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Abstract. Let G be a complex linear algebraic group apdG — GL(V') a finite dimensional
rational representation. Assume tldais connected and reductive, and thabas an opeiiz-orbit.

Let f in C[V'] be a non-zero relative invariant with charactere Hom(G,C* ), meaning that
foplg) = ¢(g)f forall gin G. Choose a non-zero relative invarigfit in C[V'V], with character

¢ ™1, for the dual representatigr! : G — GL(V'V). Roughly, the fundamental theorem of the theory

of prehomogeneous vector spaces due to M. Sato says that the Fourier transigim exfuals
|F¥|~° up to some factors. The purpose of the present paper is to study a finite field analogue of
Sato’s theorem and to give a completely explicit description of the Fourier transform assuming that
the characteristic of the base fidld is large enough. Nowyf | is replaced by (f), with x in Hom
(Fy,C*), and the factors involve Gauss sums, the Bernstein—-Sato polynbfajabf £, and the

parity of the split rank of the isotropy groupat € VY (F,). We also express this parity in terms

of the quadratic residue of the discriminant of the Hessian offlé¢v"). Moreover we prove a
conjecture of N. Kawanaka on the number of integer rootg f.

Mathematics Subject Classifications 1991): Primary 11L05, 11724, 14G15; Secondary 11E76,
14G10, 20G40, 11M41.

Key words: Character sums, exponential sums, finite fields, prehomogeneous vector spaces, linear
algebraic groups, Bernstein—Sato polynomiéladic conomology.

1. Introduction

1.1. LetG be a connected complex linear algebraic group,add — GL(V) a
finite dimensional rational representation. A trigt&, p, V') is called aprehomo-
geneous vector spa@eV has an opelr-orbit, sayOg. From now on, we always
assumés reductive, exceptin (1.10). Letf f € C[V ] be arelative invariant with
the charactep € Hom(G,C*); f(gv) = ¢(g)f(v) forall g € G andv € V. Let
p' 1 G — GL(VV) be the dual ofp. Then it is known tha{G, p¥, V") also has
an openG-orbit, sayOg , and that there exists a relative invariang0f¥ € C[V V]
whose character is~1 (cf. [Gyo1, 1.5]).

Roughly, the fundamental theorem of the theory of prehomogeneous vector
spaces due to M. Sato says that

Fourier transform of f|* = |fV|~* x (some factors (1)

https://doi.org/10.1023/A:1000404921277 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000404921277

274 JAN DENEF AND AKIHIKO GYOJA

for s € C. The purpose of this paper is to study a finite field analogue of (1) and to
give an explicit description of the Fourier transform assuming that the characteristic
of the base field is large enough.

1.2. In order to state our main result more precisely, let us briefly review the theory
of prehomogeneous vector spaces.

(1) There exists a uniqug-orbit O; (resp.0Y) which s closed i := V\ f ~1(0)
(resp.2Y := VV\fV~1(0)) [Gyo1l, 1.4, (1)]. Puf := grad logf andF" :=
grad logfY. ThenF(Q) = Oy andFY(Q2") = O [Gyo1, 1.18, (2)].

(2)dmV = dimVVY =: n, dim O; = dimOy =: m [Gyol, 1.18, (3)],
degf = degf" =: d [SatKim, pp. 71-72], [Gyol, 1.5, (2)].

(3) f¥(grad,) f(z)*™* = b(s)f(x)* and f(grad) f¥(y)*** = b(s)f"(y)® with
someh(s) € C[s] [SatKim, p. 72], [Gyol, 1.6].

(4) b(s) = bo [1}=1(s + ;) with someby € C* anda; € Qs [Kas1], (cf. [Gyol,
2.5.12)).

(5) b¥P(t) := 17—y (teexp2ryv/Ela;)) = [1;51(t <1)°0) with somee () € Z.
(For example, see [Gyo4].)

1.3. Now assume that every geometric object so far is defined@veand let
us consider its ‘reduction moduj® assumingp > 0. (HereQ may be replaced
with any algebraic number field.) Thus we can considér, ), Oy (F,) etc. for
a finite fieldF, if p = chaflF,) > 0. Take a non-trivial additive charactgr ¢
Hom(,, C*). Forany multiplicative charactgre Hom(F; ,C* ), putG(x, ) =

ZtEF; X(t)l/) (t) '

THEOREM AL.If the characteristic ofF, is sufficiently large, then we have for
all x € Hom(Fx,@ ™) that

> (@)Y, v)

vEQ(Fy)

= *m/2 XJ b) ) . (71)0](‘\/(”\/)—1) kY (Y
Hl( Va Ny ) =0

forv¥ € OY(F,), wherex" (v") = £1 depends om" but not ony. Moreover the
above sum vanishesif € (2Y\OY)(F,).

THEOREM A2.1f the characteristic oF, is sufficiently large, then we have for all
x € Hom(Fy, @) that

™Y x(F @)Y, 0))

vV €0y (Fq)
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— i bof (v) * v
- 1 (25) o () <

for v € Q(F,), with the same" as in Theoreni\1.

Moreover forv" € (VV\QY)(F,), respv € (V\Q)(F,) the character sum in
Theorem A1, resp. Theorem A2, vanishes when the ordgii®different from the
order inQ/Z of eacha; in (1.2, (4)), see (5.2.3.3) and (7.6) below.

1.4. To state our second result, let us introduce the following notation.

r = card(jlo; € Z} = 351 e(j).

r( ) := rank= dimension of a maximal torus.

s(') := split rank= dimension of a maximal split torus, cf. [Bor2, V, 15.14].
G,v = isotropy group at" € VY (F,).

r(vY) =7r(G) &r(Gyv).

s(vY) == s(G) &s(Gyv).

THEOREM B.Assume thathar(F,) > 0. Then
K\/(,U\/) _ (ﬁl)r(vv)—s(vv),

forv¥ € Of (F,).

1.5. Assume that the characteristic f is not 2, and lety;/> be the unique
non-trivial character off, of order 2, i.e., the Legendre symbol. Fo¥ ¢

Of (Fy), let hY(vY) be the discriminant of the quadratic for@ determined

by ((8? log fV/dy;0y;)(v")), i.e., the discriminant of the quadratic form on
VV(F,)/(radical of Q) induced byQ. Cf. (9.1.0, (4)). (Herdys, ..., y,} denotes

a linear coordinate system df".) Since hY(v") is an element off /F2,
x1/2(hY (v")) is well-defined. We definé(v) for v € O1(F,) similarly using

f instead offV. It is known that(m + r)/2 is an integer. (See [Gyo2, 7.6], where
the proof is based on the mixed Hodge theory. See (5.2.1.3) for an alternative
proof.)

THEOREM C.Assume thatha(F,) > 0. Then

j>1

(") = X172 <(<i>1) el | PR (0 )) ,

forv¥ € Of (F,).

1.6. In the course of the proof of Theorem B, we obtain in (6.3) that

r(v") = r(= the number of the integer roots ffs)counting multiplicity),
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for v € O, which was originally conjectured by N. Kawanaka [Kaw2, (3.4.7),
(i], [GyoKaw, 3, Remark].

1.7. Note thatthe character sums of the formx1(f1(v)) - - - x1(fi(v)) ¥ ({(vY, v))
with relative invariantsfy, . .., f;, are actually dealt with in the above Theorems.
In fact, we can take anda; € Z~¢ so thaty; = x% for all 7, and then we have

L xi(fi(v)) = x(f(v)) with f :=TT, f".

1.8. QUTLINE OF THE PROOF
The proof of the Theorems A—C roughly goes as follows.

(1) We start from thé>-module theory [Gyol, Sect. 3], [Gyo3, Sect. 6], especially
the regular holonomi@®-modules related to the complex powers of relative
invariants,

(2) second, proceed to the study of perverse sheaviggonetc. by the Riemann—
Hilbert correspondence [Gyol, Sect. 3], [Gyo3, Sect. 6],

(3) third, proceed to the study éfadic étale perverse sheaves BifF, ) etc. by
the ‘reduction module’ (cf. the proof of (3.5.3)),

(4) and then, obtain results concernitiyalued functions oV (F, ) etc. by con-
sidering the Frobenius trace.

Since aD-module is nothing but a system liriear partial differential equations,
we can intuitively say that we are studying functions via the linear differential
equations characterizing them. Therefore the ambiguity of multiplication by a
scalar is inevitable, and our main problem is to explicitly determine this scalar.
Our presentapproach to the determination of the scalar is based onthe Laumon’s
product formula (cf. (3.1.5)) expressing the Frobenius determinant as a product of
local constants. We shall give a slightly more detailed explanation of this approach
in (1.9) below, in the course of explaining the overall structure of the present paper.
An alternative approach to the determination of the scalar is considered in
[Gyo2] (see [Gyo4] for the detail), where the mixed Hodge modules due to
M. Saito are considered in place BFmodules in the step (1), and then the Welil
estimate is obtained in the step (4) via the calculation of the weight filtrations in
the step (3) and via the famous work of P. Deligne on the Weil ‘conjecture’. In this
way, we can explicitly determine the archimedean absolute value of the scalar. At
present, we can not completely eliminate the remaining ambiguity of the argument
of the scalar by this approach.

1.9. GONTENT

This paper consists of 9 sections.

Section 1. Introduction.

Section 2 is devoted to the review of the theory of prehomogeneous vector
spaces.
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Section 3. We shall study the character sums usiadic étale sheaves via
the Grothendieck—Lefschetz trace formula. As we shall see in (3.5), (an essential
part of) the sheaf of our concern is smooth and of rank one. Therefore, the trace
and the determinant of the Frobenius are in fact the same, and thus the Frobenius
determinant becomes of our main interest. In this section, first we review the
product formula of G. Laumon (3.1.5) which describes the Frobenius determinant
in terms of the local constants. Next, we review a formula (3.2.1), which describes
geometrically how the Frobenius determinant varies when the coefficient sheaf is
twisted by the Lang torsor. Using this formula together with a generality concerning
the Deligne—Fourier transformation (3.3), we obtain an expression for the ratio of
the twisted and the untwisted Frobenius determinant in terms of global monodromy
etc. (3.4.5). In the final stage, the twisted Frobenius determinant becomes the
character sum appearing in Theorem Al (or rather the one appearing in (5.2.1.0)),
and the untwisted one corresponds to the case whes¢he trivial character.

Section 4. What is important as for the expression (3.4.5) is that there is an
expression (4.1.4) for the determinant of the difference operator on the Aomoto
complex (4.1.2), and this expression highly resembles (3.4.5). Moreover, we can
explicitly determine the determinant of the difference operator at least in the situ-
ation of our concern (cf. (4.2.4), (4.2.5) and (4.3.3)).

Section 5. Thus, comparing (3.4.5) and (4.1.4), we obtain enough information
concerning the ratio of the twisted and the untwisted Frobenius determinant, and
this enables us to prove Theorem Al. In the course of the proof, we obtain Theorem
A1t in (5.2.3.2), which refines both Theorems Al and (3.5.3, (2)). In particular,
Theorem A1 gives an expression of the values of the character sum appearing in
Theorem Al for alk¥ € VV(F,) in terms of the trace of the Frobenius, whose
explicit determination is still open.

Section 6 is devoted to the proof of Theorem B. The basic idea is (6.2, (9)),
which enables us to express the right-hand side of Theorem B using the operation
| 4sq—1 = (the substitution of by ¢~ 1).

Section 7. Here we show that Theorem A2 follows from Theorem Al. In the
same time, we also obtain TheoremA&hose meaning is similar to Theorem
A1,

Section 8 contains a formula (Proposition (8.2.3)) which yields in (9.3) an
expression for the untwisted Frobenius determinant in terms of the Hessian of the
restriction off to {v € O1](v",v) = 1}. This formula is an easy consequence of
some known facts which are first reviewed.

Section 9. In Lemma (9.1.7) we relate the above HessianMith"). Finally
we prove Theorem C in (9.3).

1.10. HSTORICAL REMARK, MOTIVATION , AND RELATED WORKS

The character sums studied in the present paper were first taken up in 1981 by
Z. Chen [Che] in the general setting, although some special cases had already
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been discussed in, e.g., [Sta], [Tsa]. In 1983, N. Kawanaka [Kawl] has taken
up the same character sums, independently of Z. Chen. His motivation lies in the
theory of complex linear representationg(r, ) with reductiveG: he showed that
these character sums actually appear in the character tables of the finite reductive
groups, i.e., the groups of the rational points of connected reductive grougs,over
[Kaw2]. Since the explicit determination of the character tables is the main problem
in the representation theory of finite reductive groups (an open problem, at least
in May 1996), it is more or less inevitable to study these character sums. Later
the second named author started to work jointly with N. Kawanaka. The result
of this joint work was announced in [GyoKaw]. Using the result of [GyoKaw],
F. Sato [SatF1] studied thB-functions obtained by twisting thé-functions of
prehomogeneous vector spaces by Dirichlet characters. In particular, he obtained
the functional equations satisfied by them, where our character sums appear in the
same way as the classical Gauss sums appear in the functional equations of the
Dirichlet L-functions. Some progress after [GyoKaw] was announced in [Gyo2],
where two conjectures were formulated, which are now the main theorems of the
present paper.

Although our main interest here is the finite field analogue of (1.1, (1)), let
us give a short sketch of what is known when the base field is a local field of
characteristic zero.

Archimedean local fields g, C)

The functional equation of the form (1.1, (1)) was first proved by M. Sato [SatM]
under the assumptions

(1) thatG is a reductive group,
(2) that every irreducible componentBf\Og is of codimension one,

together with some additional mild assumptions. Indeed, this resultis the very origin
of the theory of prehomogeneous vector spaces. F. Sato [SatF2] obtained a similar
functional equation foff1|°1, ..., |f;|*", where he did not assume (1). In [Gyo1],
another generalization was obtained where only (1) is assumed. These results do not
give the explicit form of ‘(some factors)’ in (1.1, (1)). In tiiecase, these factors

are explicitly determined already in [SatM] up to signature, and in [Igu2] without
ambiguity. Both works assume (1), (2) and some mild assumptions. [R-thase,

an algorithm based on the microlocal analysis to calculate these factors is given in
[Kas2], [KasKimMur]. Actual calculation has been done for some special cases by
T. Suzuki and M. Muro using this algorithm. Besides, functional equations of the
form (1.1, (1)) for some special cases have been obtained by various methods by
many authors including I. M. Gelfand-G.E. Shilov, M. Sato, T. Shintani, F. Sato,
B. Datskovski—D. J. Wright, I. Muller, I. Satake—J. Faraut, T. Suzuki, Y. Teranishi,
S. Rallis—G. Schiffmann, E. M. Stein, S. S. Gelbart, R. Godement—H. Jacquet.
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Non-archimedean local fields (finite extensions af,)

For these fields a functional equation of the form (1.1, (1)) was first proved by
J. I. Igusa[lgul] assuming the ‘Finite Orbit Condition’ and some other restrictions.
Some of these restrictions were removed in [SatF1] and [Kim]. However, very little
is known about the explicit form of ‘(some factors)’ in (1.1, (1)), except in some
examples (see, e.g., [SatF1]), or in the caseda, ) acts transitively oif2(Q,),
which has been investigated by J. I. Igusa [IguZ2].

2. Prehomogeneous vector spaces

In this section, we review the theory of prehomogeneous vector spaces [Gyol],
[Gyo2], [Gyo3]. We keep the notation of (1.1) and (1.2).

2.1. LEMMA [Gyol, Lemma 1.8]. (1For v € Q, fV(F(v)) = bof (v)~1. (2) For
vV e QY fF(FY(vY)) = bofv(vv)_l.

2.2. LEMMA [Gyo1l, Theorem 1.18).et(T'OY)" be the conormal bundle @#y,
ie.,

(TOY): = {(v,0Y) € V x VV]o¥ € OY,v L T,vOy(C VV)}.

(1) We have an isomorphisfimmaking the following diagram commutative.

(roy)* = -0
proj% /
Of

Here®(v,vY) :=v + FY(v").

(2) The inverse ob is given byl (v) := (v & FYF(v), F(v)) forv € Q.

(3) All these morphisms ar@-equivariant.

(4) By these isomorphism&; C © corresponds to the zero section(@fOy )*.

(5) In particular, F induces an isomorphist; — Oy, whose inverse is given by
FV.

(6) The isotropy subgrou@,v of G atv" € Oy is reductive.

Interchanging symbols with and those without, we define®V and¥V.

2.3. DOUBLE COVERINGO; — O1 AND LOCALLY CONSTANT SHEAF L(w) = Cw

For a local coordinate systefas, ..., z, } of O1, put

w? = det(<F* <8i) , 8i>> (dzy A - N dzy) P2 @
2i 2
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Hered/0z; denotes the vector field an, defined byz;, andF,(9/0z;) denotes
the corresponding vector field @ . Thenw? is independent of the choice of the
local coordinates, and gives rise to a global section of the line bypdler™ 01)®?
which is everywhere non-vanishing [Gyo1, 3.12]. ketO; — O; be the two-fold
covering ofO; determined by := Vw?, cf. [Gyol, 3.14]. Then-form w on O,
is defined only locally (with respect to the classmal topology) but its pull-back
*w =: & is defined globally orO;. Definew"?, w", @V, andr" Ov — 07,
replacmgOl andf with Oy andf". Let L(w") denote the |sotyp|c part o(fVCOlv

corresponding to the non-trivial character of Ga} /O ). ThenL(w") is a locally
constant sheaf 00y, andL(w") = Cw". (Althoughw" is not globally defined,
the ambiguity is only the multiplication by-1. Hence the totality of its scalar
multiplesCw" is globally well-defined and gives a locally constant sheafn

The meaning ofC f* etc. below should be understood in the same way.) Define
L(w) = Cw in the same way.

LetO; — Q —» V andOY . v 2%, ¥ pe the inclusion mappings.

2.4. THEOREM Let Fgeomdenote the Sato—Fourier transformatifatKasKaw]
(cf. [BryMalVer], [HotKas], [KasSch]) Then

Fgeom( RjxCf*[n]) = j)'i) (CfY =% @ L(w"))[ml], )
Fgeon 1 Cf* [n]) = Rj/i) (CfY ~* @ L(w"))[m, )
Fgeord Ry, i, Cf '~ *[m]) = 5i(Cf* @ F*L(w"))[n], and ©)
Fgeonly iy Cf '~ [m]) = Rjs(Cf* @ F*L(w"))[n]. 4)

See [Gyol, 3.23] for (1) and (2). See [Gyo03, 6.22] for (3) and (4). We need (3) and
(4) only in the proof of Theorem A2 in Section 7.

For the convenience of the readers, we recall that for a bounded complex
K of sheaves or¥/ the Sato—Fourier transforiftyeom(K) of K is defined by
Fgeor( K) = Rpr)/ (pr*K @ ()*L_)[n], whereL_ is the sheaf om} obtained by
extending by zero the constant shéafon Z := {z € C|Re(z) < 0}, wherepr
andpr” are the projections dfV x V onV andVV, and wherd ): VV xV — AL
is the natural pairing.

3. Determinant of Frobenius action and monodromy

Let k be a field. We denote by an algebraic closure @f. In all what follows/ is

a prime number different from the characteristic of the base field we are working
with (for the momentk). For any separated Noetherian schemeover k& we
denote byD%(X, Q) the category defined by Deligne [Del3, (1.1.1)—(1.1.3)]. Its
objects are ‘bounded complexes’ whose cohomology are construgtitskeaves.
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We will use the standard notation from the theory of derived categories as in
[Laul]. In particular wher®’ is a complex of vector spaces with bounded and finite

dimensional cohomology an# an endomorphism of’, we use the following
notation

rankC = > («1) dimH'(C),
tr(E,C) =Y (1) tr(E, H'(C)),

det B, C) = [[ det &, H'(C))~Y',

where tr and det denote the trace and the determinant. Often a sheaf (complex) and
arestriction of it will be denoted by the same symbol, without mentioning. As usual

A} andP} denote ther-dimensional affine and projective space aveconsidered
as schemes, ar@,, , = A}\{0}. We denotg(0,1,2,...} (resp.{1,2,3,...}) by
N (resp.No).

3.1. LAUMON’S PRODUCT FORMULA

3.1.1. Letk be any field. Lets be a closed point off, i.e. s € |Pi|, ands a
geometric point oP,% with images. The Henselization d]f’,% ats is denoted byf.
Letn, be the generic point df, and7ns a generic geometric point df;.

We denote by, resp.I;, the fundamental group @\ {0}, resp T, ® k\{0},
i.e. the arithmetic, resp. geometric, monodromy group. &vith a G, resp.[;,

module we always mean a module in the sense of [Laul, 2.1.2], i.e. a smooth

Q-sheaf orl;,\ {0}, resp.T, ® k\{O}.

Let K € DY(U,Q), whereU = P3\ {finite number of points. We denote by
(K, theimage of";(<1)  HY(K)5, in the Grothendieck groui;, of Io-modules.
Similarly [K7_ ] == [(m.K )], wherer is the mapr — z~1. Note thaf K] and
[Kj..] are completely determined by the geometric monodromy at @awndithe
cohomology sheaves d@f .

Whens € |U]|, the total drop ofK" at s is defined by

as(K) = rank( K, ) <rank( K;) + swan conduct@iy, ),

see[Laul, 3.1.5.2]where itis denoteddi¥/s, K). ForN € Np, putVy = mn.Qp,
wherery is the mapP; — Pi: z — 2V, and denote the image 6Fy);, in K,
by [Vn].

3.1.2. Lety € Hom(F,, @ )\{1} andx € Hom(F),Q; ). Denote byLy,
resp.L,, the associate@,-sheaf & Lang torsor, [Del4, p. 171]) 0|A1q, resp.
Gn,r, - Thus the geometric Frobenius endomorphism FrokerF, atz € F,,
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respz € F, acts on the stalky, ,, resp.L, ., as the multiplication byy(z), resp.
x(z). We recall that

GOev) = Y x(@)y().

T€EF,

Whenf: X — Gy, r, is a morphism of schemes we will sometimes derfste,
by L(x(f)), abusively.

3.1.3. For any separated scheMf finite type ovelF, andK < DY(X,Q) one
defines

(X, K) := def«Froh,, RT'(X @ F,, K)) ™2,
and
eo(X, K) := det{«<Froh,, RT.(X ® F,, K)) ..

3.1.4. Assume the notation of (3.1.1) with= F,. Letw # O be a rational
differential form onP andy asin (3.1.2). Fos € [Pt | andK € D%(T, Q) one
defines thdocal constant

gw(TsaKaw) E@X, (l)

as in [Laul, 3.1.5.4] (cf. also [Del5, 4.1]). It equals 1 when the cohomology
sheaves ofK are smooth and> has no pole and no zero at Moreover for
K € DX(T,\{0},Q), e.g., aG';-module, we put

51/),0(TS’K’W) = Ew(Ts’js!Kaw)’ (2)
wherej, is the immersiof\{0} — T,. We have
51/),0(T07andx) = X(ﬁl)G(Xﬂ/))’ Ew(Tm@a dZE) = 17 (3)

wherez is the standard coordinate Aéq ,see [Laul, p. 199]. Here and in Section 8
we will repeatedly use the fundamental properties of the local constant which are
summarized in [Laul, p. 186]. (Although there is some restriction on the additive
characterp in [Laul, (0.2)], the results of loc. cit. remain valid for genepalith
obvious adaptation in loc. cit. (3.1.5.4, (iv)).) Moreoveryihas a simple pole at

0 and if K, K' are tame&&p-modules having the same image in the Grothendieck
group ofIp-modules, then

ep,0(To, K, w) = 5¢,0(T0,K',w). 4)

(See [Laul, 2.1.4] for the definition of tameness.)
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This follows directly from [Sail, Lemma 1.(1)]. (Alternatively: Assertion (4)
follows from [Laul, 3.1.5.6] when rank = 1. The general case reduces to this
by an argument similar to [Laul, p. 198 line 5-13].)

3.1.5. THEOREM (Laumon’s Product Formula [Laul, Thm 3.2.1.E)r any
K € D.(P; , Q) we have

e(Py,, K) = ¢®" o) T ey (Ts, K, w).
s€|]P’1q\

3.1.6. LetX be any separated scheme of finite type dyeandK € D?(X, Q).
Suppose foralt € | X|thatthe characteristic polynomial of the Frobenius action on
K, has coefficientsi. Thensg (X, K) € Q. Indeed the associatédfunction (see
e.g. [Laul, 3.1]) belongs then @(¢). Buteo(X, K) can be rationally expressed
in terms of that.-function.

3.2. FROBENIUS DETERMINANT OF A TWIST

The next Proposition goes back to Loeser [Loe, Cor. 5.5] which is similar, see also
[DenLoel, Prop. 2.4.1] and [DenLoe?2]. It is also very much related to the material
in [Sail] which goes much deeper.

3.2.1. PROPOSITIONAssume the notation ¢8.1.1) with k = F,
LetK € DG, , Q) and supposél’(K) has tame ramification & and at
oo, for all 7. Assume that

[Kﬁo]: Z any[Vy] and Knoo Z BNV,

NeN NeN
(N,q)=1 (N,q)=1

where the integera, By are zero for almost allV. Then
60(Gm,ﬂrq ,K® LX)/(So(Gm,]Fq , K)

=qZXN;e1f8NX H g (K) H N—N(an—06n)
w N
s€F;” (Nt
% H 7¢ aN By
~NeN
(N,q)=1

Proof. From Laumon’s Product Formula (3.1.5) faiK” and forj (K ® Ly )
with j the immersion of,, r, into P]%q, and from [Laul, 3.1.5.6] we get

50(Gm,]Fq ) K ® LX)
50(Gm,]Fq ) K)

= COCoxo X H 5% (K) ’ (l)

SEEX
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where
o — 6¢,0(T0,K ®LX,$_1d:L‘)
0 vao(To, K,(L‘_l dZE)
and
o 0T, K ® Ly,z~1dz)
> £9,0(Too, K, 21 dz)

The Proposition follows now directly from (3.1.4, (4)), Lemma 3.2.2 below, and
from the formula

Gix he) = ax(S1)G(x, )™ if x £ L. @)
O
3.2.2. LEMMA.If gcd (N, q) = 1, then

6¢,0(T0, VN ® LX? z71 dai)

— N -1 N

and

8¢,0(Too, VN ® LX’ z 1 d(L‘)
6¢,0(TOO, VN, :L‘fl d:L‘)

=ax V(eN HGKx N, Y).

Proof. The first formula follows from [Laul, 3.1.5.4. (iv)] witl; the sum of
JiLy~ in degree O ang,Q, in degree 1 and witlf the mapz — z”, and from
(3.1.4, (3)) and [Laul, 3.1.5.5]. The second formula follows directly from the first
by [Laul, 3.1.5.5] withz = <1. O

3.3. DELIGNE—FOURIER TRANSFORM OF AY-HOMOGENEOUS COMPLEX

3.3.1. LetV = Az , V" the dual space df , and(): V¥ x V — A the natural
pairing.
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3.3.2. Consider the following diagram

1
A,

VY xV x {0} b VY XV x Ay VY xV x (At <{0})

Vv d T
prY r
vV VVxV P 1%
e
Vv
pré prQ

where@ = {(v¥,v) € VV x V|(v¥,v) = 1} anda is defined bya(v",v,t) =
t({vV,v) <1). The remaining morphisms are inclusions, projections, or their com-
positions.

3.3.3. Define afunctorFy : D(Ve,, Q) — DL(Vi!, Q) by Fy (&) = Rpry (pr*(£)©
()*Ly)[n], which is called théeligne—Fourier transformatiorsee [KatLau].

3.3.4. Defineh:Gpy, x V. — V by h(t,v) = tv. Fory € Hom(FX, @ "), a
complexK € D%(V,Q) is calledx-homogeneoui§ h*K = L, ® K.

3.3.5. Putr(x,v) = RT(Gnr, , Ly ® Ly)[1] = Q (cf. [Del4, 4.2], note however
that this isomorphism does not preserve the Frobenius action).

3.3.6. Assume thak € D’(V, Q) is x-homogeneous. Consider the distinguished
triangle

Rm/(n*K ® eic*a*Ly) — Rm/(n*K ® a*Ly)
— Rm)(n*K @ b.b*a*Ly) &5 . 1)

Let us look at this triangle more closely. ket V (F,) — Q be afunction such that
p(tv) = x(t)p(v) for t € F; andv € V(F,). Consider the following calculation:

( > so(v)l/)(@v,v))) > X9 ()

vEV (Fq) ter,
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= Y et v) st)

vEV (Fy) tEFy

= Y. ey, v) e1)),

UEV(FG)5t6F;<
wherey = x ! andy = ¢—1. Following this calculation, we get
R (n*K ® eic*a*Ly)[n + 1] = Fy(K) ® RLo(Gmye, Ly © Ly)[1]. (2)

Next consider the following calculation

Y. e)pt((v”,v) 1)) =q > o(v).

vEV (Fq),LEF, vEV (Fg),(vV ,w)=1
Following this calculation, we get

Rm/(m*K ® a*Ly) = R(pry)pro K (<1)[<2), (3)
where(<1) is the Tate twist. Last, we can show that

Rm)/(n*K ® b,b*a*Ly) = Rpr)'pr*K. 4)
By (1)—(4), we get the following

3.3.7.LEMMA.Assume the above notation andiét D?(V,Q,) bex-homogeneous.
Then we have a distinguished triangle

R(pro)iwro K (£1)[<2]
s Rpr)/pr* K — Fy(K)[en] ® 7(X, ) &% 1)

3.3.8. Let us describe the morphismappearing in (3.3.7) independently of the
additive charactey. Note that is the morphism

Rm)/(n*K ® a*Ly) — Rm) (1" K ® b.b*a*Ly),
induced from the natural morphism

a*Ly — byb*a” Ly. 1)
Since

Rm/(m*K ® a*Ly) = Rpr) (pr*K ® Rdia*Ly),

R/ (m*K ® byb*a*Ly) = Rpr) (pr*K ® Rd\b.b*a*Ly),
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Rdia*Ly = e,Qy o(<1)[<2], and
Rd|b*b*a*L¢ = @,VV XV s

(1) induces a morphism

6!6!@,VV xV = 6*@,@(@1)[©2] é’; @,vaV’ @)

and (2) induces. Since

RHomyv, v (ee'Q, Q) = RHomg(e'Qy, e'Q)
= RHomg(Q, Q) = Q,

(2) is a scalar multiple of the morphisminduced by the adjointness, i.e., the
natural morphismy: eie'@ = RTg(Q) — Q. If (2) is zero, thenr is also zero
for any K, and hence

Fyp(K)[en] @ 7(x,¢) = R(pro)ipro K (€1)[<1] @ Rpr'preK.

(The third term of the triangle in (3.3.7) is the mapping cone 6f0.) If we take the
constant shed, ;- asK, the left-hand side is supported £}, although the direct
summandRpr)’pr*K of the right-hand side is not. Thus we get a contradiction,
and hence (2) is non-zero, i.e.,

r’ = x (non-zero scalar (3)

3.3.9. LEMMA. Consider the morphism: e;e'@ — @, induced by the adjoint-
ness. Puty = cond). Then for anyy-homogeneou®&™ € D%(V,Q,) we have
Fyp(K) ®@ 7(x,%) = R(K) whereR(K) = Rpr)(pr*K ® w)[n] is the Radon
transform.

Proof.

Fy(K)en] @ 7(x, )
= congRpr)’ (pr*K @ e.Q o(<1)[<2]) € Rpr/pr*K) by (3.3.7)
= condRpr (pr*K ® e1e'Qy) <= Rpr)’ (pr*K @ Q)
= Rpr)! (pr*K @ conded'Q < Qp))
~ RprY(pr*K @ w) by (3.3.8,(3)). 0

3.3.10. REMARK. Ify = 1, our ‘Radon transformatio®( )’ given in (3.3.9)
relates to the one given in [Bry, 9.13] as follows. eV * := V\{0} — P and
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g":VV* :=VV\{0} — P" be the natural morphisms to the projective spaces of
V andVV. ForK € D%(P,Q), let®(K) € D PV,Q) be its Radon transform

in the sense of loc. cit., anl € D?(V, Q) the zero extension of* K. Then we
have a distinguished triangle

RT(P,K)[n 1] —» R(K) — ¢V*d(K)(<1) S5

in D2(VV*, @), where the first term means the ‘constant sheaf’ in the obvious
sense. Thus the difference between the two ‘Radon transformations’ is almost
trivial.

3.4. DSCRETEFOURIER TRANSFORM OFy( f)

3.4.1. We use the notation of (3.3.1). Légt: V — A]%q be a homogeneous
polynomial overF, of degreed := degf. PutU = V\f 1(0) and consider the
open immersionj:U — V. Let K € D%V, Q) be v-homogeneous for some
v € Hom(F;, @), cf. (3.3.4).

Forv¥ € VV(F,)\{0}, put

HvY) = {ve Vv’ v) =1}

3.4.2. Assume now also the notation of (3.1.2) and (3.3.3). We are interested in
the character sum

Sk(x,v") =Y tr(Froly, Ky)x(f(v)w((v",v)), )

veEU(Fq)
forv¥ € VV(F,). By the Grothendieck-Lefschetz trace formula we have
Sk (x,v") = tr(Froby, Fy (K @ ji f* Ly [en])ov). )

WhenK = @, the sumS).(x,v") equals the discrete Fourier transform (multi-
plied with ¢"/2) of the mapu — x(f(v)) with the convention thag(0) = 0.

3.4.3. LEMMA. Suppose thaR' f, K has tame ramification & and atoo for all

7, and that
[ RHK Z ’YN VN
NeN
(N,q)=1

where the integergy are zero for aimost alV. Then the rank aRT (U @ F,, K ®
f*Ly)isOand

0(UK @ f'Ly) =g 2=,
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Proof. Note thatRT' (U ® Fy, K ® f*Ly) = RT(G,, 7, (RiK) ® Ly). By
homogeneity, the cohomology sheaves‘?tﬁK are smooth Ol &, - Moreover
they are tame at 0 angb. Hence we get the first equality, and in the Grothendieck
group of smooth,-sheaves oft,, 7, we have

Y (E)'R'AK = > V.
i NeN
(N,g)=1

(Indeed eacli;-module canonically determines a smoQihsheaf orG,, which

is tame abo, cf. [Laul, 2.2.2].) Thus by (3.1.5) and (3.1.4, (4)) with= 1 dz
we get

eo(U, K ® f*Ly) = [ €o(Cmyp,, Vi ® Ly)™
N

= H50 m]an ny = H q 'yN,

which yields the Lemma. O

3.4.4. LEMMA. Assume the hypothesis of Lemii34.3) and let0 # vV
VY(F,). Then

del(Froblvf’tZ)(K ® j!f*Lx[m])vV)

— co(UNH®Y), K @ f*Ly)¢" " Tav =1 . Gluyd, ),

wherep = rankF,; (K ® j f*L[<n]),v does not depend og, andd, = 1if
vx® = 1and zero otherwise

Proof.Note thatK ® j f* L, is vx®-homogeneous. Taking the stalkitof the
triangle in Lemma (3.3.7) witlK replaced byK ® 5 f* L, we get a distinguished
triangle

RT(H@") ®Fy, K ® jif*Ly)(<1)[<2]
— RT(U @, K ® f*Ly)

— Fp(K @ jif*Ly[en))y @ 7(ox? ) S5 . (1)
Thus by (3.4.3) we have
rankRL(H(v") @ Fy, K ® jif*Ly) = ©p, (2)

and
50(U’ K ® f*LX)

=eo(UNH©"),K® f*Ly)q”’

xeo({v"}, Fy (K @ jif* Ly[en])o) (G (x4, 4)) 77 3
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The Lemma follows now from (3.4.3) and the formula

/G (%", ) = G(vx*, ¥)g™

In fact, we can see that does not depend og, by applying the formula of
Grothendieck—Ogdsafarevt to

RU(H(v") @Fy, K ® jif*Ly) = RUe(Gr @ Fg, R(flgv)1 K @ Ly)
(cf. [Laul, 3.1.5.3]). O

3.4.5. PROPOSITIONAssume the notation ¢8.4.1) and (3.4.2), and let0 #
v¥ € VY(F,). Suppose thak’(f|x,v)) K and R’ fi K have both tame ramifica-
tion at0 and atco, for all 4, and that

(R(flawo) K)ol = Y. an[Val, (1)
o
(R(fla) K)ael = Y, BuIVal, (2
o
(RAK)z) = > w[Val, 3)
NeNg
(N,q)=1

where the integera v, By, vy are zero for almost allV. Putp = rankF, (K ®
Jf*Ly[en)),v, and

H g0 (Bl v K) o ]FX (4)

s€F,

Thenp does not depend op, and

det(Froky,, Fy (K ® jif " Ly[&n])ov)

= (&) 2n(@N=BN) (N BN oo (U N H(vY), K)

X q pox+Y o Ny (IN=BN) x| a¥ (") H N Nax—6x)

NeN
(N,q)=1
Gx ) TI GON, ) o, (5)
NeN
(N,q)=1
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whered, = 1if vx? = 1 and zero otherwise.

Suppose moreover thitK is pure of weight zero, and tha, (K ®ji f* L, [<n])
is locally atv" a smooth/-adic sheaf shifted to degree. Then for any embedding
of @ into C we have

|60(UOH(Uv),K)| = \/ap(mfl)*ZN(aN%@N)‘ ©6)

If in addition p = +1, thenp = (<1)™, and (<1)™(SY-(x, v")) D™ equals the
right-hand side of5).

REMARK. Unlike a" (v"), the integersyy and3y (if they exist) are constant for
v in a suitable Zariski dense subset6f (F,), when all data are obtained by
reduction mogh from data oveR for p >> 0. Indeed R’ (f|(,v))1 K)s is the stalk
at(s,v") of a constructibley,-sheaf onaf x V. Hence outsid¢0} x V', the
restriction of this sheaf to a suital#¢ale neighbourhood im[}q x V" of a suitable
point (0, vg) is smooth and equal to the pullback of a sheafAép (because of

tame ramification af0, vy ) whenp > 0). However this remark will not be used
in the sequel.

Proof. The formula (5) follows directly from Lemma (3.4.4) and Proposition
(3.2.1) with K replaced byR(f|m,v))1 K. Clearlyj*K ® f*L, is pure of weight
0. Moreover; (j*K ® f*Ly) = Rj.(j*K ® f*L,) for sufficiently generaly.
Indeed this follows from [KatLau, 6.5 and 6.5.2] applied to the direct images of
the cohomology sheaves gfK under the map

U=V XGpp, oz~ (2, f(x)).

Thus for thesey, K ® jif*L, is pure of weight zero and hence al%) (K ®

N f*Ly[«n]), by [KatLau, 2.2.1]. We conclude that the absolute value of the left
hand side of (5) equalgg”™, wheny is sufficiently general. This yields (6), replac-
ing if necessary, by a finite extension to have a general enoyglvailable. O

3.5. APPLICATION TO PREHOMOGENEOUS VECTOR SPACES

3.5.1. Assume the notation of (1.1) and (1.2), with all objects defined @ver
In particular (G, p,V) is a prehomogeneous vector space defined Qvand
f e qQV],f¥ e QVV] are corresponding relative invariants(éf, p, V) and its
dual. Moreovef) = V\ f~1(0),QV = VV\fV~1(0), 04, resp.0y, is the closed
G-orbitin Q, resp.QY andn = dimV, m = dimO;.

If p = cha(FF,) > 0, we denote by the subscripj the result of applying
reduction modp and base changg, — F,, e.g.Vg,. If there is no fear for
confusion we may omit the subscripts, &iF,) instead of2g, (F, ), or evens}
instead onFq, etc.
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In(2.3)and (1.2) we introduced the immersign@ — V,i: 07 — Q,5V: QY —
VV,iY:0f = QY, and the mag: Q — Oy

3.5.2. LetL(w") denote the smooth rank of@g-sheaf onOy )y, constructed in
the same way as the shelfw") in (2.3), after reduction mog. Moreover we
define the shedf (w) on(O1)g, similarly, replacing each object by its dual (elg.
by V'V, etc.).

3.5.3. THEOREMAssume the above notations. If the characteristiy,af suffi-
ciently large, then we have for af € Hom(Fy , Q") that

Fp(Rjuf*Lyln]) = 50 (f V" L1 ® L(w"))[m] onVy @ T, )
Fy(irf*Lyln]) = R/ (f* Ly ® L(w"))[m] onVy ®@F,, (2)
Fyp(Rj i) [ Lya[m]) = 5i(f* Ly ® F*L(w"))[n] onVg, ®Fy, 3

fd,(j!\/iva*_[/x—l[m]) >~ Rju(f*Ly ® F*L(w"))[n] onVg, ® Iy, (4)

whereF,, andL, are asin(3.1.2)and(3.3.3) (Note that the above isomorphisms
do not have to preserve the Frobenius action.)

Proof.In principle we want to obtain this theorem from (2.4) by reduction mod
But since the definition of the Sato—Fourier transformation involves the halfspace,
we cannot consider its reduction mpdAlso since the definition of the Deligne—
Fourier transformation involves the Artin—Schreier sheaf we cannot obtain it
as a result of reduction modujn We avoid these difficulties as follows: Since
Jf*Ly (resp.Rj.f* Ly, etc.) isx%-homogeneous, its Deligne—Fourier transform
equals its Radon transform by Lemma (3.3.9). Thus it is enough to prove the

‘Radon version ofiVz,)er and (Vg-)el (A)

of the above statement, where{denotes thétale site. Since the Radon transfor-
mation is compatible with reduction madfor almost allp, it is enough to prove
the

‘Radon version ofiVe)er and (VY )er - (B)

More precisely we obtain (A) from (B) as follows. LBt (resp.R¢) be the left (resp.
right)-hand side of the relevant equality of (B), and fut = V' (resp.X¢ = V¢)

if we consider (1) or (2) (resp. (3) or (4)). Consider the similar construction
for S-schemes wher§ = Specz[N Y with sufficiently divisible N > 1, and
indicate the result by the suffig. In particular we obtain in this way.s (resp.
Rs) in D%(Xs,Q). Moreover we indicate the result of base chasge— S by
replacing the suffixs by S’. Letag: Xg — S be the natural morphism. Note that
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Lg andRg are reflexive for sufficiently divisiblév [KatLau, (3.2)]. By [KatLau,
Sect. 3], enlargingv we may assume thé{ (e, ')s := R%(as).RHom(eg, o)

is smooth for all choices of, ¢’ € {L, R}, and thatt{(e,e')s 1= b*H(e,e')g =
R%as).RHom(eg, o,) for any base change: S’ — S with S’ ‘bon’ in the
sense of [KatLau, (1.0)]. (Note that, for reflexive objedtdiomcan be expressed
in terms of®" and the relative dualizing functor ové, cf. [KatLau, (1.1.1)].)
For a closed point: € S and a geometric poirt — =z, let Sz be the strict
Henselization. Pufj := Spe¢C), and lift7 — S to 7 — Sz. Then we get
H(L, R); <& T(Sz, H(L,R)s.) <=+ H(L, R)z because(L, R)g is smooth.
Moreover we have the following commutative diagram of natural maps

Homy,, &, (Lc, Re) R°T'(X¢, RHom(L¢, Re)) =—— H(L, R)5
HOng(XSI,@)(LS;a Rs_) == R°I'(Xs_, RHom(Ls_, Rs_)) == I'(S=, H(L, R)s-)
Hom,,, «_ g (L#> Bz) R°T(X=, RHom(Ls, Rx)) H(L,R)s .

To understand the last equality in the second row of this diagram, note that the
functorT'(Sz, ©) is exact sincesz is strictly Henselian. Hence the isomorphism
given by (B) induces the desired isomorphiggm = Rz. Thus we get (A). Note
that the above argument gives a uniform upper bound, independentyfafthe
set of ‘bad primes’.

Next by the comparison theorem for the classical topology aretttie topology
(cf. [BeiBerDel, 6.1.2]), we can reduce the proof to the

‘Radon version o (C); and VY(C)y’, (C)

where( )., denotes the classical site. Now we adapt the proof of Lemma (3.3.9) to
the setting of the Sato—Fourier transform. Then the proof reduces to the

‘Fourier version o/ (C),; and VY(C).’, (D)

which is nothing but (2.4). The adaptation goes as follows:

In (3.3.4), defined-homogeneity’ & € C) replacingL, by the locally constant
sheafL, := Ct* on(C* ).

In (3.3.5), replacéGy, r, )et bY (C*); Ly by Ly; andLy, by L_. Here we use
the notation of (2.4). Then we get

7(a,L_) := RT,(C*, Lo ® L_)[1]
= R[.(C*NZ,Ly)[1] = RT.(C* N Z,C)[]]
= RT.([<3m, 37] X Rso, €)[1] = RT:(Rs0,C)[1] = C.
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In (3.3.6)—(3.3.9), the necessary adaptation will be obvious once we note that
RT.(C,L_) = RT.(Z,C) = RT (R x Ry, C)
= RT(Rso,C)[<1] = 0. O

In Section 5 we will need the following
3.5.4. LEMMA. Assume the above notations anddéte Oy (F,). Then

tr(Froly, L(w")uv) = xa/2(h" (v")),

whereyx,, andh” are as in(1.5).
Proof. This follows directly from the definitions by a straightforward calculation
(see also (6.1.4, (4))). O

4. The Aomoto complex and Bernstein polynomials
4.1. DETERMINANT OF THE AOMOTO COMPLEX

4.1.1. LetX be a smooth quasi-projective algebraic variety avef pure dimen-
sion dim X. Denote byOx, resp.Dx, the sheaf of regular rational functions,
resp. algebraic differential operators, &nand by, the complex of sheaves of
regular rational differential forms oX . Let DZ(DX) be the derived category of
bounded complexes of quasi-coherént-modules with holonomic cohomology,
and D%(X (C), C) the derived category of bounded complexes of sheaves of
vector spaces o (C) with (algebraically) constructible cohomology. We denote
by DR the de Rham functoDR: D! (Dy) — D?(X(C),C) appearing in the
Riemann-Hilbert correspondence, so normalized ihB(Ox) = C[dim X], cf.
[Borl, Chap. VIII]. Note that this normalization differs form [Gyol] and [Gyo2]
by a shift.

4.1.2. Letf: X — Gy, c be a morphismM a holonomicDx-module andM' €
D! (Dx). Denote byM f* the holonomicC(s) ®¢ Dx-moduleC(s) ®: M where
the action ofDy is twisted byf* in the obvious way, i.e.

0 0 0
S (0(s) ©m) = p(s) @ 57+ spls) © f‘la—im, 1)

whenp(s) € C(s),m € M. For ease of notation we will denoig(s) ® m by
o(s)mf*. Similarly we defineM' f¢ € D} (Dxge(s)) andM' f* € D} (Dx) for
a € C, in the obvious way.

Let

px: X x Spe€C(s)) — Sped¢C(s))

be the natural projection.
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The Aomoto complex4 (M) is the complex ofC(s)-vector spaces defined
[And], [LoeSab] by

Ap(M) = (px)+ M f?, 2)

where(px ), denotes as usual the directimage ungdercf. [Borl, Chap. VI]. This
complex has finite dimensional cohomology (0@é¢)) (cf. [Borl, VII 10.1]), and
is quasi-isomorphic to the complex

RT'(X @ C(s), 2x Qo M f*ldimX]), 3

see [Borl, VI5.3.2]. Her@y ®0, M’ f* denotes the algebraic de Rham complex
of M f*; its differential is the one o’y twisted by M" f4. In particular whenX
is affine (3) implies thaid s (M) is quasi-isomorphic to

I'X ®C(s), 2y ®o, M f*)[dimX]. 4)
The translatiorr: s — s + 1 acts onM" f* by

T(p(s)mf®) = (s + D(fm)f*.

This action is linear ovet, but only semi-linear ovet(s). It induces an action on
the Aomoto complex4 (M) via its action o)y ®o, M f* (which commutes
with the differential), cf. [LoeSab, Sect. 1.3]. Put

det(r, A; (M) := H det(r, H' (Ap (M) V"

Note however that dét, A¢(M’)) is only defined up to a factdi(s + 1)/h(s),
with h(s) € C(s)*, because is only semi-linear ove€(s), see [LoeSab].

4.1.3. We use the notation of (3.1.1), with= C. Let K € D%(X, Q;) and suppose
that we can write

[(RAK)g] = > an[Vh] and [(RAK)z.]= > Bn[Vi],

NENO NENO

whereay, By € Z. This is for example the case when the pull backkbfto

a suitable degree 2 cover & is a geometrically constant sheaf. Indeed the
eigenvalues of the monodromy action are roots of unity which are permuted by
Galois conjugation, since we can work in this case witimstead ofQ.

After choosing an embedding @f, into C, K determines a complek?® €
D!(X(C),C) and hence via the Riemann—Hilbert correspondence a regular holo-
nomic K € D! (Dx) with DR(K") = K°. The next theorem is a direct conse-
guence of a result of Anderson [And] and Loeser and Sabbah [LoeSab]. (Indeed
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[(Rf.K)z,] = [(RAK)g,] for s € [PL|, by [Lau2].) It can be used to determine
theay <Oy interms of def(r, A (K")).

4.1.4. THEOREM ([And], [LoeSab])Assume the notation ¢#.1.2)and (4.1.3)
Then we have

w1 h(s+1) N AN
det(r, A;(K)) 1= c s — 1
etr, Ay ()t = = N};NO]E( = (1)
with h(s) € C(s)* and
= H ot(RAK) 2)

tecx

See (3.1.1) for the definition af;. In [LoeSab] one assumes thitis affine, but
this is not necessary. Note that the right-hand side of (1) completely determines the
an <=>ﬁN ande.

4.1.5. LEMMA.Let M € D! (Dx) be regular holonomic. Then for all but count-
ably manyx € C we have for any € Z

dime(s) H'(Af (M) = dimeH (X, DR(M') ® Cf*). (1)

Proof. There exists a countable algebraically closed subfieddl C such that
X, f and M" are obtained by base change from a vari¥jyoverk, a morphism
Jr: X — Gy, and a complexM;, of Dy, -modules. Letr € C be transcendental
overk. Then we have

dimg ) H' (A (M)
= dime(y) H' (X ® C(s), Qx ®o, M f*[dimX]),by (4.1.2, (3))
= dim,c(s)Hi(X,c ® k(s), Ux, ®ox, M} fildimX])
= dimcH (X, Qy ®0, M f*[dim X]), by considering:(s) — C: s — «
= dimcH' (7 (M f®))whereris the projectionr — SpecC).
This implies the Lemma because the Riemann—Hilbert correspondence yields
T (M f*) = DR(r (M'f?)) = Rm.(DR(M'f?))
= RI'X,DR(M’) @ Cf™%). O

REMARK. The above Lemma appears implicitly in [LoeSab, p. 471] with a dif-
ferent proof yielding the stronger result that (1) holdsdan the complement of
the set of all integer translates of a suitable finite subsét of
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4.1.6. Letg: X — AL be a morphismM a holonomicD x-module, andM" €
DZ(DX). Denote byMef the holonomi@® x-module obtained from\ by twisting
the action ofDx by e in the obvious way, i.e.

0 om dg
9= [ ZZ) e P9 9
(%Z_me <8$i>e —i—maxie .
Similarly we defineMe9 € D?(Dx).

4.1.7. Assume the notation of (4.1.2) and (4.1.6). kebe a smooth quasi-
projective algebraic variety ovél, andn: Y — X a morphism. Then

T (Ml f*) = T (M)e?* (f o m)*, (1)

D(M 9 f7) = D(M )e I(f 1), (2)
whereD denotes the duality functor, and

(M eI fS) =t (M)ed° ™ (f o m)*. (3)

Indeed (1) follows directly from the definitions of the concepts involved, because
Felf?is a freeDy g -module whenevef- is a freeDx-module. Moreover

(2) follows from the next lemma witlX (resp.F) replaced byX ® C(s) (resp.
Oxacs)e? f*), and (3) follows directly from (1) and (2), sinee" = Do 7' o D.

4.1.8. LEMMA. For a smooth quasi-projective variety, let D’ ,(Dx) be the
bounded derived category of quasi-coherent2{t-modules whose cohomology
sheaves are coherent. Then for a [Bff,-moduleF which is coherent ove® x,
and for M € D!,(Dx), we have a canonical isomorphism

O:DM') ®oy D(F) + DM Qo F).

Proof. In general, for a morphisnmp : Z — Y of smooth quasi-projective
varieties, and folV" € D% (Dy) with respect to whichp is non-characteristic
(cf. [KasSch, 11.2.11]), we have a canonical isomorphBm L¢*(DN") <
D(*p*N*). Here ¢* is the usual pull-back of>-modules, and hencéyp* =
@' [dimY <dim Z]. (For the isomorphisn®, see [SatKasKaw, Theorem 3.5.6,
pp. 414-417], replacingyy by RT'[(Oy)[dimY «dim Z], Pz_,y by Dz .y,

Py by Dy etc., with obvious adaptation in loc. cit. pp. 406—417.) Then applying
this to the diagonal morphisit X — X x X andN° = M' X F, we get the

desired isomorphism by [Bor1, VIl Sect. 21.1, (4), p. 346]. O

4.2. THE EXPONENTIAL AOMOTO COMPLEX

4.2.1. LetV = A%, V" the dual space of, and( ): V¥V x V — Al the natural
pairing. Forv" € VV(C)\{0}, put

HY) = {ve Vv’ v) =1}
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Choose a basi$vy,...,v,} for the vector spac& ", considervy,... v, as
linear functions ori/ and denote them bys, ..., z,. Thuszy,...,z, are affine
coordinates fol/.

Let f:V — AL be a nonzero polynomial ovet. PutU = V\f~(0), and
consider the immersioft U — V.

4.2.2. Fora € C and f homogeneous, we say that" € D!(Dy) is a-
homogeneou$ h* M' = Og,, .t* R M'[<1], whereh is the map fronG,, c x U
to U given by h(t,z) = tz. This is equivalent with requiring thai' M= =
Og,, . t* ® M[1], becausé is smooth.

4.2.3. Ford € Ny anda € C, letT'y, be theC(s) vector space generated by the
classical gamma functiofi(ds + « + 1). The action of ther operator orl’; is
given by

T(l(ds+a+1) = (ds+a+d)(ds+a+del)

c(ds+a+ 1T (ds+a+1).

Denoting byt? the mapG,, c — Gmc : t — t¢, we see that,:(Og,, .t%e~!) is
quasi-isomorphic td'; , respecting-. Indeed, this exponential Aomoto complex
is represented by the compleX = (--- - 0 — A7t — A% - 0 — -..) with
A7l = A9 = C(s)[t, t71]tds e, which is quasi-isomorphic t&°(A4°), and the
latter is easily shown to be isomorphicIig , by the usual argument to prove the
functional equatiod’(s + 1) = sI'(s).

4.2.4. PROPOSITIONAssume the notation ¢#.2.1)and (4.2.3) with f homo-

geneous of degreé. Suppose thaiM™ € DZ(DU) is regular holonomic and
a-homogeneous for some € C. Let0 # vV € VVY(C), and denote by the

immersiony: U N H(v") — U. Then there exists a quasi-isomorphism

Af|U(M.6_ ) - Af|UmH(Uv) (’Y+M.[<=>l]) ®(C(s) Fd,on (l)

which respects the action. Moreover for all but countably mamye C we have
foranyi € Z

dimego H (A, (M)

4

— dimeH " (Fgeom{jt (ADR(M ) ® Cf [n])) ), @

whereD(«) denotes the Verdier dual arfyeomthe Sato—Fourier transformation.
Proof.We may suppose that' = v, in the notation of (4.2.1). Put

Z:={veU|w,v) =0} = {(z1,...,2,) € V]z1 =0, f(z) # O}

and consider the immersionsU\Z — U andb:Z — U. We have an exact
triangle [Bor1, VI 8.3]

byb (M eT™f) = Me™ f* = a i (Me™™ )i z) &5
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Letpy, pi\ 7, pz be the natural projections 6f ® C(s), (U\Z) ® C(s), Z ® C(s)
on Spe¢€C(s)). Applying (pry)+ to the above triangle we see that in order to prove
(1) it suffices to show that

(pz)+b' (M'e ™ f*) =0, and 3)

(Po\2)+ (M€ f2) | 7) = Af\UnH(vlv)(VJrM'[@l]) ®c(s) Laa-  (4)
From (4.1.7) we obtain

(p2)+0 (M€ ™f%) = (p2)+ (M) (f12)°) = A, (' M), (5)

PutK := R(f|z).DR(b'M’). The a-homogeneity ofM" and the homogeneity
of f imply that K is locally constant o1&, . Hence for all but countably many
pgecC

RT(Z,DR(bV' M) @ Cf?) = RT(Gpc, K ® Ct¥) = 0. (6)

Together with (5) and Lemma (4.1.5), this implies (3). We now turn to the proof of
(4). Consider the isomorphism

ho: Gme X (UNH(vY)) & U\Z
St (L xo, . xn)) = (Bt .. t2y)
and the morphism: G, c x U = U: (t,z) — tz. We have
hg (M e ™™ f)|inz)
(Id,y) A (Me™ ™ f?)
((d, 1) TREM)e (111)°, by (417, (3))
((1d, )" (Og, 1 R M [&1]))e " (171)°

= Og,, -t "% ® (yT M [&1]) 5. @
Thus sincég is an isomorphism we conclude by (4.1.2, (4)) that
Afjp o (MeT) i 2)
= Au(Og,, - t% ) ®cy(s) Af\mH(vv) (y* M [=1).

This proves (4) and hence also (1).
We now turn to the proof of (2). Replacing), ™,y by h{,h',~" in the
argument leading to (7), and comparing with (7), we get

A ML) = v Ml (®)
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(This follows also from thex-homogeneity and [KasSch, 5.4.13].)
The reasoning that gave (6) also shows that for all but countably han{

RT(V, ji(D(DR(M")) ® Cf”)) = 0.
Hence the analogue of the triangle (3.3.7) for the Sato—Fourier transform yields
Feond ji(D(DR(M’)) @ Cf 7)) v [n]
= RT(UNH(v"),y" (D(DR(M)) ® Cf*))[1].
Applying Verdier duality theorem and taking conomology we get
H ™' (Fgeomyt (H(DR(M")) ® Cf [&n]),v)
~ (H(UNH@WY),y DRM)[Q] @ CfP)V.
The assertion (2) follows now directly from (1), (8) and Lemma 4.1.5 with

X=UnH). O

4.2.5. PROPOSITIONAssume the notation ¢4.2.1) Let M be a holonomi®y;-
module generated by the single elemernt I'(U, M), i.e. M = Dyw. Suppose
that there exists a polynomigl’: V¥ — Al andB(s) € C(s)* such that

fY(grad,) (wf*th) = B(s)wf* in T(U,Mf*). 1)

Fix vV € VV(C) with fV(vY) # 0. Assume that4f|U(Me*”v) is concentrated in
degree0 and has dimensioh overC(s). Then

v h(s + l) B(s)

de(7-7 'Af|U (Me )) = h(s) f\/(’Uv) I (2)
with h(s) € C* (s).
Note the analogy betwedB(s) and Bernstein’s polynomial.
Proof. SinceU is affine we have by (4.1.2, (4)) that
Ay (Me™") = T(U. Q4 @0, Me™ *)]n]. @3)

Every global sectione " f* of Me ¥’ f* determines an elemefe " f5dzq A
... Nz, of T(U, Q7 0, Me ™" f5). When two such global sectiong " f*
andy’e*" f* determine elements with the same cohomology claﬁé)(nétm (M
e")) we will write ye " f5 ~ y'e=v" f5.

If ye=?" f5 € (8/8mi)/\/vle—”v ¢ for somei, thenye=?" f5 ~ 0. Because of our

hypothesis omd |, (Me™"") it suffices to prove that there exists a global section
~ of M such thatye™" f* »4 0 and

ve " FHL o Y (0Y)TIB(s)ye Y £ (4)
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We claim that there existg € C[x1,...,z,] such thatgwe="" f$ -4 0. Choose
such ag with minimal degree. LeP = fV (grad,) and P* the adjoint differential
operator ofP, i.e. P* = fV («grad,). Then

\

P*ge ™) = fY(wV)ge " +he ",

with h € Clz1,...,z,] having degree smaller than degThushwe *" f5 ~ 0,
and hence alshwe™"" f**1 ~ 0, by formally replacing by s + 1. So we obtain

g,we—vvfs—l—l ~ f\/(v\/)—l,wfs-irlp* (ge—vv)
~ fY(0") P(wf e

~ YY) B(s)gwe " f*, by(1).

This yields (4) fory = gw.

It remainsto prove the claim. Because of our hypothesjéhﬂg(/\/le‘”V ), there
exists a global section of M such thatye " f* £ 0. We can writey = Ruw,
with R € T(U, Dy). Thenye v f5 ~ wR*(e " f*) whereR* is the adjoint dif-
ferential operator of. This yields the claim becaugef (e *" f*) is aC(s)-linear
combination of elements of the forge " f*—* with ¢ € Clz1,...,zp),k €N,
and becausgwe " 5% £ 0 impliesgwe " f5 £ 0. O

4.3. APPLICATION TO PREHOMOGENEOUS VECTOR SPACES

4.3.1. Assume the notation of (1.1), (1.2) and (2.3). In partic(dar, V) is a
prehomogeneous vector space ging" are corresponding relative invariants of
(G, p,V) and its dual. Moreovef2 = V'\ f~1(0),Q" = VV\fV~1(0), Oy, resp.
07, is the closed7-orbit in Q, resp.QV, andn = dimV,m = dimO;. We also
have the immersiong: Q@ — V,i:01 — Q,5V:QY — VV,iV:0{ — QY. For
vV € VY(C),v" #0, putH(vY) = {v € V|(v¥,v) = 1}. Finally let L(w) = Cw

be the sheaf o, (C) introduced in (2.3).

4.3.2. The sheal(w) is homogeneous, meaning thétl.(w) = CX L(w), where

h: Gpc x O1 — Oqis given byh(t,v) = tv. Indeed from the homogeneity of

f and the definition of,? it follows that (dt A h*w)? = (dt A 7*w)?, wherer

is the projection ont@);. This implies the claim. Thus by the Riemann—Hilbert
correspondence, ifM is the regular holonomi®qg-module with DR(M) =
ixL(w)[m], thenM is 0-homogeneous in the sense of (4.2.2). Moreover the dual
of M equalsM because the pullback df(w) to a suitable degree 2 cover Of

is constant, cf. (2.3).
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4.3.3. THEOREMLet M be a regular holonomi@®q-module withDR(M) =
i L(w)[m]. For anyv" € QV(C) we have

detr, Appy (Mo ")) = 2D (g)alEs 1)

ORI

where the Bernstein polynomials as in(1.2, (3)) andd = degf.

Proof.Fora € Clet D fVe be theDyv-module introduced in [Gyo1, 2.3.1], with
V, f replaced byV, fV. (Actually inloc. cit. D fV« is al'(VV, Dy-v )-module, but
we consider it here as?;-v-module in the obvious way.) It is regular holonomic
[Gyol, 2.8.6] and generated by a single element which is denoted in [Gyol, 2.3.1]
by V. In particular fora. = 0, we have theDyv-module D fV° generated by
fV0 (not to be confused with 1). The Fourier transfosifD fV°) of DfVO is
a regular holonomi®y -module [Gyol, 3.19], generated by the single element
u = F(f¥9), cf. [Gyol, 2.7.1]. By Theorem 3.23 of [Gyo1] and the Riemann—
Hilbert correspondence we haief V0 = 5 Oqv andF (D f¥°) = j. M. (Indeed
0 € A, whered, is definedin loc. cit. 2.3.6.). Thust = F(Df"%)|q and M is
generated by the restriction ofto 2 which we denote byw. Moreover by [Gyol,
3.1] we have the functional equation

£ (grad,) (wf**h) = (&1)"b(es e Lwf* in T(Q,Mf).

Applying the Sato—Fourier transformation to both sides of (2.4, (1)) yields
Fgeonljt(DR(M) ® Cf*[en])) = Rj/Cf™*,

for any«a € C. Thus Proposition (4.2.4, (2)) and (4.3.2) imply th%n(/\/le—”v)

is concentrated in degree 0 and has dimension 1©gr The Theorem follows
now from Proposition (4.2.5). O

4.3.4. Assume the notation of (4.3.1) and (3.1.1). Let @V € VVY(C). There
exist integersy, By such that

(R(f|rv))iixL(w))g] = > an[Vy], and (1)
NeENg

(RS rov)ivis L(w))as] = Y By Vi, )
NeENg

because the pullback df(w) to a suitable degree 2 cover 6% is constant, cf.
(4.1.3) and (2.3). Put

H t“t R(flmwvy) 'J'l*L(W)), ©)

tecx
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wherea, is as in (3.1.1). Unlikex¥ (v"), the integersyy andgy are constant for
v" in a dense open subsetf (C).

Theorem (4.1.4) with = QN H(v"Y), K = ixL(w)|anm vy and f replaced
by flanm (v, together with Proposition (4.2.4) far= 0 and Lemma (4.3.3), can
now be used to compute they <3y anda" (vV). This yields the following

4.3.5. PROPOSITIONAssume the notation ¢f.3.1)and (4.3.4) Suppose that
vV € 2Y(C). Then for anyN € Ny we have

o L [eN) N #d
(&)™ (an &bv) = {e(N) o1ifN=d,

and
Vi,V —d vy, vy—1) D"
0¥ (") = (bod ™0 (V)71
whered = degf ande(N), bp are as in(1.2, (4), (5)).

5. Proof of Theorem Al

From now on we choose a field isomorphism betwe&@mdQ,. Then the complex
valued characterg and+ appearing in Section 1 determifg-valued characters
again denoted by, ), and we can study the character sums in Section/dwjic
methods.

5.1. THE MONODROMY AT INFINITY

5.1.1. LetV = AZ, V" the dual space df , and( ): VvV x V — AL the natural
pairing. ForvV € V'V put

H@Y) :={veV|w,v) =1}, and Ho("):={v e V|{v", v) =0}

Leta € Q, and denote by, the sheafz®* onG,, ¢ or the correspondin@;-sheaf
ONGy,c. We say tha& € D2(V, Q) is a-homogeneoui$ h* K = L, R K where
h is the map fronG,, ¢ x V to V given byh(t,v) = tv.

5.1.2. PROPOSITIONLet f : V — AL be a homogeneous polynomial oweof
degreed, and letK € D%(V,Q,) bea-homogeneous. Assume thdte V'V (C) is
general enough. Then with the notation(8f1.1)

[(R(flr@)1 E)fee] = [(RAK) 7] ©6[(Va @ Lajd)ns ) )

wherex is the Euler characteristig/(H (v¥)\ f~1(0), K) for cohomology with
coefficients inK.
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Proof.By Lemma (5.1.4) below, it suffices to prove that

[(R(f o0 K )10 = [(RAIK )70 ] <6[(Va ® L ja) s )- )

Actually we will show that (2) even holds without assuming thatis general
enough. By Lemma (5.1.5) below, applied &dand to the extension by zero of
K|m,v) we see itis sufficient to prove that

X (f ML) N Ho(o"), K) = d X (f1(1), K) &,
which is equivalent to

X O\Ho(v"), K) = & := x(H(0")\f (0, K). 3)
We claim that the map

r fTH\Ho(0") — H )\ H0): v+ v/ (0", 0)

is an unramified cover of degrele Moreoverr* K is locally (for theétale topol-
ogy) isomorphic with the restriction ok to f~1(1)\ Ho(v"), becauseX is a-
homogeneous. Hence

X(H(@")\fH0), K) = d *x(f H(1)\Ho(v"), 7" K)
= d~x(fH()\Ho(v"), K),

which yields (3).

It remains to prove the claim. if € f~(1)\ Ho(v"),w € H(vY)\f~*(0) and
7(v) = w, thenw = v/{v¥,v),v = dw with A € C*, 1 = f(v) = fQOw) =
M f(w), A = f(w)~Y? and hence = wf(w)~¥?. This proves the claim. O

5.1.3. LEMMA. Let X be a proper scheme over f : X — PL a morphism, and
K € D%(X,TQ). LetL be a general member of a linear systemmvhich has no
base points inf ~(co). Then[(R(f|.)1 K)5..] only depends ofX, f, K and the
setL N f~1(c0).

Concerning linear systems we use the terminology of [GriHar, p. 137] (working
instead with Cartier divisors whek is not smooth).

Proof. We may suppose thaX is reduced ands is zero onf—%(c0). By
restriction to the support d*(K) and stratification, we may further suppose that
K = §F, with j: Y < X an open immersior}, smooth,f~%(c0) C X\Y, and
F a smooth sheaf oH. Considering an embedded resolution of singularities [Hir]
of X\Y in X we may moreover assume thatis smooth and thaX'\ Y has normal
crossings inX (meaning that the irreducible componentsXofY” are smooth and
intersect transversally). Thenis smooth and. U (X'\Y) has normal crossings in
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a neighbourhood of ~%(c0), by Bertini’'s Theorem (cf. [GriHar, p. 137]). Hence
for anya € L(C) N f~Y(c0) we have

Uy, 0(nF) = Upa(h F), 1)

whereU ;(K) denotes the complex of nearby cyclesfon'(cc) of K, cf. [Dell].
IndeedX, resp.Y, is locally ata isomorphic withZ, x AL, resp.(Y N L) x AL,
and f corresponds under this isomorphism to the projectio. of AL onto L
composed withf|z. The lemma follows now from (1) and the isomorphism (cf.
[Dell, (2.1.7.1) and (2.1.8)])

(R(flL) K)q = RO(LN fH(00), Ty, (K)). O

5.1.4. LEMMA. Let f: V — AL be a polynomial ovet, and K € D%(V, Q).
Assume thatY € VV(C) is general enough. Then

[(R(f] o)1 ) i) = [(BUf [0 )1 K ) 0 |-

Proof. There exists a proper schemfeoverC and morphisms
P? % X <l Pl

such thatr is an isomorphism ove¥ = A” c P?, andf(z) = f(n(z)) when
m(z) € V. Indeed take e.g. foX the closure inP% x P% of the graph off in
V x AL, and forr, f the projections.

PutH,, := P2\V and letHy, resp.H, be the closure ofly(v"), resp.H (v"),
in P2. Note thatr—*(Hp), respr—1(H), is a general member of a linear system on
X with no base points im~1(H,,). (Indeed the same holds when we omiit’.)
Sincef ~1(c0) C 71(Hy) we have

N

n H(Ho) N fHoo) = 7 *(Ho) N (Hoo) N f~*(00)

= Wﬁl(m N HOO) N fﬁl(oo)a

and similarly

N A

7 H(H) N fHoo) = HHN Heo) N fH(00).

Thust=(Hp) N f~Y(o0) = 7~ 1(H) N f~Y(c0), becausélo N Hy, = H N Ho.
The Lemma follows now from Lemma (5.1.3) withreplaced byf, K replaced
by the extension by zero of the pullback&fon7—1(V), andL by =—*(Hy) and
n~1(H). O
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5.1.5. LEMMA. Let f:V — AL be a homogeneous polynomial oveof degree
d, and letK € D%(V,Q,) bea-homogeneous. Then

(RAK)p.] = v[(Va ® La/d)ne)s

wherev = d~Yx(f~1(1), K).

Proof. Tensoringk with ji f*L_, 4, Wherej is the immersio\ f~1(0) — V,
we may assume that’ is 0-homogeneous. By the homogeneity fond K it
suffices to prove that

[(Rf1K)go] = v[Val.

The monodromy action around 0 &f.(f (1), K) coincides with the endomor-

phism induced by
vV =aVios 2t/ dy

and a suitable morphism: v*K — K obtained from the 0-homogeneity &f.

Thus it suffices to show for ajl € N that

tr(y/, RT(f71(1),K)) =0 ifdtj, and 1)
=vd if d|j. (2)

Indeed the right-hand side of (1), resp. (2), equals the trace oftthpower of

the monodromy action omfd@”. Assertion (2) is clear and (1) follows from a
generalization of the Lefschetz Fixed Point Theorem, see e.g. [KasSch, (9.6.2) and
(9.6.16)]. Indeed il 1 j, theny’ : V — V has no fixed points different from 0

and extends to an endomorphism of the compactifictigi® of V whose graph
intersects the diagonal transversally. Thus assertion (1) follows by applying the
Fixed Point Theorem to this endomorphism and the extension by zdt¢,of ;

to (P%)™. O

5.2. FROOF OF THEOREM A1l
5.2.0. Notation and conventions

(1) From now on till the end of the paper we assume the notation of Section 1 and
of (3.5.1).

(2) We always assume that the characterist€ I, is sufficiently large.

(3) We have chosen an isomorphism betw&emdQ, . Thus the complex valued
charactersy andy in Section 1 becom@;-valued and we have the sheaves
Ly, Ly, f*Ly, = L(x(f)) from (3.1.2) and the Deligne—Fourier transforma-
tion F,,. Moreover the sheavdgw") andL(w) are defined in (3.5.2).
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(4) For a constant € @, we denote by the same lettethe Frol-moduleQ,
on which Froly acts as the multiplication by

(5) PutE = E(f, f¥) = bo/I1;51(j7)°Y), with by ande(y) as in (1.2). Recall
thatr := 3=,51 e(4), cf. (1.4).

(6) Put

o\ <)
no=mlf) = (@1)mqm/2£[1 (%) :

wherem andG(x, ) are as in (1.2, (2)) and (1.3).
(7) The dimension shift, resp. Tate twist, is denotedyresp.(n).

8) x=xtand) =yt

9) HwY) ={v e V|{(v",v) = 1} andH" (v) = {vV € VY|(v¥,v) = 1}.
5.2.1. Evaluation of the character sum @y twisted byy1/>(h(v))

5.2.1.0. Our proof of Theorem Al is somewhat indirect, first evaluating

SioY) = Y xya(h(©)x(f (@) ((0”,0)),

v€O01(Fq)

wherey,, andh are as in (1.5).

5.2.1.1. Note that the she&a{w) is v-homogeneous witly the trivial character
(compare with (4.3.2)). We will use Proposition (3.4.5) and its notation Wits
JiixL(w). ThusSY.(x,v") from (3.4.2) equals) (x, v") by Lemma (3.5.4), and
we will use the notationa, Bn, Y, p, a” (v), 6, from (3.4.5). Fixo¥ € 2Y(Q)

in the open orbiDy of G, and letv¥ € QY(F,) be the reduction mogd of 4.
Applying the Deligne—Fourier transformation to both sides of (3.5.3, (1)) we obtain,
forgetting the Frobenius action

Fy(jrin(L(w) ® f*Ly[en])) = Rj) [ Ly-s[em] onVY @ F, )

cf. [Laul, 1.2.2.1]. This together with (4.1.3) implies that the hypotheses of Propo-
sition (3.4.5) are satisfied and that (<1)™. Moreover

X(H©")\f4(0), K) = «p, )
by (3.4.4, (2)).
5.2.1.2. Using the notation of (3.1.3), put

eg(0Y) i=e0(O1NH(vY), L(w)). 1)
From (3.1.6) and Lemma (3.5.4) it follows that

ep(v’) € Q*. )
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Thus we can consider the signsgf(v") and denote it by sigteg (v¥)) € {1, <1}.
From Proposition (3.4.5, (6)) we then get

£3 (v") = signey (v")) /g " TR eI g 2oy O, 3)
Combining this with (2) yields

> (an ©pBy) =m<1mod?2 (4)
N

Together with (3) and Proposition (4.3.5) we get
e6 (v") = sign(eg (v")) /g V" " 2 v (5)
and also the following

5.2.1.3. LEMMA.Assume the notation ¢f.2, (2))and(1.4). Thenm = r mod 2

5.2.1.4. Becaus@y{ (C) is a homogeneous space under the actia@,afie easily
deduce from (5.2.1.1, (2)) and Proposition (5.1.2) that

P+ > (v <hn) =0, 1)
xV=1

with the notation of (3.4.5), especially = 1 if x® = 1 and zero otherwise. Now
we apply Proposition (3.4.5,(5)) and obtain by (5.2.1.2, (4) and (5)) and (1) that

Sl (x:vY) = esigney () V™ " x((a¥ (v) "
XX <H N—N(—l)m(aN—ﬁN)>
N
xGx ) T G0N, ) D™ (o =),
N

Together with Proposition (4.3.5) and the notation (5.2.0, (5) and (6)) one concludes
that

g ™Sy (x,0") = (1) sign(eg (")) mx (EfY ()7, )
forvV asin (5.2.1.1).

5.2.2. The Deligne—Fourier transform gfi, (L(w) ® f*L,)

5.2.2.0. It is not possible to prove Theorem Al by taking the Fourier transform
of both sides of equation (5.2.1.4,(2)) because this equation may not hold when
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fY(v¥) = 0. To overcome this problem we will determifig (jii. (L(w) ® f*Ly))
onV"V. In order to reduce the complexity of the expression, we shall use the abusive
notationL(x(y)) := ¢* L, fora morphismp: X — Gy, , of schemes.

5.2.2.1. LetX be a scheme of finite type ovEf such thatX ® F, is connected.
Then a smooth sheaf o is uniquely determined by specifying the Frobenius
action on the stalk of a singlg,-rational point and by knowing the restriction
of the sheaf taX ® F,. Hence (5.2.1.1, (1)) implies that there exists a constant
¢ = ¢(x) € Q such that

Fy(jrin(L(w) ® L(x(f))(m)[m])) = @ Lx(fY( )™H)[n] onQY. (1)

Here and below, we always assume that the isomorphisms are compatible with
the Frobenius action unless otherwise stated. Considering the trace of the Frobe-
nius action on both sides of (1), and comparing with (5.2.1.4, (2)) we: get
ssign(eg (vY)) 7, x(E). Hence sigr{eg (v")) is constant o2 (F, ). Put

oV = esigneg (v)) for anyv” € QY (F,). 2)
Then we can write (1) as

Fy(gris (L(w) ® L(x(f))(m)[m]))
~o'r @ L(x(Bf'()™Y)[n] onQ". 3
5.2.2.2. The above isomorphism (5.2.2.1, (3)) extends to an isomorphism

1 Fy (i (L(w) © L{x(f))(m)[m])
— oV @ RiY L(X(EfY( ) H)[n] onVY, (1)

because of Lemma 5.2.2.3 below, since both members of (1) are isomorphic to
each other if we forget the Frobenius action, by (5.2.1.1, (1)).

5.2.2.3. LEMMA.Let X be a scheme of finite type ovigy, j : U — X an open
immersion, K € D%(X,Q), andF € D%(U, Q). Assume thak and Rj, F are
isomorphic when we forget the Frobenius action, Ké?@E = (Rj*F)|X®E.
Then any isomorphisipg: j* K — F extends to an isomorphispt K — Rj. F.

Proof. Certainly ¢ induces a morphismp : K — Rj.F. By Verdier duali-
ty it suffices to show that the induced morphisity) : D(Rj. F) — D(K) is
an isomorphism. Note that the restrictionofy) to U equalsD(yg), which is
an isomorphism sinceg is an isomorphism. Moreovel(Rj, F) = 5DF and
(DK)|xer, = (PRj.F)|xgr,- Hence cohomologies df(Rj. F)) and DK are
zero onX \U. ThusD(y) is an isomorphism. O
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5.2.3. Proof of Theorem Al

5.2.3.1. Applying Verdier duality and the Deligne—Fourier transformation to the
above isomorphismp we obtain that

Fu (i’ Lx(F7)) (n)[n])

~ 01, ® Rjin(LX(Ef( )™Y) ® Lw))lm] onV, @)
cf.[Laul, 1.3.2.2and 1.2.2.1]. Replacing the trif@& p, V) by its dual( G, p¥, V")
yields
Fy(rL(x(f))(n)[n])
= on ® Rji/ (LOX(ESY( )™h) ® Lw"))lm] onVY, (2)

where (with the notation of (3.1.3))
o := esign(eo(0y N HY (v), L(w"))) for anyv € Q(F,). (3)

Note thatr does not depend on the choicexof €(F, ), cf. (5.2.2.1). Theorem Al
follows now directly from (2) and Lemma (3.5.4), with

K (0) = oxa/a(h’ (7). (4)

It is convenient to put

L(kY):=0® L(w"), (5)
so that
tr(Froby,, L(kY),v) = &"(v"), forallv¥ € OY(F,). (6)

With this notation we reformulate (2) as TheoremfAthich refines both (3.5.3,
(2)) and Theorem Al

5.2.3.2. THEOREM ALl Assume the notation ¢8.1.2)and (5.2.3.1,(5)) If the
characteristic off, is sufficiently large, then we have for glle Hom(F Q)
that

Fy(h L(x () (n)[n])
>~ (1)mg(mtr)/2 [IGcod, )t

jz1

v b Vi oy v v
QRj, 1y {L (X (mT;])e(])f () 1>>®L(/1 )}[m] onV"'.
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5.2.3.3. REMARK. Assume that the characteristi@pfs sufficiently large and let
x € Hom(F;,C*). Suppose that

(order ofy) ™! # a; modz, (1)

for eacha; in (1.2, (4)). (This is equivalent with the requirement that the order
of x is different from the order irQ/Z of each«;, because of (1.2, (5))Jhen

the character sum in TheoreAtl vanishes fon" € (VV\QV)(F,). This follows
from the following argument due to N. Kawanaka: By the Plancherel formula, the
norminL?(VV(F,)) of the discrete Fourier transforffise(x o f) of x o f equals
the norm inZL?(V (F,)) of x o f, and is thus equal t®2(F,)|*/?. But on the other
hand the norm il.2(Q2V(F,)) of Faiser(Xx © f) can be calculated by Theorem Al
and equalgq™ ™ |0 (F,))¥2 = [(F,)| /2, becaus&’,;_ e(j) = 0 by (1), and
because of Lemma (2.2, (1)). Thus the norm&gfc(x o f) in L?(VV(F,)) andin
L2(QV(F,)) are the same, and we conclude tAatc(x o f) vanishes oivV\QV.
Actually even more is truef (1) holds therF,, (1 L(x(f))) is zero o/ Y\Q". This

is adirectconsequence of Theorem (3.5.3, (1)) and the fadkih#t L, = ji f*L,,
which follows from [Gyo1, (3.23, (5) and (6))]. Indeeddife Q has order inQ/Z
equal to the order of, then (1) implies thata € A, N A_ with the notation of
loc. cit., and henc®&j.Cf* = 5 Cf“.

6. Proof of Theorem B

In this section, we prove Theorem B. The basic idea of our proofis (6.2, (9)), which
gives an expression ¢&1)°(@.v) for vV € OY (F,) in terms of|G,v (F,)| and the
operation § — ¢~ . We keep the notation and the assumption of Section 1, and
suppose that all geometric objects are defined over a finiteHjelslloreover, we

fix an algebraic closurg, of F, and identify any algebraic variety ovéy with ‘the

set of F,-rational points together with the Frobenius actign) = Frob;l = x4

(z €T,

6.1. FROOF OF THEOREM B(FIRST STER

Put

6.11 7nY(vY) = (1) @)= (Y e 0Y(F,)).

Theorem B asserts that’ = ¥ on Oy (F,), wherex" is the function appearing
in Theorem Al. As a first step, we shall prove here that

6.12. k¥ =Cn" onOy(F,),

with ¢ = +1 or C = &i1. As for kY, the following equality is already proved
(5.2.3.1, (4)).

6.13. x12(h)=k" or =&k’ onOf(F,).
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6.1.4. First, let us study howy>(h"(v")) varies wherw" € Of (F,) moves.
Takev" € Of(F,) and putv := FY(vY) € O1. Take linear base&vs, ..., v}

of 7,01, and {vy,41,...,v,} Of (Tvvoy)i. Assume that all they;’s are F,-
rational. Since(F,), : T,01 — T,vOy is an isomorphism (2.2, (5)), and since
(F.)o|(TyvOY)*+ =0 (2.2, (1)), we have

V = (T,01) ® (T,vOY) ™. (1)

(Here(F.)y: T,Q(= V) = Tp,) VY (= V") denotes the linear mapping induced
by F: Q — VVY.) In particular, {v1,...,v,} gives a linear basis oV. Let
{v{,..., v} beits dual basis oFV. Then{vy,..., v} (resp{v,,  1,---, 0, })
gives a linear basis &f,v Oy (resp.(T,01)*). Considen,’ (resp.v;) as a linear
function onV (resp.V"), and denote it by; (resp.y;). Then{z, ..., z,} (resp.
{y1,...,yn}) is alinear coordinate system &f (resp.V), and

(F)ov (v),v))

- <(F*V)Uv (a%) ’8%->

_ [~ 0009 [y, vy O O
N <k§1 8yi (U ) 8£Ek7 8yj>
_ 9% log fY

Note that the most left member vanishes if m or j > m;

2 log 1V

vY)=0 ifi>morj>m. 3
.03, (v") J 3)

(Indeed,(FY),v|(T,01)* = 0 and, especially(F),v(vy) = 0 for i > m.)
Hence

2 log 1V

hY(vY) = det
v") (ayiayj

(W)) inEy /F2. (4)
1<i,j<m

(See (1.5) for".) Take another point¥’ of Oy (F,). Then there existg € G(F,)
such thatV' = gv". Let{y],...,,} be a linear coordinate system constructed
as above using"’ instead ofv¥. Denote the morphisni’V, v") — (VV, gv")
induced by the action of by the same lettey. Since(g*fV)(vY) = fV(gv") =
¢(g) "1V (vY),

9% log f¥ _ 9% log(g*f)

0y;0y; y; 0y,
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82 *I_’ o | \Y
(gyl).g*< 09f>

- ZZ, Oy 0y; 0yl
s og*yy 909’y (9% log f¥ 5)
i i Y, 9y; Oy

Note also that
82(9*%/) V.
——2(v»’)=0. 6
Dy:0y; ) (6)
(Recall thaty; andy;, are linear functions ofi.) By (3), (5) and (6), we get

2 vV
0 log f (0Y)
0y;0y; ij

* {’ 2| \Y, oag* ’,,
- (%) (—8 29J (gvV>> (—g - (M) NG
i i \ Y i

wherei, 7, i andj’ run over{1,...,m}. Now take any linear basgsof 7,v Oy
andf’ of T,,v Oy which areF,-rational. Consider the dual basé$ andj3'" of
the dual space@,vOy')" and(T,,vOy')", respectively. Then we can define

A(g) = del(g|Tva}_/ - TgvVO}./)
del(g*|(TvV Oi/)v — (Tgvvoi/)v) € EX’ (8)

whereg* denotes the transposepand(«<)" denotes the dual space. If we change
B or 3, then the value oA (g) is multiplied by some element &f‘ . Hence
(A(g) modF; ) is well-defined 9)

If we take 3V = {(dy1)yv, ..., (dym)yv} and B’ = {(dy})gv,- - -, (dyi) guv },

then
_ 99" yir v y
A(g) = det (v") modF, . (10)
dy; 1<ii'<m

By (4), (7) and (10), we get

hY(vY) = A(g)®hY (gv") modF; 2. (11)

Sinceh" (v¥), Y (gv") € Fy [Fy2,
(12)

A(g)? € ) [Fx2.
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Thereforex;/2(A(g)?) is well-defined, and

x1/2(h" (v")) = x1/2(A(9)%)x1/2(h" (gv¥)), (13)
wheneven", gv¥ € O (F,) andg € G(F,).

6.1.5. Next, let us show that' (v") varies in the same way &g »(h" (v")) when
v¥ € Of (F;) moves. More precisely, we shall show that

n" (") = x1/2(A(9)*)n" (gv") 1)

wheneven", gv¥ € O (F,) andg € G(F,). (See (6.1.1) fon".)

6.1.6. In general, for a (not necessarily connected) reductive gadugverF,,
let B = B(G') be the totality of Borel subgroups ¢6")°. (Here and below )°
denotes the identity component.) Let NiB%, B2) (B1, B2 € B) be the totality of
¢ € Hom(B1, B,) which come from inner automorphisms(@’)°, and consider
B as a category. Put

X =X(G"):= lm Hom(B,Gp,)= lim Hom(B,Gy). (1)

BeB(G) BeB(G)

(Note that all elements of M@B1, B>) induce the same morphism HéBy, G,,,) —
Hom(B1, G, ) by [Bor2, 1V, 11.16].) Thus an elemetite X is of the form

¢ = (¢B)BeB, ¢B € HOM(B, Gy ). 2

Take a Borel subgroug, of (G')° defined oveiF,, and a maximal torug” of
By also defined ovef, [SprSte, I, 2.9]. TheX (G’) is canonically isomorphic to
Hom (Bo, G, ) = X (T"). (We needX (G') to work without specific choice aBy
andT’.) Nowo = o, = Frobq‘l, where Frob is the geometric Frobenius, acts
naturally onB(G"), and it also acts oX (G') by the transpose: ip = (¢5)Bes
andb € B € B, then(c*¢)p(b) = ¢»p(cb). We have

deto” | X(G")) = ()7 (@)=(@)gr(@), 3)

Indeed, the eigenvalues gf 'o* on X (G’) are roots of unity among which 1
appears with multiplicitys (G"), cf. [Bor2, 1ll, 8.15].

6.1.7. LEMMA. Let G’ be a connected reductive group defined over an alge-
braically closed fields, and A € Aut(G’). Denote by the same letter the induced
automorphism oLie(G’) =: ¢'.

(1) If g € G’ and A = A, (:=inner automorphism by), thendet A|¢’) = 1 and
defA*| X (G") @ k) = 1.
(2) Generally det(Alg') = def{ A*| X (G') ® k).
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Proof. (1) Define a rational charactgf of G’ by ¢'(g) = det(4,|¢'). LetT” be
amaximal torus o7’ andt’ := Lie(T"). Considering the root space decomposition
g =t (P, d(x), wecan see that'|;» = 1. Hencep’ = 1 onG’ by [Bor2, 1V,
11.10]. The second equality is obvious.

(2) Take a Borel subgroup’ ¢ G' and a maximal torug§” c B’. We may
assume by (1) that(B') = B’ and A(T') = T'. Define an automorphism of
the dual space of so that(A\, AX) = (A, X) for A € Hom(t, k) andX € t'.

(In particular, we can consideta for any roota.) Take 0# X, € ¢'(a) for each
roota sothafX,, X ,] = o (€ '), wherea denotes the coroot associated with
a. (If « is a root, the corresponding coraet is characterized as follows: there

is a homomorphism.: SL, — G’, which maps the algebraic subgrou@é *i)

and < i ?) isomorphically onto the root subgroups, andU_,,, respectively.

Thendu: sl, — ¢ maps(é _(1)) to aV.) ThenA(¢g' (o)) = ¢'(A), and hence
AX, = co X 4o With some O£ ¢, € k. Since
(Aa)Y = A(aY) = [AX 4, AX_,]
= [CaXAaa C—aX—Aa] = Cac—a(Aa)va

it follows

CaCq = 1. (3)
If we define an order of roots so that #8') D ¢'(«) (o > 0), then

Aa >0 whenever « > 0. (4)

By (3) and (4), detd|g’) = det{ A|t') = det(A*|[Hom(t, k)) = defA*| X (G') ®
k). O

6.1.8. Proof of (6.1.5, (1)). Sincgog)v" = o(gv¥) = gv", it follows ¢ =
gt (0g) € Gy ando(gbg™) = ge(ob)ctg~t for b € B € B(G,v). Put
A(z) = Ay(z) = gzg ! for z € G. Then A inducesB(G,v) & B(Ggpv),
which we denote by the same lettdr = A . Puto, = A,'- o0 - Ay Then
oy = Ay Ayy- 0 = A, - o and hence we get the commutative diagrams
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B(G,v) Tg’ B(vav) X(Gyv) Az X(vav)
Auo 7 and ge.a: o 1)
B(Gyv) —— B(Gyuv) X(Gyv) +—— X(Gg)
Hence

deto*[X(G))  y, oy
et | X Gy )) =n"(gv")¢" by (6.1.6, (3))

_ deto*| X (G))

= deo" X (G ))det A X (Gr)) Y

=n'(v")g" - de(A;|X(G,v))™" by (6.1.6, (3)) again )

wherer’ = r(vV) = r(gvV). (Cf. (1.4) forr(v").) Thus in order to prove (6.1.5,
(2)), it suffices to show that

det(AZ| X (Gyv)) = x1/2(A(9)%). 3)
We have

del( A | X (Gyv)) = det(A,|Lie(G,v)) by (6.1.7, (2))

_ det(A.|Lie(G))

_ vy—1
- de'(C|Tvai/) _det(C|TvV01) by (6-1.7, (l)) (4)

(Note thatG is connected, buf?,v is not in general.) Take linear bases, $agnd
@', of T,vOf andT,,v Oy, respectively, which arg,-rational. Then (the inverse
of) the last member of (4) is equal to
detg™ - o(g)| Ty OF)
=detlg (T 07, 0) + (T 01, 5))

x detfo(g)|(T,w OY, B) = (T, OF, B'))

= x1/2(A(9)%) by (6.1.4, (12)). (®)
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Now (3) follows from (4) and (5), and hence the proof of (6.1.5, (1)) is now com-
plete. O

6.1.9.Proof of(6.1.2). By (6.1.3), it suffices to show that
x1/2(h") =n"or &n’  onOf (F,). 1)

Fix vy € Of(F,). Then anyw" € O (F,) can be expressed a8 = gv; with
someyg € G(F,). By (6.1.4, (13)) and (6.1.5, (1)), we get

x1/2(hY (v")) _ x1/2(hY (vy))

) 2
) ) @
where the right-hand side is +1, and independent of. Hence we get the
result. O

Before concluding (6.1), let us record a result which can be proved using the
technique given in (6.1.4).

6.1.10. LEMMA.For vV € OY (), h¥(v") = h(F" (v")) in F} /Fx?, whereh"
andh are as in(1.5).

Proof. Take linear coordinate§es, ..., z,} (resp.{y1,...,yn}) Of V (resp.
VV)asin (6.1.4). Then oy, we have

9% log fV  0%log FV*(bof ™)
y;i0y; y;i0y;

by (2.1)

92 log FV*f
dy;0y;

O?FV*y 0 log f
— 1 _F\/*
{:{ZZ, y; 0y, < Oxy >

Ly OF g OF*zy .. (az log f)}

oy; 0y; 0z 0x jr

3 v
= 0y;0y; 0y

0% log f* & log f¥ & log f
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92 log fY - 9% log f¥ 9*log fV e (82 log f)

=2
yidy; 5= Oyidyr  dy;dy; Oz Oz jr

by Eulefs identity,

wherei, 7,7 andj’ run over{1,...,n}. However, as far as we are concerned with
the value av¥, we may assume that they run ovds...,m}. (Cf. (6.1.4, (3)).)
Hence
2 lo Y
T8 ()
0y 0y i

2 v 2 2 v
_ (9% log f (0") 0° log f(FV(vV)) 0 log f (0") ,
Qy; Oy c o \ Oz Oz v \ 0Yj9y; i

)

wherei, 7, ' andj’ run over{1,...,m}. By (6.1.4, (4)), we getthe result. O

6.2. HROOF OF THEOREM B(SECOND STEW

Taking the trivial character ag in Theorem A1 (5.2.3.2), and considering the
Verdier dual, we get

Fy(RjT(n)[n]) 2= (1) ¢ /2 @ )i L(k) (m)[m]. 1)
Cf. [Laul, 1.3.2.2]. Put

po(v”) = tr(Froby, Fy (Rj. Qe (n)[n])v)
forv¥ € VV(F,). Then by (1), we have

po(v’) =0 ifv’ ¢ O (Fy), )
and (6.1.2) yields

oh(vY) = C x =2 (1) (1) @)= i oV € OY (F,). (3)

SinceG and G,v (v¥ € OY) are reductive (cf. (2.2, (6)), we have diG =
r(G) + 2N with N the number of positive roots, and a similar formula holds for
G,v as well. Hence

r(vY) == r(G) ©r(G,yv) = dimG <dimG,v =: m mod 2 4)
By (5.2.1.3) (or alternatively, by [Gyo2, 7.6]), and by (4), we get

r(vY) =rmod2 ()
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(Later in (6.3), we shall see thatv¥) = r without using (5).) Hence (3) can be
written as follows

Po(vY) = C x ¢IR(&1) ) it oY € O (F,). 6)

Let (¢1, p2)x = X ,ex v1(x)p2(z) for any setX and functionspy, ¢, on it. By
(2) and (6), we get

(0o, Vv, = Cgtmm 2 N (1))

vV €0y (Fq)
= Cq(—m+r)/2 Z (ﬁl)s(vv)if(ﬂ. @)
W E0Y (R)/G(Fy) [Gov (Fy)
We know thatG(F, )| can be expressed as
G(E) =g [ #i9) x (¢ £, ®)

where N is the number of positive roots, and thig(q)’s are some cyclotomic
polynomials# ¢ <1, cf. [Ste, 11.16] and (6.4) below. This polynomial expression
of |G(F, )| may depend og, but its polynomial degree is always equal to difn
Hence

|G (Fy)|gosgr = (1) D|G(F,) g~ )

and similarly for|G,v (F,)|. (This argument is motivated by [Kaw?2]. Justifica-
tion concerning,, ,,1 will be given in (6.4), where we shall understand every
expressiort )|,.,,1 appearing in (6.2) except for (10e) as a specialization of some
polynomial which we shall explicitly specify. In particular, vé® notneed that

( )lg—q-2 has a canonical meaning. However, if the reader wants, this operation
in (9) and (10b)—(10d) can be understood as follows. In these plaggs,,: is
applied to quantities each of which has a natural polynomial expressiofi(gay

and which has the same expressijtig®) if F, is replaced byF,., whenevere

is close enough to 1 iUm/”Z' Therefore the polynomiaf is uniquely deter-

mined, and hencg(q), ., 1 = f(g~1) has a canonical meaning.) Postponing the
justification until (6.4), we get from (7) and (9) that

(v0, vy (z,) (10a)
_ ggeminre { 5 ( G(F,)| ) }
vV €Oy (Fq)/G(Fq) |G (Fo )| qq~t
g = ()2 (10b)
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= Cqr 210 (Fy)lgrsg1) (10c)
= Cqm DR (g QF) ) g1} bY (22, (1)) (10d)
= Cqr N/ 2g7 tr(Froby, RT(Q © Ty, @) gyt (10e)

= Cq"""")/2tr(Froh,, RT(Q ® F,,Qy)) by the Poinca# duality (10f)
(Recall that? = V'\ f~1(0).) Put
po(v) = tr(Froky, (Rj.Q),) = (&1)"¢" tr(Froky, (Rj.Qe(n)[n]),)

forv € V(F,). Thusby [Laul, (1.2.1.2)ky(v") = ¢7" T pev(r,) ©o(0)9((0", ),
and hence

(00, Dvv(w,) = ©o(0) = tr(Froby, (R7.Qr)o). (11)

Because of (10) and (11), in order to pra¥e= 1, it suffices to show that

tr(Frohy, RT(V ® F,\ f~(0),@)) = tr(Frohy, (Rj.Q)o), (12)
and that
> (&) #0 (13)
vV e0y (Fq)

(i.e., (7), (10) and (11) are non-zero). Here recall that= +1. The proof of
(12) and (13) will be given later in (6.5) and (6.6). Note that we have obtained
the following theorem in the same time, which was originally conjectured by
N. Kawanaka [Kaw2, (3.4.7), (ii)], [GyoKaw, 3, RemarKk].

6.3. THEOREM.The number of integer roots ofy(s) (counting multiplicity
equalsr(v¥) foranyv" € O7.

(Our argument to obtain (6.3) would seemto depend on (6.2, (5)), butin reality it
does not. In fact, if we do not use (6.2, (5)), we should reptatey (<1)"+ ") C
everywhere in (6.2, (6)—(10)), but it does not affect the absolute values of (10) and

11))
6.3.1. REMARK. By [Gyo05], the most important case would be the case where

dim G = dimV. In this case, we can construct a special type of relative invariant
following [SatKim, Sect. 4, Prop. 16] as follows. Fix linear baseg ef Lie(G)
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andV, and putf (v) := detg = V; A — Av) forv € V, and¢p(g) := detV —
Vv gv) forg € G. Then

f(gv) = detflg = V; A — Agv)
= deflg = g; A — g 1Ag) -deflg = V; A — Av)

-detV — Vv +— gov)
= 1-f(v) - dolg)-

Cf. (6.1.7, (1)). (For example, ifG,p,V) is irreducible, then such a relative
invariant is irreducible, and every relative invariant can be obtained as a scalar
multiple of a power off.) By the definition off, Oy = V'\ f~1(0), and especially
O = Q = 01.(See (1.1) and (1.2) for notation.) Hence, in [Gyo1, (3.11, (5))], the
defining equations oD/, become

SAul = (o + 1) ¢o(A)u,, forallA € g.

Hence(Du!)[fV~1 = (DfV—>=1)[fV—Y, and by [Gyo1l, (3.11, (5))] again, we
get

FOY 6 OF Y, FU) e (1)
By [Gyol, (3.1)],

flgrad (f*HF(f ) = (&) b(es ©2) f 7 F(f ). )
By (1) and (2), we get

flgrad fV°+ = (e1)%b(es ©2) %, e,

b(s) = (e1)%b(es 2). (3)
Cf. [SatM, Chap. 2, Thm. 4, (ii)]. Sindgs) = b H?:l(s + ;) with bg € C* and
a; € Qo, (3) implies that 0< «; < 2. Hence, in this special case, (6.3) implies
that

#{jla; = 1} = rankG <rankG,, = rankG forvy € O;. 4)
Now, regard thé-function as a kind of -function, and (3) as the functional equation
satisfied by(s). (This standpoint would be justifiable by the resemblance of (3) to
the usual functional equation g¢ffunctions, and also by the deep relatiorbOf)

with the ¢-functions of the prehomogeneous vector space. In fact, (1) iPthe
module version of the functional equation of théunction in the sense of M. Sato
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and T. Shintani.) Sinc¢ ¢, instead off ™%, is used in the definition af-function,
let us considef(s) := b(«s). Then

£(s) = (1) % (2 o), 3)

and the reflection point of (B(i.e., the fixed point ok <+ 2 <) is 1. Moreover,
(4) can be read as

(the order of zero of(s) ats = 1)
= rankG <rankG,,

=: (rank of the prehomogeneous vector space 4)

It is amusing to note the resemblance betwn+ (4') and the famous conjecture
of B. Birch and H. P. F. Swinnerton—Dyer, which says the order of zesc-al of
the zeta function of an elliptic curve, sy overQ would be equal to the rank of

E(Q.

6.4. JUSTIFICATION OF ‘q +> qil,

6.4.1. First, we need to prepare some notation. For an¥ set whicho acts, X?
denotes the set of-fixed points. (Recall that = Frob,;l.) Putiw = (B(G) x
B(G))/G (= the Weyl group ofG). In order to specify the dependence of the
split rank s(G) on theF,-structure, we sometimes writdG, o) for s(G). Fix

vV € 0Y(F,), recallthatz?, is the identity component @,v, and putro(G,v ) =
va/GSV. For a groud” on whiche acts as an automorphism, it (o, I') denote
the quotient set o by the equivalence relation

a~be‘a=c 1 b-o(c)for some € I
foranya,b € T.

6.4.2. Next, letus review the (natural) one-to-one correspondence betyéey) /
G(F,) andH! := HY(0,m0(G,v)). Fore € G,v, let[c] denote its class il *. Let
co=1,c1,...,¢ € G,v be a complete set of representativesif Takeg; € G
sothaty; - o(g;) = c; [SprSte, |, 2.2]. Thediw) = giv¥|0 < i < I} is a complete
set of representatives of (F,)/G(F,) [SprSte, |, 2.7].

6.4.3. Now we explain the justification concernimg- ¢~ . Put
o(t; G,0) = (1)@ 37 N defl etg ot | X @ Q)
weWwe

whereN is the number of positive roots afdv) is the length ofv € W, especially
[(w) + N is the dimension of thé&/-orbitw C B(G) x B(G). See (6.1.6, (1)) for
X = X(G). Then

|G(Fy)| = ¢(¢;G,0) (cf.[Ste 11.10 and 1111)).
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This follows from the Bruhat decomposition and the fact that for a maximal torus
T of G defined ovef,, we have

IT(F,)| = |def1l 0¥ X @ Q)| = (1))@ def(l ©0*|X ® Q),

the first equality following from the duality betwe&hand X', and the second from
the argument which gave (6.1.6, (3)). Rijt:= G,v, B; = B(Gi), Xi == X(Gi),
W; = B; x BZ/GZ! and

. l 1 go(t;G,U)
vito) =2, mo(Gi)7| o(t:GY0)

1=0

(A priori, we only know that)(¢; o) € Q(t), but after (8) and (11) below, we can
easily see thap(t; o) € Q[t], and therefore we can substitute any numbett for
Then by [SprSte, |, 2.11],

|01 (Fg)| = 4(q; 0).

TakeM € Ny (= {1,2,...}) so that the following conditions are satisfied

G andG; (0 < i < 1) splitoverF,u, (@)
oM acts trivially onW andW; (0 < i < 1), 2)
oM (gi) = g (0<i <), (3)
oM acts trivially onmo(G;) (0 < i < 1). (4)

By (1), o*M = ¢M (e End(X)). Hence
det(1 otq M 1Ml X @ Q) = def(l otg 10| X ® Q) )

foranyk € N (= {0,1,2,...}). Since, by (6.1.6, (3))<1)*(%9) is the leading
coefficient of de(1 <tq1o*) € Q[t],

(£2)(F) = (e1) (@, (6)
By (2),

wo =w ", @)
By (5)—(7),

o(t;G,0) = @(t; G, o). (8)
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Hence

G(Fpaein)| = o(¢"* Y G, M) = o(¢MF G, o). 9)
By 3),9; - oM (g;) = g; " - o(9s) = ¢ Hence

{v)/|0 < i < I}is also a complete set of representatives

of Of (Fyarn+1)/G(Fynrsa). (10)

Applying (8) to G, we get

p(t: G}, 0) = p(t: G o™ (0<i <) (11)

By (4), (8), (10) and (11), we get

P(t;0) = p(t; oMFH), (12)
Hence
07 (Fprresa)| = p(qMFHE oMAHL) = 4 (¢MF 5 ). (13)

The precise meaning of the left side of (6.2, (9)yig~*; G, o). The meaning of
the inside of{ } in (6.2, (10b) and (10c)) i$(¢~*; o). Since

|Q(FqM1c+1)| = (qu+1)n7m|O:\L/(Fqu+1)|
Mk+1)nfmw(qu+l. O')

= (q , (14)

(n =dimV, m = dimOy) by (2.2, (1)), we can understand the meaning of (6.2,
(10d)) similarly as above; the inside §f} meansy(q~1; o) again. As for (6.2,
(10e)), we need to understand it in two ways. On the one hand, we understand it as

tr(Froby, RTe(Q, @))lgsg-1 = ¢~ ™ 1b(g 4 0). (15)
On the other hand, in order to get ‘(10e) = (10f)’, we need to understand it as
tr(Froby, RTe(,Q@))|gg-1 = Y0, T B, (16)
where thew;’s (resp.;'s) are the eigenvalues of Frplon HE*(Q, Q) (resp.
H29) including multiplicities. Then our task is to show that (15) is equal to (16).

By (14),

3 a3 B (g7 ap(gi ) guren,
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and our task is to show that
-1 -1 n—m .
Zai <:>Z ﬁj = (q d)(qv O-))|qb—)q*1'
Thus it is enough to prove the following lemma.

6.4.4. LEMMA.Letc; € R,0# a; € C (1 <i < N), M € Ny, and assume that

N
> cia}* =0 foranyk € N. 1)
i=1

Then
N
> ot =0. 2)
i=1

Proof. Express (1) as"¥ ; c;oi(aM)® = 0. Considering the Vandermonde
determinant, we get

> cio; =0 forany0# B €C. (3)

aM=p
Puty; := a;|8|"Y™. Then|y;| = 1 and¥; = +; 1. Considering
(complex conjugate of(3) x |3]~YM)) x |g|~YM,

we get (2). O

6.5. RROOF OF(6.2, (13))

We use the notation of (6.4). Sinc® is absolutely irreducible, we have ljm
q~™| OY(F,)| = 1, and similarly forG and G9. Considering (6.4.3, (13)) for
k — oo, we see that

Lo
Z;) [mo(G)7| - M

From (6.2, (8)), we get
¢ N|G(F,)| = (<1)*9 modqz,, 2

wherep = chai(F,), and similarly forG?. Suppose now that does not divide
|mo(G,v)| for one (and hence for all) € Oy . (We may assume this becaysg>
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0.) Putn; := |mo(G,)7| and A; := (£2)*) (¢ NG (F,)[) x (¢ "|GI(F,)])
whereN (resp.Np) is the number of positive roots @f (resp.G,). Theng does
not dividen;, A; = 1+ qa; with someq; € Z, by (2), and

q—(N—NO) Z (<=>l)s(u\/)

vV €0y (Fq)

= i Ai by (6.2, (7)) and(6.4.2)
i=1 TV

l l
) 1 3 qa _

Now the proof of (6.2, (13)) is complete. O

6.6. RROOF OF(6.2, (12))

In this paragraph, the notation is not compatible with the remainder of Section 6.
The content must be well known, but is included for the sake of convenience of the
readers.

6.6.1. LetV := Az, V* := V\{0}, P be the projective space consisting of lines
q

passing through @ V, V the blow-up ofV with center{0}, i.e.,V := {(v,L) €
V x Plv € L}, and

p2 P

<

P“VX].V

the natural morphisms. Then (6.2, (12)) follows immediately from the nextlemma.

6.6.2. LEMMA. Assume the above notation and léte D%(V*, Q). If 5 K is
x-homogeneous for somee Hom(F , @), then the natural morphism

RT(V*,K) = RI'(V, Rj,K) — RT({0}, Rj.K) = (Rj. K)o
is an isomorphism.

Proof.First consider the case whete= 1 andK = . In this case, we can get
the result, comparing the spectral sequenggs= H" (X, R°;.Q,) for X =V
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and X = {0}, and noting tha},Q, = @, and that supg®;.Q, C {0} (s > 0).
Second, ifn = 1 andK = L, with x # 1, then both members vanish.

The general case can be reduced to these two cases as follows. By the proper
base change theorem, we have

(Rj-K)o = (R(p1).Rj.K)o = RT(p1*(0), Rj..K|,-1(0))-
On the other hand, we have

RT(V* K) = RI'(P, R(p2)+Rj. K).
Hence it suffices to prove that the natural morphism

R(pz)*Ri*K - Rj*K|p1*1(o) 1)

is an isomorphism, wheng; *(0) is identified with P via p. Sincepy: V — P'is
a line bundle, we may identify

VX s 7 & P, p;Y0), andKonV*
with

G x P s Al x P &5 P, {0} x P, and

K = L,Rs"KonG,, x P,

locally on P. Heres is a local section o/ * Z, p. Thusthe proof of (1) reduces
to the first two cases. O

7. Proof of Theorem A2

In this section, we show that Theorem A2 can be obtained from Theorem A1l.

7.1. We keep the notation and the conventions of (5.2.0). We record Theorem Al
in (5.2.3.2) in the following form

Fo(h L HEf()™1)(n)[n])
=7 ® Rj)i) (L(x(fY()™h) ® L(x"))[m] (D)
onVV.

7.2. From (3.5.3, (4)) and (5.2.3.1, (5) and (6)), we can show that there exists a
constantC' = C() # 0 such that

™Y x(F @)Y, 0))

WV EOY (Fy)

=C- (81" - X(Ef(0)7h) - £Y(F (0)) )
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forv € Q(F,), and

Fy (i Lx(F))(m)[m]) = Oy ® L(x(Ef() ) ® F*'L(s")ln] ~ (2)

on(). We can extend the isomorphism (2) to the whole spaaea similar fashion
as (5.2.2.2), using (3.5.3, (4)):

Fo (i Lx(f) (m)[m])
= C1y ® Rj(L(x(Ef()™)) ® F*L(x"))[n] ®)

on V. Our purpose is to prove that = 1. Applying 7,; to both members of (3),
and changing — x/, we get by [Laul, 1.2.2.1]

Cry @ Fi(Rj (L (Ef() 1) ® F*L(kY))(n)[n])
=i L (fY)) (m)[m] (4)y
onVV.

7.3. Now consider th&,-valued functions oV obtained from (7.1, (1)) and
(7.2, (4),/) by taking the trace of Frob Next consider theif.?-inner product using
the fact that the Fourier transformation preservesithénner product. Then we
get

Crog ™ Y (X X)NEf(v) e (F(v))

vEQ(Fyg)

=na ™ Y, )Y )R (Y). @

vV €0y (Fy)

(Remark. In (1), except for the factey /7,,, everything depends only o 1y’
So, it might seem strange at first glance, but for aimosgatly’, both sums vanish,
and it is not absurd.) In particular, taking= x’, we get

Cqg ™™™ Y w/(F)= > k'@ )

vEN(Fy) vV €Oy (Fy)

By (2.2, (1)), (2) can be written as

(1<0) Z kY (vY) = 0. 3

vV €0y (Fq)

By Theorem B, which is proved already in Section 6, we ha\@") = (<1)"(?")=s(")
forv¥ € Of(F,). Hence (3) can be also written as

1e0) Y (s1°¢) =0 (4)

vV €0y (Fq)
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Hence by (6.2, (13)), we gét = 1, and we have proved Theorem A2. O

7.4. We record (7.2, (3)) (witty = 1) as a theorem, which refines both (3.5.3, (4))
and Theorem A2.

THEOREM AZ. Assume the notation @8.1.2)and (5.2.3.1, (5)) If the char-
acteristic ofF, is sufficiently large, then we have for all € Hom(Fy Q)
that

Fo(i'ix L(x(f7)) (m)[m])

> (e1)mg MR G, )W)
j=1

®Rj. {L <X <Wﬂ )1>> ® F*L(mv)} [n] onV. (1)

7.5. REMARK. The character sum in Theorem A2 can also be calculated differ-
ently, following the method used to determine the ssiii{x, v") in (5.2.1). For

this, one has to replace in the statement of Lemma (4.3.3) and Proposition (4.3.5)
the sheaf.(w) by the constant she@, on 1, and the Bernstein polynomié(s)

by b(s, F¥*6,,) which is defined in [Gyo3, (6.11.3) and (6.14)]. Moreover in the
proof of Lemma (4.3.3), one has to replaté&* by fVe+kFV+s,, with k € N big
enough, and use [Gyo3, (6.21) and (6.19)] instead of [Gyol, (3.23) and (3.1)]. An
argument as in (5.2.1), with(w) replaced byCo,, then yields an expression for
Yoveoy (r) XY (0Y)$((vY, v)) involving b(s, F*4,v ). Comparing with Theo-

rem A2, we conclude thahe rootsmodZ of b(s, F*§,,v ) are the same as the roots
modZ of b(s).

7.6. REMARK. Assume the characteristiclpf is sufficiently large and leg €
Hom(F;, C*). Suppose that

(order ofy) ~* # a; modz, (1)

for eacha; in (1.2, (4)). Then the character sum in Theorem A2 vanishes for
v € (V\Q)(F,). The proof is the same as in Remark (5.2.3.3). Actually, even
more is truelf (1) holds, therF (7<) L(x(f"))) is zero onV\Q. This is a direct
consequence of Theorem (3.5.3, (4)) and the fact®yatf*L, ® F*L(w")) =
1(f*Ly ® F*L(w")) which follows from [Gyo3, (6.21, (1) and (2))] (with and

up as in loc. cit. (6.11.3)). Indeed éf € Q has order inQ/Z equal to the order of

X, then (1) and Remark (7.5) imply thate A, N A_ with the notation of loc. cit.
and hence?j,(Cf* ® F*Cw") = 5 (Cf* ® F*Cw").

https://doi.org/10.1023/A:1000404921277 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000404921277

330 JAN DENEF AND AKIHIKO GYOJA

8. Frobenius determinant and the Hessian
8.1. FRURTHER APPLICATION OF LAUMON S PRODUCT FORMULA

8.1.1. LetX be a scheme of finite type ovey, f: X — }P’%q a morphism, and

K € DY(X,Q). Letu € |X| be a closed point of. We denote by, (K)
the stalk atu of the complex of vanishing cycles oft(f(u)) associated tgf
and K, cf. [Dell]. Note thatd, ,(K) is a G s,y module (in the sense of (3.1.1)
with s = f(u)), hence we can consider the local constarg(T’(,), ®7.u(K),w)
introduced in (3.1.4), for any rational differential foron 0 on]P]%q. The following
lemma is a direct consequence of Laumon’s Product Formula (3.1.5).

8.1.2. LEMMA. Let X be a schemef: X — Gp,r, @ proper morphism and
K € D%(X, Q). Suppose thak’ f K has tame ramification & and oo for all i,

and that
(RAiK)z) = > an[Vnl, and [(RAiK)z,l= > BnVnl, (1)
~NeN ~NeN
(N,q)=1 (N,q)=1

where the integersyy, By are zero for almost allNV. Moreover suppose that
®;,(K) is zero for allu € | X| outside a finite subsét of | X|. Then

60(X, K) = qZN Nay H(&wp(To, VN,:E_ldIE)aN

xeyp.0(To, Viv, €L dz)Pm)

X H 61/J,0(Tf(u)a‘I)f,u(K),$_1 dz). )
uER

(See (3.1.3) for the definition @b, and (3.1.1) fol/y).
Proof.For anys € |G, r, | we have a distinguished triangle

(RAK)s — (RAK)g, = @ ®7.(K) S5 @)
Flars
of Gs-modules, cf. [Dell, (2.1.2.4)]. Hence

ep,0(Ts, RfIK,w)

= ey o(Ts, (RAK)sw) [I evoTs, @ru(K),w), ie,
uEYD
Fu)=s

gw(Tsa Rf!K,Cd)

=E¢( s,(Rfl H Ewo Ts,@fu(K) w).

uED
f(u)=s
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Thus ifw has no pole and no zero gtthen

ep(Ts, RAK,w) = [[ euo(Ts, ®pu(K),w), 4
uED
flu)=s

by [Laul, (3.1.5.6)] withK = Q. Here note that the action @f on (Rf1K); is
trivial by definition. Apply Laumon’s Product Formula (3.1.5) to the differential
= dxz and the compley, (R 1K), with j the immersiorG,, r, — Pg, . The Lem-
ma follows now directly from (3.1.4, (4)). O

The following lemma is a special case of Lemma 1 of [Sail], see also the last three
lines on page 401 of loc. cit. (Note however that thkactors in loc. cit. are with
respect to a Haar measure whichyiimes the one used in [Laul, 3.1.5.8], and
hence differ from oue-factorse o(To, K, w) by a factorg@kX , cf. [Del5, 5.3].)

8.1.3. LEMMA. Assume the notation ¢B.1.4)with ¢ odd, and letN € N be
coprime withg. Then

ey,0(To, Viv, o tdz) = €q VG (x12. ) Txyp(2VIN), 1)
ep,0(To, Vv, € 1 dz) = ©g N G(x12, )" Tx12((2)V ). (2)
(See (1.5) for the definition of; /> and (3.1.2) folG (x1/2, %))

REMARK. We briefly sketch a different proof of Lemma (8.1.3): As in [Sail,
p. 402 line 14-19] one easily reduces to the cdsedd, by induction on o N

and [Laul, 3.1.5.4(iv)]. Thus suppose thétis odd. It is an elementary exercise
to verify that detVy is unramified and that det (Frpl{Vx)1) = (), where

(%) denotes the Jacobi symbol. Hence by [Laul, 3.1.5.5] and the quadratic reci-
procity law, it suffices to prove that, o(7o, Viv, dz) = ¢V "1/, Let C be an
irreducible component ofy. ThenC is ‘induced’ by a multiplicative character

x of IF;T, for somer, see e.g. [Laul, p. 198 line 5-10]. Let be the order of.
Then the order of in (Z/mZ)* equalsr, because is irreducible. By loc. cit.

we haveey, o(To, C,dz) = x(<1)Gr(x, ), with G, (x,v) the Gauss sum over
IF,- . Note thaty(<1) = 1, sincem is odd. When the irreducible componeriof

Vy, ‘induced’ byy 1, does not coincide withi’, thenC & C yields a contribution
Gr(x,¥)Gr(x,%) = ¢". Butif C = C andm > 1, thenr is even,g’/? = <1
modm, and a result of Stickelberger (see [BerEva, (10.3)] or [BauMcE, last line
of p. 165)) yieldsG,(x, ) = ¢"/2. Multiplying all these contributions (together
with <1 for the componerit; of Vi) we obtainey o(To, Vi, dz) = <N -1/2,
whenN is odd. O
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8.1.4. For any smooth,-sheafF on Gm,r, » With tame ramification at 0 ansb,
we have

51/),0(T03 '7:3 d.’L') = EO(Gm7]Fq’f ® LE)

(See (3.1.2) foL, recalling that) = «»~.) Indeed this follows by straightforward
adaptation of the proof of (3.5.3.1) in [Laul, p. 198]: We may assumeZhat
irreducible. In the notation of loc. cit., take a finite extensian(C F, =: k) of
F, =: k and a smootl®;-sheafF; of rank 1 onG,, s, such thatf,F; = F. Here
[ Gmk, = Gp i is the morphism induced by: Spe¢ki) — Spegk). Then we
have, with obvious notation, the following isomorphisms

RU (G Ok k, F ® L)
>~ RT (G, Ok b, F1® frLy)

= f*RFc(Gm,kl ®k1 Ea ‘Fl ® L%g Tr)’ (l)

which are compatible with the Frobenius action. Cf. [Del4, (1.7.7)]. Here Tr denotes
the tracéi; — k. SinceF is isomorphic to a Kummer torsor @), + (cf. ££.20-23
of[Laul, p. 198]), we can determine the rank of (1), and Weg@;n,k , ]:®LE) =
€0(Gm by s F1 ® L%Tr). Then the remaining adaptation is easy and hence omitted.

8.2. FROBENIUS DETERMINANT FOR A NONDEGENERATE CRITICAL POINT

8.2.1. LetX be a scheme of finite type ovéy, with ¢ odd, f : X — A]%q
a morphism and: € X (F,). Suppose thaf is smooth at: (overF,) and of
dimensionm. Choose a regular system of parametersr,, . .., z,, for Ox,.
Assume that. is a non-degenerate critical point 6f meaning that. is a critical
point and the Hessian

o[ 9Pf(w)
Au(f) T det(axia$j>i,j1,...,m

is non-zero. Note that the image of,(f) in F; /IF;Z does not depend on the
choice ofzy, . .., z,,. Finally let K € D%(X,Q,) be smooth at, meaning that the
cohomology sheaves @f are smooth in a neighborhoodof

The following lemma is implicit in [Sai2, proof of Lemma 7], and is an easy
consequence of the material in [Del2].

8.2.2. LEMMA. Assume the notation and hypothesig®®.1) Then

51/),0(Tf(u)’ (I>f,u(K)’ dx)(_l)"kl
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= det(Froy, K.) (1) xa/2((€2)" Au(£) G (2 )™ ™) (1)

and whenf (u) # 0 we also have

51/),0(Tf(u)’ (bf,u(K)’ xil dx)(il)mil

= det(Froh,, K,,)
X ((SD)™ xa/2((62)™ f ()™ Ay ()G (xa sz )™M @)

Proof. It is well-known thatd; ,,(Q ) [m <1] is concentrated in degree zero, has
rank 1, and has the same geometric monodromy)@/s2 at 0, cf. [Del2]. Hence
from[Laul, 3.1.5.5], it follows that (1) implies (2). Moreover by [Laul, 3.1.5.6] we
may suppose that = Q. Clearly we can assume th&t = AT, f = S aiw?,
andu = 0. Itis an easy exercise to calculate the actio@ gf,, on®; , (Q), using
the material in [Del2], and to deduce (1) from it. However we will give a different
proof of (1): Althoughf is not proper, we have a distinguished triangle (8.1.2, (3))
with s = 0 andX = {0}, see [Del2, Prop. 2.2.3] and [Dell, Prop. 2.1.9]. Hence
(8.1.2, (4)), (8.1.4) and [Laul, 3.1.5.4(iii)] yield

£4,0(To, ®5,0(Q),dz) = ey(To, RfiQ,dx)
= eo(Ag,, (RAT) ® Ly)
= EO(A]}TTZ ) f*LJ)

This gives (1), becaust (AZ" , L(4 (<3212 a;z?))) is concentrated in degree
with dimension 1 and eigenvalue of Frobenius equeh) ™ x1/>((<1)™ [1; a;) X
G(X1/27 Qp)m O

8.2.3. PROPOSITIONAssume the notation and hypothesis of Ler(8rth2) with
g odd and¥X = {u},u € X(F,). Suppose thak and K are smooth at, that
X has dimensiomn at u, and thatu is a non-degenerate critical point ¢f. Put
p =rank(K,). Then

mp+ Y _(ay <Py) =0mod2and (1)
N
eo(X, K) = (£1)°q"/?x1/2(c) def(Froh,, K,) V" (2)
where
w = emp(e1)™ &Y (an + By), 3)

N
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c = (@1)(mp+ZN(0‘N*ﬁN))/2(H NaN_ﬁN)(f(u)mAu(f))P‘ (4)

N

Proof. Consider the determinant &, , ® Rfi K. This is aQ-sheaf orGy, ,
which is smooth outsidé(u). Its geometric monodromy at respectivelyQu), co
equals the geometric monodromy of respectively

(LX1/2)®ZN aN? (LX1/2)®pm7 (LX1/2)®ZN Ox

at 0, because the determinantlgf has the same geometric monodromy at 0 as
L N and because of (8.1.2,(3)), and the first sentence in the proof of (8.2.2).

ThIS dlrectly implies assertion (1). Using (8.1.2), (8.1.3), (8.2.2) and the formula
G(X1/2; )% = = x1/2(<1)q, we obtain an expression feg( X, K), which simplifies
drastically by using the congruence (1) and the relation
rank RfiK )z, = >.n Nan = >y Nfy. This yields the assertion (2). O

9. Proof of Theorem C
9.1. CALCULATION OF THE HESSIAN OFf|H ¥)n0, AT ITS CRITICAL POINT

The main purpose of (9.1) is to provide (9.1.7, (1)) as a preliminary for the proof
of Theorem C.

9.1.0. Notation and conventions
We continue to assume the notation of Section 1 and of (3.5.1).

(1) H(vg) :={v € V|{vg,v) =1} forO # vy € VV.

(2) sing(f! vy (WY yno,) := {critical points off| 7,y ﬁOl} (We shallshowin (9.1.1)
thatH(vg) N Oy is always a non-singular varlety)

(3) Buy (v, y') = (y, (FY),v (y’)) for vy € QY andy,y’ € VY. (Recall that
(F )y + Ty (= VV) — Tpv(yy)V (= V) is the linear mapping induced
by vl V.)

(4) For a symmetric matrid € M, (F,), if ' X AX = diag(as,...,am,0,...,0)
with X € GL,(F,) anda; € F} then we putA(A) := [[12 a; (€ F [F;?),
and call it the dlscrlmlnant oA ThIS definition of ‘discriminant’ is equwalent
to the one given in (1.5).

(5) If ¢ is odd, for two symmetric matrice; € My, (F,) (i = 1, 2), we define the

equivalence relationl; ~ A; as follows. Put kedd; := {z € Fi|A;z = 0},
and letQ; be the non-degenerate quadratic forn¥pryker A; induced byA;.
If @, and@, are equivalent as quadratic forms, then we deflpe- A,. In
particular, ifny = np = 1, (i.e., A1 and A, are scalars), thed; ~ A, <
A1 = Ay x (square irFqX). AsiswellknownA; ~ A, < ‘rank A; = rankA4;
andA(Az) ~ A(Ap)’ for two symmetric matricesi; and A,.
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(6) For a functionp(x, ..., z,) on a non-singular variety with local coordinates
z1,..., T, and for a critical pointu of ¢, put Hesg(y) =
(%{;"%(u))lgd@ andA,(¢) := A (Hess(¢)). Hereypis a regular function,
or more generally any function such that ﬂ??ao/aziaxj are defined.

(7) Throughout (9.1), every variety, s&y, and every morphism is assumed to be
defined oveff,, andX is identified withX (£), wherek is a (fixed) algebraic

closure offf,. We always assume that chgr> 0.

9.1.1. LEMMA. For any 0 # vy € VV, H(v§) intersectsO; transversally. In
particular H (vy) N O1 is a non-singular variety.

Proof. We may and do assume that := dimO; is strictly smaller than
n = dimV. Sincek*01 = O [Gyol, (1.4, (2))], any affine hyperplane tan-
gent toO; contains the origin of. HenceH (v ) is not tangent t@;. O

9.1.2. LEMMA.Forvg € Q,sing(f|m(wy)no,) = {u}, whereu := d=1-FV(vy)
with d := degf.
Proof.Forv € O,, consider the following conditions

(1) v € sindflm(wy)no,):

(2) F(v) € kv + (T,01) ",
(3) v e H(vy) N On,

(4) F(v) €d- vy + (T,01)*,
(B) d-vy € FV~1(v),

(6) dt - FV(vy) = v.

Sincekvy + (T,01)* = (T, (H(vg) N O1))* by (9.1.1), we get (1) [(2) and
(3)]. Assume (2) and (3). TheR(v) € cvy + (T,O1)* for somec € k. Since
kX v C Oq,

v € T,01. )
Henced = (F(v),v) = (cvy,v) = ¢, and especially [(2) and (33> [(3) and (4)].
Define an isomorphism" : (T0O1)* — QY asin (2.2), and let: (TO1)* — O
be the projection. Then

F(v) + (T,01)* = ®V(r Y(v)) = FV 1(v) (8)

by (2.2). Hence (4)= (5) < (6). If (6) is satisfied, thenvy, v) = d?!
x{ vy, FY(vg)) = 1. Hence (1)= [(3) and (6)]< (6). O

9.1.3. LEMMA. Letvy € OY andvY € FV~1FV(v)) (= v) + (TFV(U1V)01)L by
(9.1.2, (8)) Then
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(1) kerB,v = ker B,v = ker (FY),v =ker (FY),v = (Trv v 01)*, and
1 1 ( 1)
(2) B,v is non-degenerate ofi,y Oy .

Proof. (1) By (2.2, (1)), we get k¢’ ),v = ker(F*V)vlv = (TFV(vlv)Ol)l. By
(9.1.0, (3)), we get keB,v = ker(F,’),v for anyv" € QV. Since

VY = (T,y01) & (Trv(uy)O1)* ®3)

(cf. (6.1.4, (1))), (2) follows from (1). O

9.1.4. LEMMA. Letvy € O (F,), v/, w) € VV(E]) (1<i<m),andp(vV) =

det(Byv (v}, w)))1cij<m for v € QY. If (vy) # 0, thenp(v') = (vy) for
Ve FY-1FY(vY). Inparticular, (B,v (u), u) ) 1<i j<m <

if vV is F,-rational.
Proof.By (9.1.3, (1) and (3)), we may assume from the beginning that

i
—
oY
<
—~
£
S ~—

£
=<
~—
~
=
~
<
N\
3

u) ,w; € Ty 0. (2)
Then {uf,...,uy} and {wy,...,wy,} are linear bases dl,yOy. Forg €
Gy = Gpvyy, letg ) = aij(g)uf, g tw) = 37 bij(g)w), Ag) =
(alj(g))lgz,]gma andB(g) ( ( ))1<z,]<m Then

p(gv”) = det By, (u),w))) = det( By (91w, g~ w)))

= detA(g) - p(v") - detB(g). (2v)
Dividing (2,v) by (2v1v), we get

plgv") /(o)) = (") [p(v)) forv" € FY=1F(v)). ©)

(Note thatyvy = vy'.) SinceFV(Og) = 01 [Gyol, (1.18, (2)1G,y acts homoge-
neously on the open dense sub@gtn FV—1FY (vy) of FV~1FV(v}), and hence
(3) implies thatp(v") /p(vy) = Lforallv¥ € FV-1FV(vy). 0

9.1.5. REMARK. Let{;'} and{w;'} be linear bases df,y Oy. Thenyp(vy) # 0

by (9.1.3, (2))i = @(vy) onFV=1FV(vY) by (9.1.4), and deti (g) = detB(g) =
det(g 1|T vOy) for g € G,y. Hence (9.1.4, (2)) yields

detg|T,y OY)> =1 (g € Gy). 1)
Since(F" (vy),v{) = d # 0, it follows that

Tvi’ Oi/ = kmi/ ©® (Fv (UY)L N Tvl/ Oi/) (2)
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detg|T,y 03) = detg|F¥ (o))" N T,y 0) (g € Gy). 3)

9.1.6. LEMMA. Takeu € O4(F,), v§ € QY(F,) andvy € Of(F,) so that
FY(v§) = FY(v)) = d-uwithd = degf. Then

Hess (f|r(wy)no,) ~ Hess(f|rwy)no,)- (1)

Proof. First we take a®y an arbitrary point of0y. Let {vy,... v} be a
linear basis of" (v )" N T,y O, andz; := (v)’, ) &(v),u) (L < i < m). Then
{v{,v3,...,vy} is a linear basis of,y Oy by (9.1.5, (2)), and{z1, ..., zpn}
gives a local coordinate system®f atu, sincev; = dz; = 0 on(T,y 0y)* and
(T,01) ® (T,yOY)" = V. (Cf. (9.1.3, (3)).) Fou" € FV~1FY(vY), putzl’ =
(Y, Y eolandz! = z; (2 <i < m). Then{z! }icicm (resp.{z! Yocicm)
gives a local coordinate system 6f (resp.H (v") N O1) atu. (Note thatv" €
FY LRV (0)) = (Tpvy) 00t + F(FY (v7) = (T,01)" + Y, by (9.1.2, (8))

and hencey <" is perpendicular t&, 01y, i.e., (dz1), = (dz!"),. Note also
that

A (u) = (0¥, u) ©1= (vY,u) <1 sinceu € T,01L(v) <vY)

= (vf, " FY(v{)) ©1=0

by Euler'sidentity.) Fixy € G,y and put;(v) = zf”v (gv). Then{z!}1<i<m (resp.
{2} 2cic<m) is @ local coordinate system 6 (resp.H (v¥) N O1) atg~lu = .
Moreoverwe havél (v¥)NO; = {2 = 0} = {2} = O}. Forv¥ € FV 1FV (1),
put

P(flm@wvynos)

") = det< o AoV (U)> - @)
0z 0] 2<i j<m

Sincef"(v{) = f¥(gv{) = ¢(9) 1 f"(v{) # 0, we havep(g) = 1 andf(gv) =
f(v). In other words, the functiofi (resp.zfvv) on H (gv¥) N 01 is identified with

f (resp.z)) on H(vV) N Oy, viag: H(v") N Oy <> H(gv") N O1. Therefore,
noting thatgu = w is a critical point off | g(,v)no, by (9.1.2), we get

Elgv) = det(w(u))

0z, 0, i
82}’V 82(f|H(vV)mOl)
= det( o7, (u))ili. det<—azgvazgv (u) .
et 25 3
xde 02, () ) )
J 35
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wherei, j, i’ andj’ run over{2, ..., m}. Since(dz!"), = v} and(dz}), = g~ 10
for2<i<m,

det(aazi (u)> = detg|F" (v{) N T,y O7). (4)
2<i,1'<m

/!
Zi/ .,
XY ~X

By (3), (4), and (9.1.5, (1) and (3)),
E(gn”) =€) (v € FY 1Y (v)), g € Gyy). ()

SinceG,y acts prehomogeneously @ ~1FV(vY) (cf. the argument at the end

of the proof of (9.1.4)), (5) implies th&t{v") is independent of". Thus we get
the result, if we assume

£(vy) #0, (6)

which will be proved in the course of proving the next lemma. O

9.1.7.LEMMA.Letvy € QV(F,),u:=d L-FV(vy), H(vy) := {v € V|{vy,v) =
1}, and{ya,...,yn} be alinear coordinate system &t defined ovef,. Thenu
is a non-degenerate critical point gfﬂH(vg)mol, and

_ 2 log 1V
fw)™ A, v ~A | T (vg : 1
&d - f(u) (f|H(v0)ﬂOl) By:0y; (vg) reijen 1)
(Seg(9.1.0, (5)and(6)) for A andA,,.)
Proof. By Euler’s identity, we can show that
é 92 log fV
Zyi‘igf‘yj:@d- ()

In particular, B,y (vy,v{) = «d # 0, wherevy' is the unique element @by N

FY 1FY(vy). Note thatvy is F,-rational. By (9.1.2, (7)) € T,yOY. By

(9.1.3),Bv1v|T »O7 is non-degenerate. Hence we can takeFamational linear
U1

basis{vy,..., v} of T,y Oy which containsy’, and such that

(BUY (UZV, U}/))lgi,jgm = diag(al, e ,am) (ai 75 0, a1 = <=>d) (3)

Let {v},.1,...,vy } be anF,-rational linear basis o(TFV(vlv)Ol)i. By (9.1.3,
(3)), {vy,...,v }is alinear basis oF". Let{v1,...,v,} be its dual basis,

wi= (v, ) and y; = (v;, ). (4)
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Then

(B'Ul/ (/Uzy’ U;’/))lgi,jgn = diaqal, <oy Gmy Oa s 70) by (9137 (1))’ (5)

(F.)oy (v]) = ajv;, wherea; := 0 (j > m) (6)
(cf. (5) and (9.1.0, (3))), and
9% log fV
( 8%3;; (U(\)/)> 1<i j<n
= (Byy (vi,v])1<ii<n by (6.1.4, (2))
~ (Byy (0,0 ))1cijem DY (9.1.3, (1))
~ (B”1V (v;/,v}/))lgngm by (9.1.3, (2)) and(9.1.4). 0

On the other hand, sindéFV|Olv is the identity,

v = (F)pvy) (B )y (0]) = (F) pvy)(aju;) (1< 5 <m), 8

by (6). Hence

a2...m ~ (a2...am,) "t

= det(vi, (F) pv oy (v7))) 2<i,j<m

0% log f
= det FY (v : 9
e ( o amj( (Ul))>2<i,j<m ©)
Since every?log f /0x;0x; is homogeneous of degree?,
2
gy ~ det(a log / (u)) £0. (10)
8]71'8]7]' 2<i j<m

(Note thatu = d~1- FV(vy) = d 1. FV(v)).) Take a local coordinate system
{z1,...,2p} Of V atu so that

z1:= (v), ) &l(= 1 &1), (11)
%= (v, Yol u) (=zieu) (2<i<m), (12)
(dzi)u = v (= dz;) (m+1<i<n), and (13)
O1 = {Zmi1 = = 2n = O}. (14)

https://doi.org/10.1023/A:1000404921277 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000404921277

340 JAN DENEF AND AKIHIKO GYOJA

ThenH (vY) N O1 = {21 = 211 = -+ = 2z, = 0}. Now, let us calculate

0?log f 5 Ozy 0%logf Oz
fr— . . ]
Bziazj Bzz Bxi/ 8]7]'/ 82j

1<l j'<n
dlogf %xy
+ . (15)
1@211 8$i/ Bzzaz]
atu for 2 < 4,7 < m. By (11)-(13),
0% ) = by (A< isi <n). (16)
13
By (11) and (12)
0?1
L= 1<i' <m). 17
pmgn; =0 (1<i<m) (17)

Since fY(F(v)) = bof(v)~t by (2.1), f is constant onF~F(u) = u+
(TruOY)* = u+(T,y OY)*. (Indeed F (u) = F(d~-FY (v§)) = d-FF" (vy) =

d-vY,andOy = d - 0y.) Sinceu + (T,yOY)" can be expressed ds; = ¢;
(1 < 5 < m)} with some constantg; },
fo,(u) =0 (m+1<i <n). (18)
By (15)—(18)
21007 1y = 2190 1) (2 < m) (19
aziazj w= 8:5281% Y ShIs '
Thus we get
d?log fV
———(vg ))
( Ayidy; 1<i j<n
~ diagi<d, a, . .., am) by (3) and (7)
9?lo
~ (ed) & ( o~ ;’f (u)) by (10)
V%% ) <ijgm
9?log f
= (&d) & ( (U)> by (19)
aziazj 2<i j<m
~ («&d) @ Hess (log f|mwy)no,)- (20)
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Comparing the second and the last members of (20), we can see that the rank of
Hesa(logf|H(U1V)mol) is m <1, and hence we get (9.1.6, (6)). In particular, we
get (9.1.6, (1)), which together with (20) yields

A dlog fV
0y; 0y,

(z»g)) ~ (¢d) A(Hess, (109 f|7(,y)0,))

— (ed)A(f ()" Hess (| nwy)no,)
~ () F @)™ A0 (Fliyyn0,)-

(The equality in the second line can be proved by a direct calculation using the fact
thatu is a critical point off | 7(,v)no,)- O
0

9.2. EXISTENCE OF A GOOD COMPACTIFICATION

9.2.1. LEMMA. Assume the notation @5.1.1) Let K € D%(V,Q;) be a-homo-
geneous andf:V — AL a homogeneous polynomial over of degreed. Let
v¥ € VY(C) be general enough. Thef ;v\ ;-1(0) has a compactification

Gm,(Ca

with Z a scheme ovet , = proper,. an open immersion making the above diagram
commutative, and locally acyclic relative ta (K| v\ r-1(0)) at each point
outside the image ofin Z. (This means that the stadk; ,,(K') atu, of the complex
of vanishing cycles on~(r(u)) associated td, is zero(cf. [Dell]).)

Proof. Put

Y = {(zo:m1: T, t) EPE X G | f21, ..., 20) = 20t}
ThusY is the part ‘aboveG,, ¢ of the closure irP? x AL of the graph i/ x AL of

f.Hence the natural projectignY” — G, ¢ is proper and yields a compactification
of f[ r-1(0) Via the diagram

V\fH0) —— v

S

Gm,(C’
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whereiisthe openimmersiondefined by, . .., z,) — (Liz1 -+ @z, f(21, - - .,
zn)). Put
Z ={(zowy: 1 an, ) EY | (vY, (71,...,2,)) = 20} C Y.

Thenr := plz is a compactification of | 7(,v\ ;1) It suffices to prove that is
locally acyclic relative tai (K|y r-1(0)) ON Zoo := ZN (locus ofzg = 0). Put

X = {(zoix1: - xn) EPL| f(21,...,1,) = 28},
X := X N (locus ofzg = 0), Y= X X Gy,
Z'={(zoix1: i an,t) €Y | (WY, (21,...,20)) =zt 1} C Y,

Y, :=Y'N(locus ofzg = 0) = Xoo X Gy,
Z., = Z'n (locus ofzg = 0).
Let
P Y' 5 Gpe, and 772" = Gpe
be the natural projections. We have a commutative diagram

0

Y’ Y
P’ P
Gmc —%+ G,
wheref is given by(zo:x1 : - : 2, t) = (20 txe: tra: - - - try,, %), andr, by

t— t%. Note that is locally bianalytic, inducing a locally bianalytic map froft
onto Z. Moreover, sincds is a-homogeneous,

0% i1 (K v\ f1(0) = i1(K| 11y ® La),
wheres’ is the open immersion
YD) X Gue = Y (21, t) e (Lizy s o 2, t).

Hence it suffices to prove that is locally acyclic onZ relative to (the restriction
to 7' Of) 'L{(K|f—1(l) La)-

By stratification it suffices to prove, for aigy -sheafF on X which is smooth
on a locally closed smooth subschebieC X\ X, = f~%(1) but zero outside
W, thatr' is locally acyclic onZ/_ relative to (the restriction fronY”’ to Z' of)
FRQ.
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LetW be the closure o’ in X . By embedded resolution of singularities [Hir],
there exists a smooth sche¥eoverC and a proper morphistit X — W which
is an isomorphism abov#’, such thath~%(W\W) has normal crossings it
(meaning that its irreducible components are smooth and intersect transversally).
Consider

Y =X XGpe, g:Y—=Y':(2t)—(h(z),t),
Z — g—l(Z/) C )Z’ X Gm,(C7 ZOO = _1(Zéo)’ }700 = g_l(Yl
Ti=n"0(gl3): Z—=Gpe : (z,t) 1.

Note thatg*(F ® Q) is zero on the divisoD := h~YW\W )seq X Gpc O Y,
and smooth o\ D. Moreovery is a closed immersion outside. Because the
morphismgo: Z — Z' induced byg is proper, the functoRgo. commutes with the
functor RV of nearby cycles, see [Dell, 2.1.7.1]. Hence it suffices to proverthat
is locally acyclic onZ, relative to (the restriction frorl to Z of) ¢ H(FRQ).

Note thatZ’ and Z depend onyV. The linear system ol’ generated by all
the divisorsZ’ for vV running througH/V( C), has no base points. Hence the same
is true for the linear system dni generated by all th&. Moreover the divisoD
has normal crossings iHi. Thus by Bertini's Theorem (cf. [GriHar, p.137]), for
v general enougly; is smooth oveC and intersects each irreducible component
of D transversally, and N Z is a divisor onZ with normal crossings. Clearly

g*(FRQ) is zero onD N Z and smooth o\ (DN Z). Moreover for any: € Z,

We claim that the restriction afto the intersectior of all irreducible components
of D N Z containingz, is smooth at. Since the smoothness is characterized by
the surjectivity ofdr, this implies thatZ (resp.D N Z) is smooth (resp. relatively
normal crossing) at overG,,, and hence implies by [Dell, Lemme 2.1.11] that
7 is locally acyclic onZ,, relative to (the restriction t& of) g*(F X Q). Thus it
remains to prove the claim. Locally afthe schemé? equals the intersectiof’

of Z and the irreducible components bf containingz. But at least one of these
components ab is contained irY., becaus¥ C D sincelV C X\X...Hence
the schemé”’ equals the intersection &fN Y, and the irreducible components of
D containingz. One verifies from the definitions th&tn Y., = Z,. is a cartesian
product with second factdt,, . The same is obviously true f@ and hence also
for E'. Thus7|g, being the projection ont@,, ¢, is smooth at, which proves the
claim. O

9.3. FROOF OF THEOREM C

We now return to the notation and convention of (9.1.0), in order to prove
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Theorem C. In particular, we assume that dhar> 0. From (5.2.3.1, (3) and (4))
it follows (replacing the tripl€G, p, V) by its dual(G, p¥, V")) that it suffices to
prove

signeo(H (v") N 01, L(w))) = €x1/2 ((@1)@*’")/2 11 jeU)) : )

j=1

for at least one” € 2V (F,). We have seen in (9.1.2) and (9.1.7) thal (vv)no,
has only one critical point. = d~1FY(vV) and that this is a nondegenerate
critical point. Hence, fow" the reduction mog of a general enough point, say
vy, in 2V(Q), we can apply Proposition (8.2.3) (with replaced bym <1) to a
suitable compactification, sajf/. X = Gp,» Of flrwvyno,- (More precisely, let
7 Z — Gmo be the compactification of : H(vgy)\f~1(0) = Gy obtained by
Lemma (9.2.1) withK' = ji4, L(w). Consider its ‘reduction modulg for p > 0.
Then restrict to the closure d@f (v") N Oy in Z. Note that the acyclicity of on
X\ (H (vY) N O,) follows from the acyclicity ofr by [Dell, 2.1.7.1].) This yields

sign(eo(H (v¥) N Oy, L(w)))

= ex1/2(¢ F ()" Au(flr(ov)no,)) detFroly, Lw),) =", )
with
c = (@1)(m_1+2N(04N —Bn))/2 HNC!N—ﬁN_ (3)
N

The lemmas (9.1.7) and (3.5.4) imply that
X1/2(F ()™ Au(f 1(w)n0,)) detFroby, Lw),) ="
= xa/2(€dh (v")h(d T FY (07)))
= Xl/2(<:>d)7 4)

where the last equality follows from Lemma (6.1.10), and the equaity) = h(v)
in Fy /ng for all ¢ € F; andwv € Oy(F,), which can be proved by a direct
calculation or by (6.1.9, (1)). Moreover from (3) and Proposition (4.3.5) one gets

x1/2(¢) = X172 (ﬁ(@l)(m”)/zd 11 je(j)> _ (5)

jz1

The formula (1) follows now from (2), (4) and (5). This terminates the proof of
Theorem C. O
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