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CONGRUENCE LATTICES OF FINITE SEMIMODULAR LATTICES

G. GRÄTZER, H. LAKSER AND E. T. SCHMIDT

ABSTRACT. We prove that every finite distributive lattice can be represented as the
congruence lattice of a finite (planar) semimodular lattice.

1. Introduction. A classical result of R. P. Dilworth (circa 1940, unpublished,
see [1], pp. 455–457) states that a finite distributive lattice D can be represented as the
congruence lattice of a finite lattice L.

There are a number of papers strengthening this result by requiring that the lattice L
representing D have special properties. The lattice L constructed by Dilworth is atomistic.
A sectionally complemented lattice L is constructed in G. Grätzer and E. T. Schmidt [7],
while a planar lattice is constructed in G. Grätzer and H. Lakser [4]. A “small” lattice L
is constructed in G. Grätzer, H. Lakser, and E. T. Schmidt [5]: if D has n join-irreducible
elements, the lattice L is of size O(n2). (This is “best possible”, according to G. Grätzer,
I. Rival, and N. Zaguia [6].)

In this paper, we construct a semimodular lattice L:

THEOREM. Every finite distributive lattice D can be represented as the congruence
lattice of a finite semimodular lattice S. In fact, S can be constructed as a planar lattice
of size O(n3), where n is the number of join-irreducible elements of D.

This result, with size O(n4), was announced in [9]; the present paper contains an im-
proved construction, due to the second author, yielding size O(n3). It would be interesting
to decide whether the size O(n2) is possible for (planar) semimodular lattices.

2. Preliminaries. We use the basic concepts and notations as in [2]; in particular,
for a finite distributive lattice D, J(D) denotes the poset of join-irreducible elements.
Con L denotes the congruence lattice of the lattice L. For a prime interval ƒ = [aÒ b],
Θ(ƒ) = Θ(aÒ b) is the smallest congruence collapsing a and b.—2 denotes the two-element
chain.

It is convenient to describe congruences of a finite lattice using coloring:
Let L be a finite lattice and let Γ be a finite set; the elements of Γ will be called colors.

A coloring ñ of L over Γ is a map

ñ:Ÿ(L) ! Γ
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of the set of prime intervals Ÿ(L) of L into Γ satisfying the condition: if two prime
intervals generate the same congruence relation of L, then they have the same color; that
is,

ƒÒ ≈ 2 Ÿ(L) and Θ(ƒ) = Θ(≈) imply that ƒñ = ≈ñ

Since the join-irreducible congruences of L are exactly those that can be generated
by prime intervals, equivalently, ñ can be regarded as a map of the set J(Con L) of
join-irreducible congruences of L into Γ:

ñ: J(Con L) ! Γ

In view of this condition, it is enough to define ñ on sufficiently many prime intervals
so that every prime interval is projective to one on which ñ is defined.

Let A and B be lattices, DA a dual ideal of A, IB an ideal of B, and DB a dual ideal
of B. Let us assume that DA, IB, and DB are isomorphic. We now define what it means
that we obtain C by gluing B to A k-times. For k = 1, let C be the gluing of A and B over
DA and IB with the dual ideal DB regarded as a dual ideal DC of C. Now if Ck�1 with
the dual ideal DCk�1 is the gluing of B to A k � 1-times, then we glue Ck�1 and B over
DCk�1 and IB to obtain C the gluing of B to A k-times with the dual ideal DB regarded as
a dual ideal DC of C. Observe that if A and B are semimodular, then so is C. Since we
construct the lattice S of the Theorem from semimodular components using gluing, the
semimodularity of S follows.

3. The construction. We construct the semimodular lattice S of the Theorem in
several steps. The construction is easy to follow on pictures but somewhat notational in
a formal presentation. So we suggest that the reader follow it on the example we present;
the example is the smallest one that illustrates various aspects of the construction. This
example represents the 22-element distributive lattice D of Figure 1 as the congruence
lattice of a semimodular lattice. The poset J of join-irreducibles has six elements, and it
is shown in Figure 2.

Take the eight-element, nonmodular, semimodular lattice S8 of Figure 3. S8 has an
ideal, IS8 = (b], and a dual ideal, DS8 = [c), both isomorphic to —2; we shall utilize these

https://doi.org/10.4153/CMB-1998-041-7 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1998-041-7
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FIGURE 3: S8

for repeated gluings. The elements of IS8 are black filled and the elements of DS8 are
shaded in Figure 3. It is easy to see that the congruence lattice of S8 is the three-element
chain. Using the notation J(Con—3) = fpÒ qg, with p Ù q, we also show the colored S8

in Figure 3.
Let D be a finite distributive lattice, and let J = J(D) be the poset of its join-irreducible

elements, n = jJj. We enumerate

p1Ò p2Ò    Ò pm

the non-minimal elements of J. For every pi, i = 1Ò 2Ò    Òm, let

v(pi) = fq1
i Ò q

2
i Ò    Ò q

ki
i g

denote the set of all lower covers of pi in J; since pi is non-minimal, it follows that ki Ù 0.
Let

r1Ò r2Ò    Ò rt

enumerate all elements of J that are incomparable with all other elements.
In the example, m = 3, t = 1. Let

p1 = ãÒ v(ã) = fåÒ ègÒ q1
1 = åÒ q2

1 = èÒ

p2 = åÒ v(å) = fçgÒ

p3 = éÒ v(é) = fèg

So k1 = 2, k2 = k3 = 1.

Step 1. For every i, with 1 � i � m, we construct a lattice Ai with an ideal Ii and a
dual ideal Di, where Ii is a chain of length 2(ki + Ð Ð Ð + km) and Di is a chain of length
2(ki+1 + Ð Ð Ð + km).

Now we shall twice use the construction, gluing k-times, described in Section 2. To
form Ai, glue S8 to itself (ki � 1)-times with the ideal IS8 and the dual ideal DS8 , to obtain
the lattice A1

i with a dual ideal DA1
i
. Now take

—2
2 = fh0Ò 0iÒ h0Ò 1iÒ h1Ò 0iÒ h1Ò 1ig
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with the ideal

I
—

2
2

= fh0Ò 0iÒ h1Ò 0ig

and the dual ideal

D
—

2
2

= fh0Ò 1iÒ h1Ò 1igÒ

and glue 2(ki+1 + Ð Ð Ð + km)-times —2
2 to A1

i . The ideal Ii is generated by the element h0Ò 1i
of the top —2

2, while Di is generated by the unit element of A1
i .

We define a coloring ñi of Ai as follows. On any copy of S8, [oÒ b]ñi = pi and on the
j-th copy of S8,

[oÒ d]ñi = [dÒ c]ñi = q j
i ;

on the first two copies of —2
2,

h
h0Ò 1iÒ h1Ò 1i

i
ñi = q1

i+1Ò

on the next two copies, h
h0Ò 1iÒ h1Ò 1i

i
ñi = q2

i+1Ò

after ki+1 pairs, the next two satisfy

h
h0Ò 1iÒ h1Ò 1i

i
ñi = q1

i+2Ò

and so on.
Figure 4 shows A2 for the example. The elements forming I2 are black filled; the

elements forming D2 are shaded. Note that I2 is of length 2(k2 + k3) = 4, while D2 is of
length 2k3 = 2.
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294 G. GRÄTZER, H. LAKSER AND E. T. SCHMIDT

LEMMA 1. ñi is a coloring of Ai. The join-irreducible congruences of Ai are generated
by prime intervals of Ii and by [oÒ b] of the bottom S8 in Ai. If ƒ and ≈ are [oÒ b] or a
prime interval [oÒ d] or [dÒ c] of a copy of S8 in Ai, then Θ(ƒ) ½ Θ(≈) iff ƒñi ½ ≈ñi. In
particular, Θ(oÒ b) � Θ(oÒ d) in J(Con Ai), where o, b, d are in a copy of S8 in Ai. If ƒ is
a prime interval [h0Ò 1iÒ h1Ò 1i] in a copy of —2

2, then Θ(ƒ) is incomparable to any Θ(≈),
where ≈ is [oÒ b] or a prime interval of Ii different from ƒ.

PROOF. This is trivial since every prime interval of S8 is projective to one of [oÒ b],
[oÒ d], [dÒ c].

Step 2. We define the lattice A by gluing together the (colored) lattices Ai, 1 � i � m.
For 1 � i � m, we define, by induction, the lattice Ai, which contains Ai, and,

therefore, Di, as a dual ideal. Let A1 = A1. Assume that Ai with Di as a dual ideal has
been defined. Observe that both Di and Ii+1 are chains of length 2(ki+1 + Ð Ð Ð + km), and so
they are isomorphic; in fact, this isomorphism preserves colors. We glue Ai to Ai+1 over
Di and Ii+1 to obtain Ai+1. Define A = Am and IA = I1.

Observe that ñi on Di agrees with ñi+1 on Ii+1; therefore, the ñi, 1 � i � m, define a
coloring ñA of A.

Let DA be the dual ideal of A generated by the element h0Ò 1i of the top —2
2 in A1. DA

is a chain of length m. The prime interval [oÒ b] in the bottom S8 in Ai (1 � i � m) is
projective to a unique prime interval ƒ of DA; define ƒñA = [oÒ b]ñA .

Figure 5 show this lattice for the example. The elements of IA and DA are black filled.

LEMMA 2. ñA is a coloring of A. The join-irreducible congruences of A are generated
by prime intervals of IA and DA. Let ƒ and ≈ be prime intervals in IA and DA.

(i) If ƒ and ≈ are prime intervals of DA, then Θ(ƒ) and Θ(≈) are incomparable.
(ii) If ƒ is a prime interval of DA and ≈ is a prime interval of IA, then Θ(ƒ) and Θ(≈)

are comparable iff ƒ � Ai, for some 1 � i � m, ≈ is perspective to some [oÒ d] or
[dÒ c] in some S8 in Ai; in which case, Θ(ƒ) � Θ(≈) in J(Con A).

(iii) If ƒ and ≈ are prime intervals of IA, then Θ(ƒ) ½ Θ(≈) iff ƒ and ≈ are perspective
to prime intervals ƒ0 and ≈0 in some Ai, respectively, for some 1 � i � m, and ƒ0

and ≈0 are adjacent edges of some S8 in Ai; in which case, Θ(ƒ) = Θ(≈).

PROOF. This is obvious from the statement that if A and B are glued together over the
dual ideal D of A and the ideal I of B, then a congruence of the glued lattice is obtained
from a congruence Θ of A and a congruence Φ of B with the property that the restriction
of Θ to D agrees with the restriction of Φ to I.

Observe that the congruence lattice of A is still quite different from D in two ways:
the congruences that correspond to the ri are still missing; prime intervals in IA [ DA of
the same color generate incomparable congruences with one exception: they are adjacent
intervals in IA, perspective to the two prime intervals of some S8 in some Ai. For instance,
in the example, see Figure 5, the prime interval of DA of color å generates a congruence
incomparable to the congruence generated by a prime interval of IA of color å; also, a
prime interval of color è in the top part of IA generates a congruence incomparable to the
congruence generated by a prime interval of color è in the lower part of IA.
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Step 3. We extend A to a lattice B with an ideal IB which is a chain and which has the
property that every prime interval of B is projective to a prime interval of IB.

This step is easy. We form the lattice D2
A with the ideal

ID2
A

= fhxÒ 0DAi j x 2 DAgÒ

where 0DA is the zero of DA. Let 1DA denote the unit element of DA and, for x 2 DA,
x Ú 1DA , let xŁ denote the cover of x in DA. For every x 2 DA, x Ú 1DA , we add an
element mx to D2

A so that the elements

hxÒ xiÒ hxÒ xŁiÒ hxŁÒ xiÒ xmÒ hxŁÒ xŁi

form a sublattice isomorphic to Á3 with hxÒ xi as zero and hxŁÒ xŁi as unit. Let M be the
resulting lattice. Obviously, M is a finite planar modular lattice whose congruence lattice
is isomorphic to the congruence lattice of DA. ID2

A
is also an ideal of M; we shall denote

it by IM.
Figure 6 shows M for the example. The elements of IM are black filled.

IM

FIGURE 6: M

We glue A to M over DA and IM to obtain B. Let IB be defined as the ideal generated by
h0Ò 1DAi. We define ñB as an extension of ñA; every prime interval ƒ of M is projective
to exactly one prime interval ƒ of IM, we define ƒñB = ƒñA.

LEMMA 3. ñB is a coloring of B. The join-irreducible congruences of B are generated
by prime intervals of IB. Let ƒ and ≈ be prime intervals in IB.

(i) If ƒ and ≈ are prime intervals of M, then Θ(ƒ) and Θ(≈) are incomparable.
(ii) If ƒ is a prime interval of M and ≈ is a prime interval of IA, then Θ(ƒ) and Θ(≈)

are related exactly as ΘA(ƒ) and ΘA(≈) are related in A.
(iii) If ƒ and ≈ are prime intervals of IA, then Θ(ƒ) and Θ(≈) are related exactly as

ΘA(ƒ) and ΘA(≈) are related in A.

PROOF. This is obvious from the congruence structure of M.

Step 4. We extend B to the lattice S of the Theorem.
This is also an easy step. We take a chain C of length n and we color C over J so that

the coloring is a bijection. We form the lattice Cð IB. For every pair of prime intervals,
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ƒ = [aÒ b] of C and ≈ = [cÒ d] of IB, if ƒ and ≈ have the same color, then we add an
element m(ƒÒ ≈) to C over J so that the elements

haÒ ciÒ hbÒ ciÒ haÒ diÒm(ƒÒ ≈)Ò hbÒ di

form a sublattice isomorphic to Á3. Let N denote the resulting lattice. N is obviously
modular and planar. Set

IN = fhxÒ 0IBi j x 2 CgÒ

DN = fh1CÒ xi j x 2 IBgÒ

where 0IB is the zero of IB and 1C is the unit of C. Then IN is the ideal of N (isomorphic
to C) and DN is a dual ideal of N (isomorphic to IB). Every prime interval of N is
projective to a prime interval of IN , so we have a natural coloring ñN on N. Note that this
coloring agrees with the coloring ñB on DN under the isomorphism with IB.

We glue N to B over DN and IB to obtain S with the coloring ñS. Set IS = IN. Figure 7
is a sketch of S.

It is clear from the construction and from the lemmas that every prime interval of S is
projective to a prime interval of IS and that distinct prime intervals of IS generate distinct
join-irreducible congruences of S.

It remains to see that if ƒ and ≈ are distinct prime intervals, then Θ(ƒ) ½ Θ(≈) iff
ƒñS ½ ≈ñS. Since J is finite, it is sufficient to prove that Θ(ƒ) � Θ(≈) in J(Con S) iff
ƒñS � ≈ñS in J(D). But this is clear since if ƒñS � ≈ñS in J(D), then pñS = pi, for some
1 � i � m, and qñS = qj

i, for some 1 � j � ki, so Θ(ƒ) � Θ(≈) was guaranteed in Ai.
To establish that the size of S is O(n3), we give a very crude upper bound for jSj.

2n2 + 1 is an upper bound for jIij, 1 � i � m, so 3(2n2 + 1) is an upper bound for jAij
and 3(2n2 + 1)n is an upper bound for jAj. Since jDAj � n + 1, we get the upper bound
(n+1)2+n+1 for jMj. Finally, jIB j � 2n2+1+n+1 = 2n2+n+2, so jNj � 2(2n2+n+2)(n+1).
Therefore,

3(2n2 + 1)n + (n + 1)2 + n + 1 + 2(2n2 + n + 2)(n + 1)
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is an upper bound for S and it is a cubic polynomial in n. This completes the proof of the
Theorem.

It is not difficult to find better upper bounds for jSj; for instance,

jSj � 3n3 + 2n2 � 7n + 4
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