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1. Introduction

The isomorphism problem for finite groups of odd order and nilpotency
class 2 with cyclic centre will be solved using some results of Brady [1], [2].
Since a finite nilpotent group is the direct product of its Sylow subgroups, we
only need to consider finite ^-groups where q is a prime. It has been shown in [1]
and [2] that a finite q-group of nilpotency class 2 with cyclic centre is a central
product either of two-generator subgroups with cyclic centre or of two-generator
subgroups with cyclic centre and a cyclic subgroup, and that the g-groups of
class 2 on two generators with cyclic centre comprise the following list:

Q(n,r)(2r ^ n): <a,fc: a4" = b* = 1, fl*"~P= [a,

Q(n,r)(r £ n < 2r): <a,fc: a«" = b* = 1, a* = \a,bY

and if q = 2 we have as well

n):<a,ft:a2" + ' = fc2"+1= 1, a2" = [a.fc]2"" = b2",

We shall also use the notation Q(n, 0) for the cyclic group of order q", n > 0.
For the definition of a central product, see [3]. A central product of the Q(n, r)
and i?(n) depends, of course, on the way the common subgroup is amalgamated.
However, Brady [1] has shown that all central products with cyclic centre of a
given finite set of the Q{n, r) and R{n) are, in fact, isomorphic.

In the next two sections, we shall assume that q is odd and show that while
a g-group of class 2 with cyclic centre may have many decompositions as a central
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[2] Nilpotent groups 143

product of centrally indecomposable factors, there is a canonic type of decompo-
sition to which an analogue of the KruU-Schmidt Theorem for direct products
applies. Our results should be compared with those in [4], [5] and [6].

This work forms part of my Ph. D. thesis submitted to the Australian National
University. I thank my supervisor, Dr. R. A. Bryce, for suggesting the problem
and his guidance and supervision.

2. The canonic decomposition

Henceforth Q(tii,r1)'-Q(nnra) will always denote the central product with
cyclic centre of the Q(nhr^, i = 1,---.a. We say that the elements a, b are
canonic generators of Q(n, r), r > 0, if they generate Q(n, r) and satisfy the
denning relations in the preceding section. We also say that the elements ab bh

i = 1, •••,(*, are canonic generators of Qin^rj)--- Q(ntt,rJ, where rt > 0,
i = l ,"- ,a, if ah bt are canonic generators of Q(nhr^, i = 1,--.a. We say that
Q{n, r) is of Type I or of Type 11 according as 2r ^ n or 2r > n.

We first investigate the different ways a finite g-group of class 2 with cyclic
centre decomposes.

LEMMA 2.1. 6(«i , r 1)Q(«2 ,r2) = Q(n1,r1)Q(r2,r2) if either n^ ^ n2 and
0 < rt ^ r2, or ny ^ n2, n^ — rt ^ n2 — r2 and rx > r2 > 0.

PROOF. We consider the first case only; the second is similar. Let

First we show that canonic generators a,, bt of Q(nh r,), i = 1,2, may be chosen
such that

(1) flf-'^-flf,

(2) [fli,6i] = [«2.*2]<ri"'1.

(i) l ^ r . g r ^ [ inj ^ QnJ.

Both Q(«j, r ^ and Q(n2, r2) are of Type I, so that Z(Q(nt, r,)) = <af'>, i = 1,2.
Moreover, «x - r t ^ «2 - r2 since nx — n2 ^ 0 ^ rx — r2. Thus,

The amalgamation may be chosen to give af2 = afl "2 '2. Since

r t + r2 ^
we have
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(ii) [1«2] ^ [ in t] < rx ^ r2 ^ n2 ^ nv

Both e("i,'-1) and Q(n2,r2) are of Type II, so that Z(Q(nbr,)) =
i = 1,2. The amalgamation may be given by

Since rx + r2 > 2[^nx] ^ nt — 1 ^ n2 — 1, we have

= ([fli, fel]«
2ri-"y-"+rj-"j= a f ~"2+r2.

(iii) 1 ^ rx ^ [in,], [in2] < r2 ^ n2.

2(n i . r i ) is of Type I, and Q{n2,r2) is of Type II. The centres of Q(.nl,r1),
6(«2>r

2) a r e <flf'X <[«2. ̂ 2]> respectively. If nt — rt ^ r2, the amalgamation
may be given by af1 2 = [a2, b2\ so that

a\ = [a2,fc2]« = a\ , and [aub^\ = a\ = (af )•

However,if n^ — r t < r 2 , the amalgamation may be given by af = [aa'^'i]*'' ^ ">

so that a\ = ([o2,62]« )4 = a? , and [alt 6J = a*
/- orKoB»~2ri r i no's"''!

==(aj y = [a2,fc2p .
Hence the relations (1) and (2) are valid. Finally, put

^i = au yt = fetfel , x 2 = af a2
x , y 2 = b2.

Then [x2,y1] = 1, from relation (2). Hence <x1)>'1> and (x2,y2y centralize each
other. From relation (1), we deduce that <x2, >>2> s 6(r2,r2). Also, <x1

urd and G = (x^y^ • (x2,y2y. Therefore, G s Q(wi,r1)Q(r2,r2).

LEMMA 2.2. Q(nu0)Q(n2,r2) s g(n2)r2) j / n j ^ r2 or nx ^ n2 - r2.

PROOF. For, Q(nu0) = ZCQCn̂ O)) ^ Z(Q(«2,r2)).

LEMMA 2.3. e(n1,0)Q(n2,r2) s G(«i,0)Q(r2,r2) if n t ^ n2.

PROOF. Let QCnx, 0) = <ai>, and let a2, b2 be cannonic generators of Q{r2, r2).
The amalgamation may be given by af1 '2 = [a2, ft2]. Put x2 = af1 "2a2,
y 2 = b2. Then

<a1,a2,&2> =

where <«!> centralizes <x2)y2> s Q(n2,r2).

LEMMA 2.4. Q(n1( r J Q ^ , r2) ^ QCni.rJQCrj.rj) if rx ^ n2.
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PROOF. There is a q"2-cycle C ^ Z(Q(nurl)). Hence

Q(nuri)Q(n2,r2) = Qin^rJCQin^rJ s Q(»i,»1i)CQ(r2,r2)

= Q(«i,'-1)Q(r2)r2), by Lemma 2.3.

We can now give the canonic decomposition of a finite g-group of class 2
with cyclic centre when q is an odd prime. Its uniqueness will be proved in the
next section.

THEOREM 2.5. Let q be an odd prime. Then every finite q-group G of class 2
with cyclic centre has the central decomposition,

G s e(«l,'-i)"-Q(n«,oe(',o8'"-e(U)81,
where a ^ 0, Ej ^ 0, i = 1, •••, /,

«! > ••• >na>l,nai>r1> ••• > ra ^ 0, 0 < nx - rx < ••• < na - ra.

PROOF. We may suppose that G is non-trivial. Then by 2.1 and 2.2 of [2],
G has a decomposition as a central product of Q(n, r)'s which we arrange as

C) G s Q(n1 )r1)-Q(np,r | 5)e(fc,/c)X k"Q(l, l) l l
)

where n, ^ ••• ^ «„ > 0, n, > r, > 0 (1 g i ^ /? - 1), ne> r ^ 0, and where
Aj, - - -, Ak ^ 0, and At = 0 implies At = ••• = Xk^t = 0 also.

We prove by induction on j? that G has a decomposition of the type asserted.
The case fi = 0 is easy; so suppose P > 0 and that all groups with a decomposition
of the type (*) with fewer than /? factors of the form Q(n, r) with n > r do satisfy
the statement of the theorem.

First suppose there exists 1 ^ i ^ /? such that nt = nJ+1. Then, from Lemmas
2.1 or 2.3, we have

where r = min {?•<,>•,.,.!}, s = max{rj, r ( + 1 } .

Hence G has a decomposition with /? — 1 factors of the form Q(n, r) with n> r
and so, by induction, we are done. We may therefore suppose that

nx > ••• > nff > 0.

If, for some 1 ^ i g /?, either r{ ^ r f + 1 ;or r j > r j + 1 but n,- - r, ^ « i + 1 - ri+l,
then using Lemmas 2.1 or 2.2, we again give G a decomposition with fewer than /J
Q(n, r)'s with n > r. Hence we may suppose that

rx > ••• > re ^ 0, 0 < nt - rx < ••• < nfi - rfi.

Finally, if Xk # 0 and nfi ^ fc, then by Lemma 2.4,
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and we can again use induction. Hence we may suppose that nfi > k. And if
na ^ ru use Lemma 2.4 again. The induction is now complete.

3. Uniqueness of the canonic decomposition

In this section G and H will always denote finite g-groups of class 2 with
cyclic centre. We write G = G*G0 where G, = Q(n1,r1)"-Q(na,rcl) and
Go = Q0,I)" •••Q(1>1)£\ satisfying the conditions of the canonic decomposition
in Theorem 2.5. Note that G* = 1 if a = 0. Similar comments apply to the
notation H = H^H0. For any finite g-group A, we use the notations:

a'(A) = (xq':xeAy, i ^ 0,

d(A) = minimal number of generators of A.

For i jg 0, we define the numbers p£G) and cf(G) as follows:

if I2'(C/Z(O) ft l,/
\ 0 if n'(G/Z(G)) =

if
| 0 if

These numbers are clearly isomorphism invariants and will play an important
role in the proof of the uniqueness of the canonic decomposition. We can easily
calculate p;(G) from the following three lemmas.

LEMMA 3.1. Let GH be the central product of G and H with cyclic centre.
Then

Pi{GH) = pf(G) + p&H), i £ 0.

PROOF. Since the centre of GH is cyclic, we may assume that Z(G) ̂  Z(H).
If GH = G, then H g Z(G) and so H is cyclic. By definition, p,{H) = 0 and
hence pt(GH) = p^G) + p^H). Similarly when GH = H.

So assume that GH ^ G and GH # H. Then

a'(GHIZ(GH)) = C1\GIZ(G)). Q'(//Z(C7)/Z(G)).

We claim that n'(G/Z(G)) C\H\HZ{G)IZ{G)) = 1. For if x belongs to this inter-
section, then x = gq'Z(G) = hq'Z{G) for some geG, heH, and hence
hq'eGnH = Z(//) ̂  Z(G), and so Jc = 1. Also, HZ(G)/Z(G) s H//J nZ(G)
= HIZ(H). Since all the factor groups dealt with are abelian g-groups, we have
the required result.

LEMMA 3.2. For i ^ 0,j ^ 1,
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PROOF. This follows from Lemma 3.1 by an easy induction.

LEMMA 3.3.

if 0 ^ i < r,

PROOF. If r = 0, there is nothing to prove. So suppose r > 0. Let G = Q(n, r)

= <a,b>. Then, for 0 g i < r,

a"',bq' $Z(fi), and <a*'Z(G)> O <fc"'Z(G)> = 1,

so that
Q'(G/Z(G)) = <a«'Z(G)> x <&• 'Z(C)>.

However, for / ^ r, aql eZ(G) and 6*' = 1, and hence Q'(GIZ(G)) = 1.

The calculation of ff/G) is more complicated, and it is useful to introduce
the auxiliary constants <r,{G*), <7,(G0), i ^ 0, corresponding to each G, defined by:

(r , { c/(fi(Gjn(G)/n(G')) if Q'(GJfi'(G)/n(G) # 1,
ffA *; (0 if n\GJSl'(G')lil(G') = 1;

f rf(n'(G0)/fi'(G;)) if Q'(Go)/fi'(Go') # 1,
ffAOoJ-(o if fi'(G0)/Q'(Co) = 1;

their relevance is given by the next lemma.

LEMMA 3.4. For i ^ 0, at(G) = a£GJ + (7j(G0).

PROOF. The result is trivial if Go = 1. So suppose Go # 1. Write N = fi'(G'),
A = SlXGJNjN, B = C1\GO)NIN, so that fi'(G)/fi'(G') = AB.

We claim that A nB = 1. Let * = xN e Ar\ B and we may suppose x e fi'(G0).
Then x is central in G, and hence x e fi'(G0) i^ Z(G0). If we could show that

then x = 1. To do this, let

QUJ)" = <<*Jk, bJk: k = l, - , £ ; > , j = 1 , . . . . / ; et > 0.

Let J>EQ''(G0). Then

If j;eZ(G0), then commuting with ajk and bJk, we get 1 = [aJk, bikY
Jkql

= K*. M"'1*'- H e n c e 4J d i v i d e s ^ * « ' a n d tyrf'. a n d s o ^ = [«JI. ft/i]v*'e "'(Go)-
Therefore (*) is proved.

Finally., B ^ ill(G0) j Cl'(G0) r\ N, and it can be shown as in above that
£i'(G0) n iV = Q'(GQ). Since /IB is an abelian g-group, we have the lemma.
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We require a few preliminary results whose proofs are similar to that of

Lemma 2.1, so we omit them.

LEMMA 3.5. Let nl>n2>r1>r2> 0, «t — rt < n2 — r2. Then canonic gen-
erators ait bt, i = 1, 2, of Qln^r^Qin^r2) can be chosen such that

a\ = a%

LEMMA 3.6. Let n1>n2>r1>0, n1-r1<n2. Let Q(n2,0) = <a2>.
Then canonic generators au bt of$jiur^) can be chosen such that the following
relation holds in Q(n,,r,)Q(n2,0)

of = a\

In the rest of this section, we denote the canonic generators of G* = Q(n\,r^)
• Q(na,ra) by ah bh i = 1, -- .a . If ra = 0, we set ba = 1.

LEMMA 3.7. Let r ^ ni+1 — nt + rj( 1 ^ i < a. Then

PROOF. Let 1 ^ i < j ^ a. We have, by Lemmas 3.5 and 3.6, that the canonic
generators may be chosen so that af = afJ "' ". Since r ^ ni+1 — «f + rt

^ nj — ni + rt, we have

af = ar'""'J^r(.Q(.ni,ri)).
Also, r ^ n1+1 - nf + rt > ri+1 ^ ry- and hence bf = 1. Therefore £ir(Q(i;,'"j))

COROLLARY 3.8. Let r ^ ri+l, 0 ^ i < a. T/ien £2r(GJ =

PROOF. If i = a — 1, there is nothing to prove. If i < a — 1, then ri+1 > ni+2

— nf+1 + r f + 1 and the corollary follows from Lemma 3.7.

LEMMA 3.9. Let r k 0. If af * 1, then af fClr(G').

PROOF. G' = G* or G'o according as rt ^ / or rx < /. Hence | Qr(G') | = 1
or qm~T, where m = max{r1; 1], according as r ^ m or r < m.

If r ^ m, clearly af $Q.\G'). If r < m, suppose a fen r (G ' ) ; then
af = (af)qmr = 1, which is a contradiction since m < nh i = 1, •••,«. Hence

We can now calculate <r,-(G*), ffi(G0), i ^ 0.
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LEMMA 3.10.

2(e,+ - + 8r+1) if l>r ^ 0,
0 if r ^ /.

PROOF. Recall that Go = e(/,Q81 —G(l , l ) " , st g 0, i = 1, ••-,/. We may
assume that e, > 0. If r ^ /, then fir(G0) = 1 = £2r(Go) and hence ar(

Go) = °-
So suppose 0 ^ r < /. Write

Qi = Q(i,i)" = <Xipyij-J = 1,-,£,>, i = I , - , / -

Then fy(G0) = QT(Q, ••• QP+1), ^(CJo) = ^ ( 6 / ) - Write P, =
i = 1, •••,/. Clearly P,- = 1 for / ^ r. We now show that

We may suppose i > r. It is sufficient to prove that

Let x e fir(Q() n nr(Q,'), where

\y = i

Then x is central in Qt. Commuting with x y and yy, we have

Hence q' divides Ayq
r and \iflT and so x = [xi,,>'i(]

V9'enr(Qj). The opposite
inclusion is obvious.

Finally, we claim that for r <i £ I,

PtnPr"Pt+iPi-t-Pr+1 = 1.

For let y belong to this intersection, where we may assume that yeQ.r(Q,), so
that y is central in Qf. As in above, we see that yeCT(Q£), and hence y = 1.

It is clear that for r < i ^ /,

and hence d(Pt) = 2ef, i = r + 1, •••,/. Since

n'(C0)/nr(Gi) = P, x P , . ! x - x P r + 1 ,

we have the required result.

LEMMA 3.11. Let nt+1 — nt + rt g r < rf, 1 ^ i < a. T/ien

ff/G.) = 2i.
PROOF. By Lemma 3.7,
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Write

P = n'(G*)<y(G')/<y(G') = <af,Bf,-,ar,br>.

We claim that the set S = {df, bf, j = 1, •••,£} is a minimal set of generators
for P. If not, we can eliminate at least one element x from S. Suppose x = bf
for some 1 g j ^ i. Then x can be expressed in terms of the other generators,
and since Clr(G') ^ Z(G), we have 1 = [cij, bf~\ = [ay, b^f, which is impossible
as r < r, ^ r,-. Similarly if x = df for some 1 ^ j ^ i. Hence S is a minimal set.
Since P is an abelian q-group, we have d{P) = 2i.

LEMMA 3.12. Suppose rx>0. Let 0 ^ r < ra.

(7f(G J = 2a.

PROOF. This is similar to that of the preceding lemma.

LEMMA 3.13. Let ri+l ^ r < n j + 1 — nt + rit 0 ^ j < a , where we set

«o = ro = 0-
crXG,) = 2i + 1.

PROOF. By Corollary 3.8,

Write

We claim that the set S = {<?£•••,d^j.if ,---,bf} is a minimal set of generators
for P. If not, we can delete at least one element x from S. Suppose that x = df
or bf for some 1 g j ^ i. Then x can be expressed in terms of the other generators,
and since fi'(G') ^ Z{G), we have that [a,-, b,-]*' = 1 in either case. This is im-
possible since r < n,+ 1 — nt + r{ < r, ^ r,-. So suppose x = dflt. We then
proceed as follows. We would have

for some ceQr(G'). Commuting both sides with at and bj, 1 ^ j ^ i, we have

Hence q'' divides Aj-q' and Hjq", and so we can write

Then

By Lemmas 3.5 and 3.6, we may suppose that

a
rJ -ni+i— nj+'J
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Hence

where

Since r < nI + 1 — nt + r, < ••• < ni+l — nt + ru it follows that A is prime to q,
and hence af+l e£2r(G'), which contradicts Lemma 3.9 since a ? ^ # 1. Thus we
have proved the minimality of S, and so d(P) = 2i + 1.

We shall be concerned only with the parity of crr(G). This is given by

THEOREM 3.14. / / nf+1 - nt + rt ^ r < rh 1 S i < a, or i/ 0 S r < r ,

(vv/ien /•„ > 0), then or(G) is even.
If ri+i ^ r < "i+i — ni + rt, 0 ^ i < a, where we set n0 = r0 = 0,

<7r((/) is

PROOF. Since for all r g 0,

and <rr(G0) is even, by Lemmas 3.4 and 3.10, it follows that ar{G) an(* or(fi*) a r e

of the same parity. The theorem then follows from Lemmas 3.11, 3.12 and 3.13.

Since ffr(G), r ^ 0, are isomorphism invariants, the next lemma is clear.

LEMMA 3.15. / / G s H, then <7r(G) and ar(H) are of the same parity for
r^O.

We can now prove the uniqueness of the canonic decomposition of the
preceding section.

THEOREM 3.16. The canonic decomposition for finite q-groups of class 2
with cyclic centre (as given in Theorem 2.5) is unique up to isomorphism.

PROOF. Let G and H be non-trivial finite ^-groups of class 2 with cyclic
centre expressed in canonic decompositions

G = Q(n 1 , r 1 ) -e (»« , r B )e ( t0 1 1 — 0(1,1)'1 = G*GQ,

H = ftf^,sx)-fi(m,,s,)e(Jfc,fc)fa - e ( U ) * 1 = H*H0. It is trivial that G £ H
if a =/?, / = k, nt — mt and rt = st for i = 1, ---.a, and Si = 5f for i = 1, •••, Z.

So assume that G s f l .

Step 1. a = 0. In this case, G* = 1. Suppose p > 0. Then, by Lemma 3.10,
crSl(G) is even while, by Lemma 3.14, <7S1(#) is odd, contradicting Lemma 3.15.
Hence jS = 0.

We may then assume that e, > 0, dk > 0. Suppose l> k; then, by Lemmas 3.2
and 3.3,
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pk(G) = 2(e, + - + ek+1) > 0 = pk(H),

which is a contradiction since pk(G) is an isomorphism invariant. Hence / = k.
From the relations P;(G) = P,{H), i = 0,1, •••,/ — 1, we have

£( + ••• + £i = (5, + ••• + <51;

£, + — h e 2 = <5H 1-52)

e, = 5,.

Hence e, = 5h i = 1, ••-, I.

In the rest of this proof, we assume a > 0.

Step 2. We prove: nx = ml, rl = s t .
By Step 1, /? cannot be zero and so /? > 0. Clearly q"' = qm' = exponent of

G and hence nx = mj. If rt =£ su we may suppose rt > sv Then either ra > sx

or ry> sx ^ ry + 1 for some 1 g y < a. If ra > sls then by Theorem 3.14, <rsi(G)
is even and as,(H) is odd, contradicting Lemma 3.15. However, if ry > st ^ ry + 1

for some 1 ^ y < a, let s = max{n,,+ 1 — ny + fy, s j so that st ^ s < m ! and
nY+1 — n,, + ry g s < ry. Hence by Theorem 3.14, <r£(i/) is odd and CTS(G) is even,
again contradicting Lemma 3.15. Hence rl = s t .

Since we shall be referring frequently to Theorem 3.14 and Lemma 3.15 and
it is clear from the context that one or the other is being invoked, we shall, for
brevity, omit references to them.

Step 3. We prove: if n, = mt, r4 = s,, i = 1, --.v, where v < min{a,/}},
then «v + 1 = mv+1, rv + 1 = sv+1.

First we show that r v + 1 = sv+1. If not, assume that rv + 1 > sv+1.
Claim A: nv + 1 = mv+1.

Let M = nv + 1 - nv 4- rv, v = mv + 1 - mv + sv. Now s v > r v + ! > » „ + ! and
s v > y > s v + 1 . Either s v > r v + 1 ^ u or w > rv + 1 > sv+1. In the first case,
ffrv + ,(^) is even and c^^jCG) is odd: a contradiction. We must then have
sv > » > rv + 1 > sv+1, or r v > u > r v + 1 since rv = sv. Also, rv> u> rv+1. If
rv > v > u > rv+1, then au(G) is even and au(H) is odd: a contradiction. However,
if rv > u > v > rv+1, then <7,,(G) is odd and av{H) is even: a contradiction. Hence
u = v, and so nv + 1 = mv + 1.

Claim B: rA > sv + 1 ^ rA+1 for some v < A < a.
This is clear if ra = 0. So assume that ra > 0. If the claim is false, then ra> sv+i,
so that cSv+1(G) is even and <rSv+ t(H) is odd: a contradiction.

Finally, we show that Claim B leads to a contradiction. Let w = n i + 1 — nA + rx.
Then w < u = v for we have u — w = (nv + 1 — «A+I) + (nx ~ nv + rv ~ rx) > 0
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since v < 1. Now rx> w > rx+l and rk > sv+1 ^ rA+1. Either rx> sv + 1 ^ w or
w > sv+1 ^ r>+1. The first case implies that crSv+l(G) is even and <TSV+I(H) is odd.
The other case implies that ow{H) is odd and <JW(G) is even. Both cases lead to
contradictions. Hence we must have rv + 1 = sv+1.

To complete Step 3, we now prove that nv + 1 = mv+1. If not, assume that
nv + 1 > mv+1. Then, with u and v defined as in the proof of Claim A, we have
u> v> sv+1 = rv+1. Thus <JV{G) is odd and ov{H) is even: a contradiction.
Hence nv + 1 = mv+1.

Step 4. We prove: a = /?.
If not, assume that a > /?. By Step 3, we have nt = m;, r; = s; for i = 1, •••, /?.

Thus r^+1 < Sp, and hence (Tr̂  + 1(G) is odd and <rr/) + 1(H) is even: a contradiction.
Of course, if sfi = 0, then rp = 0 and so a must be equal to p.

At this point of the proof, we have a = j8, ni = m;, n = sf, i = 1, - , « , or

Step 5. We prove: I = k, et = 5, = i = 1, •••,/.
First we show that Go = 1 implies Ho = 1. For if i / 0 # 1, we may suppose

(5t > 0, and since G* ^ H+, we have by Lemma 3.1, po(Go) = po(Ho), and so
by Lemmas 3.2 and 3.3, 2(dk + ••• + dj) = 0, which is a contradiction. Hence

Ho = 1.
Lastly, we may assume that e, > 0, 8k> 0. As in Step 1, it is easily shown

that I = k, et = <5,, i = 1, •••, /. The proof is then complete.
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