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Abelian Surfaces with an Automorphism
and Quaternionic Multiplication

Matteo Alfonso Bonfanti and Bert van Geemen

Abstract. We construct one-dimensional families of Abelian surfaces with quaternionic multipli-
cation, which also have an automorphism of order three or four. Using Barth’s description of the
moduli space of (2, 4)-polarized Abelian surfaces, we find the Shimura curve parametrizing these
Abelian surfaces in a specific case. We explicitly relate these surfaces to the Jacobians of genus two
curves studied by Hashimoto and Murabayashi. We also describe a (Humbert) surface in Barth’s
moduli space that parametrizes Abelian surfaces with real multiplication by Z[+/2].

Introduction

The Abelian surfaces, with a polarization of a fixed type, whose endomorphism ring is
an order in a quaternion algebra are parametrized by a curve, called a Shimura curve,
in the moduli space of polarized Abelian surfaces. There have been several attempts to
find concrete examples of such Shimura curves and of the family of Abelian surfaces
over this curve. In [HM], Hashimoto and Murabayashi find two Shimura curves as
the intersection, in the moduli space of principally polarized Abelian surfaces, of two
Humbert surfaces. Such Humbert surfaces are now known “explicitly” in many other
cases (see [BW]), and this might allow one to find explicit models of other Shimura
curves. Another approach was taken by Elkies in [E] who characterizes elliptic fi-
brations on the Kummer surfaces of such Abelian surfaces. See [PS] for yet another
approach.

In this paper we consider the rather special case where one of the Abelian surfaces
in the family is the selfproduct of an elliptic curve. Moreover, we assume this elliptic
curve to have an automorphism (fixing the origin) of order three or four. It is then
easy to show that, for a fixed product polarization of type (1, d), the deformations of
the selfproduct with the automorphism are parametrized by a Shimura curve. In fact,
an Abelian surface with such an automorphism must have a Néron-Severi group of
rank at least three, and we show that this implies that the endomorphism algebra of
such a surface is in general a quaternion algebra. One can then work out for which
d the quaternion algebra is actually a skew field (rather than a matrix algebra). The
cases for d < 20 are listed in Section 1.5.

The remainder of this paper is devoted to the case of an automorphism of order
three and a polarization of type (1, 2). In that case the general endomorphism ring is a
maximal order Og of the quaternion algebra of discriminant 6. Barth, in [B], provides
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adescription of a moduli space M, 4, embedded in P°, of (2, 4)-polarized Abelian sur-
faces with a level structure. Since the polarized Abelian surfaces we consider have an
automorphism of order three, the corresponding points in M, 4 are fixed by an auto-
morphism of order three of P. This allows us to explicitly identify the Shimura curve
in M, 4 that parametrizes the Abelian surfaces with quaternionic multiplication by
the maximal order O in the quaternion algebra with discriminant 6. It is embedded
as a line, which we denote by PIQ > in My 4 © P°. The symmetric group Sy acts on
this line by changing the level structures.

According to Rotger [R], an Abelian surface with endomorphism ring O¢ has a
unique principal polarization, which is in general defined by a genus two curve in that
surface. We show explicitly how to find such genus two curves, or rather their images
in the Kummer surface embedded in P* with a (2, 4)-polarization. These curves were
already considered by Hashimoto and Murabayashi in [HM]. We give the explicit
relation between the two descriptions in Proposition 4.2. As a byproduct, we find
a (Humbert) surface in M, 4 that parametrizes Abelian surfaces with Z[\/z] in the
endomorphism ring.

In a series of papers (cf. [GP1, GP2]), Gross and Popescu studied, both in gen-
eral and for several small d in particular, explicit maps from moduli spaces of (1,d)-
polarized Abelian surfaces to projective spaces. The methods we used to find the
Shimura curve in M, 4 can, in principle, be extended also to these cases.

1 Polarized Abelian Surfaces with Automorphisms
1.1 Abelian Surfaces with a (1, d)-polarization

We recall the basic results on moduli spaces of Abelian surfaces with a (1, d)-polariza-
tion, following [HKW, Chapter 1]. Such an Abelian surface A is isomorphic to C? /A,
where the lattice A can be obtained as the image of Z* under the map given by the
period matrix ), where we consider all vectors as row vectors:

Az CA, A=Z'Q, Q:7*— C?,

T T2

_ T\ T1 T22
x»—>xQ—x(Ad)— 1 o |’

0 d

where 7 is a symmetric complex 2 x 2 matrix with positive definite imaginary part,
so T € Hj, the Siegel space of degree two, and A, is a diagonal matrix with entries
1,d. The polarization on A is defined by the Chern class of an ample line bundle in
H*(A,Z) = A*H'(A,Z) = A*Hom(A,Z), that is, by an alternating map Eg: A x
A — Z, which is the one defined by the alternating matrix with the same name (so
E4(x,y) = xEq'y):

0 0 1 0
e 0 Ad 0 0 0 d
4a=\-a;, 0) 7 |-1 0 0 o0
0 -d 0 0
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1.2 Products of Elliptic Curves

The selfproduct of an elliptic curve with an automorphism of order three and four
respectively provides, for any integer d > 0, a (1, d)-polarized Abelian surface with
an automorphism of the same order whose eigenvalue on H>? is equal to one.

To see this, let j := ¢?™/J be a primitive j-th root of unity. For j = 3,4, let E;be
the following elliptic curve with an automorphism f; € End(E;) of order j:

E;:=C/Z+Z{j, fitEj — E;, z+— (jz.
Then the Abelian surface A; := E]2 has the automorphism
¢j=fix fi 1 Aj=EjxEj — Aj.
As f[ acts as multiplication by {; on H LO(E;) = Cdz, the eigenvalues of ¢; on
H"(A;) are {j, {7'. Thus ¢7 acts as the identity on H**(A;) = A?H"*(4)).
The principal polarization on E; is fixed by f;, so the product of this polarization
on the first factor with d-times the principal polarization on the second factor is a

(1, d)-polarization on A; that is invariant under ¢;.
The lattice A; c C* defining A} is given by the image of the period matrix Q:

G o
0 d¢;
Aj=CA;,  A=Z0Q;  Qpi=) )
0 d

The automorphism ¢; determines, and is determined by, the matrices p,(¢;) and
pa(¢;), which give the action of ¢; on A; and C?, respectively. Here we have

pr(9,)Qj=Qjpa(¢)),  pr(¢) =M, Pu(¢j)=(% (?1)’

where the matrix M; is given by:

-1 0 -1 0 0 0 -1 0
0 0 0 1 0 0 0 1
Ms=11 0 o ol Ma=11 0 0 o
0 -1 0 -1 0 -1 0 0

The (1, d)-polarization is defined by the alternating matrix E; from Section 1.1 and is
indeed preserved by ¢; (so (/)}‘Ed = E;), since M;E;'M; = E,.

1.3 Deformations of (A}, E; 4, ¢;)
For a matrix M € M4(R) such that ME;'M = E; we define

M x4 7= (AT+BAG)(CT+DAs) ' Ag,  where M= (é ll;)'

The fixed point set of M for the * ;-action on Hj is denoted by
H; :={reH;: Mj*47=1}.
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The following proposition shows that the (1, d)-polarized Abelian surfaces that are
deformations of (A;, ¢;) form a one parameter family that is parametrized by H; .
We will see in Theorem 1.2 and Table 1.5 that for certain combinations of j and d the
general surface in this family is simple and has quaternionic multiplication.

Proposition 1.1 The (1,d)-polarized Abelian surface (A, 4 = C*/(Z*Q.), Ey), with
7 € Hy, admits an automorphism ¢ ; induced by M; if and only if T € H; 4. Moreover,
H; 4 is biholomorphic to H,, the Siegel space of degree one.

Proof The Abelian surface A, 4 = C*/(Z*€Q),) admits an automorphism induced by
M if there is a 2 x 2 complex matrix N, such that

T
M;Q, = QN,,  Q,:= (Ad)'

Writing M; as a block matrix with rows A, B and C, D, the equation M;Q, = Q,N,
is equivalent to the two equations

Ar+BAgy=1No,  Ct+DAg=A4N,,
hence N, = A}'(Ct + DA,;) and substituting this in the first equation we get:
(AT+BAy)(Ct+DAy)'Ag=7,  hence Mj*;7=T1.
Conversely, if M; 4 T = T, then define N; := A7'(Ct + DAy), and one finds that

M;Q, = Q,N,.
The fact that this fixed point set is a copy of H; in H, follows easily from
[F, Hilfsatz III, 5.12, p. 196]. |

1.4 Polarizations and Automorphisms

Recall that for a complex torus A = C8/A we can identify C# = Ag := A ®z R. The
scalar multiplication by i = v/~1 on C8 induces an R-linear map J on Ag with J? = —1.
An endomorphism of A corresponds to a C-linear map M on C# such that MA c A,
equivalently, after choosing a Z-basis for A:

End(A) = {M € My (Z) : JM = MJ},
where M,,(Z) is the algebra of 2¢g x 2¢ matrices with integer coefficients.
The Néron-Severi group of A, a subgroup of
H*(A,Z) = A*H'(A,Z) = A* Hom(A, Z),
can be described similarly:
NS(A) := {F € Myy(Z) : 'F = -F, JF'T=F},

where the alternating matrix F € NS(A) defines the bilinear form (x, y) — xF'y.
Moreover, F is a polarization, i.e., the first Chern class of an ample line bundle, if F'J
is a positive definite matrix. In particular, F is then invertible (in M,¢(Q)).

It is now elementary to verify that if E, F € NS(A) and E is invertible in M,,(Q),
then FE™ € End(A)q (cf. [BL, Proposition 5.2.1a] for an intrinsic description). This
result will be used in the proof of Theorem 1.2.
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In Theorem 1.2 we show that if 7 € H; 4 then the Abelian surface End(A; 4)q con-
tains a quaternion algebra (and not just the field Q({;)!). This is of course well known
(see, for example, [BL, Exercise 4, Section 9.4]), but we can also determine this quater-
nion algebra explicitly. It allows us to find infinitely many families of (1, d)-polarized
Abelian surfaces whose generic member is simple and whose endomorphism ring is
an (explicitly determined) order in a quaternion algebra. To find the endomorphisms,
we first study the Néron-Severi group. Notice that in the proof of Theorem 1.2 we do
not need to know the period matrices of the deformations explicitly.

Theorem 1.2 Let j € {3,4} and let T € H; 4, so that the Abelian surface A; 4 has an
automorphism ¢ ; induced by M ; (see Proposition 1.1).

Then the endomorphism algebra of A 4 also contains an element y; with 1//]2. =d.
Moreover, for a general T € H; 4 one has

End(Ara) = Z[¢;,v;),  End(Ara)q = 52,

(a,b) ._

where o = QeQieQjeQijis the quaternion algebra with i* = a, j* = b, and

ij = —ji
Proof The Néron-Severi group of an Abelian surface A can also be described as
NS(A) — H2(A,Z) n H*'(A) = {w ¢ H*(A,Z) : (0, 0%°) = 0},

where (-, - ) denotes the C-linear extension to H*(A, C) of the intersection form on
H?(A,Z) and we fixed a holomorphic 2-form on A so that H>°(A) = Cw%°.

The intersection form is invariant under automorphisms of 4, so (¢7x,¢7y) =
(x,y) forall x, y € H*(A,Z), where A = A, 4. Moreover, by construction of ¢, we
have that ¢} w3 = 0%° so w3’ € H*(A, C)"’;, the subspace of ¢;-invariant classes.
Therefore any integral class which is orthogonal to the ¢ ;-invariant classes is in par-
ticular orthogonal to w%° and thus must be in NS(A):

(H2(A,2)%)" = {we H*(A,Z) : (w,60) =0,
for all 6 € H*(A, Z) with ¢;0= 0} c NS(A).

The eigenvalues of ¢ on H'(A,C) = H"*(A) ® H:(A) are {j and (', both with
multiplicity two. Thus the eigenvalues of ¢* on H?(A,C) = A*H'(A, C) are (2, 172,
with multiplicity one, and 1 with multiplicity 4. In particular, (H*(A,Z)% )* is a
free Z-module of rank 2, it is the kernel in H*(A, Z) of (¢3)* + ¢3 + 1in case j = 3
and of (¢;)* + 1in case j = 4. Identifying H*(A, Z) with the alternating bilinear Z-
valued maps on A; = Z*, the action of ¢* is given by M; - F := M;F* M, where F is an
alternating 4 x4 matrix with integral coefficients. It is now easy to find abasis E; 1, E;
of the Z-module (H?(A, Z)‘l’; )*. Since E; defines a polarization on A, the matrices
E;'Ej > k = 1,2, are the images under p, of elements in End(A)q (cf. [BL, Proposition
5.2.1a]). In this way we found that for any 7 € H; 4, the Abelian surface A = A; ; has
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an endomorphism y; defined by the matrix p,(y;) below:

0 d 0 0 0 0 0 -d
1 0 0 O 0 0 1 O
Pr(V’S): 0o 0 0 dl’ Pr(‘/’4): 0 d o0 0
0 0 1 0 -1 0 0 O

It is easy to check that p,(y;)? = d and that Myup,(y4) = —p,(¥a)Ma, whereas (1 +
2M3)p,(v3) = —p,(w3)(1 + 2M3) (and notice that (1 + 2M3)* = -3). Therefore,
(-j,d)/Q c End(A)q (in fact, M7 = -1, but (-1,d)/Q = (-4,d)/Q). As (-j,d)/Qis
a (totally) indefinite quaternion algebra (so of type ITI), for general 7 € H; 4 the Abelian
surface A = A, 4 has (—j,d)/Q = End(A)q by [BL, Theorem 9.9.1]. Therefore, if ¢ €
End(A), then p,(¢) isboth a matrix with integer coefficients and a linear combination
of I, Mj = p,(¢;), pr(v;) and M;jp,(y;) with rational coefficients. It is then easy to
check that End(A) is as stated in Theorem 1.2. [ |

1.5 A Table

Using Magma [M], we found that for the following d < 20, the quaternion algebras
(-1,d)/Qand (-3,d)/Q are skew fields:

o -3,d
d  discriminant 249 d dlscrlmmant(qf)
2,6,8,14,18 6
3’76ii5 31 5,15,20 15
)11 22 ’ 10 10
19 38 1 33
17 51

Moreover, for d < 20, End(A) is never a maximal order in (-1,d)/Q, and it is a
maximal order in (-3,d)/Qifand only if d = 2,5,11,17.

In particular, for 7 € Hj, the Abelian surface A, , has a (1,2)-polarization in-
variant by an automorphism of order three induced by M3 and End(A;,) = O, the
maximal order in the quaternion algebra with discriminant 6, for general 7 € Hj ,.
After a discussion of an equivariant map ¥, of a moduli space of Abelian surfaces to
a projective space, we will describe the image of Hj , in Section 3.

2 The Level Moduli Space
2.1 The Moduli Space of (1, d)-polarized Abelian Surfaces
The integral symplectic group with respect to E; is defined as
T9:={MeGL(4,Z): ME;'M = E4}.
This group acts on the Siegel space by [HKW, Equation (1.4)]:

A B) *q 7= (AT+BAy)(Ct + DAd)ilAd-

T3XH2—>H2> (C D

Notice that for d = 1 one finds the standard action of the symplectic group on H,.
The quotient space (in general a singular quasi-projective 3-dimensional algebraic
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variety) is the moduli space A of pairs (A, H), where A is an Abelian surface and H
is a polarization of type (1, d) (see [HKW, Theorem 1.10(i)]).

For the study of this moduli space, and of certain “level” covers of it, we use the
standard action of Sp(4, R) on H,, which is ;. For this, as in the proof of Proposition
11 (cf. [HKW, p.11]), we use the 4 x 4 matrix Ry. Then I, := R;lngd € Sp(4,R) is
a subgroup of the (standard) real symplectic group of the (standard) alternating form
E,;, and we have (R;lMRd) #17T=Mxgtforall M ¢ fg. Therefore,

A =TH\H, 2 T )\H,,

where the actions are *; and *;, respectively.

2.2 Congruence Subgroups

We now follow [BL] for the definition of coverings of the moduli space and maps to
projective space. Recall that we defined a group fg in Section 2.1 of matrices with
integral coeflicients that preserve the alternating form E;. We will actually be inter-
ested in the form 2E,, which is preserved by the same group. With the notation from
[BL, 8.1, p. 212] we thus have

Iy =Tp=Sp2(Z),  D-=diag(2,4) = 2A,.
It is easy to check that

Z'°D7' = {x e Q* 1 x(2E;y)y € Z,Vy e Z*'}, D:= (Ig 1(;)
Let T(2,4) be the following quotient of Z*:
T(2,4) = (2'D™")/2* = (Z2Z x Z/4Z)?,
The group I'p acts on this quotient and we define
I'p(D) :=ker(Ip — Aut(T(2,4))).
One verifies easily that

Ip(D)={MeTp:D'M=D" mod My(Z)}

~ _(I+Da DB .
‘{M_( Dy I+D8)EFD'“’ﬁ’y’8EM2(Z)}'

This shows that I'p (D) is the subgroup as defined in [BL, Section 8.3] (see also [BL,
Section 8.8]). The alternating form E, defines a “symplectic” form (-, - ) on T(2,4)
with values in the fourth-roots of unity (cf. [B, Section 3.1]). For this we write (cf.
[B, Section 2.1])

T(2,4)=KxK, K=2Z/2ZxZ/4Z, K =Hom(K,C")z=Z/2ZxZ/4Z,
and the symplectic form is
(-, ):T(2,4)xT(2,4) — C*, ((a,01), (", 1)) :=1"(0)1(0")".

We denote by Sp(T(2,4)) the subgroup of Aut(T(2,4)) of automorphisms that pre-
serve this form.
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Lemma 2.1 'The reduction homomorphism I'p — Sp(T(2,4)) is surjective. Hence
Ip/Tp(D) = Sp(T(2,4)), this is a finite group of order 2°32.

Proof As the symplectic form is induced by E,, we have im(Ip) c Sp(T(2,4)).
In [B, Proposition 3.1] generators ¢;, i = 1,...,5 of Sp(T(2,4)) are given. It is easy
to check that the following matrices are in Gp and induce these automorphisms on

T(2,4):
100 1000 00-10 1000 1000
000 -1 0100 0100 0100 2100
0010 J> {oo10)> |1000])> 1010 > 0011
0100 0101 0001 0001 0001
The order of Sp(T(2,4)) is determined in [B, Proposition 3.1]. ]

2.3 The Subgroup I'n(D),
We define a normal subgroup of I'p (D) by:

Ip(D)o := ker(¢:Tp(D) — (Z/22)*),  ¢(M) = (Bo»y0) = (Bu> Paz> 11> ¥22)»

where M € I'p(D) is as above. Since D has even coefficients, D = 2diag(1,2), it is
easy to check that ¢ is a homomorphism. Moreover, ¢ is surjective, since the matrix
with @ =y =8 =0and § = diag(a, b) (a,b € Z) is in [p (D) and maps to (a, b,0,0);
similarly, the matrix with « = f = § = 0 and y = diag(a, b) is also in I['p (D) and maps
to (0,0, a, b). It follows that Tp (D) /Tp(D)o = (Z/2Z)*.

The groups I'p, I'p(D) and I'p (D), are denoted by Gz, Gz(e) and Gz (e, 2¢) in [12,
V.2, p.177]. In [12, V.2 Lemma 4] one finds that I'p (D) is in fact a normal subgroup
of I'p. There is an exact sequence of groups:

00— FD(D)/FD(D)O — FD/FD(D)O —> FD/FD(D) — 0.

The group I'p act on H; in a natural way, but to get the standard action *; one must
conjugate these groups by a matrix Rp with diagonal blocks I, D, and one obtains the
groups

Gp =RpTpRp,  Gp(D)=RpTp(D)Rp,  Gp(D)o =Ry Tp(D)oRp;
see [BL, Sections 8.8, 8.9].

The main result from [BL, section 8.9] is Lemma 8.9.2, which asserts that the holo-
morphic map given by theta-null values

ypH, — P, 1— (... 9[3](0,1):--.)15K,

where [ runs over K = D™1Z?/Z? and where the theta functions 9[}](v, 7) are defined
in [BL, 8.5, Formula (1)], factors over a holomorphic map

Yy Ap(D)o := Hy/Tp(D)o 2 Hy/Gp(D)g — P’

2.4 Group Actions

The finite group I'p/Tp (D)o acts on Ap (D). The Heisenberg group (D), a non-
Abelian central extension of T(2,4) by C*, acts on P’ ([BL, Section 6.6]). This action
is induced by an irreducible representation (called the Schrédinger representation) of
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H (D) on the vector space V (2, 4) of complex valued functions on the subgroup K of
T(2,4) ([BL, Section 6.7])

pp:H(D) — GL(V(2,4)).

In [B, Section 2.1]) the action of generators of H(D) on PV (2,4) = P7 are given
explicitly. The linear map 7€ GL(V(2,4)) that sends the delta functions §; — §_;
(I € K) is also introduced there (cf. Sections 3.1, 3.2).

The normalizer of the Heisenberg group (in the Schrédinger representation) is, by
definition, the group

N(3((D)) = {y € Aut(PV(2,4)) : ypp(3(D))y™"  pp(H(D))}.
The group N(H (D)) maps onto Sp(T(2,4)) with kernel isomorphic to T(2,4). The
elements in this kernel are obtained as interior automorphisms: y = pp(h), for some
h € H(D). Explicit generators of N(H (D)) are given in [B, Table 8] (but there seem
to be some misprints in the action of the generators on 3 (D) in the lower left corner
of that table). Let N(JH (D)), be the subgroup of N(H (D)) of elements that com-
mute with 7. The group N(H (D)), is an extension of Sp(T(2,4)) by the 2-torsion
subgroup (isomorphic to (Z/2Z)*) of T(2,4) and | N(H(D)), = 2"3%
We need the following result.

Proposition 2.2 There is an isomorphismy : Gp/Gp(D)o 2 N(H(D))2, M' = yyr
such that the map V|, is equivariant for the action of these groups. So if we denote by y
the composition

7:Tp/Tp(D)o — Gp/Gp(D)o - N(H(D)),
then Y, (M * 7) = Yyyp(7), where = denotes the action of T (D) on H,.

Proof Let L, =L(H, yo) be theline bundle on A, := C*/(Z*(Q.) that has Hermit-
ian form H with E, = ImH (so it defines a polarization of type (1,2)) and the quasi-
character o is as in [BL, 3.1, Formula (3)] for the decomposition A = Z?1 @ Z*A,.
According to [BL, Remark 8.5.3d], the theta functions 9[}](v, ) are a basis of the
vector space of classical theta functions for the line bundle £22. As y, takes values in
{+1} onehas £&% = L(2H, y3 = 1), so it is the unique line bundle with first Chern class
2E, and trivial quasi-character. Thus if M € Gp and 7’ = M ; 7, then ¢},£%* = L2,
where ¢ Ay — Ay, is the isomorphism defined by M. Notice that £, and £%?
are symmetric line bundles ([BL, Corollary 2.3.7]).

Let G(£%?) be the theta group ([BL, Section 6.1]); it has an irreducible linear rep-
resentation p on H°(A,,, £8%) ([BL, Section 6.4]).

A theta structure b: G(£2?) — H(D) is an isomorphism of groups that is the iden-
tity on their subgroups C*. A theta structure b defines an isomorphism f;, unique
up to scalar multiple ([BL, Section 6.7]), which intertwines the actions of G(£#®?) and
H(D):

Bo:HO(Ar2, £32) — V(2,4),  Bup(g) = po(b())By (Vg e G(LE?)).
A symmetric theta structure ([BL, Section 6.9]) is a theta structure that is compatible
with the action of (1) € End(A- ;) on the symmetric line bundle £#? and the map
Te GL(V(2,4)) defined in [B, Section 2.1].
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For 7 € H,, define an isomorphism B,: H(A;,, £L9?) — V(2,4) by sending the
basis vectors 9[}](v, 7) to the delta functions &; for I € K. From the explicit transfor-
mation formulas for the theta functions under translations by pointsin A, ,, one finds
that for g € G(£%®?) the map B.p(g)3;" acts as an element, which we denote by b (g),
of the Heisenberg group (D) acting on V(2,4). Thismap b = b,: G(£L2?) - H(D)
is a theta structure and 8,p(g) = pp(b.(g))B+; moreover, it is symmetric, since
0lo](-v,7) = 05" (v 7).

For M € Gp and 7" = M =, T we have an isomorphism f,- and the composition
yu = Brdi Bt € GL(V(2,4)) is an element of N(H), since ¢}, induces an isomor-
phism §(£%?) - G(£%?). In fact yp € N(H),, since the theta structures 3, f, are
symmetric and ¢ commutes with (-1) on the abelian varieties.

From [BL, Proposition 6.9.4] it follows that the group generated by the y,s is
contained in an extension of Sp(T(2,4)) by (Z/2Z)*. The map M + yy ¢
Aut(P(V(2,4)) is thus a (projective) representation of Gp whose image is contained
in N(J), and which, by construction, is equivariant for y,,. Unwinding the vari-
ous definitions, we have shown that y,; maps the point (... : 8[}](v,7) : ---) to the
point (...: 0[}]((Ct+ D)v, M %, 7) : ---), where M has block form 4, ..., D. From
the classical theory of transformations of theta functions (as in [BL, Section 8.6]) one
now deduces that M ~ y,, provides the desired isomorphism of groups. Notice that
the element —I € Gp, which acts trivially on H,, maps to 7 e N(H(D)),, which acts
trivially on the subspace P° ¢ P7 of even theta functions. |

3 A Projective Model of a Shimura Curve
3.1 Barth’s Variety M, 4

We choose projective coordinates xy, .. ., xg on P = PV(2,4) asin [B, §2.1]. The map
Te Aut(P7) is then given by

T(x)=(x1:x2:%3:X4: X5 : X6 : —X7 : —Xg).

It has two eigenspaces that correspond to the even and odd theta functions. The image
of ¥, lies in the subspace P° = PV(2,4), of even functions that is defined by x; =
xg = 0. We use x1, . . ., X¢ as coordinates on this P°. Let

fi = —x7X5 + X3x0 + X2XE, fri= —(x] +x3) + X5 + X + X5 + X
Then Barth’s variety of theta-null values is defined as ([B, (3.9)])
My = {xeP°: fi(x) = fo(x) = 0}.

The image of ¥, (H, ) is a quasi-projective variety, and the closure of its image is M, 4.

3.2 The Heisenberg Group Action

Recall that T(2,4) = Z*D™'/Z* and let 01,05, 71,72 € T(2,4) be the images of
e1/2,e2/4, e3/2, e4/4. We denote certain lifts of the generators oy, ..., 1, of T(2,4)
to H(D) by Gy, ...,7,. These lifts act, in the Schrédinger representation, on P7 =
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PV(2,4) as follows (see [B, Table 1]):

a1(x) = (x2: 1= 47 X3'Xe: X5 Xg:t x7),
02 (x )=(x3: 11 X2iX7: Xgi—X5i—Xg),
Tl(x) (x1 xz X3i—X4:X5i—Xg: X7:—Xg),
T(x) = (xs Xetixzt iXgi X1t XptiX3iiXy),
where x = (x1:...:x3) € P7 and i® = -1. For anyg (a,b,c,d) € T(2,4) one then
~d

finds the action of alift ¢ of g by defining g:= 0} ---75.

Proposition 3.1  Let ji3 on P’ be the projective transformation defined as

Uz x —>
(x3—ixg : x3+ixg (x5—(Px6 1 (x5+(P K6 X1—ix : x1+1Xy : Coy+lxg 2 Coy—xg),
where { is a primitive 8-th root of unity (so {* =-Vandi:= = (2. Then 3 € N(H (D)),

and with My as in Section 1.2 we have Yy, = hiish™" for some h € ker(N(H(D)), —
Sp(T(2,4)).

Proof 'The map Mj:Z* — Z* from Section 1.2 induces the (symplectic) automor-
phism M3 of T(2,4) given by (recall that we used row vectors, so for example e4 M3 =
—e, — eq4 and thus 7, = -0y — 73)
o> —-01—-T1, O+—>T3 T1+—>0, T3> -0~ 1.
Now one verifies that, as maps on C?, one has
WA =0T, o =T, B =0, BhE =005

Hence, fi; € Aut(P) isin the normalizer N () and itis alift of M3 € Sp(T(2,4)).
One easily verifies that it commutes with the action of 7on P?, so i3 € N(H),.
Any other lift of M3 to Aut(P7) t%lat commutes with 7'is of the form gp3 for some
g € T(2,4) with 2g = 0. Since M5 + M3 + I = 0, the map h — (M; + I)h is an iso-
morphism on the two-torsion points in T(2,4). Thus there is an h € T(2,4), with
2h =0, such that g = (M3 + I)h. As izh;" = k, where k = M3h and thus k = g + h,
it follows that hgizh™' = giis. [ |

3.3 Fixed Points and Eigenspaces

The map v/, is equivariant for the actions of I'p and N (J(),. Hence the fixed points of
Mj3 in H,, which parametrize allelian surfaces with quaternionic multiplication, map
to the fixed points of Y, = hjis h~'in P7. Conjugating M3 by an element N € T such
thatJy = & (asin Proposmon 3.1), we obtain an element of order three M} € T'p whose
fixed point locus H, M3 also consists of period matrices of Abelian surfaces with QM

by Og and the image 1//D(H2 3) consists of fixed points of 5. The following lemma
identifies this fixed point set.

Theorem 3.2 Let Py,  P° be the projective line parametrized by

Pl—;>P1QM> (X:y)'_)p(x:)') = (\/Exi\/i}“xﬂ“i(x_}’)’x_iy:x”y)'
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Then Pb m © Ma 4 is a Shimura curve that parametrizes Abelian surfaces with QM by
O, the maximal order in the quaternion algebra of discriminant 6.
The following two elements v, v, € N(H(D))a,

M(x) = (x5+x6, —X5+X6, ((x3-%4), ((X3+x4), X1+%2, X1—X2, ((—X7+x5), {(x7+X5))

V2 (x) = (x4, —x3, P xg, Cixs, iy, —ixa, 7, Cxg),
restrict to maps in Aut(Py,, ) which generate a subgroup isomorphic to the symmetric
group Sy c Aut(Pg,).

Proof The subspace P® is mapped into itself by #i3. The restriction p3 of i3 to P° has
three eigenspaces on C°, each 2-dimensional. The eigenspace of 3 with eigenvalue
V2 := { + {7 is the only eigenspace whose projectivization PIQ  is contained in M, 4.

Thus (H;M;) c PIQ w and we have equality since the locus of Abelian surfaces with
QM by O¢ in Ap(D) (in fact in any level moduli space) is known to be a compact
Riemann surface.

The maps v, v, commute with Tand moreover:

~e ]~ ] 2
V101V, = —01T>, V102V, =10102 T2,
~ ]~ ]y
LoV, = -T1Ts V02V, = (010272,
~me] 2 ] B~
VTV, = =05 711, TV, = (01051172,
~ ] 2D ~~ ] _~=3
V2T1Vy, = —010, T, VaTaV, =T1T5,

hence they are in N(J),. The maps vy, v, have order 4 and 3 respectively in Aut(P”)
and map Py, into itself. In fact, the induced action on P, is:

ViP(xy) = Pri(xy)  With vi(xiy) = (xeiy), valx:y) = (i(x-y) s =(x+y)).

We verified that v;, v, € Aut(P') generate a subgroup which is isomorphic to the
symmetric group Sy (to obtain this isomorphism, one may use the action of the v; on
the four irreducible factors in Q({)[x, y] of the polynomial gg defined in Corollary
3.3). |

Corollary 3.3 The images in Py under the parametrization given in Proposition 3.2
of the zeroes of the polynomials
g6 = xy(x* %), g5 1= x° +14xtyt 4 )8, gz 1= x12-33x% % 33x%y8 4 12,
are the orbits of the points in PbM with a non-trivial stabilizer in S4. Moreover, the
rational function

Gi=gs/gs: Pom — P =Poy/Ss
defines the quotient map by Sy.

Proof A nontrivial element ¢ in S4 ¢ Aut(P{,,,) has two fixed points, correspond-

ing to the eigenlines of any lift of o to GL(2, C). The fixed points of o* are the same
as those of o whenever o* is not the identity on P{, ;- One now easily verifies that the
fixed points of cycles of order 3, 4, 2 are the zeroes of g, gs, g12, respectively.
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The quotient map Pp,,, — Pb w/S4 = P! has degree 24. The rational function
G := g¢/g; is Sy-invariant and defines a map of degree 24 from P{,,, to P!, hence the
quotient map is given by G. ]

4 The Principal Polarization
4.1 Introduction

In the previous section we considered Abelian surfaces whose endomorphism ring
contains Og endowed with a (1, 2)-polarization. Rotger proved that an Abelian sur-
face whose endomorphism ring is O¢ admits a unique principal polarization [R, sec-
tion 7]. As such a surface is simple, it is the Jacobian of a genus two curve. The Abel-
Jacobi image of the genus two curve provides the principal polarization. In this sec-
tion we find the image of such a curve in the Kummer surface. This allows us to relate
these genus two curves to the ones described by Hashimoto and Murabayashi [HM]
in Section 4.6.

Moreover, we also find an explicit projective model of a surface in the moduli space
M, 4 that parametrizes (2, 4)-polarized Abelian surfaces whose endomorphism ring
contains Z[+/2]; see Section 4.8.

4.2 Polarizations

To explain how we found genus two curves in the (2,4)-polarized Kummer surfaces
parametrized by PlQ - it is convenient to first consider the Jacobian A = Pic’(C) of
one of the genus two curves given in [HM, Theorem 1.3]. In [HM, Section 3.1] one
finds an explicit description of the principal polarization E and the maximal order O¢
of

(=6,2)
a

The element 7 := (=1+ i)/2 + k/4 € O has order three, n* = 1 (with i* = -6, j* =
2,k = ij = —ji). We use the same notation for the endomorphism defined by this
element. Then #*E is again a principal polarization, and we obtain a polarization E’
that is invariant under # as follows:

End(A) = B¢ =

E':=E+y*E+(4*)"E, with  E(a, B) := Tr(-iaf’)

(here we identify the lattice in C* defining A with O and 8 ~ f’ is the canonical
involution on Bg). An explicit computation shows that E' = 3E” and that E” defines
a polarization of type (1,2) on A and 4*E"” = E".

Considering E as a class in H?(A,Z), one has E? = 2, since E is a principal po-
larization. As # is an automorphism of A, we also get (#*E)* = ((#*)*E)? = 2 and
E-(n*E) = (4*E) - ((#*)*)E = ((y*)*)E - E. Then one finds that (E')> =6 +2-3-
E-(#*E) and as E’ defines a polarization of type (3,6) we have (E')? =2-3-6 = 36,
hence E - (#*E) = 5. Moreover, one finds that

E-E'=E-(E+n*E+(n*)"E)[3=(2+5+5)/3=4.
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Identify the Jacobian of the genus two curve C with Pic’(C) = A and identify C
with its image under the Abel-Jacobi map C — Pic’(C), p = p — po, where py is
a Weierstrass point. If the hyperelliptic involution interchanges the points g, 4" € C,
then g + q’ and 2py are linearly equivalent and thus g — po = —(q' — po). Hence the
curve C c Pic’(C) is symmetric: (-1)*C = C. If py,..., ps are the other Weierstrass
points of C, then 2p; is linearly equivalent to 2pg, hence the five points p;—po € C c A,
i=1,...,5 are points of order two in A.

Now let £ be a symmetric line bundle on A defining the (1, 2)-polarization E” on
A. As E - E" = 4, the restriction of £ to C has degree 4, and thus L2 restricts to a
degree 8 line bundle on C. The map given by the even sections H°(A, £®?), defines
a 2:1 map from A onto the Kummer surface A/ +1 of A in P°. As (2E”)? = 16, this
Kummer surface has degree 16/2 = 8. In fact, Barth shows that the Kummer surface
is the complete intersection of three quadrics; see Section 4.3. The symmetry of C
implies that this image is a rational curve and the degree of the image of C is four. But
a rational curve of degree four in a projective space spans at most a P*. Moreover, this
P* contains at least six of the nodes (the images of the two-torsion points of A) of the
Kummer surface that lie on C.

It should be noticed that any (2, 4)-polarized Kummer surface in P> contains sub-
sets of four nodes that span only a P? (cf. [GS, Lemma 5.3]), these subsets must be
avoided to find C.

Conversely, given a rational quartic curve on the Kummer surface which passes
through exactly 6 nodes, its inverse image in the Abelian surface will be a genus two
curve C. In fact, the general A is simple, hence there are no non-constant maps from
a curve of genus at most one to A. The adjunction formula on A shows that C? = 2,
hence C defines a principal polarization on A. Rotger [R, Section 6] proved that an
Abelian surface A with End(A) = O has a unique principal polarization up to iso-
morphism. Thus C must be a member of the family of genus two curves in given in
[HM, Theorem 1.3]. We summarize the results in this section in the following propo-
sition. In Proposition 4.2 we determine the curve from [HM] which is isomorphic to
C = C, on the Abelian surface defined by x € Pf, ;.

Proposition 4.1  Let A be an Abelian surface with O¢ ¢ End(A). Then A has a

(unique up to isomorphism) principal polarization defined by a genus 2 curve C c A

that is isomorphic to a curve from the family in [HM, Theorem 1.3] (see Section 4.6).
There is an automorphism of order three y € Aut(A) such that

C+n*C+(#*)*C=3E"

defines a polarization of type (3, 6). Let L be a symmetric line bundle with ¢;(£) = E”.
Then the image of C, symmetrically embedded in A, under the map A — P° defined by
the subspace H (A, £L®?%),, is a rational curve of degree four that passes through exactly
six nodes of the Kummer surface of A which lie in a hyperplane in P°.

Conversely, the inverse image in A of a rational curve that passes through exactly six
nodes of the Kummer surface of A is a genus two curve that defines a principal polar-
ization on A.
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4.3 A Reducible Hyperplane Section

Now we give a hyperplane H, c P° that cuts the Kummer surface K, for x € P(,,, in
two rational curves of degree four, the curves intersect in six points that are nodes of

K,.

A general point x = (x; : ... : X¢) € My 4 c P defines a (2, 4)-polarized Kum-
mer surface K, that is the complete intersection of the following three quadrics in
Xl, e X6Z

g = (0 +x3) (X7 + X7) = (23 + %) (X5 + X3) - (x5 + x5) (X5 + X),
42 = (67 = x5) (X7 = X3) = (x5 —x§) (X3 - X4)? = (x3 - x3) (X2 - X3),
q3 = x1%2X1 X — x3x4 X3 Xy — x5%6 X5 X,

[B, Proposition 4.6]. We used the formulas from [B, p. 68] to replace the A;, y; by
the x;, but notice that the factors 2’ in the formulas for A;y; should be omitted, so
My = x3 + xj etc. The 16 nodes of the Kummer surface are the orbit of x under the
action of T(2,4)[2]; that is, it is the set

Nodes(Ky) = {papea = (G0 & TN (x);  a,b,c,d e {0,1}},
cf. Section 3.2. We considered the following six nodes:

Po,0,0,00  Po,0,1,1>  Po,1,0,00 P0,1,1,00 P1,1,1,00 P1,1,1,1-

For general x € Py, one finds that these six nodes span only a hyperplane Hy in P°.

Using Magma we found that over the quadratic extension of the function field
Q({)(u) of Py, (where {* = —1and u = x/y) defined by w? = u® + 14u* + 1, the
intersection of H, and K, is reducible and consists of two rational curves of degree
four, meeting in the 6 nodes.

We parametrize H, by t;po,0,0,0 + -+ + t5p1,1,1,0. Then Magma shows that the ra-
tional function t,/ts restricted to each of the two components is a generator of the
function field of each of the two components. Thus t,/ts provides a coordinate on
each component and, for each component, we computed the value (in P! = Cu {c0})
of the coordinate in the 6 nodes. The genus two curve C = Cy is the double cover of
P! branched in these six points.

4.4 Invariants of Genus Two Curves

A genus two curve over a field of characteristic 0 defines a homogeneous sextic
polynomial in two variables, uniquely determined up to the action of Aut(P'). In
[I, p. 620], Igusa defines invariants A, B, C, D of a sextic and defines further invari-
ants J;, i = 2,4, 6,10, as follows [I, pp. 621-622]:

Jo=27A, J4=2737'(4]; - B), Js =27°37%(8]; = 160],]4 — C), Jio =27 D.

In [I, Theorem 6], Igusa showed that the moduli space of genus two curves over
Spec(Z) is a (singular) affine scheme which can be embedded in the affine space
A3 Its restriction to Spec(Z[1/2]) can be embedded into A%[ ) using the functions

(L, p. 642])
Lhos Bl Blihes Blshoes Jdshes Ll Tl Tl -

1/2
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From this one finds that over Spec(Q) one can embed the moduli space into A%
using 8 functions i .. ., ig as above but with /5, ..., Jio replaced by 4, ..., D. In case
A # 0, one can use the three regular functions

j1:=A’/D,  j,:=A’B/D,  js:=A>C/D
to express iy, ..., ig as

v g Bliv o Bdsliv faliv o Bl Jil
Thus the open subset of the moduli space over Q where A # 0 can be embedded in
Af) using these three functions. In particular, two homogeneous sextic polynomials

£ g with complex coefficients and with A(f), A(g) # 0 define isomorphic genus two
curves over Cif and only if j; (f) = ji(g) for i =1,2,3 (see also [Me, CQ]).

4.5 Invariants of the Curve C,

With the Magma command “IgusaClebschInvariants” we computed the invariants for
each of the two genus curves that are the double covers of the two rational curves in
H, nK,. They turn out to be isomorphic as expected from Rotger’s uniqueness result.
We denote by C, the corresponding genus two curve. For the general x € PlQ w the
invariant A = A(C,) is nonzero and

55 (1-64G(x))°

(s (1-64G(x))’
G(x)3

jl(Cx) :_3 G(x)z >

) JZ(CX) :3

and
5 (1-64G(x))*(1-80G(x))
G(x)? '
Notice that the invariants are rational functions in the S;-invariant function G =
g6/8s on Pl as expected. Moreover, the j; (Cy ) actually determine G(x),

(i) -3
) = S0(hax)ja(0)) ~ 192

hence the classifying map from (an open subset of) P}) 1/ S4 to the moduli space of
genus two curves is a birational isomorphism onto its image.

j3(Cx) = 3%27

4.6 The Genus Two Curves from Hashimoto—Murabayashi

In [HM, Theorem 1.3], Hashimoto and Murabayashi determine an explicit family of
genus two curves C, ; whose Jacobians have quaternionic multiplication by the max-
imal order Og. They are parametrized by the elliptic curve

Enm:g(t,s) =4st> —s* + 2 +2=0.
Using the following rational functions on this curve:

_(1+2£2)(11-28¢% + 8t*)
T 3(1-2)(1-412)

P:=-2(s+t), R:=-2(s-t), Q:
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the genus two curve C;; corresponding to the point (s,t) € Egy is defined by the
Weierstrass equation

Coy: Y? = X(X* - PX’ + QX* - RX +1).

By the unicity result from [R, section 7] we know that this one parameter family of
genus two curves should be the same as the one parametrized by Py, . Indeed one
has the following proposition.

Proposition 4.2 The genus two curve C, defined by x € Pl is isomorphic to the
curve C ¢ if and only if G(x) = H(t) (so the isomorphism class of Cs,; does not depend
on s) where
_1)2 2042 4
H(t) = 4(t-1)*(t+1)*(* +1/2)
27((1-2t)(1+2¢))3

Proof This follows from a direct Magma computation of the invariants j; for the
Cs,t. In particular, the classifying map of the Hashimoto-Murabayashi family has
degree 12 on the t-line (and degree 6 on the u := t*-line), and this degree six cover is
not Galois. ]

4.7 Special Points

In Section 3.2 we observed that S4 acts on Pb  and has three orbits that have less then
24 elements. They are the zeroes of the polynomials g;, of degree d, with d = 6, 8, 12.
In case d = 12 one finds that for example x = ( is a zero of g1,. The invariants j;(Cy)
are the same as the invariants of the curve Cs , from [HM] with (¢,s) = (0,/2). In
[HM, Example 1.5] one finds that the Jacobian of this curve is isogenous to a product
of two elliptic curves with complex multiplication by Z[v/~6].

In case d = 6, 8 one finds that the invariants j;(C, ) are infinite, hence these points
do not correspond to Jacobians of genus two curves but to products of two elliptic
curves (with the product polarization). In case gs(x) = 0 one finds that the inter-
section of the plane H, with the Kummer surface K, consists of four conics, each of
which passes through four nodes (and there are now 8 nodes in H, N K ). The inverse
image of each conic in the Abelian surface A, is an elliptic curve that is isomorphic
to E4 := C/Z[i], and one finds that A, 2 E4 x E4, but the (1,2) polarization is not
the product polarization. The point (,s) = (v/=2/2,\/2/2) € Exy defines the same
point in the Shimura curve P(,,,/S4 as the zeroes of gs. It corresponds to the degen-
erate curve C; s in [HM, Example 1.4], which has a normalization that is isomorphic
to E4.

In case d = 8 one has A, ¥ E; x E3 and, with the (1, 2)-polarization, it is the
surface A3 that we defined in Section 1.2. According to [B, Theorem 4.9] a point
X € M, 4 defines an Abelian surface A, if and only if r(x) # 0 where r = ripr13723
is defined in [B, Proposition 3.2] (the rjx are polynomials in A, 4} and these again
can be represented by polynomials in the x;, see [B, p. 68]. One can choose these
polynomials as follows:

i = —47’13 = —41’23 = 16(x1x6 — xzxs)(x1x6 + Xsz)(xl.XS — XZX6)(X1X5 + xZX6),
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and thus r = 16r3,. Restricting r to Pb u and pulling back along the parametrization
to P!, one finds that r = cgs, where gg is as in Section 3.2 and c is a non-zero constant.
More generally, we have the following result.

Proposition 4.3  The image of the period matrices T € H, with 11 = 151 = 0 in
M, 4 c P is the intersection of My 4 with the Segre threefold, which is the image of the
map

S1.2:P' x P’ — P°, ((uo tuy), (wo :wl,wz)) — (x1:...:%6),
where the coordinate functions are

X1 = UgWo, X3 = UgW1, X5 = UoW2,
X2 = WWo, Xg4 =UW1, Xe = UW3.

The image of Sy, intersects PlQ w intwo points that are zeroes of gs. Moreovet, the surface
S1,2(P' x P?) n M, 4 is an irreducible component of (r = 0) N M, 4.

Proof If 7 = 75 = 0, then by looking at the Fourier series that define the theta
constants, one finds that 9[22](7) = 9[2¢](711)9[2](722). The definition of the x;’s
in terms of the standard delta functions in V(2,4), u,v,, = 9[8](z) with (a,b) =
(n/2,m/4) ([B, p.53]), then shows that the map H, — P restricted to these period
matrices is the composition of the map

H, xH;, — P! x P?
(11, 72) — ((OL0)(71) = 9[5(7)),
(9061(72) + 9[51(%2) : 8[§](2) + O[51 (%) : 051 (72) - 6[51(72)))

with the Segre map as above and a, b, ¢ =1/4,1/2,3/4, respectively.

The ideal of the image of Sy, is generated by three quadrics. Restricting these to
Pg; one finds that the intersection of the image with Pf, , is defined by the quadratic
polynomial x? + ({* —=1)xy + {*y*, which is a factor of gg.

The factor x;x6 — x5 of r is in the ideal of S , (P! x P?), hence this surface is an
irreducible component of (r = 0) N M, 4. ]

Remark 4.4 The intersection of the image of S;, with M, 4, which is defined by
fi = f2 = 0 (¢f. Section 3.1), is the image of the surface

P xCp, (cP'xP?),  Cp:wi-wi-wi=o.

The curves P! and Cr here are both elliptic modular curves (defined by the totally
symmetric theta structures associated with the divisors 20 and 40, where O is the
origin of the elliptic curve).

4.8 A Humbert Surface

In Section 4.3 we considered six nodes of the Kummer surface Ky,

P0,0,0,0> 0,0,1,1> - - - > P1,1,1,1>
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which had the property that for a general x € P{,,, these six nodes span only a hy-
perplane in P°. For general x € M, 4; however, these nodes do span all of P°. They
span at most a hyperplane if the determinant F of the 6 x 6 matrix whose rows are the
homogeneous coordinates of the nodes, is equal to zero.

X1 X2 X3 X4 X5 Xg
—X2 X1 X4 X3 Xg —X5
—X2 X1 X4 X3 Xe —Xs

X1 —X2 X3 X4 —X5 Xg

X1 X2 X3 X4 —X5 —Xg

X1 —X2 =X3 X4 X5 —Xg

F =det = 16(X X3 X5X6 + -+ — X3X2X5Xg ).

Then F is a homogeneous polynomial of degree six in the coordinates of x that has 8

terms. Let D be the divisor in M, 4 defined by F = 0, then Pb u 1s contained in (the
support of) Dr. Magma shows that D has 12 irreducible components. The only one
of these that contains Py, is the surface S, c P° defined by

. 2_,2_,2_ .2 _ 2 _ 2.2 _
St X{ — X5 — X5 — X =X1X2 — Xj — Xs5Xe = X3 — Xj — 2X5%¢ = 0.

Magma verified that S, is a smooth surface, hence it is a K3 surface.

Proposition 4.5  The surface S, ¢ M, 4 parametrizes Abelian surfaces A with

Z[\/2] c End(A).

Proof For a general point x in S,, the hyperplane spanned by the six nodes inter-
sects K, in a one-dimensional subscheme that is the complete intersection of three
quadrics and that has six nodes. The arithmetic genus of a smooth complete intersec-
tion of three quadrics in H, = P* is only five, hence this subscheme must be reducible.
In the case x € Py, this subscheme is the union of two smooth rational curves of
degree four intersecting transversally in the six nodes. Thus, for general x € S5, the
intersection must also consist of two such rational curves. Let C c A, be the genus
two curve in the Abelian surface A, defined by x that is the inverse image of one of
these components. Then C? = 2and C-£ = 4, where £ defines the (1, 2)-polarization.
Now we apply [BL, Proposition 5.2.3] to the endomorphism f = ¢ ¢ of A, defined
by these polarizations. We find that the characteristic polynomial of f is t* — 4t + 2.
As its roots are 2 + \/2, we conclude that Z[\/2] c End(A,). |

Acknowledgments We are indebted to Igor Dolgachev, Alice Garbagnati, and Shu-
ang Yan for stimulating discussions.
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