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On level one cuspidal Bianchi modular forms

Alexander D. Rahm and Mehmet Haluk Şengün

Abstract

In this paper, we present the outcome of vast computer calculations, locating several of the very
rare instances of level one cuspidal Bianchi modular forms that are not lifts of elliptic modular
forms.

Introduction

Bianchi modular forms over an imaginary quadratic field K are automorphic forms of
cohomological type associated to the Q-algebraic group ResK/Q(SL2). Even though modern
studies of Bianchi modular forms go back to the mid 1960s, most of the fundamental problems
surrounding their theory are still wide open. In this paper, we report on our extensive
computations that show the paucity of genuine level one cuspidal Bianchi modular forms.

Let Sk(1) denote the space of level one weight k + 2 cuspidal Bianchi modular forms over
K = Q(

√
−d). In their recent paper [14], Finis, Grunewald and Tirao computed the dimension

of the subspace Lk(1) of Sk(1) which is formed by (twists of) those forms which arise from
elliptic cuspidal modular forms via base-change or arise from a quadratic extension of K via
automorphic induction (see [14] for these notions). In this paper, we investigate numerically
how much of Sk(1) is exhausted by Lk(1). There have been previous reports, however of limited
size, in the 2009 paper [8] of Calegari and Mazur (the computations in that paper were carried
out by Pollack and Stein) and in the 2010 paper [14] of Finis, Grunewald and Tirao. While
the computations in [8] were limited to the case d= 2, the computations in [14] covered ten
imaginary quadratic fields. The precise scope of the computations in [14] is given in Table 1
below.

It was observed in [8] that for 2k 6 96, one has L2k(1) = S2k(1). The computations of [14]
extended those of [8]. An interesting outcome of the data they collected is that, except
in two of the 946 spaces they computed, one has Lk(1) = Sk(1). The exceptional cases are
(d, k) = (7, 12) and (d, k) = (11, 10). In both cases, there is a two-dimensional complement to
Lk(1) inside Sk(1).

Using a different and more efficient approach, we computed, over more than 800 processor-
days, the dimension of 4986 different spaces Sk(1) over 186 different imaginary quadratic fields.
The precise scope of our computations is given in Tables 2 and 3, where D and h denote the
discriminant and the class number of K respectively. In only 29 of these spaces were we able to
observe genuine forms. The precise data about these exceptional cases is provided in Table 4.

Table 1. Finis–Grunewald–Tirao test range.

d 1 2 3 7 11 19 5 6 10 14

k 6 104 141 116 132 153 60 60 60 60 60
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In Section 2, we briefly discuss the conjectural connections between the spaces S0(1) and
Abelian varieties defined over K of GL2-type. In Section 3, we make some speculations in light
of the data we collect. In particular, we pose a question which can be seen as a Bianchi modular
forms analogue of Maeda’s conjecture. Finally in Section 4, we explain how we carried out our
computations. As usual, the starting point of our approach is the so called ‘Eichler–Shimura–
Harder’ isomorphism, which allows us to replace the calculation of Sk(1) by the calculation
of the cohomology of the relevant Bianchi group with special non-trivial coefficients. Then,
to compute this cohomology space, we use the program Bianchi.gp [23], which analyzes the
structure of the Bianchi group via its action on hyperbolic 3-space (which is isomorphic to
the associated symmetric space SL2(C)/SU2). We then feed this group-geometric information
into an equivariant spectral sequence that gives us an explicit description of the second degree
cohomology of the Bianchi group, with the relevant coefficients.

Table 2. The scope of our computations, part 1.

|D| 3 4 7 8 11 15 19 20 23 24 31

h 1 1 1 1 1 2 1 2 3 2 3

k 6 219 216 217 217 217 115 120 100 83 101 74

|D| 35 39 40 43 47 51 52 55 56 59 67
h 2 4 2 1 5 2 2 4 4 3 1

k 6 86 67 73 83 52 75 65 45 55 60 58

|D| 68 71 79 83 84 87 88 91 95 103 104
h 4 7 5 3 4 6 2 2 8 5 6

k 6 53 38 33 41 50 36 45 50 30 30 32

|D| 107 111 115 116 119 120 123 127 131 132 136

h 3 8 2 6 10 4 2 5 5 4 4
k 6 35 28 40 33 25 38 35 25 32 33 32

|D| 139 143 148 151 152 155 159 163 164 167 168

h 3 10 2 7 6 4 10 1 8 11 4

k 6 29 20 31 21 24 26 19 33 24 18 26

|D| 179 183 184 187 191 195 199 203 211 212 215
h 5 8 4 2 13 4 9 4 3 6 14

k 6 24 19 25 25 15 27 17 23 21 17 14

|D| 219 223 227 228 231 232 235 239 244 247 248
h 4 7 5 4 12 2 2 15 6 6 8

k 6 20 14 17 18 13 21 23 12 17 13 16

|D| 251 255 259 260 263 264 267 271 276 280 283

h 7 12 4 8 13 8 2 11 8 4 3
k 6 15 14 17 14 13 15 21 12 16 16 17

|D| 287 291 292 295 296 299 303 307 308 311 312

h 14 4 4 8 10 8 10 3 8 19 4

k 6 12 19 16 13 13 13 11 15 13 11 13

|D| 319 323 327 328 331 335 339 340 344 347 355
h 10 4 12 4 3 18 6 4 10 5 4
k 6 11 12 10 13 14 11 15 14 10 12 13

|D| 356 359 367 371 372 376 379 383 388 391 395
h 12 19 9 8 4 8 3 17 4 14 8

k 6 11 9 11 10 12 12 13 8 11 9 10

|D| 399 403 404 407 408 411 415 419 420 424 427

h 16 2 14 16 4 6 10 9 8 6 2
k 6 8 12 9 8 10 12 10 12 11 10 13
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1. Background

Let K be an imaginary quadratic field with ring of integers O. Let Γ be the Bianchi group
SL2(O). It is a discrete subgroup of the real Lie group SL2(C) and thus acts discontinuously on
hyperbolic 3-space. Let YΓ be the quotient hyperbolic 3-fold. The Borel–Serre compactification
XΓ of YΓ, see [31, appendix], is a compact 3-fold with boundary ∂XΓ and with interior
homeomorphic to YΓ. When the discriminant of K is smaller than −4, ∂XΓ consists of hK
disjoint 2-tori, where hK is the class number of K.

Given n> 0, let C[x, y]n denote the space of homogeneous polynomials of degree n on
variables x, y with complex coefficients; SL2(C) acts on this space in the obvious way permitted
by the two variables. Consider the SL2(C)-module

En := C[x, y]n ⊗C C[x, y]n,

where the overline on the second factor is to indicate that the action on this factor is twisted
with complex conjugation. When considered as a Γ-module, En gives rise to a locally constant

Table 3. The scope of our computations, part 2.

|D| 431 435 436 439 440 443 447 451 452

h 21 4 6 15 12 5 14 6 8

k 6 8 13 11 9 8 12 10 12 11

|D| 455 456 463 467 471 472 479 483 487
h 20 8 7 7 16 6 25 4 7

k 6 7 10 8 10 7 11 7 11 8

|D| 488 491 499 520 532 547 555 560 568

h 10 9 3 4 4 3 4 4 4
k 6 9 10 10 9 10 11 11 7 10

|D| 571 595 627 643 667 696 708 715 723

h 5 4 4 3 4 12 4 4 4
k 6 11 9 11 9 9 4 7 7 9

|D| 760 763 795 883 907 955 1003 1027 1051

h 4 4 4 3 3 4 4 4 5

k 6 7 7 7 6 7 6 6 5 5

|D| 1123 1227 1243 1387 1411 1507 1555 1723 1747
h 5 4 4 4 4 4 4 5 5

k 6 4 5 4 4 4 4 4 3 3

|D| 1867

h 5
k 6 3

Table 4. The cases where there are genuine classes.

|D| 7 11 71 87 91 155 199 223 231 339
k 12 10 1 2 6 4 1 0 4 1

dim 2 2 2 2 2 2 4 2 2 2

|D| 344 407 408 408 408 415 435 435 435 435
k 1 0 2 5 8 0 2 5 8 11

dim 2 2 2 2 2 2 2 2 2 2

|D| 455 483 571 571 643 760 1003 1003 1051

k 0 1 0 1 0 2 0 1 0
dim 2 2 2 2 2 2 2 2 2
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sheaf En on YΓ whose stalks are isomorphic to En. Consider the long exact sequence

. . .→Hi
c(YΓ; En)→Hi(XΓ; Ēn)→Hi(∂XΓ; Ēn)→ . . . ,

where Hi
c denotes the compactly supported cohomology and Ēn is a certain natural extension

of En to XΓ.
The cuspidal cohomology Hi

cusp is defined to be the image of the compactly supported
cohomology. The Eisenstein cohomology Hi

Eis is the complement of the cuspidal cohomology
inside Hi and it is isomorphic to the image of the restriction map inside the cohomology of the
boundary. The decomposition Hi =Hi

cusp ⊕Hi
Eis respects the Hecke action which is defined,

as usual, via correspondences on XΓ.
By construction, the embedding YΓ ↪→XΓ is a homotopy invariance. Together with the fact

that YΓ is a K(Γ, 1)-space, we get the isomorphisms

Hi(XΓ; Ēn)'Hi(YΓ; En)'Hi(Γ; En).

Via these isomorphisms, we define the cuspidal and Eisenstein parts of Hi(Γ; En).
Let Sn(1) denote the space of level one cuspidal Bianchi modular forms (over K) of weight

n+ 2. It is well known that

Sn(1)'H1
cusp(YΓ; En)'H2

cusp(YΓ; En)

as Hecke modules. Here the first isomorphism was established by Harder and the second follows
from duality, see [3].

In [14], a formula for the dimension of the space Ln(1) has been given for all fields K and
weights n. We will compare the dimension of Ln(1), which we obtain via that formula, with the
dimension of Sn(1), which we will obtain via our computer programs. The following proposition
will allow us to deduce the size of the cuspidal cohomology, and hence of Sn(1), once we have
computed the size of the whole cohomology. It is well known to specialists, however for the
convenience of the reader we include a proof of it.

Proposition 1. Let K be an imaginary quadratic field. Then in the above notation

dim H2
Eis(XΓ; Ēn) =

{
hK − 1 if n= 0,
hK otherwise,

where hK is the class number of K.

Proof. It is well known (see [17, Theorem 2.1]) that the map

H2(XΓ; Ēn)−→H2(∂XΓ; Ēn)

is surjective for n > 0 and its image has codimension one for n= 0.
Assume that the discriminant of K is less than −4, that is, K is not equal to Q(i) nor

Q(
√
−3). Then the boundary ∂XΓ is a disjoint union of 2-tori, indexed by the class group of K.

Below we prove that for every boundary component T of ∂XΓ, the dimension of H2(T ; Ēn)
is 1, which clearly yields our claim.

Let c ∈K ∪ {∞} be a cusp and let Γc be its stabilizer in Γ (which is a parabolic subgroup).
Then Γc is the fundamental group of the 2-torus Tc in ∂XΓ. In fact, Tc is a K(Γc, 1)-space.
Hence we can turn our attention to computing H2(Γc; En). Composition of the cup product
and the well-known perfect pairing (·, ·) : En ⊗C En→ C (see, for example, [4, § 2.4]) gives us
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a pairing as follows.

H0(Γc; En)×H2(Γc; En) ∪ // H2(Γc; En ⊗C En)

(·,·)
��

H2(Γc; C)' C

Here the last isomorphism follows from the fact that Tc is a compact 2-fold (see also [29,
Proof of Proposition 3.5] for a direct algebraic argument). Thus the dimension we are looking
for is equal to that of H0(Γc; En). Clearly, if n= 0, the latter dimension is one and thus the
dimension of H2(∂XΓ; Ēn) is hK , as desired.

Let us now assume that n 6= 0. Conjugation by a matrix in SL2(K) which takes c to the cusp
at infinity induces an isomorphism

Γc ' Γ∞ =
(
∗ ∗
0 ∗

)
⊂ SL2(OK).

Consider the normal subgroup Γ+
∞ :=

(
1 ∗
0 1

)
of Γ∞. Then Γ+

∞ is a free Abelian group on two

generators. We are now going to determine the submodule E
Γ+

∞
n of En invariant under its

action. As the generators are of the form
(

1 ∗
0 1

)
, it is clear that the vector xn ⊗ xn is fixed by

Γ+
∞. One shows, proceeding as in [35, Lemma 2.4], that there are no other fixed vectors. Hence

H0(Γ+
∞; En) = E

Γ+
∞

n = 〈xn ⊗ xn〉

is of complex dimension one. Let µ := Γ∞/Γ+
∞ =

{(±1 0
0 ±1

)}
. As we are considering modules

over C, it follows that
H0(Γ∞; En)'H0(Γ+

∞; En)µ

is the invariant submodule under µ. We easily check that the action of µ on En is trivial, and
so

H0(Γc; En)'H0(Γ+
∞; En)

is again of complex dimension one. This completes the proof with our assumption on the
discriminant of K.

When K is Q(i) or Q(
√
−3), due to the extra units, the cross-sections of the cusps, which

are again parametrized by the class group, are 2-orbifolds whose underlying manifolds are 2-
spheres (torus folded by an involution). As the second degree cohomology of the 2-sphere is
one dimensional, the result follows. 2

2. Abelian varieties of GL(2)-type

There is a widely believed conjectural connection between Bianchi newforms of weight two
over K and Abelian varieties of GL2-type defined over K (see [10, 13, 33]) which is expressed
in terms of the associated L-functions. In particular, an Abelian variety of GL2-type over K
that is not definable over Q nor of CM -type, with everywhere good reduction, is expected to
give rise to newforms in S0(1)+. Here S0(1)+ denotes the plus-subspace of S0(1) in the sense
of [9, 13]. Equivalently, S0(1)+ can be seen as the space of cuspidal Bianchi modular forms of
weight two for GL2(OK).

In the reverse direction, the newforms in S0(1)+ are expected† to correspond to Abelian
varieties of GL2-type over K which have everywhere good reduction. As listed in Table 4,

†There are some natural exceptions coming from elliptic newforms with inner twists, see Cremona [10], which
are avoided if we consider newforms that are not in L0(1).
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we have found eight imaginary quadratic fields for which S0(1) contained non-lifted classes.
For only six of these fields, the non-lifted classes were in fact contained in S0(1)+. In Table 5
below, we list the (necessarily totally real) number field F generated by the Hecke eigenvalues
of the non-lifted newforms in these six cases.

We have computed these fields using Dan Yasaki’s program, see [36], in Magma which
computes the Hecke action on S0(Γ0(n))+ for congruence subgroups of type Γ0(n) of Bianchi
groups. Note that as this program only treats GL2-cohomology with trivial weight, that is
k = 0, we could not have used it for our experiment.

Table 5 tells us that there should exist an elliptic curve defined over Q(
√
−643), and not

over Q, which has everywhere good reduction and it should be modular. Indeed, we know by
Krämer [19] that there is such an elliptic curve over Q(

√
−643) and it does seem to be modular,

see Scheutzow [28]. Similarly, there should exist Abelian surfaces defined over Q(
√
−d) with

d= 223, 415, 455, 571, 1003 and not over Q, which have everywhere good reduction and real
multiplication by

√
2,
√

3,
√

5,
√

5,
√

7 respectively and they should be modular. Locating such
surfaces is a highly non-trivial task, see [30, § 8].

3. Comments

The data collected in this paper make it clear that the spaces of cuspidal Bianchi modular
forms of level one are generically made of forms which are not genuine. Unfortunately the
data are not enough to formulate a quantitative statement about the occurrences of non-lifted
forms. Hence the following question remains.

Question 2. Let K be an imaginary quadratic field. Let Sk(1) denote the space of level
one cuspidal Bianchi modular forms over K of weight k + 2. Is it true that there are at most
finitely many k for which the space Sk(1) contains non-lifted forms?

Let us make a comparison with other types of modular forms. For the case of Hilbert modular
forms (this is the case of the algebraic group ResF/Q(SL2) where F is a totally real field) and
Siegel modular forms of genus 2 (the case of the algebraic group Sp4), one has a considerable
number of genuine level one cuspidal forms. However, the case of the modular forms for SL3

is similar to our case. Here, in the range of the data collected by Ash and Pollack, see [2],
the spaces of level one modular forms for SL3 are completely made of those which are the
symmetric square lifts of classical holomorphic modular forms. They in fact conjecture that
this is always the case.

It is interesting to note that for the Hilbert and Siegel modular forms of genus 2, where
we have plenty of genuine forms, the associated symmetric spaces are Hermitian, while for
the Bianchi and SL3 modular forms, where there is an extreme paucity of genuine forms, the
associated symmetric spaces fail to be Hermitian. Is this part of a general phenomenon?

Next we shall pose a question about the non-lifted newforms in Sk(1) inspired by the classical
form of Maeda’s conjecture. The non-trivial automorphism σ ∈Gal(K/Q) of K acts on the set
of newforms in Sk(1) as an involution, again denoted σ. Thus, every newform f has a twin,

Table 5. The number field generated by the Hecke eigenvalues of non-lifted newforms in S0(1)+.

|D| 223 415 455 571 643 1003

F Q(
√

2) Q(
√

3) Q(
√

5) Q(
√

5) Q Q(
√

7)
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denoted σf . The Hecke eigenvalues c(·, π) associated to the Hecke operators† Tπ satisfy the
relation

c(σf, π) = c(f, σ(π))

for every π ∈ O. Recall that just as in the case of elliptic modular forms, for a newform f in
Sk(1) with Hecke eigenvalue field F , there is a newform fτ in Sk(1) for every τ ∈Gal(F/Q)
with the property that c(fτ , π) = τ(c(f, π)) for every π ∈ O. We say that f and the fτ form
one Galois orbit.

Question 3. Let K be an imaginary quadratic field. Is it true that for every k > 0, the set
of non-lifted newforms in Sk(1), modulo the action of Gal(K/Q), forms one Galois orbit?

In all except one of the cases where we observed non-lifted newforms, the dimension of the
non-lifted subspace was only two. In this case, the answer to Question 3 is automatically yes as
the two non-lifted newforms have to be twins (that is, the Galois conjugate of the newform is
equal to its twin). Page kindly computed the Hecke action (based on the methods of [21]) on the
non-lifted classes for the case (199, 1) for us and his data show that the answer to Question 3 is
yes in this case as well. More precisely, we have a pair of Galois conjugate non-lifted newforms
with coefficients in Q(

√
13) and their twins, forming the four dimensional non-lifted subspace.

As Calegari remarked to us, if there are two elliptic curves defined overK with good reduction
everywhere and such that neither come from Q nor are conjugates of each other, then the answer
to Question 3 would be no for S2(1). Note that the analogue of this conjecture for Hilbert
modular forms over real quadratic fields holds in the range of the computations performed by
Doi and Ishii, see [12, p. 568].

4. Method of the computations

In this section, we will explain how we computed the cohomology of the investigated Bianchi
groups.

Let m be a square-free positive integer and K = Q(
√
−m ) be an imaginary quadratic number

field with ring of integersO−m, which we also just denote byO. Consider the familiar action (we
give an explicit formula for it in Lemma 4) of the group Γ := SL2(O)⊂GL2(C) on hyperbolic
three-space, for which we will use the upper-half space model H.

As a set,
H= {(z, ζ) ∈ C× R | ζ > 0}.

Lemma 4 (Poincaré). If γ =
(
a b
c d

)
∈GL2(C), the action of γ on H is given by γ · (z, ζ) =

(z′, ζ ′), where

ζ ′ =
|det γ|ζ

|cz − d|2 + ζ2|c|2
, z′ =

(d− cz)(az − b)− ζ2c̄a

|cz − d|2 + ζ2|c|2
.

The Bianchi–Humbert theory [5, 18] gives a fundamental domain for the action of Γ on H,
which we shall call the Bianchi fundamental polyhedron. It is a polyhedron in hyperbolic space
up to the missing vertex∞, and up to a missing vertex for each non-trivial ideal class if O−m is
not a principal ideal domain. We observe the following notion of strictness of the fundamental
domain: the interior of the Bianchi fundamental polyhedron contains no two points which are
identified by Γ. Swan [32] proves a theorem which implies that the boundary of the Bianchi
fundamental polyhedron consists of finitely many cells.

†Observe that since we are not working within the adelic setting, we only consider Hecke operators which
stabilize the connected components of the adelic symmetric space.
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4.1. A cell complex for the Bianchi groups

Swan further produces a concept for an algorithm to compute the Bianchi fundamental
polyhedron. Such an algorithm has been implemented by Cremona [9] for the five cases
where O−m is Euclidean, and by his students Whitley [34] for the non-Euclidean principal
ideal domain cases, Bygott [7] for a case of class number 2 and Lingham ([20], used in [11])
for some cases of class number 3, and finally Aranés [1] for arbitrary class numbers. Another
algorithm based on this concept has been independently implemented in [23] for all Bianchi
groups, and we make explicit use of the cell complexes it produces. Other results of the employed
implementation are described in [24].

Definition 5. A pair of elements (µ, λ) ∈ O2 is called unimodular if the ideal sum µO + λO
equals O.

The boundary of H is the Riemann sphere ∂H= C ∪ {∞} (as a set), which contains the
complex plane C. The totally geodesic surfaces in H are the Euclidean vertical planes (we
define vertical as orthogonal to the complex plane) and the Euclidean hemispheres centred on
the complex plane.

Notation 6. Given a unimodular pair (µ, λ) ∈ O2 with µ 6= 0, let Sµ,λ ⊂H denote the
hemisphere given by the equation |µz − λ|2 + |µ|2ζ2 = 1.

This hemisphere has centre λ/µ on the complex plane C, and radius 1/|µ|. Let

B := {(z, ζ) ∈H : the inequality |µz − λ|2 + |µ|2ζ2 > 1
is fulfilled for all unimodular pairs(µ, λ) ∈ O2 with µ 6= 0}.

Then B is the set of points in H which lie above or on all hemispheres Sµ,λ.

Lemma 7 [32]. The set B contains representatives for all the orbits of points under the
action of SL2(O) on H.

The action extends continuously to the boundary ∂H, which is a Riemann sphere.
In Γ := SL2(O−m), consider the stabilizer subgroup Γ∞ of the point ∞∈ ∂H. Excluding the

two cases m= 1 and m= 3 of Gaussian and Eisenstein integers, the latter group is given as

Γ∞ =
{
±
(

1 λ
0 1

) ∣∣∣ λ ∈ O} ,
which performs translations by the elements of O with respect to the Euclidean geometry of
the upper-half space H.

Notation 8. A fundamental domain for Γ∞ in the complex plane (as a subset of ∂H) is
given by the rectangle

D0 :=

{
{x+ y

√
−m ∈ C | 0 6 x6 1, 0 6 y 6 1}, m≡ 1 or 2 mod 4,

{x+ y
√
−m ∈ C|−1

2 6 x6 1
2 , 0 6 y 6 1

2}, m≡ 3 mod 4.

And a fundamental domain for Γ∞ in H is given by

D∞ := {(z, ζ) ∈H | z ∈D0}.

Definition 9. We define the Bianchi fundamental polyhedron as

D :=D∞ ∩B.
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We can check that the computed polyhedron is indeed a fundamental domain for Γ using the
following observation of Poincaré [22]: after a cell subdivision which makes the cell stabilizers
fix the cells point-wise, the 2-cells (‘faces’) of the fundamental polyhedron appear in pairs
(σ, γ · σ) with γ ∈ Γ (so for every orbit of faces, we have exactly two representatives) such that
with the orientation for which the lower side of the face σ lies on the polyhedron, the upper
side of γ · σ lies on the polyhedron. We induce a cell structure on H by the images under Γ of
the faces, edges and vertices of the Bianchi fundamental polyhedron.

4.2. The Flöge cellular complex

In order to obtain a cell complex with compact quotient space, we proceed in the following way
due to Flöge [16]. The boundary of H is the Riemann sphere ∂H, which, as a topological space,
is made up of the complex plane C compactified with the cusp∞. The totally geodesic surfaces
in H are the Euclidean vertical planes (we define vertical as orthogonal to the complex plane)
and the Euclidean hemispheres centered on the complex plane. The action of the Bianchi groups
extends continuously to the boundary ∂H. The cellular closure of the refined cell complex in
H ∪ ∂H consists of H and (Q(

√
−m) ∪ {∞})⊂ (C ∪ {∞})∼= ∂H. The SL2(O−m)-orbit of a

cusp λ/µ in (Q(
√
−m) ∪ {∞}) corresponds to the ideal class [(λ, µ)] of O−m. It is well known

that this does not depend on the choice of the representative λ/µ. We extend the refined cell
complex to a cell complex X̃ by joining to it, in the case that O−m is not a principal ideal
domain, the SL2(O−m)-orbits of the cusps λ/µ for which the ideal (λ, µ) is not principal. We
call the latter cusps the singular cusps. At the singular cusps, we equip X̃ with the ‘horoball
topology’ described in [16]. This simply means that the set of cusps, which is discrete in ∂H,
is located at the hyperbolic extremities of X̃: no neighborhood of a cusp, except the whole X̃,
contains any other cusp.

We retract X̃ in the following, SL2(O−m)-equivariant, way. On the Bianchi fundamental
polyhedron, the retraction is given by the vertical projection (away from the cusp ∞) onto its
facets which are closed in H ∪ ∂H. The latter are the facets which do not touch the cusp ∞,
and are the bottom facets with respect to our vertical direction. The retraction is continued on
H by the group action. It is proven in [15] that this retraction is continuous. We call the retract
of X̃ the Flöge cellular complex and denote it by X. So in the principal ideal domain cases,
X is a retract of the refined cell complex, obtained by contracting the Bianchi fundamental
polyhedron onto its cells which do not touch the boundary of H. In [27], it is checked that the
Flöge cellular complex is contractible. Further details about the Flöge cellular complex and
homological computations with it are described in [25].

4.3. The spectral sequence

Let X be our Flöge complex constructed as above. Next we will consider the spectral sequence
associated to the double complex HomZΓ(Θ∗, C∗Z(X,M)), where Θ∗ is the standard resolution
of Z over ZΓ and C∗(X,M) is the cellular co-chain complex of X with ZΓ-module coefficients
M . We can (see [6, p. 164]) derive the first-quadrant spectral sequence

Ep,q1 (M) =
⊕
σ∈Σp

Hq(Γσ;M) =⇒Hp+q(Γ;M)

where Σp denotes the Γ-conjugacy classes of p-cells of X. Observe that Γσ will be a finite group
whose order is divisible only by 2 and/or 3 unless σ is the class of a singular cusp, in which
case Γσ is a free Abelian group on two unipotent generators.

Assume that M admits an additional module structure over a ring where 6 is invertible (in
fact we are interested in the case where M is a complex vector space). Then the finite ones
among the higher cohomology groups of the Γσ vanish. Thus, when there are no singular cusps
(equivalently, when the class number of O is one), the spectral sequence concentrates on the
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row q = 0 and stabilizes on the E2-page. Otherwise, the spectral sequence concentrates on the
rows q = 0, 1, 2 and stabilizes at the E3-page.

As we shall see below, the dimension of the module H2(Γ;M), which we want to determine,
is the same as the dimension of

E2,0
2 ' E2,0

1 /Im(d1,0
1 ),

where the differential d1,0
1 is between

E1,0
1 '

⊕
σ∈Σ1

MΓσ −→
⊕
σ∈Σ2

M ' E2,0
1 .

The abutment of the spectral sequence gives us

H2(Γ;M)' E2,0
3 ⊕ E0,2

3 .

Here E0,2
3 '

⊕
s H

2(Γs;M) where the summation is over Γ-classes of singular cusps s.
Moreover, E2,0

3 = E2,0
2 /Im(d0,1

2 ) where the differential d0,1
2 is between⊕

s singular

H1(Γs;M)−→ E2,0
2 .

We determine the rank of this differential as follows.

Theorem 10 [31, Théorème 8]. Suppose that the coefficient module M is equipped with a
non-degenerate Γ-invariant C-bilinear form. Then the rank of the map from H1(Γ;M) to the
disjoint sum of the H1(Γs;M), induced by restriction from H1(Γ;M) to H1(Γs;M), equals
half of the rank of the disjoint sum of the H1(Γs;M).

The local topology of this map is studied in [26]. The image of this restriction-induced map
can be identified with the image of the epimorphism in the short exact sequence of the spectral
sequence’s dévissage,

0→ E1,0
2 −→H1(Γ;M)−→ kerd0,1

2 → 0.

Let us assume from now on that M = En for some n. As we have seen in the proof of
Proposition 1, there is a perfect pairing on M , which is a non-degenerate Γ-invariant C-
bilinear form. So the theorem of Serre applies, and we obtain the following corollary. Note
for this purpose that the proof of Proposition 1 shows that

dimH0(Γs;M) = dimH2(Γs;M) = 1.

When the cross-section of the cusp s is a torus, we have

dimH1(Γs;M) = 2 · dimH2(Γs;M) = 2.

In the cases when K is Q(i) or Q(
√
−3), we have

dimH1(Γs;M) = 0.

Corollary 11. The rank of the differential

d0,1
2 :

⊕
s singular

H1(Γs;M)−→ E2,0
2

is the number of non-trivial ideal classes.

Remark 12. The above discussion implies that

H2(Γ;M)'
( ⊕
s singular

H2(Γs;M)
)
⊕ (E2,0

2 /Im(d0,1
2 )),

and the dimension of H2(Γ;M) is the same as that of E2,0
2 .
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4.4. The procedure of the computations

We compute the representatives of faces in E2,0
1 and the differential d1,0

1 of our equivariant
spectral sequence with trivial integer coefficients with the program Bianchi.gp [23]. The second
author has implemented a MAGMA script that uses the cell stabilizers and identifications
obtained with Bianchi.gp to compute the action on the coefficient module M that we are
interested in. We then deduce the term E2,0

1 and the differential d1,0
1 with respect to our

coefficients. The quotient

E2,0
2 ' E2,0

1 /Im(d1,0
1 )

now admits the dimension of H2(Γ;M) by Remark 12.
As linear algebra over number fields is more expensive compared to working over finite

fields, we employ the following shortcut. Recall that by the universal coefficients theorem, the
dimension of H2(Γ;M(Fp)) (‘the mod p dimension’) is greater than or equal to the dimension
of H2(Γ;M(C)) (‘the complex dimension’). We start with computing the mod p-dimensions
for primes p6 200. If we find a particular p for which the mod p dimension is equal to the
lower bound of Finis–Grunewald–Tirao then we infer that the complex dimension is equal to
the mod p dimension. Note that by [29, Proposition 3.2(d)], this implies that H2(Γ;M(O)) has
no p-torsion. If this is not the case for the primes in our range, then we compute the complex
dimension directly by computing H2(Γ;M(K)).

4.5. Execution of the computations

We applied the above described computations to a database of cell complexes for 186 Bianchi
groups, which has been established on the computing clusters of the Weizmann Institute
of Science, using over fifty processor-months. This database includes all the cases of ideal
class numbers 3 and 5, most of the cases of ideal class number 4 and all cases with the
absolute value of the discriminant less than 500. Almost all of our dimension computations
were carried out using the nodes of the computer clusters at the Universities of Duisburg-Essen
and Luxembourg.

We are currently extending our computations to congruence subgroups (i.e. varying level)
using the ICHEC computing cluster STOKES, and are soon going to release the results of
those computations on the L-functions and Modular Forms DataBase (www.lmfdb.org).
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15. D. Flöge, ‘Zur Struktur der PSL2 über einigen imaginär-quadratischen Zahlringen’, Dissertation,
Johann-Wolfgang-Goethe-Universität, Fachbereich Mathematik, 1980.
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30. M. H. Şengün, ‘Arithmetic aspects of Bianchi groups’, Proceedings of Computations with Modular Forms,

Heidelberg, 2011, to appear.
31. J.-P. Serre, ‘Le problème des groupes de congruence pour SL(2)’, Ann. of Math. (2) 92 (1970) 489–527.
32. R. G. Swan, ‘Generators and relations for certain special linear groups’, Adv. Math. 6 (1971) 1–77.
33. R. Taylor, ‘Representations of Galois groups associated to modular forms’, Proceedings of the

International Congress of Mathematicians, Vol. 1, 2 Zürich, 1994 (Birkhäuser, Basel, 1995) 435–442.
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