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Abstract

We revisit the paper [Automorphy lifting for residually reducible l-adic Galois represen-
tations, J. Amer. Math. Soc. 28 (2015), 785–870] by the third author. We prove new
automorphy lifting theorems for residually reducible Galois representations of unitary
type in which the residual representation is permitted to have an arbitrary number of
irreducible constituents.

1. Introduction

In this paper, we prove new automorphy lifting theorems for Galois representations of unitary
type. Thus, we are considering representations ρ : GF → GLn(Q̄l), where GF is the absolute
Galois group of a CM field F and ρ is conjugate self-dual, i.e. there is an isomorphism
ρc ∼= ρ∨ ⊗ ε1−n, where c ∈ Aut(F ) is complex conjugation. We say in this paper that such a
representation is automorphic if there exists a regular algebraic, conjugate self-dual, cuspi-
dal (RACSDC) automorphic representation π which is matched with ρ under the Langlands
correspondence. (See § 1.1 below for a more precise formulation.)

We revisit the context of the paper [Tho15], proving theorems valid in the case that ρ̄ is abso-
lutely reducible, but still satisfies a certain non-degeneracy condition (we say that ρ̄ is ‘Schur’).
The first theorems of this type were proved in the paper [Tho15], under the assumption that ρ̄
has only two irreducible constituents. Our main motivation here is to remove this restriction. Our
results are applied to the problem of symmetric power functoriality in [NT19], where they are
combined with level-raising theorems to establish automorphy of symmetric powers for certain
level 1 Hecke eigenforms congruent to a theta series.

We are also able to weaken some other hypotheses in [Tho15], leading to the following result,
which is the main theorem of this paper.

Theorem 1.1 (Theorem 6.1). Let F be an imaginary CM number field with maximal totally

real subfield F+ and let n ≥ 2 be an integer. Let l be a prime and suppose that ρ : GF → GLn(Q̄l)
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is a continuous semisimple representation satisfying the following hypotheses.

(i) ρc ∼= ρ∨ε1−n.

(ii) ρ is ramified at only finitely many places.

(iii) ρ is ordinary of weight λ for some λ ∈ (Zn
+)Hom(F,Q̄l).

(iv) There is an isomorphism ρ̄ss ∼= ρ̄1 ⊕ · · · ⊕ ρ̄d, where each ρ̄i is absolutely irreducible and

satisfies ρ̄c
i
∼= ρ̄∨i ε

1−n, and ρ̄i �∼= ρ̄j if i �= j.

(v) There exists a finite place ṽ0 of F , prime to l, such that ρ|ssGFṽ0

∼= ⊕n
i=1ψε

n−i for some

unramified character ψ : GFṽ0
→ Q̄×

l .

(vi) There exist a RACSDC representation π of GLn(AF ) and ι : Q̄l → C such that:

(a) π is ι-ordinary;

(b) rι(π)
ss ∼= ρ̄ss;

(c) πṽ0
is an unramified twist of the Steinberg representation.

(vii) F (ζl) is not contained in F̄ ker ad(ρ̄ss) and F is not contained in F+(ζl). For each 1 ≤ i, j ≤ d,

ρ̄i|GF (ζl)
is absolutely irreducible and ρ̄i|GF (ζl)

�∼= ρ̄j |GF (ζl)
if i �= j. Moreover, ρ̄ss is primitive

(i.e. not induced from any proper subgroup of GF ) and ρ̄ss(GF ) has no quotient of order l.

(viii) l > 3 and l � n.

Then ρ is automorphic: there exists an ι-ordinary RACSDC automorphic representation Π of

GLn(AF ) such that rι(Π) ∼= ρ.

Comparing this with [Tho15, Theorem 7.1], we see that we now allow an arbitrary number
of irreducible constituents, while also removing the requirement that the individual constituents
are adequate (in the sense of [Tho12]) and potentially automorphic. This assumption of potential
automorphy was used in [Tho15], together with the Khare–Wintenberger method, to get a handle
on the quotient of the universal deformation ring of ρ̄ corresponding to reducible deformations.
This made generalizing [Tho15, Theorem 7.1] to the case where more than two irreducible con-
stituents are allowed seem a formidable task: one would want to know that any given direct sum
of irreducible constituents of ρ̄ was potentially automorphic, and then perhaps use induction on
the number of constituents to control the reducible locus.

The first main innovation in this paper that allows us to bypass this is the observation that by
fully exploiting the ‘connectedness dimension’ argument to prove that R = T (which goes back
to [SW99] and appears in this paper in the proof of Theorem 5.1), one only needs to control
the size of the reducible locus in quotients of the universal deformation ring that are known
a priori to be finite over the Iwasawa algebra Λ. This can be done easily by hand using the
‘locally Steinberg’ condition (as in § 3.3).

The second main innovation is a finer study of the universal deformation ring Runiv of a
(reducible but) Schur residual representation. We show that if the residual representation has d
absolutely irreducible constituents, then there is an action of a group μd

2 on Runiv and identify the
invariant subring (Runiv)μd

2 with the subring topologically generated by the traces of Frobenius
elements (which can also be characterized as the image P of the canonical map to Runiv from
the universal pseudodeformation ring). This leads to a neat proof that the map P → Runiv is
étale at prime ideals corresponding to irreducible deformations of ρ̄.

We now describe the organization of this paper. Since it is naturally a continuation of [Tho15],
we maintain the same notation and use several results and constructions from that paper as
black boxes. We begin in §§ 2 and 3 by extending several results from [Tho15] about the relation
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between deformations and pseudodeformations to the case where ρ̄ is permitted to have more
than two irreducible constituents. We also make the above-mentioned study of the dimension of
the locus of reducible deformations.

In § 4 we recall from [Tho15] the definition of the unitary group of automorphic forms and
Hecke algebras that we use, and state the Tq = Rp type result proved in that paper (here p

denotes a dimension 1, characteristic l prime of R with good properties, in particular that the
associated representation to GLn(FracR/p) is absolutely irreducible). In § 5 we carry out the
main argument, based on the notion of connectedness dimension, which is described above.
Finally, in § 6 we deduce Theorem 1.1, following a simplified version of the argument in [Tho15,
§ 7] that no longer makes reference to potential automorphy.

1.1 Notation
We use the same notation and normalizations for Galois groups, class field theory, and local
Langlands correspondences as in [Tho15, Notation]. Rather than repeat this verbatim here we
invite the reader to refer to that paper for more details. We do note the convention that if R is
a ring and P is a prime ideal of R, then R(P ) denotes the localization of R at P and RP denotes
the completion of the localization.

We recall that Z+
n ⊂ Zn denotes the set of tuples λ = (λ1, . . . , λn) of integers such that

λ1 ≥ · · · ≥ λn. It is identified in a standard way with the set of highest weights of GLn. If F is a
number field and λ = (λτ ) ∈ (Z+

n )Hom(F,C), then we write Ξλ for the algebraic representation of
GLn(F ⊗Q C) =

∏
τ∈Hom(F,C) GLn(C) of highest weight λ. If π is an automorphic representation

of GLn(AF ), we say that π is regular algebraic of weight λ if π∞ has the same infinitesimal
character as the dual Ξ∨

λ .
Let F be a CM field (i.e. a totally imaginary quadratic extension of a totally real field F+). We

always write c ∈ Aut(F ) for complex conjugation. We say that an automorphic representation
π of GLn(AF ) is conjugate self-dual if there is an isomorphism πc ∼= π∨. If π is a RACSDC
automorphic representation of GLn(AF ) and ι : Q̄l → C is an isomorphism (for some prime l),
then there exists an associated Galois representation rι(π) : GF → GLn(Q̄l), characterized up to
isomorphism by the requirement of compatibility with the local Langlands correspondence at
each finite place of F ; see [Tho15, Theorem 2.2] for a reference. We say that a representation
ρ : GF → GLn(Q̄l) is automorphic if there exists a choice of ι and RACSDC π such that ρ ∼= rι(π).

One can define what it means for a RACSDC automorphic representation π to be ι-ordinary
(see [Tho15, Lemma 2.3]; it means that the eigenvalues of certain Hecke operators, a priori l-adic
integers, are in fact l-adic units). If μ ∈ (Zn

+)Hom(F,Q̄l), we say (following [Tho15, Definition 2.5])
that a representation ρ : GF → GLn(Q̄l) is ordinary of weight μ if for each place v|l of F , there
is an isomorphism

ρ|GFv
∼

⎛
⎜⎜⎜⎝
ψ1 ∗ ∗ ∗
0 ψ2 ∗ ∗
...

. . . . . . ∗
0 . . . 0 ψn

⎞
⎟⎟⎟⎠,

where ψi : GFv → Q̄×
l is a continuous character satisfying the identity

ψi(σ) =
∏

τ :Fv ↪→Q̄l

τ(Art−1
Fv

(σ))−(μτ,n−i+1+i−1)
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for all σ in a suitable open subgroup of IFv . An important result [Tho15, Theorem 2.4] is that if
π is RACSDC of weight λ and ι-ordinary, then rι(π) is ordinary of weight ιλ, where by definition
(ιλ)τ = λιτ .

2. Determinants

We first give the definition of a determinant from [Che14]. We recall that if A is a ring and M,N

are A-modules, then an A-polynomial law F : M → N is a natural transformation F : hM → hN ,
where hM : A-alg → Sets is the functor hM (B) = M ⊗A B. The A-polynomial law F is called
homogeneous of degree n ≥ 1 if for all b ∈ B, x ∈M ⊗A B, we have FB(bx) = bnFB(x).

Definition 2.1. Let A be a ring and let R be an A-algebra. An A-valued determinant of R
of dimension n ≥ 1 is a multiplicative A-polynomial law D : R→ A which is homogeneous of
degree n.

If D is a determinant, then there are associated polynomial laws Λi : R→ A, i = 0, . . . , n,
given by the formulae

D(t− r) =
n∑

i=0

(−1)iΛi(r)tn−i

for all r ∈ R⊗A B. We define the characteristic polynomial A-polynomial law χ : R→ R by
the formula χ(r) =

∑n
i=0(−1)iΛi(r)rn−i (r ∈ R⊗A B). We write CH(D) for the two-sided ideal

of R generated by the coefficients of χ(r1t1 + · · · + rmtm) ∈ R[t1, . . . , tm] for all m ≥ 1 and
r1, . . . , rm ∈ R. We have CH(D) ⊆ ker(D) [Che14, Lemma 1.21]. The determinant D is said
to be Cayley–Hamilton if CH(D) = 0, equivalently if χ = 0 (i.e. χ is the zero A-polynomial law).

We next recall the definition of a generalized matrix algebra [BC09, Definition 1.3.1].

Definition 2.2. Let A be a ring and let R be an A-algebra. We say that R is a generalized
matrix algebra of type (n1, . . . , nd) if it is equipped with the following data:

(i) a family of orthogonal idempotents e1, . . . , ed with e1 + · · · + ed = 1; and
(ii) for each 1 ≤ i ≤ d, an A-algebra isomorphism ψi : eiRei →Mni(A)

such that the trace map T : R→ A defined by T (x) =
∑d

i=1 trψi(eixei) satisfies T (xy) = T (yx)
for all x, y ∈ R. We refer to the data E = {ei, ψi, 1 ≤ i ≤ d} as the data of idempotents of R.

Construction 2.3. We recall the structure of generalized matrix algebras from [BC09, § 1.3.2].
Let R be a generalized matrix algebra of type (n1, . . . , nd) with data of idempotents E =
{ei, ψi, 1 ≤ i ≤ d}. For each 1 ≤ i ≤ d, let Ei ∈ eiRei be the unique element such that ψi(Ei)
is the element of Mni(A) whose row 1, column 1 entry is 1 and all other entries are 0. We set
Ai,j = EiREj for each 1 ≤ i, j ≤ d. Note that Ai,jAj,k ⊆ Ai,k for each 1 ≤ i, j, k ≤ d, and the
trace map T induces an isomorphism Ai,i

∼= A for each 1 ≤ i ≤ d. Via this isomorphism, we will
tacitly view Ai,jAj,i as an ideal in A for each 1 ≤ i, j ≤ d. With this multiplication, there is an
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isomorphism of A-algebras

R ∼=

⎛
⎜⎜⎜⎜⎝

Mn1(A) Mn1,n2(A1,2) · · · Mn1,nd
(A1,d)

Mn2,n1(A2,1) Mn2(A) · · · Mn2,nd
(A2,d)

...
...

. . .
...

Mnd,n1(Ad,1) Mnd,n2(Ad,2) · · · Mnd
(A)

⎞
⎟⎟⎟⎟⎠. (1)

The following result of Chenevier allows us to use the above structure when studying
determinants.

Theorem 2.4. Let A be a Henselian local ring with residue field k, let R be an A-algebra, and let

D : R→ A be a Cayley–Hamilton determinant. Suppose that there exist surjective and pairwise

non-conjugate k-algebra homomorphisms ρ̄i : R→Mni(k) such that D̄ =
∏d

i=1(det ◦ρ̄i), where

D̄ = D ⊗R k.

Then there is a datum of idempotents E = {ei, ψi, 1 ≤ i ≤ d} for which R is a generalized

matrix algebra and such that ψi ⊗A k = ρ̄i|eiRei . Any two such data are conjugate by an element

of R×.

We note that the assumptions of Theorem 2.4 say that D is residually split and multiplicity-
free, in the sense of [Che14, Definition 2.19].

Proof. The existence of such a datum of idempotents E = {ei, ψi, 1 ≤ i ≤ d} is contained in
[Che14, Theorem 2.22] and its proof. The statement that two such data are conjugate is exactly
as in [BC09, Lemma 1.4.3]. Namely, if E ′ = {e′i, ψ′

i, 1 ≤ i ≤ d} is another such choice, then since
EndR(Rei) ∼= Mni(A) ∼= EndR(Re′i) are local rings, the Krull–Schmidt–Azumaya theorem [CR81,
Theorem 6.12] (see also [CR81, Remark 6.14 and Chapter 6, Exercise 14]) implies that there is
x ∈ R× such that xeix−1 = e′i for each 1 ≤ i ≤ d. By Skolem–Noether, we can adjust x by an
element of (⊕d

i=1eiRei)
× so that it further satisfies xψix

−1 = ψ′
i. �

We now show that the reducibility ideals of [BC09, Proposition 1.5.1] and their basic
properties carry over for determinants (so without having to assume that n! is invertible
in A).

Proposition 2.5. LetA be a Henselian local ring with residue field k, letR be anA-algebra, and

let D : R→ A be a determinant. Assume that D̄ = D ⊗A k : R⊗A k → k is split and multiplicity

free. Write D̄ =
∏d

i=1 D̄i with each D̄i absolutely irreducible of dimension ni.

Let P = (P1, . . . ,Ps) be a partition of {1, . . . , d}. There is an ideal IP of A such that an

ideal J of A satisfies IP ⊆ J if and only if there are determinants D1, . . . , Ds : R⊗A A/J → A/J

such that D ⊗A A/J =
∏s

m=1Dm and Dm ⊗A k =
∏

i∈Pm
D̄i for each 1 ≤ m ≤ s. If this property

holds, then D1, . . . , Ds are uniquely determined and satisfy ker(D ⊗A A/J) ⊆ ker(Dm).
Moreover, let J be a two-sided ideal of R with CH(D) ⊆ J ⊆ ker(D) and let Ai,j be the

A-modules as in Construction 2.3 for a choice of data of idempotents as in Theorem 2.4 applied

to R/J . Then IP =
∑

i,j Ai,jAj,i, where the sum is over all pairs i, j not belonging to the same

Pm ∈ P.

Proof. We follow the proof of [BC09, Proposition 1.5.1] closely. Choose a two-sided ideal J of R
with CH(D) ⊆ J ⊆ ker(D), and data of idempotents E for R/J as in Theorem 2.4. We let Ai,j
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be as in Construction 2.3 and define IP =
∑

i,j Ai,jAj,i, where the sum is over all pairs i, j not
belonging to the same Pm ∈ P. Since another such choice of the data of idempotents is conjugate
by an element of (R/J )×, the ideal IP does not depend on the choice of E . To see that it is
independent of J , first note that D further factors through a surjection ψ : R/J → R/ ker(D).
Under this surjection, the data of idempotents E is sent to a data of idempotents for R/ ker(D),
and tr(ψ(Ai,j)ψ(Aj,i)) = tr(Ai,jAj,i) since tr ◦ψ = tr.

We can now replace R with R/CH(D) and assume that D is Cayley–Hamilton. Since
CH(D) is stable under base change, it suffices to show that IP = 0 if and only if there are
determinants D1, . . . , Ds : R→ A such that D =

∏s
m=1Dm and Dm ⊗A kA =

∏
i∈Pm

D̄i for each
1 ≤ m ≤ s and that, if this happens, then D1, . . . , Ds are uniquely determined. Fix a datum
of idempotents E = {ei, ψi, 1 ≤ i ≤ d} for R as in Theorem 2.4, and let the notation be as in
Construction 2.3. For each 1 ≤ m ≤ s, we set fm =

∑
i∈Pm

ei. Then 1 = f1 + · · · + fs is a
decomposition into orthogonal idempotents.

First assume that IP = 0. Let D̃ denote the A-valued determinant on R/ ker(D) arising
from D. Fix x ∈ R, an A-algebra B, and y ∈ R⊗A B. If 1 ≤ i, j ≤ d do not belong to the same
Pm ∈ P, then using the algebra structure as in (1) and the fact that Ai,jAj,i = 0, we have
eixejy =

∑
l �=i eixejyel, and [Che14, Lemma 1.12(i)] gives

D(1 + eixejy) = D

(
1 +

∑
l �=i

eixejyel

)
= D

(
1 +

∑
l �=i

xejyelei

)
= D(1) = 1.

By [Che14, Lemma 1.19], eixej ∈ ker(D) for all x ∈ R and all i, j that do not belong to the same
Pm ∈ P. We then have an isomorphism of A-algebras R/ ker(D) ∼= ∏s

m=1 fm(R/ ker(D))fm and
[Che14, Lemma 2.4] gives D =

∏s
m=1Dm, where Dm : R→ A is the composite of the surjection

R→ fm(R/ ker(D))fm with the determinant D̃m : fm(R/ ker(D))fm → A given by x �→ D̃(x+
1 − fm). It is immediate that Dm ⊗A kA =

∏
i∈Pm

D̄i for each 1 ≤ m ≤ s.
Now assume that there are determinants D1, . . . , Ds : R→ A such that D =

∏s
m=1Dm

and Dm ⊗A k =
∏

i∈Pm
D̄i for each 1 ≤ m ≤ s. The determinants Dm have dimension dm :=∑

i∈Pm
ni. The trace map yields an equality∑

1≤m�=m′≤s

tr(fmRfm′Rfm) = IP .

So, to show that IP = 0, it suffices to show that tr(fmRfm′Rfm) = 0 for m �= m′. For this, it
suffices to show that fm′ ∈ ker(Dm) for any m �= m′, since this implies that fmRfm′ ∈ ker(Dl)
for any 1 ≤ l ≤ s and hence

D(1 + tfmRfm′Rfm) =
s∏

l=1

Dl(1 + tfmRfm′Rfm) = 1.

For any idempotent f of R, we have the determinant Dm,f : fRf → A given by Dm,f (x) =
Dm(x+ 1 − f). When f = fm,

Dm,fm ⊗A k =
∏

i∈Pm

D̄i,fm =
∏

i∈Pm

D̄i,ei

has dimension dm. Then [Che14, Lemma 2.4(2)] implies that Dm,1−fm has dimension 0, i.e. is
constant and equal to 1. So, for any m �= m′, the characteristic polynomial of fm′ with respect
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to Dm is

Dm(t− fm′) = Dm,fm(t)Dm,1−fm(t− fm′) = tdm .

Then fm′ = fdm
m′ ∈ CH(Dm) ⊆ ker(Dm), which is what we wanted to prove. This further shows

that for each 1 ≤ m ≤ s, the determinant Dm is the composite of the surjections

R→ ⊕s
l=1flRfl → fmRfm

with the determinant Dfm : fmRfm → A. Since any two choices of the data of idempotents are
conjugate under R×, each Dm is uniquely determined by D. �

3. Deformations

Galois deformation theory plays an essential role in this paper. The set of results we use is
essentially identical to that of [Tho15], with some technical improvements. In this section we
recall the notation used in [Tho15], without giving detailed definitions or proofs; we then proceed
to prove the new results that we need. Some of the definitions recalled here were first given in
[CHT08] or [Ger19], but in order to avoid sending the reader to too many different places we
restrict our citations to [Tho15].

We will use exactly the same set-up and notation for deformation theory as in [Tho15]. We
recall that this means that we fix at the outset the following objects.

– A CM number field F , with its totally real subfield F+.
– An odd prime l such that each l-adic place of F+ splits in F . We write Sl for the set of
l-adic places of F+.

– A finite set S of finite places of F+ which split in F . We assume that Sl ⊂ S and write F (S)
for the maximal extension of F which is unramified outside S and set GF,S = Gal(F (S)/F )
and GF+,S = Gal(F (S)/F+). We fix a choice of complex conjugation c ∈ GF+,S .

– For each v ∈ S, we fix a choice of place ṽ of F such that ṽ|F+ = v, and define S̃ = {ṽ | v ∈ S}.
We also fix the following data.

– A coefficient field K ⊂ Q̄l with ring of integers O, residue field k, and maximal ideal λ ⊂ O.
– A continuous homomorphism χ : GF+,S → O×. We write χ̄ = χ mod λ.
– A continuous homomorphism r̄ : GF+,S → Gn(k) such that r̄−1(G◦

n(k)) = GF,S . Here Gn is
the algebraic group over Z defined in [CHT08, § 2.1]. We follow the convention that if
R : Γ → Gn(A) is a homomorphism and Δ ⊂ Γ is a subgroup such that R(Δ) ⊂ G0

n(A), then
R|Δ denotes the composite homomorphism

Δ → G0
n(A) = GLn(A) × GL1(A) → GLn(A).

Thus, r̄|GF,S
takes values in GLn(k).

If v ∈ Sl, then we write Λv = O[[(Iab
Fṽ

(l))n]], where Iab
Fṽ

(l) denotes the inertia group in the maximal
abelian pro-l extension of Fṽ. We set Λ = ⊗̂vΛv, the completed tensor product being over O. A
global deformation problem, as defined in [Tho15, § 3], then consists of a tuple

S = (F/F+, S, S̃,Λ, r̄, χ, {Dv}v∈S).
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The extra data that we have not defined consists of the choice of a local deformation problem
Dv for each v ∈ S. We will not need to define any new local deformation problems in this paper,
but we recall that the following have been defined in [Tho15]:

– ‘ordinary deformations’ give rise to a problem D

v for each v ∈ Sl [Tho15, § 3.3.2];

– ‘Steinberg deformations’ give rise to a problem DSt
v for each place v ∈ S such that

qv ≡ 1 mod l and r̄|GFṽ
is trivial;

– ‘χv-ramified deformations’ give rise to a problem Dχv
v for each place v ∈ S such that

qv ≡ 1 mod l and r̄|GFṽ
is trivial, given the additional data of a tuple χv = (χv,1, . . . , χv,n)

of characters χv,i : k(v)×(l) → k×;
– ‘unrestricted deformations’ give rise to a problem D�

v for any v ∈ S.

If S is a global deformation problem, then we can define (as in [Tho15]) a functor DefS : CΛ →
Sets of ‘deformations of type S’. By definition, if A ∈ CΛ, then DefS(A) is the set of GLn(A)-
conjugacy classes of homomorphisms r : GF+,S → Gn(A) lifting r̄ such that ν ◦ r = χ and for
each v ∈ S, r|GFṽ

∈ Dv(A). If r̄ is Schur (see [Tho15, Definition 3.2]), then the functor DefS is
represented by an object Runiv

S ∈ CΛ.

3.1 An erratum to [Tho15]
We point out an error in [Tho15]. We thank Lue Pan for bringing this to our attention. In
[Tho15, Proposition 3.15] it is asserted that the ring R1

v (representing the deformation problem
D1

v for v ∈ R, defined under the assumptions qv ≡ 1 mod l and r̄|GFṽ
trivial) has the property

that R1
v/(λ) is generically reduced. This is false, even in the case n = 2, as can be seen from

the statement of [Sho16, Proposition 5.8] (and noting the identification R1
v/(λ) = Rχv

v /(λ)). We
offer the following corrected statement.

Proposition 3.1. Let R̄1
v denote the nilreduction of R1

v. Then R̄1
v/(λ) is generically reduced.

Proof. Let M denote the scheme over O of pairs of n× n matrices (Φ,Σ), where Φ is invertible,
the characteristic polynomial of Σ equals (X − 1)n, and we have ΦΣΦ−1 = Σqv . Then R1

v can
be identified with the completed local ring of M at the point (1n, 1n) ∈ M(k). By [Mat89,
Theorem 23.9] (and since M is excellent), it is enough to show that if M̄ denotes the nilreduction
of M, then M̄ ⊗O k is generically reduced.

Let M1, . . . ,Mr denote the irreducible components of M with their reduced subscheme
structure. According to [Tho12, Lemma 3.15], each Mi ⊗O K is non-empty of dimension n2, while
the Mi ⊗O k are the pairwise-distinct irreducible components of M⊗O k and are all generically
reduced. Let η̄i denote the generic point of Mi ⊗O k. Then η̄i admits an open neighbourhood in
M not meeting any Mj (j �= i). Consequently, we have an equality of local rings OM̄,η̄i

= OMi,η̄i ,
showing that OM̄,η̄i

/(λ) is reduced (in fact, a field). This shows that M̄ ⊗O k is generically
reduced. �

We now need to explain why this error does not affect the proofs of the two results in [Tho15]
which rely on the assertion that R1

v/(λ) is generically reduced. The first of these is [Tho15,
Proposition 3.17], which states that the Steinberg deformation ring RSt

v has the property that
RSt

v /(λ) is generically reduced. The proof of this result is still valid if one replaces R1
v there with

R̄1
v. Indeed, we need only note that RSt

v is O-flat (by definition) and reduced (since RSt
v [1/l]
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is regular, by [Tay08, Lemma 3.3]). The map R1
v → RSt

v therefore factors through a surjection
R̄1

v → RSt
v .

The next result is [Tho15, Lemma 3.40(2)], which describes the irreducible components of
the localization and completion of a ring R∞ at a prime ideal P∞. The ring R∞ has R1

v as a
(completed) tensor factor, and the generic reducedness is used to justify an appeal to [Tho15,
Proposition 1.6]. Since passing to nilreduction does not change the underlying topological space,
one can argue instead with the quotient of R∞, where R1

v is replaced by R̄1
v. The statement of

[Tho15, Lemma 3.40] is therefore still valid.

3.2 Pseudodeformations
In this section, we fix a global deformation problem

S = (F/F+, S, S̃,Λ, r̄, χ, {Dv}v∈S)

such that r̄ is Schur. We write PS ⊂ Runiv
S for the Λ-subalgebra topologically generated by the

coefficients of characteristic polynomials of Frobenius elements Frobw ∈ GF,S (w prime to S).
The subring PS is studied in [Tho15, § 3.4], where it is shown using results of Chenevier that PS
is a complete Noetherian local Λ-algebra and that the inclusion PS ⊂ Runiv

S is a finite ring map
(see [Tho15, Proposition 3.29]).

In fact, more is true, as we now describe. Let B̄ ∈ GLn(k) be the matrix defined by the
formula r̄(c) = (B̄,−χ(c))j ∈ Gn(k). Let ρ̄ = r̄|GF,S

and suppose that there is a decomposition
r̄ = ⊕d

i=1r̄i with ρ̄i = r̄i|GF,S
absolutely irreducible for each i. The representations ρ̄i are pairwise

non-isomorphic, because r̄ is Schur (see [Tho15, Lemma 3.3]). We recall [Tho15, Lemma 3.1] that
to give a lifting r : GF+,S → Gn(R) of r̄ with ν ◦ r = χ is equivalent to giving the following data.

– A representation ρ : GF,S → GLn(R) lifting ρ̄ = r̄|GF,S
.

– A matrix B ∈ GLn(R) lifting B̄ with tB = −χ(c)B and χ(δ)B = ρ(δc)B tρ(δ) for all
δ ∈ GF,S .

The equivalence is given by letting ρ = r|GF,S
and r(c) = (B,−χ(c))j. Conjugating r by M ∈

GLn(R) takes B to MB tM . Note that the matrix B defines an isomorphism χ⊗ ρ∨ ∼→ ρc.
We embed the group μd

2 in GLn(O) as block diagonal matrices, the ith block being of size
dimk ρ̄i. We assume that the global deformation problem S has the property that each local
deformation problem Dv ⊂ D�

v is invariant under conjugation by μd
2; this is the case for each of

the local deformation problems recalled above. With this assumption, the group μd
2 acts on the

ring Runiv
S by conjugation of the universal deformation and we have the following result.

Proposition 3.2.

(i) We have an equality PS = (Runiv
S )μd

2 .

(ii) Let p ⊂ Runiv
S be a prime ideal and let q = p ∩ PS . Let E = FracRuniv

S /p and suppose

that the associated representation ρp = rp|GF,S
⊗A E : GF,S → GLn(E) is absolutely irre-

ducible. Then PS → Runiv
S is étale at q and μd

2 acts transitively on the set of primes of Runiv
S

above q.

We first establish a preliminary lemma, before proving the proposition.

Lemma 3.3. Let R = Runiv
S /(mPS ) and let r : GF+,S → Gn(R) be a representative of the spe-

cialization of the universal deformation. Then, after possibly conjugating by an element of
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1 +Mn(mR), r|GF,S
has (block) diagonal entries given by ρ̄1, . . . , ρ̄d, and the matrix B defined

above is equal to B̄. (Note we are not asserting that the off-diagonal blocks of r|GF,S
are zero.)

Proof. We let ē1, ē2, . . . , ēd ∈Mn(k) denote the standard idempotents decomposing r̄|GF,S

into the block diagonal pieces ρ̄1, . . . , ρ̄d. We let A ⊂Mn(R) denote the image of R[GF,S ]
under r. The idempotents ēi lift to orthogonal idempotents ei in A with e1 + · · · + ed = 1 and,
after conjugating by an element of 1 +Mn(mR), we can assume that the ei are again the stan-
dard idempotents on Rn. Moreover, applying the first case of the proof of [BC09, Lemma 1.8.2],
we can (and do) choose the ei so that they are fixed by the anti-involution � : A → A given
by the formula M �→ B(tM)B−1. This implies that the matrix B is block diagonal. We have
eiAei = Mni(R) (see [BC09, Lemma 1.4.3] and [Che14, Theorem 2.22]) and,for each i �= j, we
have eiAej = Mni,nj (Ai,j), where Ai,j ⊂ R is an ideal [BC09, Proposition 1.3.8].

Since det ◦ r = det ◦ r̄, Proposition 2.5 shows that
∑

i�=j Ai,jAj,i = 0. This implies that for
each i the map

R[GF,S ] →Mni(R)

given by
x �→ eir(x)ei

is an algebra homomorphism and we get an R-valued lift of ρ̄i. By the uniqueness assertion in
Proposition 2.5, the determinant of this lift is equal to det ◦ρ̄i. Since ρ̄i is absolutely irreducible,
it follows from [Che14, Theorem 2.22] that, after conjugating by a block diagonal matrix in
1 +Mn(mR), we can assume that the map

x �→ eir(x)ei

is induced by ρ̄i, which is the desired statement.
Finally, we consider the matrix B. We have already shown that B is block diagonal. For

1 ≤ i ≤ d, we denote the corresponding block of B by Bi. It lifts a block B̄i of B̄. By Schur’s
lemma, we have Bi = βiB̄i for some scalars βi ∈ 1 + mR. Since 2 is invertible in R, we can find
λi ∈ 1 + mR with λ2

i = β−1
i . Conjugating r by the diagonal matrix with λi in the ith block puts

r into the desired form. �

Proof of Proposition 3.2. We begin by proving the first part. We again let R = Runiv
S /(mPS ).

By Nakayama’s lemma, it suffices to show that Rμd
2 = k. Indeed, the natural map

(Runiv
S )μd

2/mPS (Runiv
S )μd

2 → Rμd
2 is injective (i.e. (mPSR

univ
S )μd

2 = mPS (Runiv
S )μd

2), since if
∑

imixi

is μd
2-invariant, with mi ∈ mPS and xi ∈ Runiv

S , we have
∑

imixi = (1/2d)
∑

imi
∑

σ∈μd
2
σxi,

which is an element of mPS (Runiv
S )μd

2 . Let r : GF+,S → Gn(R) be a representative of the spe-
cialization of the universal deformation satisfying the conclusion of Lemma 3.3. Then R is a
finite k-algebra and is generated as a k-algebra by the matrix entries of r and hence the matrix
entries of ρ = r|GF,S

(because B = B̄). We recall the ideals Ai,j ⊂ R appearing in the proof of
Lemma 3.3, which are generated by the block (i, j) matrix entries of ρ. The conjugate self-duality
of ρ is given by tρ(δ) = χ(δ)B̄−1ρ((δc)−1)B̄, δ ∈ GF,S . Since B̄ is block diagonal, we deduce that
Ai,j = Aj,i. Since

∑
i�=j Ai,jAj,i = 0, we see that A2

i,j = 0 for i �= j. We deduce that R is generated
as a k-module by 1 ∈ R and products of the form

aP =
∏

(i,j)∈P
ai,j ,
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where ∅ �= P ⊂ {(i, j) : 1 ≤ i < j ≤ d} and ai,j ∈ Ai,j has action of μd
2 given by ((−1)α1 , . . . ,

(−1)αd)ai,j = (−1)αi+αjai,j . Suppose that the action of μd
2 on aP is trivial. Then, for each 1 ≤

i ≤ d, i appears in an even number of elements of P. A product a′j1,j2
= a1,j1a1,j2 lies in Aj1,j2

and the action of μd
2 is given by ((−1)α1 , . . . , (−1)αd)a′j1,j2

= (−1)αj1
+αj2a′j1,j2

. Since 1 appears
in an even number of elements of P, we can ‘pair off’ these elements and rewrite aP as a product

aP ′ =
∏

(i,j)∈P ′
a′i,j ,

where P ′ ⊂ {(i, j) : 2 ≤ i < j ≤ d} and the action of μd
2 on a′i,j is given by the same formula as

for ai,j . Continuing in this manner, we deduce that aP is the product of an even number of
elements of Ad−1,d and thus equals 0 since A2

d−1,d = 0.

The invariant subring Rμd
2 is equal to the k-submodule of R generated by

∑
σ∈μd

2
σx, where

x runs over a set of k-module generators of R (since 2 is invertible in k). It follows from the
above calculation that Rμd

2 = k.
We now prove the second part. The diagonally embedded subgroup μ2 ⊆ μd

2 acts trivially on
Runiv

S , so we have an induced action of μd
2/μ2. The first part together with [Sta17, Tag 0BRI]

implies that μd
2/μ2 acts transitively on the set of primes of Runiv

S above q. Let R = Runiv
S /p and

let rp : GF+,S → Gn(R) be a representative of the specialization of the universal deformation. By
[Sta17, Tag 0BST], to finish the proof if will be enough to show that if σ ∈ μd

2, σ(p) = p, and σ
acts as the identity on R, then σ ∈ μ2.

If σ ∈ μd
2 corresponds to the block diagonal matrix g ∈ GLn(O), then these conditions imply

that rp and grpg
−1 are conjugate by an element γ ∈ 1 +Mn(mR). Since rp|GF,S

⊗ E = ρp is
absolutely irreducible, this implies that gγ−1 is scalar and so g must also be scalar as l > 2;
hence, g ∈ μ2. This completes the proof. �

For each partition {1, . . . , d} = P1 � P2 with P1,P2 both non-empty, Proposition 2.5 gives an
ideal I(P1,P2) ⊂ PS cutting out the locus where the determinant det r|GF,S

is (P1,P2)-reducible.
We write Ired

S =
∏

(P1,P2) I(P1,P2), an ideal of PS .

Lemma 3.4. Let p ⊂ Runiv
S be a prime ideal and let q = p ∩ PS . Let A = Runiv

S /p, E = FracA.

Then ρp = rp|GF,S
⊗A E is absolutely irreducible if and only if Ired

S �⊂ q.

Proof. If Ired
S ⊂ q, then I(P1,P2) ⊂ q for some proper partition (P1,P2). Then Proposition 2.5

implies that det rp admits a decomposition det ◦rp|GF,S
= D1D2 for two determinants

Di : A[GF,S ] →Mni(A). Then [Che14, Corollary 2.13] implies that ρp is not absolutely
irreducible.

Suppose conversely that ρp is not absolutely irreducible. Let J(P1,P2) denote the image of
I(P1,P2) in A. We must show that some J(P1,P2) is zero. Let A denote the image of A[GF,S ] in
Mn(A) under rp|GF,S

. According to [BC09, Theorem 1.4.4], we can assume that A has the form

A =

⎛
⎜⎜⎜⎜⎜⎝

Mn1(A) Mn1,n2(A1,2) · · · Mn1,nd
(A1,d)

Mn2,n1(A2,1) Mn2(A) · · · Mn2,nd
(A2,d)

...
...

. . .
...

Mnd,n1(Ad,1) Mnd,n2(Ad,2) · · · Mnd
(A)

⎞
⎟⎟⎟⎟⎟⎠, (2)
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where each Ai,j is a fractional ideal of E. Consequently, A⊗A E has the form

A⊗A E =

⎛
⎜⎜⎜⎜⎜⎝

Mn1(E) Mn1,n2(E1,2) · · · Mn1,nd
(E1,d)

Mn2,n1(E2,1) Mn2(E) · · · Mn2,nd
(E2,d)

...
...

. . .
...

Mnd,n1(Ed,1) Mnd,n2(Ed,2) · · · Mnd
(E)

⎞
⎟⎟⎟⎟⎟⎠, (3)

where each Ei,j = Ai,j ⊗A E equals either E or 0. Let fi ∈Mn(E) denote the matrix with 1 in the
(i, i)th entry and 0 everywhere else. If ρp is not absolutely irreducible, then A⊗A E is a proper
subspace of Mn(E), so there exists i such that (A⊗A E)fi ⊂Mn(E)fi is a proper subspace.
Since Mn(E)fi is isomorphic as an Mn(E)-module to the tautological representation En, this
implies that the A⊗A E-module En admits a proper invariant subspace. After permuting the
diagonal blocks, we can assume that this subspace is En1+···+ns for some s < d (included as
the subspace of En where the last ns+1 + · · · + nd entries are zero). Otherwise said, the spaces
Ei,j for i > s, j ≤ s are zero. If P1 = {1, . . . , s} and P2 = {s+ 1, . . . , d}, then this implies that
J(P1,P2) ⊗A E = 0 and hence (as A is a domain) J(P1,P2) = 0. This completes the proof. �

Lemma 3.5. Let p ⊂ Runiv
S be a prime ideal, A = Runiv

S /p, E = FracA. Then rp ⊗A E is Schur

and, if rp|GF,S
⊗A E is not absolutely irreducible, then rp is equivalent (i.e. conjugate by an

element in 1 +Mn(mA)) to a type-S lifting of the form rp = r1 ⊕ r2, where ri : GF+,S → Gmi(A)
and m1m2 �= 0.

Proof. We argue, as in the proof of Lemma 3.4, using the image A ⊂Mn(A) of A[GF,S ], which is a
generalized matrix algebra. Suppose that we are given GF,S-invariant subspaces En ⊃W1 ⊃W2

such that W2 and En/W1 are irreducible. We can assume that A has the form (2) and that
this decomposition is block upper triangular (perhaps with respect to a coarser partition than
n = n1 + · · · + nd) and moreover than the first block corresponds to W2, while the last block
corresponds to En/W1. In particular, W2 and En/W1 are even absolutely irreducible. Note that
there can be no isomorphism W c∨

2 (ν ◦ rp) ∼= En/W1; if there was, then it would imply an identity
of A-valued determinants, which we could reduce modulo mA to obtain an identity {ρi} = {ρj} of
sets of irreducible constituents of r̄|GF,S

. Since these appear with multiplicity 1, this is impossible.
This all shows that rp ⊗A E is necessarily Schur.

Now suppose that rp|GF,S
⊗A E is not absolutely irreducible. After permuting the diagonal

blocks of r̄, we can assume that there is some 1 ≤ m ≤ d such that Ai,j = 0 for i > m, j ≤ m.
The existence of the conjugate self-duality of rp implies (cf. [BC09, Lemma 1.8.5]) that Aj,i = 0
in the same range, giving a decomposition rp|GF,S

= ρ1 ⊕ ρ2 of representations over A. Since
rp ⊗A E is Schur, the conjugate self-duality of rp must make ρ1 and ρ2 orthogonal, showing that
rp itself decomposes as rp = r1 ⊕ r2. �

3.3 Dimension bounds
We now suppose that S admits a decomposition S = Sl � S(B) �R � Sa, where:

– for each v ∈ S(B) ∪R, qv ≡ 1 mod l and r̄|GFṽ
is trivial;

– for each v ∈ Sa, qv �≡ 1 mod l, r̄|GFṽ
is unramified, and r̄|GFṽ

is scalar. (Then any lifting of
r̄|GFṽ

is unramified.)
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We consider the global deformation problem

S = (F/F+, S, S̃,Λ, r̄, χ, {D

v }v∈Sl

∪ {DSt
v }v∈S(B) ∪ {D1

v}v∈R ∪ {D�
v }v∈Sa),

where r̄ is assumed to be Schur. We define quantities dF,0 = d0 and dF,l = dl as follows. Let
Δ denote the Galois group of the maximal abelian pro-l extension of F which is unramified
outside l, and let Δ0 denote the Galois group of the maximal abelian pro-l extension of F which
is unramified outside l and in which each place of S(B) splits completely. We set

d0 = dimQl
ker(Δ[1/l] → Δ0[1/l])c=−1

and

dl = inf
v∈Sl

[F+
v : Ql].

Lemma 3.6. Suppose that dl > n(n− 1)/2 + 1. Let A ∈ CΛ be a finite Λ-algebra and let

r : GF+,S → Gn(A) be a lifting of r̄ of type S. Then dimA/(Ired
S , λ) ≤ n[F+ : Q] − d0.

Proof. We can assume without loss of generality that A = A/(Ired
S , λ) and must show that

dimA ≤ [F+ : Q] − d0. Since A is Noetherian and we are interested only in dimension, we can
assume moreover that A is integral. Let E = Frac(A). Then (Lemma 3.5) we can find a non-trivial
partition n = n1 + n2 and homomorphisms ri : GF+,S → Gni(A) (i = 1, 2) such that r = r1 ⊕ r2.

Let Ē be a choice of algebraic closure of E. Our condition on dl means that we can appeal to
[Tho15, Corollary 3.12] (characterization of A-valued points of D


v for each v ∈ Sl). This result
implies the existence for each v ∈ Sl of an increasing filtration

0 ⊂ Fil1v ⊂ Fil2v ⊂ · · · ⊂ Filnv = Ēn

of r|GFṽ
⊗A Ē by GFṽ

-invariant subspaces such that each Filiv /Fili−1
v is one dimensional, and

the character of Iab
Fṽ

(l) acting on this space is given by composing the universal character ψi
v :

Iab
Fṽ

(l) → Λ×
v with the homomorphism

Λv → Λ → A→ Ē.

The direct sum decomposition of r leads to a decomposition r|GFṽ
= r1|GFṽ

⊕ r2|GFṽ
. Let F i

v =
Filiv ∩r1|GFṽ

⊗A Ē and Gi
v = Filiv ∩r2|GFṽ

⊗A Ē. Then F •
v and G•

v are increasing filtrations of Ēn1

and Ēn2 , respectively, with graded pieces of dimension at most 1. We write σv for the bijection

σv : {1, . . . , n1} � {1, . . . , n2} → {1, . . . , n},
which is increasing on {1, . . . , n1} and {1, . . . , n2} and which has the property that
σv({1, . . . , n1}) is the set of i ∈ {1, . . . , n} such that the graded piece F i

v/F
i−1
v is non-trivial.

Let Λv,1 and Λv,2 denote the analogues of the algebra Λv in dimensions n1 and n2, respec-
tively. The bijection σv determines in an obvious way an isomorphism Λv,1⊗̂Λv,2

∼= Λv. Applying
again [Tho15, Corollary 3.12], we see that with this structure on A of Λv,i-algebra, each homo-
morphism ri|GFṽ

: GFṽ
→ GLni(A) is of type D


v (A). Similarly if we define Λi = ⊗̂v∈Sl
Λv,i then

the collection of bijections (σv)v∈Sl
determines an isomorphism Λ1⊗̂OΛ2

∼= Λ.
We also define Λv,0 = O[[Iab

Fṽ
(l)]] and Λ0 = ⊗̂v∈Sl

Λv,0. Then there are natural maps Λ0 → Λi

classifying the characters
∏ni

j=1 ψ
j
v : Iab

Fṽ
(l) → Λ×

v,i. Let χ̄i = det r̄i|GF,S
. We get a commutative
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diagram

Λ0⊗̂OΛ0
��

��

k[[Δ/(c+ 1)]]⊗̂kk[[Δ/(c+ 1)]]

��
Λ1⊗̂OΛ2

�� A

where the map k[[Δ/(c+ 1)]]⊗̂kk[[Δ/(c+ 1)]] → A classifies the pair of A-valued characters
(χ1, χ2) = (χ̄−1

1 det r1|GF
, χ̄−1

2 det r2|GF
) of the group Δ/(c+ 1). The natural map Λ0/(λ) →

k[[Δ/(c+ 1)]] is finite (and dominant). (Note that det r1 and det r2 are unramified at places
of S(B) ∪R ∪ Sa because of our choices of deformation problem.)

We now use the existence of the places S(B). For each place v ∈ S(B), imposing the Steinberg
condition on r1 ⊕ r2 determines a relation χ1(Frobṽ)n2 = χ2(Frobṽ)n1 in A. Let E denote the
quotient of the group Δ/(c+ 1) × Δ/(c+ 1) by the Zl-submodule generated by the elements
(n2 Frobṽ,−n1 Frobṽ) (v ∈ S(B)). Then dimQl

E [1/l] = dimQl
(Δ/(c+ 1) × Δ/(c+ 1))[1/l] − d0

and we in fact have the following commutative diagram.

Λ0⊗̂OΛ0
��

��

k[[E ]]

��
Λ1⊗̂OΛ2

�� A

We deduce that the map Λ ∼= Λ1⊗̂OΛ2 → A factors through the quotient Λ1⊗̂OΛ2 ⊗Λ0⊗̂OΛ0
k[[E ]]

of dimension n[F+ : Q] − d0. Using finally that A is a finite Λ-algebra, we see that dimA must
satisfy the same estimate. This concludes the proof. �

Definition 3.7. Let A ∈ CΛ and let r : GF+,S → Gn(A) be a homomorphism of type S. We say
that r is generic at l if it satisfies the following two conditions.

– For each v ∈ Sl, the universal characters ψv
1 , . . . , ψ

v
n : Iab

Fṽ
(l) → A× are distinct.

– There exist v ∈ Sl and σ ∈ Iab
Fṽ

(l) such that the elements ψv
1(σ), . . . , ψv

n(σ) ∈ A× satisfy no
non-trivial Z-linear relation.

We say that r is generic if it is generic at l, A is a domain, and r|GF
⊗A Frac(A) is absolutely

irreducible.

Lemma 3.8. There exists a countable collection of ideals Ii ⊂ Λ/(λ) (i = 1, 2, . . .) with the

following properties.

(i) For each i = 1, 2, . . ., we have dim Λ/Ii ≤ n[F+ : Q] − dl.

(ii) Suppose that A ∈ CΛ and r : GF+ → Gn(A) is a lifting of type S which is not generic at l.

Then there exists i ≥ 1 such that IiA = 0.

Proof. For each v ∈ Sl, let dv = [F+
v : Ql] and let σv,1, . . . , σv,dv ∈ Iab

Fṽ
(l) be elements which

project to a Zl-basis of the l-torsion-free quotient of this finitely generated Zl-module.
For each 1 ≤ i < j ≤ n and v ∈ Sl, we define an ideal I(i, j, v) = (λ, ψi

v(σv,k) −
ψj

v(σv,k))k=1,...,dv . Then dim Λ/I(i, j, v) = n[F+ : Q] − dv and, if p ⊂ Λ is a prime of characteristic
l which does not contain I(i, j, v), then the characters ψi

v mod p and ψj
v mod p are distinct.
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Suppose that we are given for each v ∈ Sl an n× dv matrix Av with integer entries, and with
at least one non-zero entry in each column. Then we define an ideal J((Av)v∈Sl

) ⊂ Λ as the ideal
generated by λ and all the elements

n∏
i=1

ψi
v(σv,j)Av,i,j − 1 (v ∈ Sl, j = 1, . . . , dv).

Then dim Λ/J((Av)v∈Sl
) = (n− 1)[F+ : Q] and, if p ⊂ Λ is a prime of characteristic l not con-

taining any of the ideals J((Av)v∈Sl
), then there exist v ∈ Sl and 1 ≤ j ≤ dv such that the

elements ψ1
v(σv,j), . . . , ψn

v (σv,j) ∈ (Λ/p)× satisfy no non-trivial Z-linear relation.
The lemma is completed on taking our countable collection of ideals Ii to consist of all the

ideals I(i, j, v) and J((Av)v∈Sl
) defined above. �

Combining the previous lemmas, we obtain the following result.

Lemma 3.9. Suppose that dl > n(n− 1)/2 + 1 and that A ∈ CΛ is a finite Λ-algebra such that

dimA/(λ) > sup(n[F+ : Q] − d0, n[F+ : Q] − dl). Let r : GF+,S → Gn(A) be a homomorphism

of type S. Then we can find a prime ideal p ⊂ A of dimension 1 and characteristic l such that,

writing rp = r mod p : GF+ → Gn(A/p), rp is generic.

Proof. Replacing A by A/(λ), we can assume that A is a finite Λ/(λ)-algebra. Let Ii (i = 1, 2, . . .)
be the countable collection of ideals of Λ/(λ) defined in Lemma 3.8. Then dimA/IiA ≤
n[F+ : Q] − dl for each i = 1, 2, . . .. Let I0 = Ired

S A; then Lemma 3.6 shows that dimA/I0 ≤
n[F+ : Q] − d0.

Applying [Tho15, Lemma 1.9], we can find a prime ideal p ⊂ A of dimension 1 (necessarily of
characteristic l) such that p does not contain any of the ideals I0, I1A, I2A, . . .. By construction,
the homomorphism rp is then generic. �

4. Automorphic forms and Hecke algebras on unitary groups

4.1 Hecke algebras
We introduce automorphic forms on unitary groups and related Hecke algebras, using exactly
the same notation as in [Tho15, § 4]. This means we start with the following data.

– An integer n ≥ 1, an odd prime l, and a totally imaginary CM number field L with totally
real subfield L+. We write Sl for the set of l-adic places of L+. We assume that L/L+

is everywhere unramified. (We note that this implies that [L+ : Q] is even. Indeed, the
quadratic character of (L+)×\A×

L+/Ô×
L+ cutting out L has non-trivial restriction to (L+

v )×

for each v|∞ but is trivial on (−1)v|∞ ∈ (L+∞)×.)
– A coefficient field K ⊂ Q̄l which contains the image of all embeddings L ↪→ Q̄l.
– A finite set S(B) of finite, prime-to-l places of L+ which all split in L. If n is even, then

we assume that n[L+ : Q]/2 + |S(B)| is also even. We allow the possibility that S(B) may
be empty. (Since [L+ : Q] is even, we are really just asking that if n is even, then |S(B)| is
even.)

We can then find a central simple algebra B over L equipped with an involution † such that
dimLB = n2, Bop ∼= B ⊗L,c L, B is split outside S(B), B is a division algebra locally at places
w|S(B) of L, and †|L = c. We can moreover assume that the unitary group G over L+ defined
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by the formula (R an L+-algebra)

G(R) = {g ∈ (B ⊗L+ R)× | gg†⊗1 = 1},
has the property that G(L+ ⊗Q R) is compact and, for each finite place v �∈ S(B) of L+, GL+ is
quasi-split (hence unramified).

We consider automorphic forms on the group G. To define our Hecke algebras, we need to
fix the following additional choices.

– A finite set R of finite places of L+, disjoint from Sl ∪ S(B) and split in L, such that for
each v ∈ R, qv ≡ 1 mod l.

– For each v ∈ R, we fix a choice of n-tuple of characters χv,1, . . . , χv,n : k(v)× → O× which
are trivial mod �.

– A finite set T of finite places of L+ split in L, containing Sl ∪ S(B) ∪R. For each v ∈ T ,
we fix a choice of place ṽ of L lying above v and set T̃ = {ṽ | v ∈ T}.

It is also convenient to fix a choice of order OB ⊂ B such that O†
B = OB and, for each place v of

L+ which splits v = wwc in L, OBw is a maximal order in Bw. We use this maximal order OB to
extend G to a group scheme over OL+ . If v ∈ T , then a choice of isomorphism OBṽ

∼= Mn(OFṽ
)

determines an isomorphism ιṽ : GO
F+

v
→ ResOFṽ

/O
F+

v

GLn and we fix such a choice.

Now suppose that we are given an open compact subgroup U =
∏

v Uv ⊂ G(A∞
L+) which

satisfies the following conditions.

– There exists a finite place v �∈ Sl of L+ such that Uv contains no non-trivial elements of
finite order (in other words, U is sufficiently small in the terminology of [Tho15]).

– If v �∈ T is a finite place of L+ split in L, then Uv = G(OL+
v
).

– If v ∈ R, then Uv = ι−1
ṽ Iw(ṽ), where Iw(ṽ) ⊂ GLn(OFṽ

) denotes the standard Iwahori
subgroup.

– If v is a finite place of L+ inert in L, then Uv is a hyperspecial maximal compact subgroup
of G(L+

v ).

In this case we have defined in [Tho15, Definition 4.2] a Hecke algebra TT
χ (U(l∞),O). It is

a finite faithful Λ-algebra, defined as an inverse limit of Hecke algebras which act on spaces
of ordinary automorphic forms on G with coefficients in O. According to [Tho15, Proposition
4.7], to any maximal ideal m ⊂ TT

χ (U(l∞),O) of residue field k, one can associate a continuous
semisimple representation ρ̄m : GF,T → GLn(k), uniquely characterized up to GLn(k) conju-
gacy by a formula for the characteristic polynomials of Frobenius elements in terms of Hecke
operators.

4.2 Deformation rings
We connect the Hecke algebras defined in the previous section to deformation rings only under
the following assumptions (i)–(iii).

(i) T has the form T = Sl � S(B) �R � Sa, where Sa is a non-empty set of places of odd
residue characteristic which are absolutely unramified and not split in L(ζl). For every
v ∈ Sl, [F+

v : Ql] > n(n− 1)/2 + 1.
(ii) U =

∏
Uv ⊂ G(A∞

L+) is an open compact subgroup such that if v ∈ Sa, then Uv =
ι−1
ṽ (ker(GLn(OLṽ

) → GLn(k(ṽ)))) and, if v ∈ S(B), then Uv is the unique maximal compact
subgroup of G(F+

v ). Since Sa is non-empty, this forces U to be sufficiently small.
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(iii) m ⊂ TT
χ (U(l∞),O) is a maximal ideal of residue field k such that ρ̄m : GF,T → GLn(k)

satisfies the following conditions:
– if v ∈ Sa, then ρ̄m|GLṽ

is unramified and ρ̄m(Frobṽ) is scalar;
– if v ∈ Sl ∪R ∪ S(B), then ρ̄m|GLṽ

is the trivial representation;
– for each v ∈ S(B) ∪R, qv ≡ 1 mod l;
– let ρ̄m = ⊕d

i=1ρ̄i denote the decomposition into simple constituents. Then each ρ̄i is
absolutely irreducible, satisfies ρ̄c

i
∼= ρ̄∨i ⊗ ε1−n, and, if i �= j, then ρ̄i �∼= ρ̄j (equivalently,

the maximal ideal m is residually Schur in the sense of [Tho15, Definition 4.8]).

Then [Tho15, Proposition 4.9] ρ̄m extends to a homomorphism r̄m : GL+,T → Gn(k) such that
ν ◦ r̄m = ε1−nδn

L/L+ and which is Schur. We can consider the global deformation problem

Sχ = (L/L+, T, T̃ ,Λ, r̄m, ε1−nδn
L/L+ , {R


v }v∈Sl
∪ {Rχv

v }v∈R ∪ {RSt
v }v∈S(B) ∪ {R�

v }v∈Sa).

Then there are Λ-algebra homomorphisms PSχ → RSχ and PSχ → TT
χ (U(l∞),O)m (see [Tho15,

Proposition 4.13]). We define JSχ = ker(PSχ → TT
χ (U(l∞),O)m).

Theorem 4.1. Let p ⊂ Runiv
S1

be a prime ideal of dimension 1 and characteristic l. Let

A = Runiv
S1

/p and suppose that the following conditions are satisfied.

(i) JS1R
univ
S1

⊂ p.

(ii) The representation rp is generic, in the sense of Definition 3.7.

(iii) For each v ∈ R, rp|GLṽ
is the trivial representation and, if lN ||qv − 1, then lN > n. For each

v ∈ S(B), rp|GLṽ
is unramified and rp(Frobṽ) is a scalar matrix.

(iv) r̄m|GL,S
is primitive.

(v) ζl �∈ L, r̄m|GL+(ζl)
is Schur, and r̄m(GL,S) does not have a quotient of order l.

(vi) l > 3 and l � n.

Let Q ⊂ Runiv
S1

be a prime such that Q ⊂ p. Then JS1R
univ
S1

⊂ Q.

Proof. Let q = p ∩ PS1 . We can assume, after twisting by a character, that FracRuniv
S1

/p =
FracPS1/q. (Apply [Tho15, Lemma 3.38] and [Tho15, Corollary 4.14].)

In the case that r̄m|GL,S
has two irreducible constituents, the theorem follows on combin-

ing [Tho15, Corollary 5.7] (existence of Taylor–Wiles primes under a subset of the hypotheses
listed here) and [Tho15, Corollary 4.20] (the assertion JS1R

univ
S1

⊂ Q assuming existence of
Taylor–Wiles primes and, in addition, that r̄m|GL,S

has two irreducible constituents).
The proof of [Tho15, Corollary 4.20] can easily be modified to allow r̄m|GL,S

to have an
arbitrary number d of irreducible constituents: one just needs to replace the μ2

2 action there by
the μd

2 action on Runiv
S1

described in § 3.2 and replace the appeal to [Tho15, Proposition 3.29]
with an appeal to Proposition 3.2 of this paper. We omit the details. �

5. Propagation of potential pro-automorphy

In this section we use Theorem 4.1 (informally, R = T locally at generic primes) to prove our
first automorphy lifting theorem for l-adic Galois representations. The argument follows similar
lines to [Tho15, § 6]. The main difference is that by making use of Lemma 3.9 we can make do
under weaker assumptions. Especially, we do not need an a priori bound on the dimension of
the locus of reducible deformations inside Runiv

S1
.
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Let us take up assumptions (1)–(3) of § 4.2. Thus, we have a CM field L, a unitary group G,
and a set S = T = Sl ∪R ∪ S(B) ∪ Sa of finite places of L+ split in L. We have an open compact
subgroup U ⊂ G(A∞

L+), a maximal ideal m of the Hecke algebra TS(U(l∞),O) of residue field k,
a deformation problem

S1 = (L/L+, T, T̃ ,Λ, r̄m, ε1−nδn
L/L+ , {R


v }v∈Sl
∪ {R1

v}v∈R ∪ {RSt
v }v∈S(B) ∪ {R�

v }v∈Sa),

and a diagram of Λ-algebras

Runiv
S1

PS1
�� ��TT

1 (U(l∞),O)m.

We can now state the main theorem of this section.

Theorem 5.1. Let r : GL+,S → Gn(O) be a lifting of r̄m of type S1 such that r|GL,S
is ordinary

of weight λ for some λ ∈ (Zn
+)Hom(L,Q̄l). Suppose that the following conditions hold.

(i) r̄m|GL,S
is primitive.

(ii) ζl �∈ L, r̄m|GL+(ζl)
is Schur and r̄m(GL,S) does not have a quotient of order l.

(iii) l > 3 and l � n.

(iv) Let dL,0, dL,l be as defined in § 3.3. Then dL,0 > |R|n(n+ 1) + 2 and dL,l > sup(|R|n
(n+ 1) + 2, n(n− 1)/2 + 1).

Then r|GL,S
is automorphic of weight λ.

We assume the hypotheses of Theorem 5.1 for the rest of § 5. Note that our assumption on
dL,0 implies that S(B) is non-empty. In particular, the conclusion of Theorem 5.1 implies, by
local–global compatibility at a place in S(B), that r|GL,S

is absolutely irreducible.
Let us say that a soluble CM extensionM/L is good if it is linearly disjoint from the extension

of L(ζl) cut out by r̄m|GL(ζl)
and every prime above Sl ∪ Sa ∪R splits in M . (Primes of S(B) are

not required to split and indeed this possibility plays an important role in the proof; cf. [Tho15,
Proposition 6.2].)

Lemma 5.2. LetM/L be a good extension. Then r̄m|GM
is primitive, ζl �∈M , r̄m|GM+(ζl)

is Schur,

and r̄m(GM ) does not have a quotient of order l.

Proof. We take each property in turn. If M/L is good, then r̄m(GM ) = r̄m(GL), so this image
does not have a quotient of order l. Since M/L is linearly disjoint from L(ζl), we have ζl �∈M .

To say that r̄m|GM+(ζl)
is Schur is to say that L �⊂M+(ζl) and, if ρ̄, ρ̄′ are two Jordan–Hölder

factors of r̄m|GM
, then ρ̄c ∼= ρ̄∨ ⊗ ε1−n and ρ̄ �∼= ρ̄′. Since r̄m(GM ) = r̄m(GL), the latter property is

not disturbed. We show that under our assumptions we in fact have M �⊂M+(ζl). It suffices to
show that the two extensionsM/M+ andM+(ζl)/M+ are linearly disjoint. Since these extensions
arise from the linearly disjoint extensions L/L+ and L+(ζl)/L+ by compositum with M+, it is
enough to check that the extensions M+/L+ and L(ζl)/L+ are linearly disjoint or even that
M+ ∩ L(ζl) = L+. This follows from the stronger assertion that M ∩ L(ζl) = L.

Finally, the condition that r̄m|GM
is primitive depends only on the group r̄m(GM ) = r̄m(GL),

so it is inherited from the corresponding condition for r̄m. �

If M/L is a good extension and X (respectively X̃) is a set of places of L+

(respectively L), then we write XM (respectively X̃M ) for the set of places of M+ lying
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above a place of X (respectively places of M lying above a place of X̃). We write ΛM =
⊗̂v∈Sl,M

O[[Iab
Mṽ

(l)n]] for the Iwasawa algebra of M (so ΛL = Λ). There is a natural surjective
homomorphism ΛM → Λ. We can define a deformation problem

S1,M = (M/M+, TM , T̃M ,ΛM , r̄m|GM+ , ε
1−nδn

M/M+ ,

{R

v }v∈Sl,M

∪ {R1
v}v∈RM

∪ {RSt
v }v∈S(B)M

∪ {R�
v }v∈Sa,M

).

On the automorphic side, we can define an open compact subgroup UM ⊂ G(A∞
M+) with the

property that UL = U ; see [Tho15, § 4.5] for details. With this choice, it is possible to define
a maximal ideal mM ⊂ TTM (UM (l∞),O) with the property that r̄mM = r̄m|GM+ and then there
exists a commutative diagram of ΛM -algebras

Runiv
S1

PS1
�� �� TT

1 (U(l∞),O)m

Runiv
S1,M

��

PS1,M
��

��

�� TTM
1 (UM (l∞),O)mM

��

(see [Tho15, Proposition 4.18]). Let JM = JS1,M
PS1 . Then we have an inclusion JS1,M

PS1 ⊂ JS1 .
More generally, if M1/M0/L is a tower of good extensions of L, then JM1 ⊂ JM0 . We say that a
prime ideal p ⊂ Runiv

S1
is potentially pro-automorphic if there exists a good extension M/L such

that JMR
univ
S1

⊂ p.

Proposition 5.3. Let p ⊂ Runiv
S1

be a prime of dimension 1 and characteristic l which is poten-

tially pro-automorphic and generic. Suppose further that for each v ∈ R, the restriction rp|GLṽ

is trivial. Then every minimal prime Q ⊂ p is potentially pro-automorphic.

Proof. The proof is the same as the proof of [Tho15, Proposition 6.2]. We need only replace the
reference there to [Tho15, Corollary 4.20] to Theorem 4.1 here. �

Proof of Theorem 5.1. For any good extension M/L, the ring Runiv
S1

/(λ, JM ) is a finite Λ-algebra.
Indeed, Runiv

S1,M
/(λ, JS1,M

) is a finite ΛM -algebra and we can appeal to [Tho15, Lemma 4.16]
and [Tho15, Proposition 4.17]. It follows from Lemma 3.9 that any quotient of Runiv

S1
/(λ, JM )

of dimension at least 1 + sup(n[L+ : Q] − dL,0, n[L+ : Q] − dL,l) contains a generic, potentially
pro-automorphic prime p of dimension 1 and characteristic l.

Fix a choice of lifting runiv
S1

: GL+,S → Gn(Runiv
S1

) representing the universal deformation. This
induces for each v ∈ R a homomorphism R1

v → Runiv
S1

and we let JR denote the ideal generated by
the images of mR1

v
, v ∈ R. The ideal JR is independent of the choice of lifting and, for any quotient

Runiv
S1

/I of characteristic l, we have dimRuniv
S1

/(JR, I) ≥ dimRuniv
S1

/I − |R|n2 by [Mat89, Theorem
15.1] (note that R1

v/(λ) has dimension n2 [Tho15, Proposition 3.15]). It follows that there exists a
generic prime p ⊂ Runiv

S1
/(JR, JL) of dimension 1 and characteristic l, since dimRuniv

S1
/(JR, JL) ≥

n[L+ : Q] − n2|R| > sup(n[L+ : Q] − dL,0, n[L+ : Q] − dL,l) (here we are using assumption (4)
in the statement of Theorem 5.1). By Proposition 5.3, any minimal prime Q ⊂ p of Runiv

S1
is

potentially pro-automorphic.
We now consider the partition of the set of minimal primes of Runiv

S1
into two sets C1, C2,

consisting of those primes which respectively are and are not potentially pro-automorphic. We
have shown that C1 is non-empty. We claim that C2 is empty. Otherwise, [Tho15, Lemma 3.21]
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implies the existence of primes Q1 ∈ C1, Q2 ∈ C2 such that

dimRuniv
S1

/(Q1, Q2) ≥ n[L+ : Q] − |R|n− 2

and hence

dimRuniv
S1

/(Q1, Q2, JR) ≥ n[L+ : Q] − |R|n− |R|n2 − 2 = n[L+ : Q] − |R|n(n+ 1) − 2.

The ring Runiv
S1

/Q1 (and hence each of its quotients) is finite over ΛL. Applying Lemma 3.9
and assumption (4) once again, we see that Runiv

S1
/(Q1, Q2, JR) contains a generic, potentially

pro-automorphic prime p′ of dimension 1 and characteristic l. Applying Proposition 5.3 to p′, we
deduce that Q2 is potentially pro-automorphic, which is a contradiction.

Now let r : GL+,S → Gn(O) be a lifting of r̄m which is ordinary of weight λ and of type
S1, as in the statement of the theorem. This induces a homomorphism Runiv

S1
→ O. Let Q be a

minimal prime contained inside the kernel of this homomorphism. Then there is a good extension
M/L such that JM ⊂ Q and so the induced homomorphism Runiv

S1,M
→ O kills JS1,M

, and the

map PS1,M
→ O induced by r|GM,SM

factors through TTM
1 (UM (l∞),O)mM . Using [Ger19, Lemma

2.6.4], [CHT08, Proposition 3.3.2], and [Tho15, Lemma 2.7] (respectively a classicality statement
in Hida theory, base change for the unitary group GM+ , and soluble descent for GLn(AM )), we
deduce that the representation r|GL

is automorphic of weight λ. �

The following corollary was established in the course of the above proof.

Corollary 5.4. With hypotheses on r̄m as in Theorem 5.1, RS1 is a finite Λ-algebra.

6. The end

We are now in a position to state and prove the main theorem of this paper.

Theorem 6.1. Let F be an imaginary CM number field with maximal totally real subfield F+

and let n ≥ 2 be an integer. Let l be a prime and suppose that ρ : GF → GLn(Q̄l) is a continuous

semisimple representation satisfying the following hypotheses.

(i) ρc ∼= ρ∨ε1−n.

(ii) ρ is ramified at only finitely many places.

(iii) ρ is ordinary of weight λ for some λ ∈ (Zn
+)Hom(F,Q̄l).

(iv) There is an isomorphism ρ̄ss ∼= ρ̄1 ⊕ · · · ⊕ ρ̄d, where each ρ̄i is absolutely irreducible and

satisfies ρ̄c
i
∼= ρ̄∨i ε

1−n, and ρ̄i �∼= ρ̄j if i �= j.

(v) There exists a finite place ṽ0 of F , prime to l, such that ρ|ssGFṽ0

∼= ⊕n
i=1ψε

n−i for some

unramified character ψ : GFṽ0
→ Q̄×

l .

(vi) There exist a RACSDC representation π of GLn(AF ) and ι : Q̄l → C such that:

(a) π is ι-ordinary;

(b) rι(π)
ss ∼= ρ̄ss;

(c) πṽ0
is an unramified twist of the Steinberg representation.

(vii) F (ζl) is not contained in F̄ ker ad(ρ̄ss) and F is not contained in F+(ζl). For each 1 ≤ i, j ≤ d,

ρ̄i|GF (ζl)
is absolutely irreducible and ρ̄i|GF (ζl)

�∼= ρ̄j |GF (ζl)
if i �= j. Moreover, ρ̄ss is primitive

and ρ̄ss(GF ) has no quotient of order l.

(viii) l > 3 and l � n.
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Then ρ is automorphic: there exists an ι-ordinary RACSDC automorphic representation Π of

GLn(AF ) such that rι(Π) ∼= ρ.

Proof. The proof is similar to, and even simpler than, the proof of [Tho15, Theorem 7.1]. We
can find a coefficient field K ⊂ Q̄l and, after replacing ρ by a conjugate, assume that ρ = r|GF

,
where r : GF+ → Gn(O) is a homomorphism such that r̄ is Schur and ν ◦ r = ε1−nδn

F/F+ . Sim-
ilarly, we can assume the existence of a model ρ′ : GF → GLn(O) for rι(π) which extends to a
homomorphism r′ : GF+ → Gn(O) such that ν ◦ r′ = ε1−nδn

F/F+ and such that r̄′ = r̄. In fact,
r̄|GF+(ζl)

is Schur. Indeed, making use of assumption 6.1, we just need to check that r̄(GF+(ζl))
meets both components of Gn. This is our assumption that F �⊂ F+(ζl).

After making a preliminary soluble base change, we can assume that the following further
conditions are satisfied.

(i) F/F+ is everywhere unramified and each place of F+ dividing l or above which ρ or π is
ramified splits in F .

(ii) The place ṽ0 is split over F+. We write v0 = ṽ0|F+ .
(iii) For each place w of F at which ρ or π is ramified, or which divides l, the representation

r̄|GFw
is trivial.

(iv) For each prime-to-l place w of F at which ρ or π is ramified, we have qw ≡ 1 mod l and, if
lN ||(qw − 1), then lN > n. Moreover, ρ|GFw

and ρ′|GFw
are unipotently ramified.

We can find a finite set X̃0 of finite places of F satisfying the following conditions.

– X̃0 does not contain any place at which ρ or π is ramified, or any place dividing l.
– Let E/F (ζl) denote the extension cut out by ρ̄|GF (ζl)

. Then, for any Galois subextension
E/E′/F with Gal(E′/F ) simple, there exists a place w ∈ X̃0 which does not split in E′.

– X̃0 contains an absolutely unramified place ṽ1 such that ρ̄(Frobṽ1
) is scalar and qṽ1

�≡
1 mod l.

Let X0 denote the set of places of F+ lying below a place of X̃0. We write v1 = ṽ1|F+ . If L/F is
any Galois CM extension which is X̃0-split, then the analogue of assumption (7) of the theorem
(where F is replaced by L and ρ̄ by ρ̄|GL

) is satisfied.
If L+/F+ is a Galois, totally real, X0-split extension and L = L+ · F , then L/F is Galois

CM and X̃0-split. We claim that we can find a soluble, totally real, X0-split extension such that
the hypotheses of Theorem 5.1 are satisfied for r|GL+ . This will complete the proof: we deduce
from Theorem 5.1 that r|GL

= ρ|GL
is automorphic of weight λ and irreducible. The automorphy

of ρ then follows by soluble descent.
Let Ỹ0 denote the set of places ṽ �= ṽ0, ṽ

c
0 of F dividing l or at which ρ or π is ramified, and

let Y0 denote the set of places of F+ lying below a place of Ỹ0. Then every place of Y0 splits in F
and Y0 ∩ (X0 ∪ {v0}) = ∅. For any odd integer δ ≥ 1, we can find a cyclic totally real extension
M0/F

+ of degree δ which is X0 ∪ {v0}-split and such that each place v ∈ Y0 of F+ is totally
inert in M0.

Let M1 be a totally real quadratic extension of F+ which is X0 ∪ {v0} ∪ Y0-split. We will
take L = F ·M0 ·M1. We claim that for a suitable choice of odd integer δ, this L will suffice for
the application of Theorem 5.1. More precisely, we will apply Theorem 5.1 to the homomorphism
r|GL+ with the following data.

– Sl is the set of l-adic places of L+.
– S(B) is the set of places of L+ lying above v0.
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– R is the set of prime-to-l places of L+ lying above a place of Y0.
– Sa is the set of places of L+ lying above v1.

Let Δ denote the Galois group of the maximal abelian pro-l extension of L unramified outside
l, and let Δ0 denote the Galois group of the maximal abelian pro-l extension of L which is
unramified outside l and which is S(B)-split. Then Δ0 is naturally a quotient of Δ. Let us define

d0 = dimQl
ker(Δ[1/l] → Δ0[1/l])c=−1

and

dl = inf
v∈Sl

[L+
v : Ql].

In order to complete the proof, we must show that the odd integer δ ≥ 1 can be chosen so that
the inequalities

d0 > |R|n(n+ 1)/2 + 2

and

dl > sup(|R|n(n+ 1)/2 + 2, n(n− 1)/2 + 1)

are simultaneously satisfied. It follows from [Mai02, Proposition 19] that d0 = 2δ (see the proof
of [Tho15, Theorem 7.1] for more details). If δ is prime to the absolute residue degrees of all the
places of Y0, then we will have |R| ≤ 2|Y0| and dl ≥ δ. We will therefore be done if we can choose
δ to satisfy

2δ > 2|Y0|n(n+ 1)/2 + 2

and

δ > sup(2|Y0|n(n+ 1)/2 + 2, n(n− 1)/2 + 1).

This is clearly possible and concludes the proof. �

We can use the same idea to prove the following finiteness result (compare [Tho12,
Theorem 10.2]), which plays a crucial role in some of the level-raising arguments in [NT19].

Theorem 6.2. Let F be a CM field, let l be a prime, and let ι : Q̄l → C be an isomorphism.

Let S be a finite set of finite places of F+, containing the l-adic ones, and suppose that each

place of S splits in F . Choose for each v ∈ S a place ṽ of F lying above v and let S̃ denote the

set of the ṽ.

Let π be a RACSDC automorphic representation of GLn(AF ), and let K/Ql be a coefficient

field such that rι(π) can be chosen to take values in GLn(O) and extend it to a homomorphism

r : GF+ → Gn(O) such that ν ◦ r = ε1−nδn
F/F+ . Suppose that the following conditions are

satisfied.

(i) π is ι-ordinary. For each place v ∈ Sl, r̄|GFṽ
is the trivial representation.

(ii) π is unramified outside S.

(iii) There exists a place v0 � l of S such that πṽ0
is an unramified twist of the Steinberg

representation. Moreover, qv0 ≡ 1 mod l and r̄|GFṽ0
is the trivial representation.

(iv) Let ρ̄ = r̄|GF,S
. There is an isomorphism ρ̄ss ∼= ρ̄1 ⊕ · · · ⊕ ρ̄d, where each ρ̄i is abso-

lutely irreducible and satisfies ρ̄c
i
∼= ρ̄∨i ε

1−n (in particular, r̄ is Schur and therefore ρ̄ is

semisimple).
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(v) F (ζl) is not contained in F̄ ker ad(ρ̄ss) and F is not contained in F+(ζl). For each 1 ≤ i, j ≤ d,

ρ̄i|GF (ζl)
is absolutely irreducible and ρ̄i|GF (ζl)

�∼= ρ̄j |GF (ζl)
if i �= j. Moreover, ρ̄ is primitive

and ρ̄(GF ) has no quotient of order l.

(vi) l > 3 and l � n.

Define the global deformation problem

S = (F/F+, S, S̃,Λ, r̄, ε1−nδn
F/F+ , {R


v }v∈Sl
∪ {R�

v }v∈S−(Sl∪{v0}) ∪ {RSt
v0
}).

Then Runiv
S is a finite Λ-algebra.

Proof. Let R = S − Sl ∪ {v0}, S(B) = {v0}. If L/F is a CM extension, let SL denote the set of
places of L+ above S, S̃L the set of places of L above S̃, and define RL, R̃L etc. similarly. If L
satisfies the following conditions:

– r̄|L+ is Schur;
– for each place v ∈ RL, qv ≡ 1 mod l and r̄|GLṽ

is the trivial representation;
– for each place v ∈ R and each place w|v of L+, the induced map R�

Lṽ
→ R�

Fṽ
factors through

the quotient R�
Lṽ

→ R1
Lṽ

,

then we can define the global deformation problem

SL = (L/L+, SL, S̃L,ΛL, r̄|GL+ , ε
1−nδn

L/L+ , {R

v }v∈Sl,L

∪ {R1
v}v∈RL

∪ {RSt
v }v∈S(B)L

)

and restriction from F+ to L+ determines a finite morphism Runiv
SL

→ Runiv
S . If moreover L

satisfies the conditions of Theorem 5.1, then Corollary 5.4 will imply that Runiv
SL

is a finite
ΛL-algebra and hence that Runiv

S is a finite Λ-algebra. Such an extension L/F can be constructed
in exactly the same manner as in the proof of Theorem 6.1. �
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