 : (x; t) 7! (h(x); t);eZ := g�1(Z 0) � eX � Gm;C ; eZ1 := g�1(Z 01);
eY1 := g�1(Y 01);e� := �0 � (gj ~Z) : eZ! Gm;C : (x; t) 7! t:

Note thatg�(F � Q`) is zero on the divisorD := h�1(WnW )red� Gm;C of eY ,
and smooth oneY nD. Moreoverg is a closed immersion outsideD. Because the
morphismg0: eZ!Z 0 induced byg is proper, the functorRg0� commutes with the
functorR	 of nearby cycles, see [Del1, 2.1.7.1]. Hence it suffices to prove thate�
is locally acyclic oneZ1 relative to (the restriction fromeY to eZ of) g�(F � Q`).

Note thatZ 0 and eZ depend onv_. The linear system onY 0 generated by all
the divisorsZ 0 for v_ running throughV _(C ), has no base points. Hence the same
is true for the linear system oneY generated by all theeZ. Moreover the divisorD
has normal crossings ineY . Thus by Bertini’s Theorem (cf. [GriHar, p. 137]), for
v_ general enough,eZ is smooth overC and intersects each irreducible component
of D transversally, andD \ eZ is a divisor oneZ with normal crossings. Clearly
g�(F�Q`) is zero onD\ eZ and smooth oneZn(D\ eZ). Moreover for anyz 2 eZ1,
we claim that the restriction ofe� to the intersectionE of all irreducible components
of D \ eZ containingz, is smooth atz. Since the smoothness is characterized by
the surjectivity ofde�, this implies thateZ (resp.D \ eZ) is smooth (resp. relatively
normal crossing) atz overGm , and hence implies by [Del1, Lemme 2.1.11] thate� is locally acyclic oneZ1 relative to (the restriction toeZ of) g�(F � Q`). Thus it
remains to prove the claim. Locally atz, the schemeE equals the intersectionE0

of eZ and the irreducible components ofD containingz. But at least one of these
components ofD is contained ineY1, becauseeY1 � D sinceW � XnX1. Hence
the schemeE0 equals the intersection ofeZ\ eY1 and the irreducible components of
D containingz. One verifies from the definitions thateZ \ eY1 = eZ1 is a cartesian
product with second factorGm;C . The same is obviously true forD and hence also
for E0. Thuse�jE , being the projection ontoGm;C , is smooth atz, which proves the
claim. 2

9.3. PROOF OF THEOREM C

We now return to the notation and convention of (9.1.0), in order to prove
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Theorem C. In particular, we assume that charFq � 0. From (5.2.3.1, (3) and (4))
it follows (replacing the triple(G; �; V ) by its dual(G; �_; V _)) that it suffices to
prove

sign("0(H(v_) \O1; L(!))) = ��1=2

0@(�1)(m+r)=2
Y
j>1

je(j)

1A ; (1)

for at least onev_ 2
_(Fq ). We have seen in (9.1.2) and (9.1.7) thatf jH(v_)\O1

has only one critical pointu = d�1F_(v_) and that this is a nondegenerate
critical point. Hence, forv_ the reduction modp of a general enough point, say
v_0 , in 
_(Q), we can apply Proposition (8.2.3) (withm replaced bym � 1) to a
suitable compactification, sayef :X! Gm;Fq , of f jH(v_)\O1

. (More precisely, let
�:Z! Gm;Q be the compactification off :H(v_0 )nf�1(0)! Gm;Q obtained by
Lemma (9.2.1) withK = j!i�L(!). Consider its ‘reduction modulop’ for p� 0.
Then restrict to the closure ofH(v_) \ O1 in Z. Note that the acyclicity ofef on
Xn(H(v_)\O1) follows from the acyclicity of� by [Del1, 2.1.7.1].) This yields

sign("0(H(v_) \O1; L(!)))

= ��1=2(c
0f(u)m�1�u(f jH(v_)\O1

))det(Frobq; L(!)u)(�1)m ; (2)

with

c0 = (�1)(m�1+�N (�N��N ))=2
Y
N

N�N��N : (3)

The lemmas (9.1.7) and (3.5.4) imply that

�1=2(f(u)
m�1�u(f jH(v_)\O1

))det(Frobq; L(!)u)(�1)m

= �1=2(�dh_(v_)h(d�1F_(v_)))

= �1=2(�d); (4)

where the last equality follows from Lemma (6.1.10), and the equalityh(cv) = h(v)

in F�q =F
�2

q for all c 2 F�q and v2O1(Fq ), which can be proved by a direct
calculation or by (6.1.9, (1)). Moreover from (3) and Proposition (4.3.5) one gets

�1=2(c
0) = �1=2

0@�(�1)(m+r)=2d
Y
j>1

je(j)

1A : (5)

The formula (1) follows now from (2), (4) and (5). This terminates the proof of
Theorem C. 2
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