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Mass transfer to freely suspended particles at
high Péclet number
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In a theoretical analysis, we generalise well-known asymptotic results to obtain expressions
for the rate of transfer of material from the surface of an arbitrary, rigid particle suspended
in an open pathline flow at large Péclet number, Pe. The flow may be steady or periodic
in time. We apply this result to numerically evaluate expressions for the surface flux to
a freely suspended, axisymmetric ellipsoid (spheroid) in Stokes flow driven by a steady
linear shear. We complement these analytical predictions with numerical simulations
conducted over a range of Pe = 101–104 and confirm good agreement at large Péclet
number. Our results allow us to examine the influence of particle shape upon the surface
flux for a broad class of flows. When the background flow is irrotational, the surface
flux is steady and is prescribed by three parameters only: the Péclet number, the particle
aspect ratio and the strain topology. We observe that slender prolate spheroids tend to
experience a higher surface flux compared to oblate spheroids with equivalent surface
area. For rotational flows, particles may begin to spin or tumble, which may suppress or
augment the convective transfer due to a realignment of the particle with respect to the
strain field.

Key words: particle/fluid flows, Stokesian dynamics, coupled diffusion and flow

1. Introduction

When small, rigid particles are immersed in a fluid, material (e.g. a solute) may be
transferred away from the surface by convection and diffusion. We shall refer to this
process as mass transfer, although an analogous problem exists for heat transfer. The
engineered and natural worlds are replete with examples: planktonic osmotrophs absorb
dissolved nutrients (Karp-Boss, Boss & Jumars 1996; Pahlow, Riebesell & Wolf-Gladrow
1997; Guasto, Rusconi & Stocker 2012), bacterial hosts encounter viruses (Guasto et al.
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2012), crystals are grown in agitated suspension to produce pharmaceuticals and industrial
products (Myerson 2002) and microplastics leach and sorb pollutants in ocean waters
(Suhrhoff & Scholz-Böttcher 2016; Law 2017; Seidensticker et al. 2017). The examples
cited above have in common that the solid particle exchanging material is rarely ever
spherical, is usually small compared to the flow features in which it is embedded and the
material diffuses slowly such that convection is the dominant mechanism of mass transfer.
The question then naturally follows: What is the rate of mass transfer from the surface?

This question belongs to a general set of classical problems which have been well
studied (see e.g. works summarised by Clift, Grace & Weber 1978; Michaelides 2003;
Leal 2012). The answer depends upon the competing effects of convection and diffusion,
as parametrised by the Péclet number, Pe. When Pe � 1, conduction dominates inside
an inner region near the particle and the effects of shape are readily accounted for
(Batchelor 1979; Acrivos 1980; Feng & Michaelides 1997; Pozrikidis 1997). When
Pe � 1, convection dominates the mass transfer process and the surface flux of solute is
determined by the particle geometry and the nature of the relative flow field, parametrised
by the Reynolds number, Re. In closed-streamline flows, the solute simply recirculates
around the particle and the surface flux approaches a constant as Pe → ∞ (Frankel &
Acrivos 1968; Poe & Acrivos 1976). When the particle is surrounded by a region of
open streamlines (or pathlines), the solution to the convection–diffusion problem takes
the form of a thin concentration boundary layer around the particle. For this case, Acrivos
(1960) and later Acrivos & Goddard (1965) introduced asymptotic methods to compute
the mass transfer rate, which scales as Pe1/3. The flow and the geometry of the problem
then determine the scaling coefficient, which prescribes the surface flux.

For sufficiently small particles, Re � 1 and the surrounding relative flow field may
be well approximated by a Stokes flow consisting of a background uniform flow or
linear shear, plus a perturbation owing to the presence of the particle. The available
analytical results in the high Péclet number, low Reynolds number regime are generally
limited to simplified flows or geometries. A general solution to this problem would have
great utility, because solid particles are often neither spherical nor subject to motions
as simple as uniform or axisymmetric flows (Leal 2012). Specific analytical results are
available for spheres in uniform flow (Acrivos 1960; Acrivos & Taylor 1962) or arbitrary
linear shear (Gupalo & Riazantsev 1972; Poe & Acrivos 1976; Batchelor 1979) and
axisymmetric bodies in uniform flow (Sehlin 1969; Gupalo, Polianin & Riazantsev 1976;
Leal 2012; Dehdashti & Masoud 2020). To our knowledge, equivalent results are not
available for arbitrary bodies with high Péclet numbers in an arbitrary linear shear.
Experimental and numerical studies have focused on the uniform flow case typically
with Pe = O(Re) (Masliyah & Epstein 1972; Clift et al. 1978; Sparrow, Abraham &
Tong 2004; Kishore & Gu 2011; Ke et al. 2018; Ma & Zhao 2020); relatively few
studies have examined the high Péclet number, low Reynolds number regime numerically
(Karp-Boss et al. 1996; Pahlow et al. 1997) and the results available for linear shear
flows are limited to a handful of cases. Therefore, additional empirical data are needed
for the general case of arbitrary linear shear to support a generalisation of asymptotic
results.

For freely suspended particles, an additional complication arises which affects the mass
transfer rate. In the absence of body forces, such as the case of neutrally buoyant particles,
the drag and consequently the slip velocity vanish, such that convection is provided by the
linear shear alone. However, the fluid may exert a couple upon the particle (Jeffery 1922),
which in the absence of a restoring torque will result in the steady precession or rotation
of the particle about its axis. As a result, the flow field around the particle and resultant
surface flux is in general unsteady (Pahlow et al. 1997). However, for spherical particles,
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Mass transfer to freely suspended particles

Batchelor (1979) and Batchelor (1980) argued that the unsteady contribution to the scalar
flux may be neglected at large Péclet number, so that the average flow field perceived by
the body determines the average mass transfer rate.

In this article, we extend the work of Acrivos & Goddard (1965) and Batchelor (1979)
to consider the mass transfer rate due to convection and diffusion from an arbitrary body
in an unsteady, open pathline flow at high Péclet number. We then apply this analysis to
determine the mass transfer rate from a neutrally buoyant spheroid freely suspended in an
arbitrary linear shear. We obtain asymptotic expressions for the transfer rate in the resultant
average flow field and compare these to the results of numerical simulations, which provide
a quantitative test of the accuracy of the asymptotic approximation. Our results allow us
to examine the role of particle shape in the mass transfer process for a very broad class of
flows and open up new possibilities in the numerical simulation of mass transfer in particle
suspensions.

The paper is structured as follows. In § 2, we review the theoretical background of the
problem and derive a general form for the mass transfer coefficient for an arbitrary particle
in an unsteady, time periodic flow. In § 3, we apply this general expression to the case of
a freely suspended spheroid in Stokes flow. In § 4, we introduce a numerical test of the
results given in § 3 and discuss the influence of particle shape upon the surface flux. We
present a summary of our results and future perspectives in § 5.

2. The steady flux at large Péclet number

In this section, we shall extend the analyses of Acrivos & Goddard (1965) and Batchelor
(1979) to derive a general expression for the average solute flux from the surface of a
particle of arbitrary shape in a steady, open-streamline flow. We begin by introducing the
governing equations in dimensionless form, then examine the case of steady flow. Finally,
we generalise the result to unsteady flow.

2.1. Governing equations
The mass transport from the surface of the particle is governed by the convection–diffusion
equation. This may be written in dimensionless form as

∂θ

∂t
+ u · ∇θ = 1

Pe
∇2θ, (2.1)

where u(x, t) is the velocity field and θ(x, t) is the concentration of the solute (Leal 2012).
The characteristic length scale is r, the linear dimension of the particle, so that the spatial
coordinate is non-dimensionalised as x = x∗/r. The characteristic time scale is prescribed
by the shear rate E∗, so that time is non-dimensionalised as t = t∗E∗. The Péclet number
is defined Pe ≡ r2E∗/κ , where κ is the diffusion coefficient of the solute. Our convention
is to write dimensional quantities with a superscript ∗ unless otherwise stated.

We shall adopt a frame of reference moving with the particle, such that the boundary of
the particle Sp is stationary. We impose the boundary condition

θ = 1 and u = 0 for x ∈ Sp

θ → 0 as |x| → ∞ ,

}
(2.2)

so that the concentration of solute at the particle surface is uniform. This boundary
condition corresponds to non-dimensionalising the concentration field C(x∗, t∗) as θ =
(C − C0)/(C1 − C0), where C1 and C0 are the concentration of solute at the surface and
infinity in physical units.
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The non-dimensional measure of the surface flux Q is the Sherwood number

Sh = Q
4πrκ(C1 − C0)

= − 1
4π

∫∫
Sp

∇θ · dS. (2.3)

The denominator in (2.3) corresponds to the steady state flux from a sphere of radius
r in the absence of flow. A convenient choice for the length scale r is

√
A/4π, where

A is the surface area of the particle. The Sherwood number is therefore the factor by
which convection enhances the mass transfer relative to the diffusive flux from a spherical
particle with the same surface area.

2.2. General solution of the surface flux in steady flow
In steady flow, the scalar transport equation reduces to

u · ∇θ = 1
Pe

∇2θ. (2.4)

We seek an asymptotic solution for (2.4) subject to (2.2) at large Péclet number.
At large Péclet number, the concentration of solute is small almost everywhere far from

the particle, apart from a thin wake, along which material from the surface is swept. Near
the particle, there is a concentration boundary layer whose thickness is O(δ), across which
there is a sharp jump in concentration. For the boundary layer approximation to hold, the
pathlines near the surface of the particle must originate and terminate at infinity, such that
the surface of the particle is exposed to a constant stream of fresh fluid. Recirculating
regions (closed pathlines), which can occur in some geometries, are not permitted.

We shall construct a general curvilinear coordinate system (ξ, η, ζ ) to describe the flow
near the surface in terms of the distance from the surface and the direction of the flow near
the surface. This coordinate system is not necessarily orthogonal and we will find it useful
to describe it in terms of the covariant coordinate vectors

hξ = ∂x
∂ξ
, hη = ∂x

∂η
, hζ = ∂x

∂ζ
, (2.5a–c)

and their pathlines, which we have illustrated in figure 1. We note that the adoption of
a general curvilinear coordinate system, rather than an orthogonal one, is crucial in the
generalisation to an arbitrary flow or body.

The coordinate ξ is defined as the normal distance from the particle surface, so that at
the particle surface, hξ is a unit vector normal to the surface. The η and ζ coordinates lie
tangent to the surface. We shall define the η coordinate so that at a small distance ξ above
the surface, the component of fluid velocity which is tangent to the surface is parallel to
hη. The curves along the η direction are therefore ‘surface streamlines’ which are tangent
to the direction of the surface velocity gradient w = ∂u/∂ξ |ξ=0.

We can therefore express the velocity near the surface as

u = uξhξ + uηhη + uζhζ

= wξ + O(ξ2), (2.6)

so that near the particle surface, the velocity components are of the form

uξ = G(η, ζ )ξ2 + O(ξ3), uη = ξF(η, ζ )+ O(ξ2), uζ = O(ξ2). (2.7a–c)

By definition, the velocity at the surface is zero; the tangential component uη is linear
in ξ to leading order, whereas the surface-normal component is quadratic (Leal 2012).
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Mass transfer to freely suspended particles

(η1, ζ)

(η0, ζ)

Figure 1. Illustration of the curvilinear coordinate system (ξ, η, ζ ) defined on the surface (ξ = 0) of a
spheroid in an arbitrary linear shear. Thick black lines show η-coordinate pathlines (ξ = 0, ζ = const.),
which are tangent to the local viscous shear stress on the surface. Thin grey lines are ζ -coordinate pathlines
(ξ = 0, η = const.). Three fixed points of the surface streamlines are shown: red (source), green (saddle) and
blue (sink).

The function F(η, ζ ) is therefore obtained in terms of the velocity gradient at the surface
of the particle as

F = w · ∇η, (2.8)

and is related to G(η, ζ ) through the continuity equation.
To obtain the surface-normal velocity component uξ , we express the continuity equation

as (Grinfeld 2013)

ρ∇iui = ∂(ρuξ )
∂ξ

+ ∂(ρuη)
∂η

+ ∂(ρuζ )
∂ζ

= 0, (2.9)

where ρ = ρ(η, ζ ) ≡ √
det g and det g is the determinant of the metric tensor gij ≡ hi · hj.

Since gξξ = 1, gξη = gξζ = 0 by definition, the physical interpretation of ρ is a local area
density of the surface streamlines, such that δA = ρδηδζ is the area covered by a small
region on the surface measuring δη along a surface streamline and δζ across adjacent
streamlines. We can then define a streamfunction ψ as

uξ = − 1
ρ

∂ψ

∂η
+ O(ξ3), uη = 1

ρ

∂ψ

∂ξ
+ O(ξ2), (2.10a,b)

so that
ψ = 1

2ξ
2ρF, (2.11)

is a solution which satisfies (2.7a–c) and the continuity equation (2.9) to leading order
in ξ .

Writing (2.4) in these curvilinear coordinates, our solution now proceeds analogously
to the works of Acrivos & Goddard (1965) and Batchelor (1979). We shall formalise
Batchelor’s analysis here in our new curvilinear coordinate system for the purpose of
exposition. To leading order in ξ , the convection term is

ui∇iθ = − 1
ρ

∂ψ

∂η

∂θ

∂ξ
+ 1
ρ

∂ψ

∂ξ

∂θ

∂η
+ O(ξ2), (2.12)

whereas the diffusion term may be written

∇2θ = 1
ρ

[
∂

∂ξ i

(
ρgij ∂θ

∂ξ j

)]
= 1
ρ

∂

∂ξ

(
ρ
∂θ

∂ξ

)
+ · · · , (2.13)
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where gij is the inverse metric tensor and ξ i indexes the coordinates (ξ, η, ζ ). The terms
omitted in the expansion of (2.13) do not involve any gradients in ξ . By neglecting them,
we assume that the diffusive flux of material across the surface is small in comparison to
that normal to the surface. This essentially requires that the particle surface be smooth and
contain no regions of extreme curvature where this assumption may break down.

We now rescale our coordinate system and streamfunction so that the surface-normal
concentration gradient is O(1). Rescaling ξ by the boundary layer thickness δ, we write

Ξ = ξr
δ

= ξPem, Ψ = 1
2
Ξ2ρF = Pe2mψ, (2.14a,b)

where we suppose δ/r scales as Pe−m. We can rewrite (2.4) using (2.12) and (2.13)

−∂Ψ
∂η

∂θ

∂Ξ
+ ∂Ψ

∂Ξ

∂θ

∂η
+ O(Pe−m) = Pe3m−1 ∂

∂Ξ

(
ρ
∂θ

∂Ξ

)
. (2.15)

The first two terms in (2.15) are O(1) and thus m = 1/3, as expected.
We can now solve (2.15) with the well-known von Mises transformation. Adopting the

change of variables (Ξ, η, ζ ) → (Ψ, η, ζ ), we have

∂θ

∂η
= ∂

∂Ψ

(
ρ
∂θ

∂Ψ

∂Ψ

∂Ξ

)
= ∂

∂Ψ

(
∂θ

∂Ψ
(2ρ3FΨ )1/2

)
. (2.16)

Equation (2.16) now admits a self-similar solution of the form θ = θ(χ), χ = Ψ 1/2/τ 1/3,
where the functions θ(χ) and τ(η) must satisfy

d2θ

dχ2 + 4
3
χ2 dθ

dχ
= 0, (2.17)

for
dτ
dη

= (2ρ3F)1/2. (2.18)

The solution of (2.17) satisfying the imposed boundary conditions (2.2) of θ(0) = 1 and
θ = 0 as χ → ∞ is

θ(χ) = Γ (1
3 ,

4
9χ

3)

Γ (1
3 , 0)

, (2.19)

where Γ is the incomplete gamma function. We can obtain τ by integrating (2.18) along
the surface streamlines, which must begin and terminate at critical points F = 0 on the
surface, since the surface shear stress is continuous. We will therefore choose the constant
of integration so that

τ(η) =
∫ η

η0

(2ρ3F)1/2 dη, (2.20)

has τ(η0) = 0 at the beginning of the surface streamline η = η0 and τ(η1) = τ1 at the end
η = η1.
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Mass transfer to freely suspended particles

At the surface, the local flux of material per unit area is

− ∂θ

∂ξ

∣∣∣∣
ξ=0

= −Pe1/3 ∂θ

∂Ξ

∣∣∣∣
Ξ=0

= −Pe1/3 ∂θ

∂χ

∣∣∣∣
χ=0

· ∂χ
∂Ξ

∣∣∣∣
Ξ=0

= Pe1/3 121/3

Γ (1
3 )

·
(

1
2ρF

)1/2

τ 1/3 . (2.21)

The Sherwood number (2.3) is therefore given by

Sh = − 1
4π

∫∫
Sp

∂θ

∂ξ

∣∣∣∣∣
ξ=0

ρ dη dζ

= 121/3Pe1/3

8πΓ (1
3 )

∫∫
Sp

(2ρ3F)1/2

τ 1/3 dη dζ, (2.22)

which we can integrate by parts by recognising that

∫ η1

η0

(
2ρ3F

)1/2

τ 1/3 dη =
∫ η1

η0

dτ
dη
τ−1/3 dη = 3

2
τ

2/3
1 , (2.23)

and thus

Sh = 0.808Pe1/3

4π

∫ (∫ η1

η0

ρ3/2F1/2 dη
)2/3

dζ + O(1). (2.24)

As expected, the limiting dimensionless flux scales as αPe1/3, with a prefactor α which
can now be explicitly computed in terms of the shape of the body and the surface velocity
gradient.

The main point of (2.24) is that we have generalised the results of Acrivos & Goddard
(1965) and Batchelor (1979) to any distribution of surface streamlines on an arbitrary
body, not just those which result in an orthogonal coordinate system. The caveat remains
that the pathlines around the body should be open for the boundary layer approximation
to hold and the boundary should be smooth and contain no regions of extreme curvature.
Furthermore, we have a natural way of numerically constructing the local area density ρ,
as shown graphically in figure 1. By integrating (2.5a–c) with respect to η to generate a set
of surface streamlines over the body, we obtain lines of constant ζ at intervals of varying
η. With a sufficiently fine discretisation, we can numerically approximate the local area
density ρ and evaluate the coefficient in (2.24) numerically. We shall demonstrate this
procedure later in § 3.

2.3. Unsteady solution at large Péclet number
We now seek to generalise our steady solution to an unsteady, periodic flow. Our argument
is analogous to that proposed by Batchelor (1980), who examined the scalar flux to
spherical particles in turbulent flow.

We shall consider the case where the motion is periodic with period T = E∗T∗. We
seek the time average Sherwood number Sh at the surface, which depends upon the time
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average concentration field θ . The time average over a period T is defined simply as

θ(x) = 1
T

∫ T

0
θ(x, t)dt. (2.25)

Applying this averaging procedure to (2.1), we obtain

u · ∇θ + u′ · ∇θ ′ = 1
Pe

∇2θ, (2.26)

where we have decomposed the velocity field u = u + u′ and concentration field θ =
θ + θ ′ into their respective average and fluctuating components. Likewise, the transport
equation for the concentration fluctuation θ ′(x, t) is

∂θ ′

∂t
+ u · ∇θ ′ − u′ · ∇θ ′ − 1

Pe
∇2θ ′ = −u′ · ∇θ. (2.27)

We shall argue that the solution of (2.27) satisfying the boundary conditions (2.2) and

θ ′ = 0 at ξ = 0 and θ ′ = 0 as ξ → ∞, (2.28a,b)

is such that θ ′ ∼ Pe−1/3 as Pe → ∞. As before, we reason that the solution consists of a
slender concentration boundary layer of thickness δ/r ∼ Pe−1/3. Outside the boundary
layer ξ � δ, θ → 0 and θ ′ → 0. Inside the boundary layer, the amplitude of the
concentration fluctuations are θ ′ = O(Pem′

) and the jump in the mean concentration across
the boundary layer is O(1). Clearly, m′ ≤ 0 since there is no mechanism in (2.1) which can
amplify scalar fluctuations. If m′ < 0, then scalar fluctuations should decay in amplitude
at large Pe, whereas if m′ = 0 they remain comparable in magnitude to the mean flow.

Let us examine the order of magnitude of the terms in (2.27). Since scalar fluctuations
are O(Pem′

) and occur on a time scale of O(T), the time derivative term scales as

∂θ

∂t
∼ Pem′

T
. (2.29)

The convective terms on the left-hand side scale as

u · ∇θ ′ = uξ
∂θ ′

∂ξ
+ · · · ∼

(
δ2

r2

)( r
δ

Pem′) ∼ Pem′−1/3, (2.30)

whereas the convective term on the right-hand side scales as

u′ · ∇θ = uξ
′ ∂θ
∂ξ

+ · · · ∼
(
δ2

r2

)( r
δ

)
∼ Pe−1/3. (2.31)

Finally, the diffusion term scales as

1
Pe

∇2θ ′ ≈ 1
Pe
∂2θ ′

∂ξ2 ∼ 1
Pe

r2

δ2 Pem′ ∼ Pem′−1/3. (2.32)

Annotating (2.27) with the order of magnitude of each term, we have

∂θ ′

∂t︸︷︷︸
O(Pem′

/T)

+u · ∇θ ′ − u′ · ∇θ ′ − 1
Pe

∇2θ ′︸ ︷︷ ︸
O(Pem′−1/3)

= − u′ · ∇θ︸ ︷︷ ︸
O(Pe−1/3)

. (2.33)

We see that the solution requires m′ = −1/3, such that the first term on the left-hand side
dominates and balances the unsteady convection term on the right-hand side, provided the
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Mass transfer to freely suspended particles

dimensionless period T � Pe1/3. Thus, at large Péclet, we have

∂θ ′

∂t
≈ −u′ · ∇θ ∼ Pe−1/3, (2.34)

which is equivalent to (3.9) of Batchelor (1980). However, we have derived the result
on more general grounds. Physically, this result means that when the time scale of
diffusion within the boundary layer becomes large in comparison to the time scale of
the unsteadiness, there is insufficient time for diffusion to redistribute scalar fluctuations.
Instead, scalar fluctuations inside the boundary layer occur due to the convection of the
mean concentration field by unsteady velocity fluctuations.

Thus, to leading order, the concentration and its time mean are equal and the mean scalar
field is well approximated by

u · ∇θ = 1
Pe

∇2θ + O(Pe−2/3). (2.35)

This allows us to apply our general result (2.24) to unsteady, time periodic flows where
the period of motion is sufficiently small. As before, for the boundary layer approximation
to hold, it is required that the surface of the particle be exposed to a continuous stream
of fresh fluid. Therefore, it is required that the pathlines of fluid parcels adjacent to the
surface be open, such that the fluid does not simply recirculate around a closed path.

3. The steady flux for a spheroid

We shall now apply the results of § 2.2 to obtain the scaling coefficient α for a spheroid
in an arbitrary linear shear. Although the motion is in general unsteady, we have argued in
§ 2.2 that the average mass transfer rate can be computed for an equivalent spheroid subject
to the same average relative flow field. This flow field can be described by three parameters,
but for a broad class of cases, the flow is reduced to an axisymmetric configuration
described by a single parameter. To proceed, we shall analyse the relative motion of the
particle in § 3.1 and obtain expressions for the average flow field perceived by the particle.
We introduce an expression for the velocity field near the particle in § 3.2, then derive
the mass transfer coefficient in the axisymmetric and general cases in §§ 3.3 and 3.4
respectively. Based on these results, we consider the special case of rotation-dominated
flow in § 3.5 and discuss potential extensions in § 3.6.

3.1. Motion of a freely suspended spheroid
Let us consider the motion of a spheroidal particle in an arbitrary, linear shear flow. The
background linear shear is v = Gy, where y = y∗/r is the coordinate system of the fixed
laboratory frame and G = E + W is an arbitrary, steady velocity gradient in this reference
frame. The velocity gradient is composed of a symmetric strain tensor E = E∗/E∗ and
antisymmetric rotation tensor W = W ∗/E∗. We shall choose the characteristic shear rate
E∗ = (E∗

ijE
∗
ij)

1/2 so that E ijE ij = 1.
The spheroid is centred at the origin and its semiaxes ai = (a, c, c) are spanned by

an orthogonal set of unit vectors p, q, r. Thus, the coordinate x in the body frame maps
to the laboratory frame as y = Rx, where R = [p, q, r]. The unit vector p points along
the symmetry axis towards the ‘pole’ of the spheroid, whilst q and r point radially
outward around the ‘equator’. The body rotates with angular velocity Ω = Ω(t), such that
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Ṙ = [Ω]×R, and the velocity field in the body frame is

u(x, t) = RTv(Rx, t)− Ω × (Rx). (3.1)

Thus, the background velocity gradient u = A x appears in the body frame as

A = RT(G − [Ω]×)R, (3.2)

and, in general, varies in time as the particle rotates. Jeffery (1922) showed that, when the
couple upon a spheroid is zero, the solid body rotation rate Ω of the body is given by

Ω = 1
2
ω + λ

2 − 1
λ2 + 1

p × Ep, (3.3)

where ωi = −εijkW jk is the background vorticity in the laboratory frame. Thus, the
orientation of the particle p then evolves according to Jeffery’s equation

ṗ = W p + λ
2 − 1
λ2 + 1

(
Ep − p

(
pTEp

))
, (3.4)

where W ij = 1
2εijkωk is the rate of rotation tensor.

When the background shear is constant in time, the solution to (3.4) can be written in
terms of a matrix exponential as

p(t) = p̆
|p̆| , p̆(t) = exp (K t) p0, K = W + λ

2 − 1
λ2 + 1

E, (3.5a–c)

subject to the initial condition p = p0 at t = 0 (Szeri 1993).
We shall now examine the fixed points and stable attractors of (3.4). This analysis

elaborates upon the previous work by Bretherton (1962). Decomposing K in terms of its
eigenvectors ei and eigenvalues λi, we can write (3.5a–c) as

p̆ =
∑

i

(p0 · ei) exp(λit)ei. (3.6)

From (3.6) we see that the fixed points of (3.4) coincide with the eigenvectors ei. The
stability of the fixed points depends upon the eigenvalues λi, and because

∑
i λi = 0, there

is always only one (neutrally) stable fixed point or limit cycle (excepting λi = 0). Thus
after a finite time, the motion of the particle will always approach a stable attractor whose
nature depends upon the largest eigenvalue(s) of K .

We can categorise the stable attractors into five different cases: 1a, 1b, 2a, 2b and 3.
These five cases map to four different motions: resting, spinning, 2-D (two-dimensional)
tumbling and 3-D (three-dimensional) tumbling. These are summarised in table 1. We
shall now examine each case.

In cases 1a and 1b, all the eigenvalues λ1 ≤ λ2 ≤ λ3 of K are real and (3.5a–c) has
three fixed points p = ei, where ei are the eigenvectors of K . From (3.6) we see that only
the fixed point corresponding to the largest eigenvalue λ3 is stable, so for nearly any initial
condition, the particle will reorient itself to be parallel to e3. In this configuration, the
particle will in general rotate about its axis with angular velocity Ω = Ω3e3, where Ω3 =
ω · e3/2 (case 1a). We call this motion spinning. However, for particular configurations,
Ω3 = 0 and the particle does not rotate (case 1b). We call this motion resting.

In cases 2a, 2b and 3, K has a pair of complex eigenvalues and the system has
one fixed point and a periodic point. In these cases, we can write the eigenvalues as
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Case Eigenvalues Condition Motion A

1a λi ∈ R, λ1 ≤ λ2 ≤ λ3 Ω3 /= 0 Spinning (3.9)
1b ” Ω3 = 0 Resting (3.11)
2a λ1 = λ†

2 = σ + iω, λ3 = −2σ σ > 0 Spinning (3.9)
2b ” σ < 0 2-D tumbling
3 ” σ = 0 3-D tumbling

Table 1. Classification of the motion and time average perceived velocity gradient experienced by a spheroid.

λ1 = λ†
2 = σ + iω, λ3 = −2σ , where † denotes the complex conjugate. When σ < 0, the

fixed point is stable and the periodic point is unstable (case 2a, spinning). Thus the particle
aligns with e3 as in cases 1a and 1b, but unlike case 1b, the particle must rotate about this
axis because the angular velocity Ω = Ω3e3 is bounded Ω2

3 ≥ ω2 > 0. When σ > 0, the
fixed point is unstable and the periodic point is stable (case 2b). Thus the particle will
evolve towards a planar limit cycle oscillation described by

p̆ = a cos(ωt)+ b sin(ωt), (3.7)

where e1 = e†
2 = a + ib. We call this motion 2-D tumbling. In case 3, σ = 0 and the

motion follows 3-D Jeffery orbits (Jeffery 1922), where p precesses around the axis
e3 with period 2π/ω. We call this motion 3-D tumbling (Jeffery orbits are in general
three-dimensional, but for some initial conditions, the motion can be reduced to spinning
or 2-D tumbling).

The solution of (2.26) depends upon the average flow field in the particle frame.
The instantaneous flow field around the particle consists of a superposition of the
background gradient Ax and a perturbation owing to the presence of the particle. Since this
perturbation is linear in A, the time average flow field in the particle frame is determined by
the average velocity gradient perceived by the particle. We shall now calculate the average
velocity gradient perceived by the particle in the general limiting cases identified above.

In cases 1a and 2a (spinning), the particle rotates around a fixed axis p = e3, which
is illustrated in figure 2(a). For this spinning motion, the unit vectors of the body frame
rotate as

p = e3, q = cos(Ω3t)q0 + sin(Ω3t)r0, r = − sin(Ω3t)q0 + cos(Ω3t)r0. (3.8a–c)

To obtain the time average velocity gradient, we can substitute (3.8a–c) into (3.2) and take
the time average over one revolution, whose period is T = 2π/Ω3. After a little algebra,
we obtain

A = 1
T

∫ T

0
RT(G − [Ω]×)R dt = E3

⎡
⎢⎣

1 0 0

0 −1
2 0

0 0 −1
2

⎤
⎥⎦ , (3.9)

where

E3 = eT
3 Ee3 = λ

2 + 1
λ2 − 1

σ, (3.10)

is the rate of strain perceived by the particle along its fixed axis of rotation. Thus, the
average velocity field experienced by a particle steadily rotating about its axis is an
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r0
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Figure 2. Motion of a freely suspended spheroid: (a) spinning, (b) 2-D tumbling and (c) 3-D tumbling. For
2-D tumbling and spinning, the motion is periodic, whereas for 3-D tumbling only the motion of the symmetry
axis is necessarily periodic.

axisymmetric strain, whose magnitude is given by the component of strain along the
rotation axis.

In case 1b (resting), the particle axis aligns with e3, but the rotation rate about this axis
vanishes. The average velocity field in the body frame is then simply

A = RGRT . (3.11)

The average velocity gradient A can be specified with three parameters, up to an arbitrary
scaling and rotation about the symmetry axis of the particle. To see this, we note that G
has nine components with eight degrees of freedom, since continuity requires tr(G) = 0.
The requirement that Ω = 0 imposes the constraint

ω = −2
λ2 − 1
λ2 + 1

p × Ep, (3.12)

reducing the number of unknowns by three. The choice of scale introduces another
redundant parameter; our non-dimensionalisation requires E ijE ij = 1. Finally, we note that
rotations about the particle’s axis are trivial, since the particle is axisymmetric.

In case 2b (2-D tumbling), the motion of the particle is more complex, but remains
periodic, as illustrated in figure 2(b). From (3.7) it follows that the symmetry axis p rotates
in a plane spanned by vectors a, b with period T = 2π/ω. Thus the rotation Q(t) = Q2Q1
of the body frame R(t) = QR0 can be composed of as a rotation Q1(t) about the axis a × b
(mapping p0 onto p), followed by a rotation Q2(t) about the axis p = Q1p0 by an angle

θp(t) =
∫ t

0

1
2
ω · p(t′)dt′, (3.13)

relative to the plane normal. By inspection of (3.13) and (3.7), we see that θp(T) = 0, since
p(t) = −p(t + T/2). Thus, R(t)must be periodic. The average perceived velocity gradient
can then be evaluated analogously to (3.9), but the resultant expression is much more
complicated. It suffices to remark that the average strain E and vorticity ω components
of the average perceived velocity gradient A must also satisfy (3.12), since in the body
frame, the apparent rotation rate of the body must also be zero. It follows that in case 2b,
as in case 1b, the average perceived velocity gradient may also be described by only three
parameters, up to a trivial rotation and choice of scale.

In case 3 (3-D tumbling), the particle motion becomes fully three dimensional, as
illustrated in figure 2(c). Only the motion of its symmetry axis is necessarily periodic;
the equatorial axes q and r may precess around and do not necessarily trace a path with
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the same period. Thus, we cannot expect the flow in the particle frame to be time periodic,
since q and r point in a new direction at the start of each cycle, and we cannot expect to
apply (2.24) in this special case.

We recall that the derivation of (2.24) required pathlines of the flow to be open. Far from
the particle, pathlines follow ẏ = Gy, with solution y = exp(Gt)y0. By a similar argument
to that above, we see that when G has eigenvalues 0,±iω, the pathlines are closed. This
provides a necessary condition to apply (2.24). The 3-D tumbling orbits identified by
Jeffery (1922) happen to correspond to this case, which further precludes application of
(2.24) to the case of Jeffery orbits.

To summarise: by an analysis of the stable attractors of (3.4) we can construct five cases
of the particle motion categorised by the eigenvalues of K (3.5a–c) as shown in table 1.
In cases 1a, 1b and 2a, the particle orients itself along a fixed axis corresponding to the
eigenvector K with largest real eigenvalue. In cases 2b and 3, the particle undergoes a limit
cycle oscillation. In cases 1a, 1b, 2a and 2b, the relative flow field is steady or periodic.
In cases 1a, 2a (spinning) the average perceived velocity gradient over one period is an
axisymmetric strain, because the particle rotates steadily about its axis. In cases 1b and 2b
(resting or 2-D tumbling), the average perceived velocity gradient satisfies (3.12), which
can be specified in terms of three parameters up to a trivial rotation and choice of scale.

3.2. The fluid motion near the particle
In the body frame, the surface at ξ = 0 is stationary, so to leading order in ξ the velocity
is

u = ξ
∂u
∂ξ

∣∣∣∣
ξ=0

+ O(ξ2). (3.14)

After differentiation of Jeffery’s solution for the relative velocity field for an arbitrary
ellipsoid (Jeffery 1922), rewritten in the more compact matrix notation used by Kim &
Karrila (1991), we find that the velocity gradient normal to the surface is given by

∂u
∂ξ

∣∣∣∣
ξ=0

= 𝞥hξ − hξ (hξ · (𝞥hξ )) = w, (3.15)

where hξ = Dx/|Dx| is the unit vector surface normal, D is a diagonal matrix whose
entries are a−2

i and

𝞥 = 3
4πa1a2a3

S. (3.16)

The expression for the stresslet S is more involved. We remark here that it is a symmetric
matrix with tr(S) = 0 whose elements are a linear combination of the components of
the velocity gradient A with coefficients determined by geometry-dependent ‘resistance
functions’. Complete expressions for S can be found in Kim & Karrila (1991). Equation
(3.15) is valid for the general case of torque-free, tri-axial ellipsoids. The action of a net
torque upon the body adds an additional skew–symmetric component to (3.16) which is
not treated here.

Equation (3.15) now defines the surface streamlines, which are everywhere tangent to the
surface velocity gradient w. The surface streamlines and their critical points are illustrated
for an arbitrary linear shear in figure 1. From (3.15) we see that critical points occur where
the surface normal hξ coincides with an eigenvector ±qi of the surface gradient tensor 𝞥.
Since 𝞥 is a symmetric matrix, its eigenvalues are all real and its eigenvectors orthogonal.
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In general, 𝞥 has three distinct eigenvalues ordered φ1 < φ2 < φ3 and there are six critical
points. In special cases, 𝞥 has a repeated eigenvalue and there is a locus of critical points.

The precise nature of the critical points can be seen by introducing the surface potential

φ(x) = hξ · (𝞥hξ ) = xTD𝞥Dx
xTD2x

, (3.17)

which has the property that

∇φ = 2Dw
xTD2x

. (3.18)

The gradient of φ measured along surface streamlines is w · ∇φ > 0 everywhere on the
surface except at the critical points w = 0 where the surface streamlines terminate. In
other words, the potential φ always increases as one moves along a surface streamline.
The potential takes a minimum value of φ = φ1 when hξ = ±q1 (red marker in figure 1),
i.e. surface streamlines originate from a ‘source’ φ = φ1. It takes a maximum value of
φ = φ3 when hξ = ±q3 (blue marker), i.e. surface streamlines terminate at a ‘sink’ φ =
φ3. Lastly, when the eigenvalues are distinct, all streamlines must pass through the contour
φ = φ2, except at points hξ = ±q2, which are saddle points (green marker). When there is
a repeated eigenvalue, either φ2 = φ1 or φ2 = φ3, so there exists a locus of points where
streamlines originate (or terminate). It should be noted that the definition of φ (3.17) and
its properties extend also to torque-free, tri-axial ellipsoids.

3.3. Surface flux under spinning motion
We now proceed to evaluate the surface streamlines about a spheroid aligned with the axis
of an axisymmetric straining flow. This configuration corresponds to the mean flow field
about a spinning spheroid. In the body frame, the velocity gradient tensor is a diagonal
matrix whose elements are A11/2 = −A22 = −A33 = E3. Likewise, the surface velocity
gradient tensor 𝞥 is also a diagonal matrix withΦ11/2 = −Φ22 = −Φ33 = βE3/2, where
the geometry-dependent prefactor β is given by

1
β

= 3
4

∫ ∞

0

ac2t
(a2 + t)3/2(c2 + t)2

dt. (3.19)

For this configuration, the surface streamlines are axisymmetric, originating at the ‘pole’
and terminating at the ‘equator’. Therefore, we can use an ellipsoidal polar coordinate
system to describe the surface, identifying η with the polar angle between the symmetry
axis and a point on the surface and ζ with the azimuthal angle. We parametrise a point
near the surface as

x =
⎡
⎣ a cos η

c sin η cos ζ
c sin η sin ζ

⎤
⎦ + ξhξ , (3.20)

so that the covariant coordinate vectors at the surface are

hξ = 1
hξ

⎡
⎣ c cos η

a sin η cos ζ
a sin η sin ζ

⎤
⎦ , hη =

⎡
⎣ −a sin η

c cos η cos ζ
c cos η sin ζ

⎤
⎦ , hζ =

⎡
⎣ 0

−c sin η sin ζ
+c sin η cos ζ

⎤
⎦ ,

(3.21a–c)
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with hξ chosen to ensure that hξ is a unit vector. Then it follows that

uζ = 0, uη = 3
2
ξ |Φ11| ac cos η sin η

(a2 sin2 η + c2 cos2 η)3/2
= Fξ, (3.22a,b)

as required and

ρ = c sin η(a2 sin2 η + c2 cos2 η)1/2. (3.23)

Substituting (3.22a,b) and (3.23) into (2.24), we obtain∫ η1

η0

ρ3/2F1/2 dη =
∫ π/2

0

(
3
2
β|E3|ac4 cos η sin4 η

)1/2

dη

=
(

πac4β|E3|
6

)1/2
Γ (7

4)

Γ (9
4)
, (3.24)

and thus

Sh = 0.566(ac4β)1/3|E3|1/3Pe1/3

= α||
( |E3|∗r

κ

)1/3

, (3.25)

where α||(λ) = 0.566(ac4β)1/3 represents the dependence of the surface flux upon
geometry and |E3|∗r/κ is the Péclet number based on the strain perceived along the axis
of rotation.

The geometry-dependent prefactor α|| has a relatively weak dependence upon the aspect
ratio of the spheroid, varying between 0.762 to 1.042 over the interval 1/20 ≤ λ ≤ 20.
In contrast, from the definition of the characteristic shear rate E∗, |E3| may vary over the
interval 0 < |E3| ≤ 2/

√
6, depending on the particular configuration of the background

strain and the axis of the particle. Therefore, the alignment of the particle with the
background velocity gradient plays a significant role in determining the surface flux for
spinning particles. This is the phenomenon of the partial suppression of convection by
rotation first identified by Batchelor (1979).

Some caution must be taken in utilising the result of (3.25). In our derivation of (2.24),
we have assumed that the boundary layer thickness remains small in comparison to radius
of curvature of the surface, so that cross-surface diffusion and higher-order convection
terms are negligible. Yet, when the body is made infinitely slender, this assumption is
violated. We expect that higher-order corrections to (2.24) are required for slender bodies
at moderate Péclet number.

3.4. Surface flux under tumbling and resting motion
Under tumbling and resting motion, convenient expressions for the surface streamlines are
no longer easy to find by hand. To proceed in this general case, we adopt a numerical
approach to parametrise the surface in terms of coordinates x = x(0, η, ζ ). Essentially,
the task is to draw a set of j = 1 . . . nζ surface streamlines covering the body, label
each streamline with a unique ζ = ζj and evaluate the position at i = 1 . . . nη different
locations η = ηi along the streamline. Then we can create a nη × nζ mesh of points
xi,j = x(0, ηi, ζj) upon the surface to numerically approximate the metric ρ, which can
be used to numerically integrate (2.24).
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We shall now construct a suitable definition of the streamwise coordinate η. We require
the surface streamlines be tangent to the surface velocity gradient w (3.15), so hη must be
of the form

hη = dx
dη

= w
w · ∇η , (3.26)

which has ∇η · hη = 1 and hη · hξ = 0, as required. Furthermore, we require that η
should increase monotonically along surface streamlines. We have seen in § 3.2 that the
surface potential φ has this property. Therefore, we identify φ (3.17) with the streamwise
coordinate η.

We require a definition of the ζ coordinate. Since ζ is constant along surface streamlines
and every surface streamline passes through η = φ2, ζ can be thought of as a coordinate
along the curve x0(ζ ) = x(0, φ2, ζ ). Along η = φ2, from (3.17) we derive that the unit
surface normal satisfies

hξ · q1 ±
√
φ2 − φ3

φ2 − φ1
(hξ · q3) = 0, (3.27)

so the constraint

ζ = hξ · q2, (3.28)

describes a point along x0(ζ ). The surface can be split into four quadrants, depending
upon the basin of attraction of the surface streamlines. To wit, the behaviour in the limits
hξ → ±q1 as η → φ1 and hξ → ±q3 as η → φ3 forms our classification. Therefore, in
each quadrant, the coordinates (η, ζ ) ∈ [φ1, φ3] × [−1, 1] uniquely define a point on the
surface. This definition is general for torque-free, tri-axial ellipsoids.

We now outline the procedure to evaluate (2.24) numerically. For each surface quadrant,
we choose a set of points x0,j = x(0, φ2, ζj) which lie on the ellipsoid surface ξ = 0 and
satisfy η(x) = φ2 (3.17). We numerically integrate (3.26) from the initial condition x =
x0,i at η = φ2 to η = ηj, which yields a mesh of points xi,j = x(0, ηi, ζj) upon the particle
surface. Measuring the surface area δSij of the region enclosed over [ηi, ηi+1] × [ζi, ζi+1],
we approximate the surface area density for this surface element as

ρij ≈ δSij(ηi+1 − ηi)(ζi+1 − ζi), (3.29)

which is, roughly speaking, a ‘cell average’ of ρ. The velocity component F (2.8) is
evaluated at xi,j from (3.17) and (3.15). Then, the integral (2.24) is evaluated as a Riemann
sum over the surface elements.

A technical point remains that ηi and ζj should be chosen so that the surface is densely
covered in mesh points xi,j. To achieve this, we generate a uniform sampling of seed points
on the surface. These seed points can be integrated (3.26) numerically towards the curve
x0 to construct ζj. This guarantees a satisfactory coverage of the surface by the streamlines.
The ηi can be chosen as

ηi =
{
φ1 cos2 νi + φ2 sin2 νi if νi < 0

φ2 cos2 νi + φ3 sin2 νi if νi > 0
, (3.30)

for νi evenly distributed on the interval [−π/2,π/2].
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3.5. Surface flux in rotation-dominated flow
It is useful to consider the special case |ω| → ∞ where the vorticity is large and vortex
stretching is non-zero (ωTEω /= 0). In this case, it can be shown that the eigenvalues of K
are complex, its eigenvectors lie parallel and perpendicular to the direction of the vorticity
ω̂ = ω/|ω| and the particle rotates with constant angular velocity Ω → ω/2. Therefore,
the motion either corresponds to case 2a (spinning) or case 2b (tumbling). In the spinning
case, the particle rotates with its symmetry axis parallel to the vorticity vector p = ω̂.
In the tumbling case, the particle rotates with its symmetry axis always orthogonal to
the vorticity vector, e.g. r = ω̂. The motion of the body frame is therefore analogous to
(3.8a–c).

The configuration can be inferred from the exact eigenvalue relationship

λ1λ2λ3 = −2σ(σ 2 + ω2) = γ 3

3
tr(E3)+ γ

4
ωTEω, (3.31)

where γ = (λ2 − 1)/(λ2 + 1) is the shape co-factor. In the limit |ω| → ∞, σ →
−γEω/2, where Eω = ω̂TEω̂ is the strain rate perceived in the direction of vorticity.
Therefore, following § 3.1, we identify that the particle is aligned in the parallel
configuration when γEω > 0 and the orthogonal configuration when γEω < 0. It follows
that, as in (3.9), the average perceived velocity gradient is

A = Eω

⎡
⎢⎣

1 0 0

0 −1
2 0

0 0 −1
2

⎤
⎥⎦ when γEω > 0 or Eω

⎡
⎢⎣−1

2 0 0

0 −1
2 0

0 0 1

⎤
⎥⎦ when γEω < 0.

(3.32)

In both cases, the average perceived velocity gradient is an axisymmetric strain.
However, the alignment of the symmetry axis of the spheroid with this strain depends
upon the sign of the shape co-factor and vortex stretching. As a result, we evaluate the
surface flux as

Sh =
{
α||Pe1/3

ω γEω > 0

α⊥Pe1/3
ω γEω < 0

, (3.33)

where Peω = E∗
ωr/κ is the Péclet number based on the vortex stretching, α||(λ) is given

by (3.25) and α⊥(λ) is obtained using the numerical procedure outlined in § 3.4.
We have plotted the geometry-dependent prefactors α|| and α⊥ in figure 3. The marker

shows Batchelor’s result Sh = 0.968Pe1/3
ω for the case of a sphere in rotation-dominated

flow (Batchelor 1979). We observe that, for the parallel-aligned configuration α||, the
variation in the prefactor with λ is relatively modest, corresponding to a variation in the
surface flux of between −21.4 % and +7.7 % relative to that of a sphere with equivalent
surface area. In contrast, there is a stronger variation observed for the orthogonal
configuration α⊥, which exhibits an equivalent variation of −10.5 % to +53 % over the
range shown. From (3.33), we see that the surface flux is proportional to the lower branches
of the two black curves in vortex stretching Eω > 0 and the upper branches in vortex
compression Eω < 0. It follows that the sign of the vortex stretching can influence the
surface flux. In particular, the surface flux to prolate spheroids is significantly increased
under vortex compression.

The shape dependence for spheroids in axisymmetric strain may be contrasted to the
shape dependence observed for axisymmetric, uniform flow around a fixed spheroid shown
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Figure 3. Variation in the mass transfer coefficient of a spheroid of varying aspect ratio but constant surface
area in axisymmetric straining flow (black lines) and uniform flow (blue line). The black circle shows
Batchelor’s result for a sphere in axisymmetric strain (Batchelor 1979), whilst the black diamond shows the
equivalent result for a sphere in uniform flow (Acrivos & Taylor 1962).

in figure 3 (Acrivos & Taylor 1962; Sehlin 1969; Dehdashti & Masoud 2020). Here, the
surface flux exhibits the same scaling Sh = αUPe1/3

U + O(1), where PeU = U∗∞r/κ and
U∗∞ is the magnitude of the relative velocity (slip velocity) between the free stream and
particle. Whilst it is of limited value to compare the absolute values of α, some insight can
be obtained by comparing the relative variation of each function. We observe that for a
spherical particle with fixed translation velocity and surface area, flattening or elongating
the particle results in a reduction in the surface flux. Likewise, for a spherical particle in
rotation-dominated vortex stretching, flattening or elongating the particle also reduces the
surface flux. However, in rotation-dominated vortex compression, flattening or elongating
increases the surface flux. This observation is relevant to chain formation by marine
diatoms, where each cell in a chain must experience an increased nutrient flux per unit
area to benefit despite increased competition for nutrients by its neighbours (Pahlow et al.
1997).

One may also observe that rotation-dominated straining flow becomes considerably
more effective than uniform flow at transferring solute from the particle surface at large
aspect ratios. Of course, this result must depend upon the relative orientation of the free
stream and particle axis, which is not varied here. Nonetheless, similar comparisons have
found utility in determining when sinking or swimming may become a useful strategy for
phytoplankton to increase their nutrient flux in turbulent water (Karp-Boss et al. 1996).

3.6. Further extensions
Two further generalisations of the surface coordinate system are to cases with non-zero
body forces and torques. This would be necessary, for instance, to capture gyrotactic
effects in the nutrient uptake of phytoplankton (Guasto et al. 2012) or the behaviour of
inertial particles. Such an extension can be accommodated by a suitable modification of
the surface coordinate system, e.g. the inclusion of a body torque adds a skew–symmetric
component to 𝞥 in (3.15). However, in this case, one would also expect the orientation
dynamics (and therefore the mean flow around the particle) to change, which would also
affect the mean surface flux via the convection suppression effect.
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4. Comparisons to numerical simulation

As a test of the results in in §§ 2 and 3, we conducted numerical simulations of the unsteady
scalar transport around spheroids freely suspended in a linear shear. We describe our
numerical methods in § 4.1 then examine two classes of arbitrary strain and rotational
flows in § 4.2.

4.1. Methods
The unsteady convection diffusion equation (2.1) is solved using a second-order finite
volume method, subject to the Dirichlet boundary condition θ = 1 on Sp and the
von-Neumann boundary condition on the outer boundary of the simulated domain.
Equation (2.1) is discretised on a structured grid in prolate (4.1) or oblate (4.2) spheroidal
coordinates (μ, θ, φ), depending upon the particle aspect ratio. The inner boundary
(μ0, θ, φ) corresponds to the surface of the spheroid oriented in the Cartesian x direction.
The relative velocity field was evaluated in the body frame based on the coordinate of each
cell centre using the expressions given by Kim & Karrila (1991). The relative velocity field
satisfies the impermeable, no slip boundary condition u = 0 on Sp.

xijk =
⎡
⎣ f coshμi cos θj

f sinhμi sin θj cosφk

f sinhμi sin θj sinφk

⎤
⎦ ,

μi ∈ [μ0, μ∞]

θj ∈ [0,π]

φk ∈ [0, 2π)

, f =
√

a2 − c2, (4.1)

xijk =
⎡
⎣ f sinhμi sin θj

f coshμi cos θj cosφk

f coshμi cos θj sinφk

⎤
⎦ ,

μi ∈ [μ0, μ∞]

θj ∈ [−π/2,π/2]

φk ∈ [0, 2π)

, f =
√

c2 − a2. (4.2)

The mesh resolution and spacing was chosen following the studies of Pahlow et al.
(1997) and Karp-Boss et al. (1996). The mesh is discretised into 150 × 64 × 64 cells in the
(μ, θ, φ) directions respectively, with uniform spacing in the θ and φ directions. Due to the
nature of the spheroidal coordinate system chosen, the resolution varies across the surface
of the particle and the outer boundary is very slightly oblate or prolate. The dimensions
of the spheroid ai = (a, c, c) are chosen such that the surface area is 4π, equivalent in
surface area to a sphere with unit radius. The outer boundary is chosen such that its largest
dimension is 100 and is very nearly spherical, having an aspect ratio between 0.999 and
1.001. To adequately resolve the thin concentration boundary layer, which is of thickness
δ = Pe−1/3, we employ a mesh refinement in the μ direction such that the grid spacing is
Δμi+1 = RΔμi, where Δμi+1 = μi+1 − μi is the spacing between adjacent cells in the
μ direction. The initial spacing Δμ1 is chosen such that the thickness of the largest cell
near the particle surface is at most 2 × 10−4 max(a, c) and the mesh refinement factor R
is chosen accordingly. For the most extreme aspect ratio λ = 16 (λ = 1/16) at the largest
Péclet number tested, this yields between 27 (43) and 70 (87) cells within a distance δ
from the surface.

The solver is based on the scalarTransportFoam solver of OpenFOAM, which was
modified to solve (2.1) for a time varying flow field. The convective term in (2.1) is
discretised using a standard linear upwind Gaussian integration, and the diffusive term
is discretised using a similar linear Gaussian scheme with an explicit non-orthogonal
correction to maintain second-order accuracy. Time stepping is performed using an
implicit Euler scheme and a time step of Δt = 0.02. Simulations were allowed sufficient
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Figure 4. Mass transfer coefficient for (a) prolate λ = 4 and (b) oblate λ = 1/4 spheroids in a pure straining
flow, as a function of the strain topology parameter s. Coloured lines with markers show numerical simulations
over Pe = 101–104. Black lines show the expected scaling coefficient α(s, λ) (2.24). Black circular markers
show the axisymmetric result (3.25).

time for the surface flux to reach a steady (or periodic) state. Where the particle motion
is unsteady, the cycle average mass flux was evaluated over the interval 9T ≤ t < 10T .
Where the particle motion is steady, the steady state mass flux was evaluated at t = 100.

4.2. Results and discussion
In this section, we shall compare the results of our numerical simulations against the
asymptotic results derived in § 2.

4.2.1. Pure strain
As our first test, we consider an arbitrary irrotational background velocity gradient G = E .
The particle motion in this case corresponds to case 1b of § 3.1 and the particle aligns itself
with the most extensional (or compressive) direction of strain. Thus, the relative velocity
gradient field is of the form

A =
⎡
⎣σ1 0 0

0 σ2 0
0 0 σ3

⎤
⎦ , (4.3)

where σi are the eigenvalues of E . The topology of the relative flow field can therefore
described by a single parameter −1 ≤ s ≤ 1 (Lund & Rogers 1994)

s = +3
√

6σ1σ2σ3

(σ 2
1 + σ 2

2 + σ 2
3 )

3/2
. (4.4)

When s = −1, the background flow is an axisymmetric expansion; s = 0 corresponds to a
2-D strain and s = 1 corresponds to an axisymmetric contraction.

We computed the surface flux from prolate and oblate spheroids in an arbitrary
straining flow over a range of Pe. The result is shown in figure 4 for cases λ = 4 and
1/4. For both prolate and oblate spheroids, there is a modest variation (15 %–30 %)
in the mass transfer coefficient as the strain topology is varied, which becomes more
pronounced as the Péclet number is increased. In contrast, the mass transfer coefficient for
a spherical body in a pure straining flow varies by less than 1 % over the same range of s
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Figure 5. Mass transfer coefficient for spheroids in a pure straining flow, as a function of the strain topology
parameter s and aspect ratio λ. The ruled surface shows the expected scaling coefficient α(s, λ) (2.24). Black
markers show the result of numerical simulations conducted at Pe = 104.

(Batchelor 1979). When the Péclet number is large, the mass transfer rate approaches the
limiting scaling Sh = αPe1/3. The numerical coefficient α is well predicted by (2.24)
and shows the correct qualitative dependence upon s. At Pe = 104, the discrepancy in
the predicted mass transfer rate between theory and numerical simulations is within
2.5 % for the prolate case and within 3.1 % for the oblate case. This is partly due to
the mesh refinement; additional tests at a higher resolution of 300 × 128 × 128 suggest
the numerical simulations slightly under-resolve the surface flux by around 2 % for the
oblate case, which would improve the agreement seen here. Nonetheless, the leading order
correction term to (2.24) is O(1), which corresponds to a discrepancy in Sh/Pe1/3 of
∼ 4.6 % at Pe = 104 and is comparable to the observed discrepancy.

To examine the role of particle shape, we plot the scaling coefficient α(s, λ) over a
range of s and λ in figure 5. Markers show the value of Sh/Pe1/3 from our numerical
simulations at Pe = 104 whilst the ruled surface shows the result of (2.24). We observe
that prolate spheroids tend to experience a larger surface flux than oblate spheroids of
equivalent surface area in the same flow. However, the trend is not always clear cut and
is reversed for strain topologies near s = 1, where spherical particles experience a larger
surface flux.

In figures 4 and 5, we observe that the surface flux is always larger in axisymmetric
expansion (s = −1,−E11/2 = E22 = E33 = 1/

√
6) than axisymmetric contraction (s =

+1,−E11/2 = E22 = E33 = −1/
√

6). This is remarkable, since both flows correspond
to an axisymmetric strain; only the direction of the flow is reversed. At first glance,
this appears to violate Brenner’s flow reversal theorem (Brenner 1967; Vandadi, Jafari
Kang & Masoud 2016; Masoud & Stone 2019), which states that for an isothermal body
in steady flow, the surface flux is preserved under flow reversal u → −u. However, we
recall that the stable orientation of a free spheroid shifts under flow reversal. In this
example, prolate spheroids align parallel to the Cartesian 1−direction in axisymmetric
contraction (s = +1, σ1/2 = −σ2 = −σ3 = 1/

√
6) and orthogonal to it in axisymmetric
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Figure 6. Average mass transfer coefficient for (a) prolate λ = 4 and (b) oblate λ = 1/4 spheroids in an
arbitrary shear (4.5a,b), as an implicit function of the mean axial strain rate E3 (3.10). Coloured lines with
markers show numerical simulations over Pe = 101–104. Black solid lines show the expected scaling coefficient
for spinning motion (3.25). Black dashed lines show the expected scaling coefficient for tumbling motion
(2.24).

expansion (s = −1, σ1 = σ2 = −σ3/2 = 1/
√

6). The identities of σ1 and σ3 are reversed
for oblate spheroids. This flow configuration is identical to the parallel and orthogonal
flow configurations discussed in § 3.5 and shown in figure 3. Thus, the difference in the
average transfer rate between s = ±1 is due to a change in the stable orientation of the
spheroid.

4.2.2. Spinning and tumbling
As a numerical test of our result for spinning and tumbling spheroids, we consider a
spheroid in a background velocity gradient G = E + W of the form

E = 1√
6

⎡
⎣2 0 0

0 −1 0
0 0 −1

⎤
⎦ , W =

⎡
⎣ 0 − sin θω 0

sin θω 0 − cos θω
0 cos θω 0

⎤
⎦ . (4.5a,b)

This corresponds to an axisymmetric straining flow with |E| = 1 and vorticity magnitude
|ω| = 2. By varying the angle θω between the background vorticity ω and the x1 axis, we
survey different limiting behaviours of particle motion identified in § 3.1 and the relative
flow field experienced by the particle depends upon is geometry. For example, a prolate
particle will spin when θω = 0 (case 2a) whereas it will tumble for θω = π/2 (case 2b).
The situation is reversed for an oblate particle.

Figure 6 shows how the average mass transfer rate varies for prolate (λ = 4) and oblate
(λ = 1/4) spheroids as the parameter θω is varied. The dependence is plotted as an implicit
function of the axial strain rate E3 (3.10) for Pe = 101–104. We first remark that as the
Péclet number becomes large, the mass transfer rate approaches the scaling predicted by
(3.25) and (2.24). As θω is varied, the particle motion switches from spinning to tumbling
at E3 = 0 and a pronounced change can be observed in the limiting mass transfer rate.
There is a marked suppression of mass transfer near E3 = 0 as the particle approaches
the transition from spinning to tumbling. This is a demonstration of the suppression of
convection by rotation first identified by Batchelor (1979). We note, however, that the
presence of vorticity does not always suppress the convective transport. For instance,
for the prolate spheroid in figure 6(a), tumbling induced by the vorticity component can
enhance the convective transfer relative to the equivalent pure strain case (figure 4a).
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Some remarks are in order. Firstly, the convection suppression/augmentation effect
is essentially a hydrodynamic effect: it occurs as the result of the motion of a free
spheroid and its alignment with the strain field. Secondly, this effect can be seen even at
moderate Péclet number and becomes more pronounced as Pe increases. This underlines
the observation that particle shape influences two factors in determining the mass transfer
rate: it determines both the boundary condition for the scalar field and the behaviour of
relative flow field.

5. Conclusion

In this paper, we have presented a general method to evaluate the average flux of solute
from a rigid particle of arbitrary shape immersed in an arbitrary, open pathline flow. The
main restrictions upon the shape of the particle are that it contains no sharp edges or
regions of extreme curvature, where the thin boundary layer assumption breaks down. The
flow may be steady or time periodic. When the flow is periodic, the average surface flux
is equivalent to that of the same particle embedded in the mean flow field, provided the
dimensionless period of the motion is T � Pe1/3. The Sherwood number scales as Pe1/3,
with a prefactor α which can be readily obtained through numerical integration once the
particle geometry and surface flow field are specified.

We apply this result to compute the surface flux from a small, freely suspended spheroid
in a steady linear shear. To do so, we compute the relative flow field experienced by
the particle, which may be unsteady due to the particle motion. Through an analysis of
Jeffery’s equation, we identify four categories of motion: resting, spinning and 2-D or 3-D
tumbling. The relative flow field is time periodic in the first three cases. In the spinning
case, the average perceived flow field is an axisymmetric strain. In the 2-D tumbling
case, the average flow field always corresponds to an equivalent spheroid in steady flow
(resting). We provide a closed form expression (3.25) for the surface flux in the spinning
case. We outline the numerical procedure to obtain the surface flux in the resting or 2-D
tumbling cases. We also describe a simplification for the case of rotation-dominated flow
|ω| → ∞. In this limit, there is a larger surface flux under vortex compression when
compared to vortex stretching and this increase becomes significant for prolate bodies.
These procedures may serve as the basis for analysing other, more complex geometries, or
more complex rigid-body dynamics including inertia and gravity.

As a test of these analytical results, we have presented numerical simulations of the
scalar transport and surface flux around spheroids in pure straining and a simplified
shear flow. In all cases, we observe good agreement with the expected scaling law and
mass transfer coefficient, up to the accuracy of the asymptotic approximation. In pure
straining flows, the surface flux is steady and is prescribed by only three parameters: the
Péclet number, the particle aspect ratio and a parameter describing the strain topology.
In surveying this parameter space, we observe that prolate spheroids tend to experience
a greater surface flux than oblate spheroids of equivalent surface area. When vorticity is
present, we observe that the spinning or tumbling of the particle may suppress or augment
the convective transfer, due to a realignment of the particle with respect to the average
strain field. Two additional parameters are necessary to characterise the surface flux in all
rotational flows and a complete survey of the parameter space is not practical. However,
the space is sufficiently small that it may be readily tabulated for use as a model in a
numerical simulation.

We anticipate that our results may find application in modelling the mass transfer from
spheroidal or arbitrary particles in numerical simulations of particle laden flows, where
models for the interphase mass transfer rate are required to take particle shape into account.
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Although the results presented here pertain to steady and time periodic flows, the results
may serve in the same spirit in which steady flow mass transfer coefficients are employed
to model the transfer rate in unsteady flows (Crowe et al. 2012). Of particular interest is the
mass transfer in turbulent environments, such as turbulent ocean waters home to planktonic
osmotrophs (Karp-Boss et al. 1996) and microplastics (Law 2017). Here, the adaptation of
shape to maximise surface flux may help explain the great diversity in the morphology of
osmotrophs (Guasto et al. 2012), or help identify which shapes of microplastics do the most
harm. Another extension would be to include non-zero body torques or forces. This would
allow, for instance, the consideration of gyrotactic effects in the motion of phytoplankton
(Guasto et al. 2012), or inertial effects in the rigid body dynamics of suspended particles.
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