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QUASI-FLOWS*

IZUMI KUBO

The purpose of this paper is to investigate a quasi-flow which is a one-
parameter group of non-singular measurable point transformations on a
measure space. If, in particular, the transformations are all measure pre-
serving (i.e. a flow is given), the ergodicity together with the mixing pro-
perty, the spectral or metrical type, increasing partitions of the space and
the entropy of the flow are our main interests. Those methods used in the
study of a flow are frequently useful for our approach. For example, the
concept of a special flow introduced by W. Ambrose [3] plays an important
role and the representation of a given flow in terms of a special flow is a
powerful tool in the study of flows. L.M. Abramov [1] calculates the
entropy of a flow with the help of the representation. As another example
we give attention to the work of G. Maruyama [10] and H. Totoki [15]
where they discuss a general time-change of flows the basic idea of which
was originated by E. Hopf [8]. They discuss the invariant measure of a
general time-changed flow and prove that the ergodicity is inherited and
the entropy is kept invariant by the time-change. In the study of quasi-
flows, we shall use both the repesentation in terms of a special quasi-flow
and a time-change. Besides a quasi-flow requires its own methods in the
investigation and it gives us some further problems such as the existence of
an invariant measure (c.f. [4], [5], [6] and [7]) and related topics.

We are much interested in a study of two flows (quasi-flows) which
are linked by a particular kind of commutation relation. Ya. G. Sinai ([13],
[14])) has introduced the concept of transversal fields of a flow on a Rieman-
nian manifold and he has obtained the results on the ergodicity of the flow.
As one of generalizations, he has dealt with an admissible continuous one-
parameter group of non-singular point transformations which is a transversal
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field of the flow. Further generalization of his result to quasi-flow will be
discussed in this paper.

In Section 2 we shall define a quasi-flow, and we shall introduce some
related concepts and state their simple properties. In Section 3 we shall
first introduce a concept of an S-quasi-flow (Definition 3. 1) which is ana-
logous to a special flow, and then we shall proceed to the representation
theorem which asserts that we can form an S-quasi-flow equivalent to a
given quasi-flow. Section 4 will be devoted to the discussion of time-change
of a quasi-flow based on a positive function (Definition 4.1 and Theorem
4.1)

The results in §3-4 lead us to state the following remarks. We shall
be able to give an example which shows how important the representation
theorem is in study of quasi-flows. The representation theorem gives us a
negative answer to the question proposed by Sinai [14];” Is every quasi-
flow admissible?”’. In fact, one of the conditions of the admissibility which
requires the boundedness of the density of the conditional measure dose not
hold in general. The other conditions for the admissibility are satisfied if
the quasi-flow has no fixed points. Further we shall find that his results
proved by using an admissible quasi-flow can be obtained similarly drop-
ping a condition which requires a bounded density of the conditional mea-
sure (c.f. §6 and §7). We shall further show that our representation theo-
rem and the theory of time-change enable us to give those conditions under
which a quasi-flow is metrically transitive or conservative, and to find if a
quasi-flow has a ¢-finite invariant measure.

In Section 5 we shall consider a TQ-system. It is defined in the follow-
ing manner. Let {Z,} be a quasi-flow and T be an automorphism. Sup-
pose that i(w) be a positive measurable function. If a quasi-flow {7T'Z,7-}
is a time-changed quasi-flow based on i(w), then we call the tripple [{Z.},
Aw); T1 a TQ-system, and {Z,} is called a transversal quasi-flow of the
automorphism 7' with the coefficient of expansion A(w). Sinai has shown
that if in particular {Z,} is a flow, A(w) is B(v,z,)-measurable. Concerning
his result we shall show the following. Given a TQ-system [{Z,}, a(w); T].
If log a(w) ts quasi-integralble and E[log 2|vz](w) % 0 holds a.e. (dP), then {Z,} is
a flow if and only if Aw) is V(v z,)-measurable. Under the same conditions
({Z,} is necessarily a flow) the entropy h{Z,} of {Z,} is either 0 or oo.

We shall apply our results to the investigation of the ergodic property
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of an automorphism and a flow in Section 6. There we shall assume some
what weaker conditions than those in Sinai [14] to obtain the same results.

In Section 7 we shall consider an increasing partition & and the condi-
tional entropy H(T¢|{) of an automorphism 7 in connection with a 7Q-
system. In particular, if i2(w) in TQ-system is %(u{Zt})-measurable and if
Ellog Alvr](w) >0 holds a.e. (dP) then there exists an increasing partition &
and we obtain H(T¢|§) = E[log 2] whenever {Z,} has not fixed points.

In the final section we shall deal with three examples. Although they
are well-known or rather simple, however each example tells us important
remarks and its own specific suggestions. Example 1 is a so-called Bernoulli
automorphism. It is an example of an automorphism which has no trans-
versal flow but has a transversal quasi-flow. This quasi-flow is conservative
and metrically transitive. It can not be a flow by any kind of time-
change; in other words it has no invariant measure*. In example 2, we
shall form the flow induced by the Ornstein-Uhlenbeck’s Brownian motion
and the flow of Brownian motion in such a way that they form a 7TQ-
system. It is noted that the flow of Brownian motion appearing as a
transversal flow in this example has infinite entropy. As is shown in
Theorem 5. 2, the entropy of the transversal flow is either 0 or . While
many examples of transversal flows of entropy 0 are known, for example
transversal flows of the group automorphism on the two dimensional torus,
the geodesic flow on the manifold of constant negative curvature, the infi-
nite shift and so forth, so far as the author knows no example of a trans-
versal flow of entropy co has not been given. Example 3 is considered as
an example to show that we can discuss even multidimensional transversal
field in our set up by introducing a quasi-flow with a general unimodular
group as the parameter space.

The author wishes to express his hearty thanks to the menbers of
seminar on Probability who helped him in course of this paper. In par-
ticular, Professor T. Ugaheri gave him many suggestions. Professor H.
Totoki helped him with valuable discussion which the author very much
appreciates. Thanks due to Professor H. Kunita for his help in preparing
the manuscript.

* This example for a Bernoulli automorphism suggests us a new approach to the investiga-
tion of Bernoulli automorphisms as will be prescribled in Example 1.
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2. Preliminaries.

Throughout this paper the probability space denoted by (2,%,P) is a
Lebesgue space in the sense of V. A. Rohlin [12]*. We denote by R the
real line with the ordinary Lebesgue measure dm(u)= du, and denote by
(R,R,m) the ordinary Lebesgue measure space. A bimeasurable, one-to-one,
measure preserving transformation of 2 onto 2’ is called an isomorphism of
Q onto 2. An isomorphism of 2 onto itself is an automorphism of 2. A
one-parameter group of automorphisms {T,; —co<t<co} is called a flow if
the mapping (t,w) = T is R X B-measurable**. Now we consider bimea-

surable transformations which are not necessarily measure preserving.

DerFiniTION 2. 1. We call a one-to-one bimeasurable transformation S
of 2 onto itself a quasi-automorphism of @ if it is non-singular, that is, both
P(SA) and P(S7'A) vanish whenever P(A) vanishes. A one-parameter group
of quasi-automorphisms {Z,; — oo <t <o} is a quasi-flow if the mapping
(t,w) = Z,w is AN X B-measurable.

Given a quasi-flow {Z,}, then by the non-singularity of {Z,} there exists
a collection of positive integrable functions {a,(w); — oo < ¢ < oo} such that

(2. 1) P(Z,B) = SBat(w)dP for any Be B,
or equivalently,
(2. 2) [ rzrwar = | rwawiap

holds for any bounded measurable function f(w). By the group property
of {Z,}, it holds that

P(Z..B) = PZ(Z.B) = | awdP=| a(Zwawap

ZsB
for Be 8. So we have

(2. 3) Aprs(W) = a (Zw)a(w) a.e. (dP)
for any fixed ¢t and s. We call the (¢, w) function «,(w) defined by (2,1)
the multiplicative density function of {Z,}.

Remark 2. 1. By virtue of Theorem 3.1, we can prove that there exists

* We shall use terminologies in [11, 12] throughout this paper.
** We denote by 9t X B the completion of the product o-field R X B.
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a version of a,(w) which is ® X B-measurable and equality (2,3) holds for
every ¢+ and s with probability 1.

A set B is called {Z,}-invariant if Z,B = B for all ¢{. A set B is called
{Zt}-z;nvariant (mod 0), if P(Z,BO B) =0 holds for each #*. It is easily seen
that for any {Z,}-invariant (mod 0) set B, there exists a {Z,}-invariant set
B’ such that P(BO B’) =0. Two quasi-flows {Z,} on 2 and {Z/} on &
are said to be isomorphic if there exist two invariant null sets Nc  and
Nc£, and an isomorphism T of 2—N onto 2'—N’ such that Z,w=T"'Z,Tw
for all we 2— N and ¢.

Let ¢ be a partition of 2.  We denote by B(£) the completion of the
ofleld {Be®B; B is a &-set). The factor measure space (2,.,B.,P.) is a
Lebesgue space if & is measurable. We denote by C = C. the element of ¢
and denote by C(w) = C.(w) the element of & which contains the point w.
For any measurable partition &, there exists a canonical system of measures
{(C,B¢, P(-18; C), Cet}. We denote simply by P(A|C.) = P(A N C(|¢;C).
Then the conditional expectation of measurable function f(w) with respect
to B(E) is given by

(2. 4) ELf181(w) = ELf|B(O)](w) = S SdP(-18; Cw)) a.e. (dP).

C(w)

Let T be an automorphism of 2 and ¢ be a T-invariant measurable
partition of 2. Then the transformation T.: T.C = {Tw; we C} € { is an
automorphism of (2,8, P;). We denote by T¢ the restriction of T to C.
Then the transformation 7°¢ is an isomorphism of (C,8¢, P(-|¢; C)) onto
(T¢CyBr, 0, P(+ L5 T.C)) for almost every C € ¢ (dP;).

We denote by v the trivial partition of 2 and, by e the partition into
individual points of 2. Let {Z,} be a quasi-flow on 2. We denote by
v(z, the measurable covering of the partition into the trajectories of {Z,}:
{Zw; — o<t <o}, The partition vs is defined from a quasi-automorph-
ism S in similar way. A quasi-flow (or a quasi-automorephism) is called
metrically transitive if vz, = v (resp. vs = v).

Remark 2. 2. A quasi-flow {Z,} is metrically transitive if and only if
it has only trivial invariant sets, i.e. either P(B) =0 or 1 whenever B is a
measurable invariant set.

* We denote by A©B the symmetric difference of A and B.
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Let {Z,} be a quasi-flow and let g(w) be a measurable function on Q.
Then g(¢t,w) = g(Z,w) is a R X B-measurable function. Hence the integral

b
S 9(Zw)dt, —w=Za<bg o

a

is well defined for almost all w if glw)=0. A quasi-flow {Z,} is called
conservative if, for any positive measurable function g(w) i.e. g(w)>0 for all
w, the equality

(2. 5) [ ozwar =" gzwar = o,

holds for almost all w(dP). The definition of conservative automorphism
is similar. We should note that any flow {7,} (automorphism T) is con-
servative because of the finiteness of the invariant measure P (c.f. [8]).

3. Representation of quasi-flows.

In this section, we shall represent quasi-flows by means of a special
quasi-flow which is an analogue of [3,4]. Our formulation is necessary for
the proofs of theorems in the later sections.*

Let S be a quasi-automorphism of a Lebesgue space (X,%, »), and f(x)
be a positive measurable function defined on X satisfying the following
equality

(3.1) ST F(S*x) = 31 £(S*w) = oo

k=1 k=-1

for every x € X. Set @ = {(x,u); 0=u< f(x), x€ X} and let B be the
restriction of A X R to 2
on £ such that

Let p(x,u) be a positive B-measurable function

3. 2) S SM oo, w)du dp(x) = 1.

XJo0

Setting dP(x,u) = p(x,u)du dp(z), the measure space (2, B, P) becomes a
Lebesgue space. We define a quasi-flow on 2 by

(3. 3) Z(x,u) = (S"2,u + t — fu(x)) for f(S™x)>u-+t— f.(x)=0,

where

* Recently, the author was privately informed by H. Totoki that U. Krengel [9] has
studied representations of one-parameter semigroups of non-singular measurable transforma-
tions under more general settings than ours.
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—-n

— 21 f(§7*x) n=-—1L.

k=1

The multiplicative density function of {Z,} is given by the form

- b, u+tt) 7
(3- 5) at(xs u) - —_’ﬁ(x’ u)h‘ (xa u) S ‘Q’

where 7(x,u) is a function on X x R defined by

o)« - p(S™" ') n=1
(3. 6) plx,u) = p(S"x, u — folx)) X( 1 n=0
[o(Sx). « » p(S"x)]! n<-—1

for f.(x)=<u < fpu(x), with o(x) = % .
DerFintTioN 3. 1. The quasi-flow {Z,} defined by (3. 3) is called an S-
quasi-fow. We say that {Z,} is built up by (X,%, g, f(x), p(x, u), S).

DEeriNiTION 3. 2. Let {Z,} be a quasi-flow. An S-quasi-flow {Z,} is
called an S-representation of {Z,}, if {Z,} is isomorphic to {Z,}.
With these definitions, we can now state the theorem,

TueoreM 3. 1. A quasi-flow without fixed points on a Lebesgue space has an
S-representation.
First we prepare two lemmas to prove the theorem.

Lemma 3. 1.  Let (X, U, p) be a Lebesgue space, S be a bimeasurable one-to-
one transformation of X onto itself and f(x) be a positive measurable function
satisfying (3.1). Set @ = {(z,u); 0=u< f(x), v € X} and let & be the partition
of 2 into the vertical lines. Suppose that (2,8, P) is a Lebesgue space with a
certain measure P such that the partition & is measurable and the measure on the
JSactor measure space 2,: is given by dPs(C(x)) = dp(x), where C(z)= {(x,u);
0=u< f(x)}. If the one-parameter group of transformations defined by (3.3) is
a quasi-flow on the space (2,%B,P), then S is a quasi-automorphism of (X, A, )
and the measure P is given by the multiple integral
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3.7 PB) = | {7 xsta, wpla, u)du dpu(o)

Sor some positive function p(x,u)*.  Further, if the functions f(x,u)= f(x) and

g(x,u) = u are both B-measurable, then B =B holds and p(x,u) is B-measurable.

Proof. Since ¢ is a measurable partition of 2, there exists the canoni-
cal system of measures: {(C,B¢, P(-1&; C)); C < &}. By the measurability
of {Z,}, we can easily show that any segment; {(z,u); a<u<<b} of C(x)
is Be-measurable. Put P(du|C(x)) = p(x,du). Then the multiplicative
density function a,(x,u) satisfies

(3.8 a(x, u)p(x, du)d p()
= Xy feSmy>ttu—ra@=0} (X, 0)P(S™x, d(u + ¢ — fa(x)))dp(x).

Therefore p(x, du)a,(x, u)=p(x,d(u-+t)) holds a.e. (dP) for 0 < u, u+t < f(2).
Hence p(x,du) is equivalent to the ordinary Lebesgue measure on [0, f(x)).

We denote by p(z,u) the density -7%&}@ Obviously we have, p(x,#)>0

a.e. (dP). So (3.7) holds. Noting (3. 8) again, we have
a,(x, u)p(x, u)dp(x) = p(Sx, u)dp(Sz) for f(Sz)>u-+t— flz)=0,

that is, dpu(Sx) is equivalent to dp(x). Hence S is a quasi-automorphism
of X. If f(x,u) and g(x,u) are both B-measurable, we can easily prove
that B coincides with % and that p(x,u) is B-measurable by the formula
(3. 7).

By virtue of Wiener’s ergodic theorem [16], we have the following
lemma.

Lemma 3.2,  Let {Z,} be a quasi-flow, g(w) be a bounded measurable function
on Q2 whose absolute value is dominated by K, and let N be the null set of w out
side of which g(Z,w) s R-measurable. If we put

L Sa 9(Zw)du we& N
(3.9 go(w) =4 & 9o
0 we N
then we have
(i) g.(w) — g(w) a—>0 a.e.,

* We denote by Xz(%, #) the characteristic function of B.
Y
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(i) lge(w)l = K

(iit) |9a(Zw)— g4 (Zyw)| g% It — s].

Moreover C({Z.,}) s dense both in L*Q,B,P) and ian‘(Q,,‘B,P). Here
C({Z}) = C({Z.}, 2,8, P) is the totality of all the bounded measurable functions each
of which satisfies |hW(Zw) — h(Zw)| < M|t — s| with a suitable constant M.

Proof of Theorem 3.1. Since {Z,} has no fixed points, there exists a

measurable set B B and a positive number ¢, such that P(B°n Z, B) > 0.

By Lemma 3.2, ¢,(w) =%S: Xs(Zyw)du — Xs(w) (a—0) a.e. Hence there

exists a positive number a such that P(Bl@B”)<%P(B°nZtOB) and
P(Z,,B:© Z,,B) < % P(B° 0 Z,,B) hold for B, = {w; ¢,w)< 1| and B,=
w; gaw)> 3|, Fix such q, then P(B,NZ,,B)>0 and |gy(Zaw)—gu(Zow)]

gﬁ%—s'— by Lemma 3.2. Hence the functions ¢ and ¢ defined bellow
are measurable.

~ { sup {u; Z,w € B, N Z,,By}

plw) = . .
—oo if the above set is empty,

(3. 10)
{ inf {u; Zuw € B, N Z,,Bs)
o(w) =
- oo if the above set is empty.
Set 2, = {w; gw) = o, ow)=— o}, 2,={w; gw) = o0, Qw)>— 0}, =

{w; —o<@(w)<oo} and 2,={w; gw)=—c}. FEach 2,; j=1,2,3,4 is a {Z,}-
invariant measurable set and 2, N 2, =¢ ixj, 2=0,+ 2+ 2;+ 2, hold.
Further we have P(2,+ 2, + 2,) = P(B, N Z,,B,) > 0.

Let B, and P, be restrictions of ¥ and P to 2, respectively. We shall
construct the S-representation on the set 2,. Set 2% = {w; ¢,(w)=1/2,
G (Zw) >1/2, for 0<¢<a/8}, f(w*) =inl {t >0; Zw*e Q% for w*e Q%
and Sw* = Zrwow*. Then 2, is divided into the segments of trajectories of
{Z,}: Clw*) = {Zw*; 0= ¢t < f(w*)}. We denote by & such partition. Set
fw) = fw*) if we Cw*) and gw) =u if Z_,w=w* we Cw*). Then we
can easily see that f(w) and g(w) are both measurable and the partition &
is measurable. Observing the one-to-one mapping H of 2,= {(w* u);
0= u— f(w*), w*e 2%} onto 2, defined by H(w* u) = Z,w*, we can prove
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that {Z,} has an S-representation on 2, by Lemma 3.1, similarly to the
proof of Theorem 2 in [3].

Let us consider the set 2,. Put 2" ={w; n+1>9w)=n} n=0, £1,
+2, -++. Then 2§ is measurable and 2,=>2%®. Put 2} = {w; o(w)
= n}, then Z,2f™ = 23"V, Considering the npartition & of 2,: Ce,(w*) =
{Zw*; 0= u <1}, w*e QF =325, we have the assertion of the theorem
on 2, by a discussion similar nto that of previous paragraph.

For 2,, we can also prove the assertion similarly 2,. For the set 2,
let us repeat the same discussion above, and we have the assertion of the
theorem for some subset of 2, with positive measure. Performing this pro-
cedure successively and using transfinite induction, we can conclude the
proof.

Cororrary 3.1. (I. M. Ambrose) If {Z,} is a flow, there exists an
S-flow {Z,} built up by (X,¥%,p, f(x),1,S) where S is an automorphism of finite
measure space X, and {Z,} is isomorphic to {Z,}.

Remark 3.1. By the proof of Theorem 3, we can easily see the following.
Let {Z,} be a quasi-flow and let F{Z,} be the set of all fixed points of
{Z}. Let {Z}} be the restriction of {Z,} to 2-F{Z,). Then there exists
an S-quasi-flow {Z,} built up by some (X,%, g, f(x), p(x,u),S) which satisfies
the following conditions (i) there exist S-invariant sets X,; #=1,2,3, -«
such that X, N X,,=¢ if n=m and X=XX,, (ii) there exists a positive
constant 6, such that f(x)=40, for xe;(,. for each n. (iii) {Z,} is iso-

morphic to {Z}}.
By this representation theorem of a quasi-flow, we have the following.

CoRrROLLARY 3. 2. Let {Z,} be a quasi-flow and let a,(w) be the multiplicative
density function of {Z,}. Let a,(w) be a sequence of B(v,)-measurable functions
which converges to 0 as n— oo a.e. (dP). Then @t holds that o, (w) converges
to 1 in LYQ,B, P).

Especially, a,(w) converges to 1 in LY(2,B,P) as ¢t —>0.

Proof. Since a,(w) =1 on F{Z} and F{Z,} is a measurable set, it is
sufficients to prove the assertion in the case of an S-quasi-flow which satisfies
the conditions in Remark 3.1. We may assume that there exists an S-
invariant function b,(x) such that b,(x)=a,(»,«) a.e. (du dp(x)). By Remark
3.1, for any ¢ >0, there exists a natural number N,(¢) such that P{(x,u);
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0su<f(z), x€ %‘,an} < —Z— and f,(x)=¢ for z €Y, (e =§X,,,. By the
assumption, there exist a natural number N; = N,(¢) and an S-invariant set
Ya(e) such that P({(w,u); 0= u < f(x), x € Ya}) < % and a,(z) <e for x€Y5(e).
Then {5(z, u + a,(x)); n=N,} is uniformly integrable on 2,= {(z, «);
0=Zu< fx), € X—Y,(c) — Yy(e)} for n=N,(¢). Therefore we have

G dim [ U 15, au@) — 5o, 0] du dptz) = 0.

n—00 0

It is obvious that

S(x)
(3. 12) SYluyzSO

by the invariantness of 2 — 2, under {Z,} and by P(Q— Qe)<%. From
(3. 5), (3.11) and (3. 12), it follows that

(2, u + an(x)) _
S 1‘ p(a, u)du dp(x) < ¢

lim ujm leta,q (@, u) — 1|du dp(z) < e for any & > 0.

n—r00

Hence {a4,) (2, u)} converges to 1 in LY(2,B,P) as n — co.

Now we remark the connections between the properties of a quasi-flow
{Z,} and the properties of the basic quasi-automorphism which appears in
the S-representation of {Z,}.

Remark 3.2. Let {Z,)} be an S-quasi-flow built up by (X,%,z, f(z),
p(x,u),S). Then the following propositions hold;

(1) {Z,} is metrically transitive if and only if S is metrically transitive,

(ii) {Z,} is conservative if and only if S is conservative,

(iii) {Z,} has a o-finite invariant measure equivalent to P if and only
if S has a ¢-finite invariant measure equivalent to .

Remark 3.3. Ya. G. Sinai [14] has called a quasi-flow {Z,} admissible
if
(1) there exists a regular partition £ of 2 for {Z,}, that is, almost every

element of the partition & is a segment of a trajectory of {Z,} and the time
length of each element is a measurable function on £,

(ii) for any regular partition & of 2, there exist two constants a and
b; 0<a<b< oo, such that the conditional measure on an element C=C,(w)
={Z,w; s(w) <u <r(w)} is expressed by a density p(«|C(w)) in the form
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(3. 13) P(A[C) = SAOC p(u|C)du
and p(x|C) satisfies
(3. 14) a=<pu|C)(r—s)<b.

By virtue of Theorem 3.1 and Lemma 3.1, we have that any quasi-
flow without fixed points satisfies the conditions.(i) and (ii) except the in-
equality (3. 14).

4. Time-changes of quasi-flows.

In this section, we introduce the time-change of a quasi-flow. The
method of time-changes is useful to study the geometrical structure of tra-
jectories of the quasi-flow. But it seems to be difficult to study the time-
changes of quasi-flows through general additive functionals, such as G.
Maruyama [10] and H. Totoki [15] did in flows. Perhaps the general time-
change is not useful for the investigation of quasi-flows. So we shall discuss
only classical time-changes induced by positive measurable functions.

Let {Z,} be a quasi-flow and A(w) be a positive measurable function
on 2. Let i(w) be integrable along the trajectories of {Z.,}, that is, 2(Z,w)
is a locally integrable u-function for every we 2. If we put

t

(4. 1) olt,w) = | AZaodu,

0

then it holds that
(4. 2) ot + s, w) = o(¢, w) + ¢(s, Z,w)

by the group property of {Z,}. We say that the function ¢(t,w) defined
by (4.1) is the additive functional of {Z,} which is induced by a(w), if (w)
is integrable along the trajectories of {Z,} and if

(4. 3) lim ¢, w) = & oo.

t->+ 0
We denote by <(¢,w) the inverse function of ¢(t,w) for each w, that
is,
(4. 4) o(t,w) = u if and only if ¢(u,w)=t¢
Define a system of point transformations {Z,} by

(4. 5) 2cw = Zoct, uyW,

https://doi.org/10.1017/5002776300001299X Published online by Cambridge University Press


https://doi.org/10.1017/S002776300001299X

QUASI-FLOWS 13

then we have, by 4. 2),
(4‘ 6) 'ZAst = ZtZAsw’

Tueorem 4. 1. Let {Z,} be a quasi-flow on (2,8,P) and o(t,w) be the
additive functional of {Z,} which ts induced by 2(w). Then the system {Z,} defined
by (4.5) is again a quasi-flow.

Further let a,(w) and é,(w) be multiplicative density functions of {Z,} and {Z,},
respectively.  Then it holds that

4. 7) &,(w) =7(2% ey (W) ace. .

We can easily prove the theorem similarly to the proof of Theorem
4.2 in [16]. Now we define,

DeriniTION 4. 1. The quasi-flow {Z,}, defined by (4. 5), is called the
time-change of {Z,} by i(w).
The following proposition is easily seen,

ProposiTioN 4. 1. Let {Z,} be a quasi-flow and {Z,} be a time-changed
quasi-flow of {Z,} by Aw). Then we have,

(1) {Z) is a time-changed quasi-flow of {(Z,} by 1/a(w),

(i) vizy = vz,
especially {Z,} is metrically transitive if and only if {Z,} is metrically transitive,

(iii) {Z,} is conservative if and only if (2.} is conservative.

Remark 4.1. The equality (4.7) implies that if {Z,} is a flow, then
its time-changed quasi-flow {Z,) by i(w) has a o-finite invariant measure
P: dP = 2(w)dP.

Remark 4. 2. Let {Z,} be a quasi-flow on a Lebesgue space (2,9, P).
There arises a question whether {Z,} has a ¢-finite invariant measure Q
equivalent to P. Such a problem has been discussed by many authors in
case of discrete parameters. In the continuous parameter cases, we have
some results by virtue of Remark 3.1, Theorem 4.1 and Propsoition 4. 1.
The following conditions are equivalent for a conservative quasi-flow {Z,},

(i) {Z,}) has a ¢-finite invariant measure equivalent to P,

(i) {Z,} becomes a flow through time-change by some 2(w),
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(iii) there exists a positive measurable function A(w) which is integrable
along the trajectories of {Z,} such that there exists the non trivial limit

[ otz)du
. 8) lim 99— a.e. (dP)
tc0 Soz(Zuw)du

for any i-bounded, non-negative measurable function g(w). (Here we say
that a function g(w) is 2-bounded if there exists a constant K such that
lg(w)] = Kaw). ) [c.f. 5).

(iv) For any ¢ >0, there exists a countable partition {2,} of 2 such

that

(4. 9) 1 < a,w)<l+e¢ if wZwe R,
1+ ¢

[c.f. 2],

(v) for any {Z}-invariant set A, there exists a measurable set Bc A
with positive measure such that the Hopf’s compressibility measure of B is
positive [c.f. 7],

(vi) {Z,} is o-bounded [c.f. 6].

5. TQ-systems.

In this section, we shall study some properties of quasi-flows which
have a special commutation relation with other automorphisms. The com-
mutation relation is important in the study of automorphisms and flows
(c.f. 86 and 7).

DerintTION 5. 1. A system [{Z,},2(w); T] of a quasi-flow {Z,} and a
positive measurable function i(w) and an automorphism 7 is called a TQ-
system, if

(5. 1) TZT™ = Z,

holds, where {Z,} is the time-changed quasi-flow of {Z,} by i(w). We say
that a TQ-system [{Z,}, A(w); T1 is a TF-system if {Z,} is a flow.

The geometrical meaning of TQ-system is as follows. An automorphism
T transforms the trajectories of a quasi-flow {Z,} onto themselves so that
any segment of a trajectory is transformed again to another segment of
another one. We can easily see the following proposition.
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ProposiTION 5. 1.  Let [{Z,}, 2w); T1 be a TQ-system and let {Z,} be a
time-changed quasi-flow of {Z,} by some v(w). Then we have,

(1) the system [{Z,}, Aw)7 (T~ 'w)[1(w); T1 is a TQ-system,

(i)  the system [{Z}, 2P(w); T*] is a TQ-system, where 2P (w) is defined by

AT W)« + « AT *+ 1) E>1
(5. 2) AP = ¢ 1 k=0
[ATw)A(T2w) « + « AT "w)] E<—1.

Let[{Z.}, Aw); T1be a TQ-system and let {Z,} be the time-changed quasi-
flow of {Z,} by aw): Zaw = Zet,wyw = TZT'w. Let a,(w) be the multipli-
cative density function of {Z,}. Since it holds that P(Z,B) = P(TZ,T-'B) =
= P(Z,T'B) = ST_IBa,(w)dP= SB a, (T 'w)dP, we have the following proposition
by (4. 7).

ProrposiTiON 5. 2. Let [{Z,}, Aw); T1 be a TQ-system, then it holds that

AZuw) (T~ w) a.e. (dP).

(5. 3) et wy(W) = Aw)

CororLrary 5.1. (Ya. G. Sinai) If {Z} is a flow, ia(w) is B(v(z,)-

measurable.

Proof. Since {Z,} is a flow, e,(w)=1 holds. From (5.3), it follows
that A(Z,w)/aw) =1 a.e. (dP). Thus we conclude that i(w) is B(vz,)-mea-
surable. Hence (w) is B(v z,;)-measurable by Propostiion 4.1 (ii).

Now, we are interested converse problem i.e. whether B(y ;,)-measura-
bility of A(w) implies that a,(w)=1 a.e. (dP). For this purpose, we shall
prepare the following simple lemma. We say that a measurable function
h(w) is quasi-integrable, if either the positive part or the negative part of &(w)
is integrable. For any quasi-integrable function #(w), the conditional ex-
pectation E[A(w)|¢] with respect to a o-field B(¢) for any partition ¢ is well
defined. And we have that

lim L 3 A(T*w) a.e. (dP)
(5. 4) Elhlvd(w) =( "= " &=t

lim -1 S h(T-*w) a.e. (dP)

noroo N f=1
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by Birkhoff’s ergodic theorem.

LemmaA 5. 1.  Let [{Z,}, Aw); T1 be a TQ-system and let h(w) be quasi-
integrable. If h(w) is B(vz,)-measurable, then the conditional expectation E[h|vr]
is T- and {Z,}-invariant (mod 0).

Proof. Noting that {T*Z,T-*} is a time-changed quasi-flow of {Z,}, we
have together with Proposition 4. 1 (ii)

Elh]ve] (Zaw) = lim é W(T*Z,T~*T*w)

noo N

= lim -L g"‘,l R(T*w) = E[h|ve] (W) ae. (dP).

n—ooo Nk

DEerFINITION 5. 2. We say that a TQ-system [{Z,}, Aw); T]1 has the
property (A), if logia(w) is quasi-integrable and satisfies

(5. 5) Ellogalvr] =0 a.e. (dP).

We say that a TQ-system has the property (AC) (or (AD)), if loga(w) is quasi-
integrable and satisfies

(5. 6) Ellog|vr] >0 (resp.<0) a.e. (dP).

TrEOREM 5. 1. Let [{Z,}, 2w); T1 be a TQ-system with the property (A).
Then {Z,} s a flow if and only if 2(w) is %(v{zt})-measumble.

Proof. Assume that 2(w) is B(v(z,)-measurable. Then by Lemma 5. 1,
there exist T- and {Z,}-invariant sets 2+ and 2~ such that

>0 a.e. (dP) on 2*
<0 a.e. (dP) on 2,

(5.7 Elloga|vr]

and P(2*)+ P(27)=1. On the other hand, the set of all fixed points of
{Z,} denoted by F{Z,} is also T- and {Z,}-invariant. In fact, for we F{Z,},
ZT‘w=T"Zw=T"w holds, and hence T-'w € F{Z,}. Therefore a,(w)=1
on F{Z,}). Hence we may assume that E[logi|y;]1>0 (or <0) a.e. (dP) and

{Z,} has no fixed points. Let us consider the case E[loga|v,]>0, it follows
that

5.8 i ™ () = 1 1 - e.
6. 8) lim 127 (w) = lim — ey e 2 = © a.e.,
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because lim [A(w)A(T 'w) - + « A(T™""'w)]"/» = exp {E[logA(w)|v7]} >1 a.e. . By

7n—>00

the B(v(z,)-measurability of i(w), it follows that

(5. 9) ‘L'(t,M))=S: Z(d“ — Z(iv) a.e. for each ¢.

Z,w)

By Proposition 5.1 (ii) and Proposition 5. 2, it follows that
(5. 10) (T w) = a3 w) a.e. for each ¢.

Since the sequence {a,/;® ., (w)} converges to 1 in L'(2,%B,P) by Corollary
3.2, the sequence {g(a,(T "w))} converges to g(1) in LY2,%B,P) for any
bounded continuous function g on R. Therefore it holds that

Blg(as)[vr] () = lim L 3% gla(T-w)

—> 00

= lim g(e,(T""w)) = g(1) in LY0,B,P).

n—

Thus our proof is complete if E[logi(w)|vy]>0. For the case E[logi(w)|vr]
<0, we can prove similarly.

We can easily see the following corollary by Theorem 5.1 and Pro-
position 5. 1.

CoROLLARY 5. 2.  Let [{Z,}, 2(w); T] be a TQ-system with the property (A).
Then (Z,} becomes a flow via time-change by r(w), if and only if Aw)r (T 'w)[T(w)
is B(v,z,)-measurable.

We shall next point out another property, concerned with the entropy,
of a flow in a TF-system. First we prove the following lemma for an
automorphism.

LemMmA 5. 2. Suppose we are given an automorphism T and invariant measur-
able set B. Let h(w) and 2(w) >0 be measurable functions such that loga(w) is
quasti-integrable and satisfies (5. 5) on the set B, and

(5. 11) h(w) = 2w)h (T~ 'w) a.e. (dP) on B.
Then the value of |h(w)| is zero or infinity for almost all w e B.

Proof. By the equality (5.11), there exist T-invariant sets B, and B_
such that 0 < A(w) < + o on B, and —o < h(w) <0 on B. and A(w) =0 or
infinity a.e. (dP) on B— B, — B_. Assume that P(B,) >0. Then there exist
two positive constants ¢ and b such that P(B,,,) >0, where B,,= {w;a<
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h(w) < b} N B,. Since, (5. 4) holds for logi(w) by Birkhoff’s ergodic theorem,
there exist a point w, € B,,, and an increasing subsequence of natural num-
bers {n} such that T“w,€ B,, k=1,2, - -+ and

5. 12) lim _}[ S logA(T" w,) # 0

n—-co k=1

hold. While it follows from (5. 11) that

1 T
Ny j=

0 # |lim Hoga(T'wy)| = [lim ~L 31 (logh(T*wy) — logh(T"~wy)|

k
x J=1

= lim —L— (logh(T™w,) — logh(w,)| = lim -1°8% —loga _
koo Ny k—co Ny

This is a contradiction, so we have P(B,) =0. By a similar way, P(B.)=0
is proved.

THEOREM 5. 2.  Let {Z,} be a flow and [{Z,}, 2(w); T] be a TQ-system with
property (A).  Then the entropy of the flow {Z,} is zero or infinity.

Proof. Let us consider the restriction {Z¢} of the flow {Z,} onto
C € vz, Then the entropy k({Z,}) of {Z,} is given by the form,

5. 13) wizn={  #kcap, (©),

Wizy Y1z

where the function %(C) = h({Z¢)}) defined on vz, is equal to the entropy

of the flow {Z¢} on C[c.f. 12]. Hence it is sufficient to prove that k(C)=0

or o (a.e. Py{zﬁ).

Since A(w) is B(v,z,)-measurable by Corollary 5.1, we can define a

function on Q/v,,, by iA(C) = i(w) we C. Then it holds that

{Z.}

(5. 14) TZT‘w=Z

oW ae we C, for a.e. C€ Qv

{Z.}*
But viz,) 1s T-invariant because Z,T7-'B = T-1Z,B=T"'B for any {Z,}-invariant
set. Hence (5. 14) can be written as

TOZY(T) " = Z8,, (mod 0), €' =T-'C.

Clearly 7% is an isomorphism of 7-'C to C, and hence {Z77'c} is isomorphic

to {Z;’/}(C)}. Therefore we have

- —1 _ ¢ _ h ZC
(5. 15) MTC) = h({Z; o)D) = ({c
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From (5. 15) and Lemma 5. 2, it follows that A(C) =0 or o a.e. (dPy 7))
Now proof is complete.

Now we consider a commutation relation of a quasi-flow {Z,} and a
flow {T,}, similarly to the above discussions.

DEerFiNITION 5.3. A system [{Z,}, ¢(w); {T.}]1is called a TQ-system, if
k(w) is integrable along the trajectories of {7} and if [{Zt}, exp (SSK(T_uw)du);
0

T_,:| is a TQ-system for each s.
We say that a 7Q-system has property (A) (resp. (AC) or (AD)), if

(5. 16) Ele(w)| vz, 10 (resp. >0 or <0) a.e. (dP)

holds. We call a TQ-system [{Z,}, «(w); {T.}]1 a TF-system if {Z,} is a flow.
Then we have,

TueoreM 5. 1.  Let [{Z,}, x(w); {T,}] be a TQ-system with property (A).
Then {Z:} is a flow if and only if r(w) is B(v z,)-measurable.

THeOREM 5. 2. Under the same assumption of Theorem 5.1, if {Z,} is a
flow, then its entropy is zero or infinity.

6. TQ-systems and the ergodicity of automorphisms and flows.

In this section, we discuss the ergodicity of flows on abstract measure
space in connection with 7@Q-systems (c.f. EX. 1 and 2 in §8).

We may call a quasi-flow {Z,} a transversal quasi-flow of an automorph-
ism T (or a flow {T.}) with a co¢fficient of expansion A(w) (resp. x(w)), if
[{Z.}, 2w); T] (resp. [{Z,}, x(w); {T,}]) is a TQ-system. A transversal quasi-
flow is called a transversal flow if {Z,} is a flow. This definition of trans-
versal quasi-flows is a generalization of one dimensional transversal fields,
and moreover, of transversal admissible one-parameter group of transforma-
tions in [14].

Tueorem 6. 1.  Let [{Z,}, 2(w); T] be a TQ-system with property (A). If
either 2(w) =1 for all we Q or 0<ilw)=1 for all we Q holds, then it holds
that

(6. 1) vy é V{Z‘} .

Proof. By Lemma 3.2, it is easily seen that {E[k|v:]; k€ C({Z.})} is
dense in LY, B(vr), P) and (5. 4) holds. Hence it is sufficient to prove our
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assertion that for g(w) € C({Z,}), Elglvs]l(w) is {Z,}-invariant (mod 0). By
Proposition 5.1 (ii), T*Z,T*w = Z:x,ww holds, where

6. 2) G, w) = | ot = oz
. (¢, w T Z T ) Vo T w)du.

Therefore we have

Elglvr] (Zaw) = lim é‘-‘l o(T*Zw) = lim L. kg"‘,l 9 Zexce, vy T0)

Nn—r20

for almost all w. Now, if a(w)=1, the sequence 1/2*® (T*w) = A"P(w) =
[A(Tw)- « - 2(T*w)]™* converges to 0 boundedly for almost all w, by the same
reasoning as (5.8). From (6. 2), it follows that

(6. 3) |Elglvr](Z,w) — Elg|velw)]

lim -1 ﬁl (0(Z s, 7oy T*w) — (T )}

n-sco N k=

< lim Lné K|, T'w)| = lim K|<"(t, T"w)]

n—oo k=1
. et du _
_LIEQKSO——-—2(M Tz | =0 ae (@P)

for some constant K. Therefore E[g|vy] is {Z,}-invariant (mod 0). We
can similarly prove the assertion for A(w)=<1.

THEOREM 6. 2.  If a TF-system [{Z,}, 2(w); T1 has property (A), then (6. 1)
holds.

Proof. With the same reasoning as the proof of Theorem 5.1, we may
assume that [{Z,}, 2(w); T] has property (AC) or (AD). If it has property
(AC), the sequence 2“~™(w) converges to 0 by (5.8). Since it holds that

(6. 4) (¢, T*w) = t2°(w) a.e. (dP)

by Theorem 5. 1, it follows that E[g|v,] is {Z,}-invariant (mod 0) by (6. 3).
If property (AD) holds, we can similarly prove our assertion.

CorOLLARY 6.1. Let a TQ-system [{Z,}, Aw); T1 have property (A). If
there exists a positive measurable function 7(w), integrable along the trajectories of
{Z:}, such that A(w) = 2(w)7 (T 'w)[1(w) is Bvz,)-measurable and logi(w) is quasi-
integrable (or A(w)=1 for all w or J(w) <1 for all w) then (6. 1) holds.
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Proof. Let {Z,} be the time-changed quasi-flow of {Z,} by 7(w). By
Proposition 5.1 (i), [{Z.},(w); T1 is a TQ-system with property (4). Since
A(w) is V(v z,)-measurable by the assumption, {Z,} is a flow by Theorem
5.1. Hence we have our assertion by Theorem 6.2 (or Theorem 6. 1).

The following theorems are proved with the similar methods to the
Theorem 6.1 and 6. 2.

TueoreM 6. 1. Let [{Z,}, «(w); {T.}] be a TQ-system with property (A).
If either x(w)=0 for all we Q or x(w) <0 for all we 2 holds, then we have

(6. 5) viry <viz, (mod 0).

TueoreM 6. 2.  Let [{Z,}, e(w); {T,}]1 be a TF-system with property (A).
Then (6.5) holds.

Remark 6. 1. Relation (6. 1) (resp. (6. 5)) means that if {Z,} is metrically
transitive then T(resp. {T,}) is ergodic.

7. TQ-systems and increasing partitions of automorphisms.

In this section, we shall study increasing partitions with respect to auto-
morphisms in connection with 7Q-system. These results are generalizations
of the results in [14].

Let ¢ and ¢ be measurable partitions. The conditional entropy H(£[¢)
of ¢ with respect to ¢ is defined by

(7.1)  HEIE w) = —logP(DNCIE; C), weDNC, Deg, Cey,
(7.2)  H(EIC) = HEIE; Co) = SCC H(EIE; w)dP(-|Co), Ce€ 8,
(7.8)  H(|E) = ELH(E[E; w)l.

TueoreM 7. 1. Let [{Z,}, Aw); T]1 be a TF-system with property (AC).
Then, there exists a partition & of 2, such that almost every element of ¢ is a seg-
ment of a trajectory of {Z,} and that

(i) T¢=¢ (mod 0),
)

(ii VT =¢ (mod 0),
(ii) ATE = vz, (mod o),
(iv) HTE|G) =, ., logaw)dP.
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Proof. By the proof of Theorem 5.1, the set F{Z,} of all fixed points
of {Z,} is T- and {Z,}-invariant. For any T-invariant set B, there exists
a T- and {Z,}-invariant set B’ such that P(BO B’) =0, by Theorem 6. 1.
If there exists a denumerable partition {2,} of 2— F{Z,} such that (1)
each 2, is T- and {Z,}-invariant subset of Q2 — F{Z,}, (2) there exists a
partition ¢, of 2, which satisfies the conditions (i)~ (iii) on 2, and

(iv)’ | 5. logP(Crz, )| Ce, (w))d P= Sgn log2(w)dP.

Then the partition ¢ of 2, which is equal to {, on 2, and is equal to the
partition of F{Z,} into individual points on F{Z,}, is a desirable one. The
conditions (i)~(iii) are obviously fulfilled and it holds that

H(TE1%) = EllogP(Cre(w)| Cew)) = 3 |, 108P(Cre, )| Ce,(w)aP

1

=2 S o, log A(w)dP = Sg_p(z,} log A(w)dP.

Hence it is sufficient to prove the assertion that there exists a T- and {Z,}-
invariant subset 2, of 2 — F{Z,} with positive measure and exists a partition
¢ of 2, which satisfies the conditions (i), (i), (iii) and (iv)".

Since we may assume that the flow {Z,} has not fixed points, we can
suppose by Corollary 3.1 that {Z,} is an S-flow built up by some (X, ¥, p,
f(z), 1, S), where S is an automorphism of X. We may assume that
Aw) = Az, u) = A(S*x,v) for 0 <v < f(S*2), by Theorem 5.1. Let ¢ be the
partition of 2 = {(x,u); 0=u < f(x), x € X} into the vertical lines: C(x)=
{(z,v); 0=0v<f(x)}. Put V, = {w; Ellog Alv¢]1(w)>7}, then P(V,)>0
holds for sufficiently small 7 (>0). Since V, is B(vz,;)-measurable, by
Theorem 6. 2, there exists an S-invariant set A such that PV, O {(z,u);
0=u</f(z), x€ A})=0. Let b be a positive constant such that p({x;
f(x)>b} N A)>0. Put

(7. 4) V={xu; f(x)>b we A, 0= u <b},
and
(7. 5) 2=_0 TV,

Let » be the partition of V into the vertical lines of it i.e. the restriction
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of ¢ to V, and let 7 be the partition of 2, which is equal to » on V and
degenerated on 2,—V. We shall show in the following that the partition
4 =k;/0 T% is a desirable one.

For any ¢ >0, there exist a B(v;z,)-measurable set G, with P(G.)>1—¢

and a natural number #n(¢) such that for any we G, and n > n(e),
(7. 6) exp[nE[log Aw)|vr]+ne]l>ATw) - + + A(T"w) > exp [nE[log 2(w) [vr]—ne]

holds. From %(u(zt})—measurability of 2(w) and (6. 4), it follows that the time
length of the segment Crw(T"w) is b[A(Tw)- « « AT w)]™* and it is less than
bx exp [—nE[log A(w)|vr] + nel < be=nr= for we G, and n > n(e).

Setting K, = {w € V; H(yp|Cr+#(T"w)) >0}, we have

(7. 7) 2 P(K.NG,)=2XPT"'K,NT"G,)
<Y Eexp[—nEflog 2lvr]l + ne] £ b3 el-7+edn < oo

for any ¢ with 7 >¢>0. From (7. 7) and Borel-Cantelli’s lemma, it follows
that P(lim K, N G,) =0 for small e. Hence we have P(lim K,) =0, that is,
almost envery w belongs to only finite numbers of K,’s. " Hence ¢ divides
almost every C; CV into almost countable segments, that is, almost every

element of ¢ which is contained in V is a semi-open segment of a trajectory
of {Z,}. For k>0, put

k-1
We=T™ = U TV,

then P(£2, _ki;: W) =0 holds. Since Cr«(w) = T™*C.(T*w) for w € W,, almost
every element of { is a semi-open segment of a trajectory of {Z,}.

Let us show that ¢ satisfies the condition (i)~(iii) and (iv)’. Let &,(w)
be the time length of the segment Cr«(w) of a trajectory of {Z,}). Then
{h,(w)} is a non-increasing sequense of finite valued positive measurable
functions, because ¢ is an increasing partition with respect to 7. On the
other hand, from the commutation relation of 7 and {Z,}, it follows that
ho(Tw) = by y(w)A(Tw), w € 2,. If we put 11‘1_110 ho(w) = h(w), then it holds that

(7. 8) ATw)h(Tw) = h(w) a.e. on £2,.

From (7. 8) and Lemma 5. 2, it follows that A(w) =0 a.e. on 2,. This fact
means that the condition (ii) is fulfilled. The condition (iii) can be shown
similarly, that is, lim A%(w) = A*(w) (this limit exists for almost all we 2,
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admitting infinity), satisfies the equality (7.8), where &%w) is the time
distance between w and the boundary of C.(w), so we have A*(w) = oo a.e.
on 2,

Now we see easily that
(7. 9) P(Cre(w)| Ce(w)) = hy(w)/ho(w) = ho(T ™ w) [ho(w)2(w)]™* for we Q.

The positive part of the logalism of the left hand side of (7. 9) is integrable,
and logi(w) is quasi-integrable and E[logi|vz]>0 a.e. on 2,. Let B be
the T-invariant set such that either 71‘1_1)130 %z—é"l logA(T*w) < o or —’11_)12%]?;‘1

log P(Cre(T*w) | Ce(T*w)) < o holds for almost every we B. Then we have
by Lemma 5. 2, E[log(i(w)P(Cr¢(w))|Ce(w))|vr] =0 a.e. (dP) on B. On the
other hand Li—IE:o -;—éllogz(Tkw)=—'lli_)% -%{é{l log P(C¢ (T*w) | Cc (T*w)) = o a.e.

(dP) on 2,— B. Therefore we have
(7. 10) — {4, Ellog P(Cre(w)|Ce(w))|»1dP

= Sgo Ellogi(w)|ve]dP = SQO logA(w)dP.

So our assertion was proved.
For TQ-systems, we have similar theorem,

THEOREM 7. 2. Let [{Z,}, 2w); T1 be a TQ-system with property (AC). If
Aw) =1 holds, there exists a partition & of Q, such that almost every element of
which is a segment of a trajectory of {Z,} and & satisfies the same conditions (i)~
(iv) in Theorem 7. 1.

Proof. By the same reason in the proof of Theorem 7. 1, it is sufficient
to prove the assertion that there exists a 7- and {Z,}-invariant subset 2, of
Q2 — F{Z,} with positive measure and exists a partition ¢ satisfying the con-
ditions (i)~(iii) and (iv)" in the proof of Theorem 7. 1.

Since we may assume that {Z,} has not fixed points, we can suppose
that {Z,} is an S-quasi-flow built up by some (X, ¥, o, f(), p(x, u), S) by
Theorem 3. 1. Let ¢ be the partition of 2 = {w = (2,u); 0 =< u < f(x), x€ X}
into the vertical lines: Cgs(w) = Ce(z, u) = {(x,v); 0<v < f(2)}. Then the
conditional measure on Cg(z,u) is given in the form

(7. 11) dP(- |Ce(x, u)) = _(_p;§x, v)dv
SO p(x, v)dv
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Put

t

S (2, u + v)dv
ogfm

(7. 12) Vargr = jw = (2, u); <a'y, for 0 < |t] <8,

t »(z, v)dv

g <u, and 28 < f(x)t ,

Since 111{)1 %St p(xy u + v)dv = p(x, u) a.e. (dudp(x)), there exist two constants
a' and_)ﬁ’ sucfl that P(Vergr) > 0. Further there exists a measurable set
A c X and positive constants b and g (< #) such that (x,b), (2,b+ ) € Vurpr
for any x € A and p(A) >0 holds. Fix such constants b, @, 8/, 8 and the
set A. Set V' = {w=(x,u); b=u<b+ B, v € A} and let 5’ be the partition
of V' into the vertical lines of it. Let us fix positive constants ¥ and 7’ such

that P(V') > 3/7r" and

(7. 13) P({w; P(D|Cv,(w) >387}) >1 -1,
— . M 1 1 ! du = 1
where D= s atw) > 1) 0 {ws tim - 70 = -]

The existence of such 7 and 7’ is assured by the hypothesis of that E[logi(w)] > 0
a.e. and by that P({w; i(w) >1} — D) =0 holds by Lemma 3.2 (i). Put

(7. 14) A¢3=[w;%§:7?:—w)—<a, 0<i=p,

for 0<a<1. Since,

Aup = {w;%SZT(%)—<a, 0<t=p|>D

0<a<1

holds, we have

lim P(Asp|Cy, (w)) = P(D|Cvr(w)) a.e..

a—1—0
From (7. 13), it follows that there exists a constant « (<1) such that
(7. 15) P(Aapr) >1—21", Aspr = {w; P(As|Cy,(w)) > 27},

By Birkhoff’s ergodic theorem, there exists a measurable set G with P(G) >
1—7" and a natural number #, such that

(7. 16) |Sp(w) — nP(Aup|Cy, (w))] < nr

https://doi.org/10.1017/5002776300001299X Published online by Cambridge University Press


https://doi.org/10.1017/S002776300001299X

26 1ZUMI KUBO

hold for any we G and »n > n, where s,(w) is the numbers of i (0<{ < n)
with T'w e A.s. Put

(7. 17) VZ{M)EVI; P(GﬂAaﬁrlCn/(W))>1—1/?}.
From (7. 13) and (7. 15), it follows from Tschebyscheff’s inequality that

PV —V)=

= % |,/ [1 = P(G N Aspr|Cor(w)1aP

1 3r s
g == (1 — P G n A\x < . =3 TI .
N ( ( 87)) 7 /
Hence we have P(V)>0. Let 5 be the partition of V into the vertical
lines of it and 7 be the partition of 2, = %)T"V which is equal to » on V

and degenerated on 2,—V. Define a partition ¢ of 2, by
(7. 18) =V T%.

It can be proved by the same method as the proof of Theorem 7.1, that
almost every element of & is a semi-open segment of a trajectory of {Z,}
and the conditions (i)~ (iv)’ are fulfilled.

8. Examples.

We shall give three TQ-systems on Lebesgue spaces. First, let us give
examples of 7TQ-systems such that the quasi-flows consisting of the systems
have not o-finite invariant measures.

ExampLE 1. Bernoulli automorphisms. Let X =[0,1) and (%, ) be the
ordinary Lebesgue measure on X. Let p;=1,2, -+ ., N be positive num-
bers with p, + p,+ -+ -+ + py =1 and let S be the quasi-automorphism (mod
0) of X defined by

(8. 1) Sw = (%)m(% (% = Goes) + a5)

for 1 —p% + P =2 <1—py+ PRgw k=1,2 -+ Nym=0,1,2, - - -, where
G=01+DP+ *** +Pgo=0. let {Z,} be the S-quasi-flow of 2= {(z,u);
0=<=u<1, 0Lz <1} built up by (X,%,,1,1,5). The automorphism F of
2 defined by

(8. 2) T(x, u) = (x,’ u,)’
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o =L (x— Q1)

(8. 3) P for g = x<gqy
u' = Pl + Gy

is isomorphic to a Bernoulli automorphism. Further the system [{Z.},
Az, u); T1 is a TQ-system, where A(x,u) =1/p; for g, <z <gq. Now the
partition ¢ of @ into vertical lines is a partition given by Theorem 7.1 and
the conditional entropy H(T¢|§)=—2 p;logp; = Ellogi(x, u)] is equal to the
entropy of the automorphism 7. ’

Sx

P Pa— D pal P4
1

o —
vd

Qz T i gyt O S U g .

7

(Ov 0) q1

Fig. 1. N=4. p1=p4=% p2=% p3=_18_

The quasi-flow {Z,} is a flow if and only if S is an automorphism, that
is, if and only if p;=p, = -+ = py =% holds. In the other cases, {Z,}

and S have no o¢-finite invariant measures equivalent to the Lebesgue mea-
—}1—’ pgz% is such an

example, which is given by A. Brunel. The case N=2 and p,/p, = a is the

sure. Especially, the case N=3 and p,=p; =

example given by L. K. Arnold (see [2]).

In the case of p; = 71\/'_’ j=1,2, « -+, N, the flow {Z,} is ergodic and

has pure point spectrum {27”'

k. :
N k and m are 1ntegers]. Hence the
entropy of {Z,} is 0.
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ExampLE 2. Let 2 be the space of continuous functions on real line
R and let (2,98, P) be the measure space of Brownian motion. Then the
sift {6,} acting on the w: (9,w)(s) = w(s — ¢), is a flow on (2,9B,P). Define
a oneparameter group of transformations {7,} of 2 by

(8. 4) (Tw) (s) = e w(e?*ts).

We can easily see that {7,} is a flow on 2 which is induced from 2-
dimensional Ornstein-Uhlenbeck’s Brownian motion. We have

(8. 5) TsatT—s = 0t-exp(2as)’

that is, [{6,}, — 2a; {T.}]is a TF-system. This is an example of a trans-
versal flow which has infinite valued entropy. The relation (8.5) satisfied
by the transformation groups 6, and T, on the functional space comes from
the commutation relation for the shift and the multiplication acting on reals.

ExamprLE 3. We can generalize our formulations to multi-dimensional
transversal fields as follows. Let G be a connected unimodular Lie group
and {Z,; g G} be a group of non-singular transformations of a Lebesgue
space (2,98, P) such that

(1) Zy Zyw = Zy g0 for ¢g,0,€G and we £,

(i) the mapping Z,: (g, w) > Z,w is ®xB-measurable, where © is the
topological Borel field on G. We call a mapping ¢(g,w) of Gx2 onto G
to be a multiplicative mapping for {Z,; g € G} if it is ®xB-measurable and
¢(g, w) is a one-to-one onto mapping of G for each w and satisfies

(8. 6) (9192 w) = 991, Z, w) + ©(gy w) for each w.

Let z(g, w) be the inverse mapping of ¢(g, w) for each w. Then the system
{Z,; g € G} defined by

8.7 Zw = Ze(o,myw

is again a group of bimeasurable point transformations of 2. We say that
{Z,; g€ G} is the time-change of {Z,; g € G} by o(g,w). If the measure
P is invariant under {Z,; g € G}, {Z,; g € G} has an invariant measure. In
fact, if the mapping ¢(g, w) of G (for fixed w) is non-singular with respect
to the invariant measure dg of G, then the density is given in the form
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AMZw) with some B-measurable function A(w) and the measure d@ = A(w)dP
is invariant under {Z,; g € G}.

Under the suitable hypothesis, we can perform the similar discucssions
to §3~§7. For an example, let 7 be an nx» matrix with integral coeffi-
cients with determinant +=1. Then T can be considered as an automor-
phism of n-dimensional torus T". The Jordan’s canonical form of T is
given by a regular real matrix C = (¢;;) in the form

A, a; 1l

A2 ajI
(8-8) C'TC=A= : = (a;), A; = ° ,

. A
Ak a;

where either @; is a 1x1 matrix and 7 is the idddentity 1x1 matrix or a;
is 2x2-matrix in the form

«j Ccos 0]' — sin 01
(8. 8’) aj = o; > 0.
ajcos 0 a;cos 0;
and I is the identity 2X2 matrix.
We suppose that a;, a, « -+, @, <1. We define {Z,; ¢t = (¢, ¢% + - -, t¥)
€ R"} (where N is the total dimensions of 4,, - -+, A,) by

N .
(8. 9) Z‘x =+ Ct (Ct),; = '21 Cijt].
7=

It is easily seen that {Z,; + € RV} is a group of measure preserving trans-
formations and satisfies

(8. 10) T‘ZJY‘__l = th, A = (aij)a',j_—_l'm...,zv .

Then we can construct an increasing partition £ with respect to T such that
¢ satisfies the condition (i) ~ (iii) in Theorem 7.1 and H(T¢|§) = — ,g
logldet A;]. It is well known that H(T¢|{) is equal to the entropy of
T(c.f. [11]).
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