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MULTIPLIERS FOR AMALGAMS AND THE
ALGEBRA S, (G)

MARIA L. TORRES DE SQUIRE

1. Notation and background material. Throughout the whole paper G
will be a locally compact abelian group with Haar measure m and dual
group G. The difference of two sets A and B will be denoted by A ~ B,
i.e.,

A~ B = {x € Alx ¢ B} and
A—B={x€ylx € Adandy € B}.

For a function fon G and s € G, the functions f” and f; will be defined
by

J'(x) = f(—x) and f;(x) = f(x = 5) (x € G).

As usual Cy(G) = C,, and C.(G) = C, will be the linear space of
continuous functions on G which vanish at infinity, and have compact
support, respectively. For E C G compact, Cz(G) = Cjp will denote
the space of functions f € C.(G) whose support is included in E, i.e.,
supp f C E, endowed with the supremum norm; D, (G) will be the Banach
space of functions

f=2 8*h;,
where g;, h; are in C(G) and
I/l = 2 ligillcollhillee < 00

defined in [12, Section 2], and D(G) will denote the internal inductive
limit of the spaces Dg(G). That is, D(G) = UDg(G) and the
neighborhood bases of the origin are of the form

Ue = {f1f € Dg(G). Ifllg < €}

A quasimeasure is an element of the continuous dual Q(G) of D(G). We
will note by I . (1 = p = co) the space of measurable functions fon G
such that f'restricted to any compact subset E of G belongs to L7 (G), i.e.,
fIE € I”. The space of Radon measures on G will be denoted by V(G).
The pairing between a Banach space B and its dual B* will be denoted by
{, . That is,
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(h, 0% = o(h) (h € B, s € B*).
For X € G, we put
[x, X] = X(x) (x € G),

hence the Fourier-Stietljes (inyerse Fourier-Stietljes) transform of a
bounded measure p on G (on G) will be a function fi (&) on G (on G)
defined by

) = [T B = 1. S

(h(x) = fG [x, fcldu@)).
For a bounded measure p on G (on (A?) we define
W) = ) = M=%
(Ux) = W(x) = p(—x)).
The following definition of amalgam spaces and spaces of unbounded

measures of type g is due to J. Stewart [21]. For a definition of these spaces
on locally compact not necessarily abelian groups see [1] or [5].

Definition 1.1. By the Structure Theorem [15, Theorem 24.30] G is
topologically isomorphic to R* X G|, where z is a nonnegative integer and
G, is a locally compact abelian group which contains an open compact
subgroup H. Let

L=1[0,1)XH and J =7 X T,
where T is a transversal of H in G|, i.e.,
G, = U{t + Hlt € T}.

For a € J we define L, = a + L, and therefore G is equal to the disjoint
union of relatively compact sets L,. We normalize m so that

m(L) = m(L,) =1 for all a.
Let 1 = p, ¢ = co. The amalgam space
(L2, 19(G) = (I, 17)

is the linear space
{fe 17 ||f||pq = [% [j;a |f}p]q/p]l/q - oo}

endowed with the norm Il-llpq and the space M_(G) = M, of unbounded
measures of type g is the linear space
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1/q
€ V@ | I, = [2 I (Lm] < oo}
(43

endowed with the norm ||-||; with the appropriate changes when p, g are
infinite.

Definition 1.2. For 1 = p, g = oo we define the amalgams:

i) (Cp, 17) = (Cy, I)(G) = Cy(G) N (LT, 1)(G).

i) (L7, ¢y) = (I, ¢;)(G) is the space of functions in (L”, [°°) such
that

1im”f”LP(Lu) = 0
That is, given € > 0 there exists F C J (finite) such that
1Ay <€ foralla & F.

The Banach spaces (L, [7) and M (1 = p, g = o0) satisfy the following
inclusion relations and inequalities [21, p. 1284].

(L) (2,1 clf, 1% q =q
(1.2) @19 c (P41 py =p,
(13) 1 clP Nl p=zg
4 (7, =1

(1.5) Mq C M, qg=s
16) Ifly, = /1Ly @ = q
D Wiy = I1,, 21 Zp)
(1.8) lully = llull, q=s

Note that the usual I” spaces are particular cases of amalgams and that
C. and (Cy, ! I) are included in all amalgam spaces.
If f e (L', 1% (1 = q = o0) then the measure fm (where [g dfm
= [gf dm) belongs to M, and
1 fomll, = £ 1L,

Hence f+ fm is a natural (isometric) embedding from (L', /) into M ;- In
this sense we say that (L', 17 c M, Therefore from (1.2) and (1.5)

(1.9 @, 19 c (L' 1) c M, c M, forl=p,q=co.

Remark 1.3. Since G = R* X é‘ and é, contains the open compact
subgroup J# which is the annhilator of H, (¥ = {x € G|[x, x] = 1 for
all x € H} ) we can choose 5#to define

L =10,17 X #
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and for B € I, I = Z° X T where
G =U{t+HteT), Ly=8+ L

Then using {Lg}; we can define as in Definition 1.1 the amalgam
spaces (L”, [7)(G) and the spaces of unbounded measures M, (G),
[21, Section 3].

Hereafter 2, Gy, H, 5 J, I, L and L will be as in Definition 1.1 and
Remark 1.3.
We will state now the results we will need in the next sections.

TaeOREM 1.4 [21, Theorems 3.2 and 4.3], [;2, Th(—::orems 3.1 and 3.2].
i) Let 1 = p, g < co. The amalgam (I7, 19) ((I7', I')) is isometrically
isomorphic to (L7, 19)* ((L?, cy)*) via the map g — {f, g), where

Sy = |, fudx

(g € W 1) (W 1Y), fe @19 ((I7, cp)) (p being the conjugate
of p).
Moreover
1<f 801 = AN, gl
1</ gy | = 1S eollglln-
i) Let 1 = q = oo. If T € (C,, 1)* then there exists a unique p. € M,
such that

) = [ fan (€ o 11)

(Holder inequality)

and
T = llwll, = 29171 if 1 = g < oo
T = Ml if ¢ = oo.
Hence
1{fg)! = ‘ f 12| = 1 leollgll, (f € (Co 1), g € (L', 19)).

THEOREM 1.5 [22, Theorem 3.14]. Let 1 = p, g < oo, 1 =5 = oo. Iff
belongs to any of the amalgams (L7, 1), (L7, c;), (Cy, I*), then the map s — f,
is continuous on G.

THEOREM 1.6 [2, Section 7, 1) ], [5, Theorem 4.2], [22, Theorems 4.7 and
4.8). If p, q, r, s are exponents such that

I/p+1/r—1=1m=1 and
/g +1/s —1=1n=1

then
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a) (I, 19 (L', I°)y c (L™ I")

b) (7, 1% = (IF, 19) c C, 1=p=o0c01<g<oo
o) (I 1) (IF, 1) c(Cpl™y 1=p s=oo1<g<oco
d I I+ 1) cL™c¢) 1=pr=ocol<g<oo
e) (I, ¢)* (X, 1" c ¢, 1<p<oo

f) (L', c) * (L™, 1" € (L™, ¢p)

g (L7, 19+ M, ¢ (I?, I) 1=p,gs= oo

hy (8,19 » M, c (I, ¢) I=p=ocol<g<oo

i) (Cp 19 % M, C (Cy I") 1Sg=o00,1=s<oo
DoAY M, C (L) 1<gq<oo

Moreover if f € (I, 19), g € (L', I'), p € M, then Young’s inequalities for

amalgams are:

W * gl = 22111 llgll,s  ifm # 1

1S * glly, = 22 NL£11llgl
If* mllyy = 220N, lIll, i # 1
IS * il = 22 1Al

It follows from Theorem 1.6 that all amalgams and all M spaces
are M- and L modules [7, Definition 14.1] and that the spaces (1”, "
(1 =p = o0), (Cy, & ) and M, are algebras under convolution.

Definition 1.7. A net {e,} in a commutative, normed algebra A is
an approximate identity, abbreviated a.i., if for all @ € A4, lim ae, = a
in 4.

ProrosiTiON 1.8. [22, Corollary 4.14). Let A be any of the amalgams
(Lp 1), (L7, ¢), (Co, FY(1 = p,g < 00,1 =5 = 00). If {e,}isan a.. in
, then

limlle, * f — fll, = 0 forall f € A.

2. The algebra Sy(G). The algebra S,(G) was originally defined by
H. G. Feichtinger [10] and studied independently by J. P. Bertrandias [3].
We will denote by A(G) the Fourier algebra of functions f in Cy(G) such
that f = / with # € L' (G), norm given by

”f”A = “/”1,
and pointwise multiplication. The space 4 .(G) will be the intersection of
A(G) and C.(G), and for a compact subset E of G, we define

Ap(G) = {f € A.(G)|supp f C E}.

The definition of Sy(G) is based on a bounded uniform partition of

https://doi.org/10.4153/CJM-1987-007-7 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1987-007-7

128 MARIA L. TORRES DE SQUIRE

unity in A(G). We will give an explicit construction of such a partition for
the sake of completeness.

Definition 2.1. Consider the following function f:R — R given by

0 if |x] =1
fx) = {1 il ifl = 1.

Since
f(x) = 2/7/Z7(1 — cos x/x*) and supp f = [—1, 1],

we conclude that f € A (R). For n € Z we define f, to be the function
Jf,(x) = f(x — n) on R. It is clear that

f, € A(R) and suppf,=n+suppf=[n—1,n+ 1].

Moreover for each x € R,
> (x) =1

Fors = (x,t) = (x},...,X,, 1) in G = R* X G, we define the function
Y:G — R by
Yox, 1) = f(x)) ... f(x) - xu(@),
since f and x;; belong to 4, (H is compact and X;; = Xx) we have that
Y € A(G)and supp ¢ = [—1, 1]* X H.
Then for a« = (m, ..., M,, t)in J the function
\l/a = fml s -fm,z *Xi+H
has the following properties:
P.1) 4, € 4,(G)

P.2) supp ¢, = a + supp ¥
P3) Xy (s) =1 foralls € G

P.4)  suplidglly = WL,

Therefore {y,}, is a bounded uniform partition of unity in A(G) [11,
Definition 2].

Definition 2.2. Let {{,,}, be the family defined above. Then Sy(G) = S,
is the linear space of continuous functions fin 4(G) such that

1flls, = S Akally < oo,
endowed with the norm ||-HSO.

It follows from [11, Theorem 2] that Definition 2.2 is equivalent to
Feichtinger’s original definition of S, in [10], [11] and that it is
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independent of the partition of unity chosen. The following are some of
the properties of Sy(G). For a proof see [11] and [19].

P.5) Sy(G) is a Segal algebra. Hence it is an L'-module and has an a.i.
{e,} such that |le,|l; = 1 for all n [20, Section 8, Proposition 1 ii) ].

P.6) A4.(G) is dense in Sy(G).

P.7) M C Sy(G)* Q(G)

P.8) Sy(G) C {f € (Cy, ! NG) |/ € (Co 1'G) ).

P.9) Sy(G)" = Sy(G).

Definition 2.3. [10, Theorem B2]. The Fourier transform ¢ of
o € Sy(G)* is an element of SO(G)* given by

<h’ O> = <h/’ 0> = <ha 0> (h € SO(G) )
Similarly the inverse Fourier transform o of ¢ € So(é)* is an element of
So(G)* given by

(h.&y = (. oy = (h.o) (h € 5(G)).
It is clear from P.9) that 6 and o are well defined and by P.7) and (1.9)

Definition 2.3 provides a definition for a Fourier transform on all
amalgam spaces and all spaces of unbounded measures of type q.

Remark 2.4. 1) By P.8) any h in Sy(G) is equal to the inverse of its
Fourier transform, i.e., h = (h)". Hence for any i, (as in Definition 2.1)

Ibolly = Ila =
and,
{m}; < (G, 11) by [2, Section 7 h) ].

ii) If 6 € S,(G)*, then ¢ = ()" by i).

ii1) From Definition 2.3 it follows immediately that if o, 7 € S3(G)* and
6 = 1, then o = 1.

PROPOSITION 2.5. Let A be as in Proposition 1.8. Then Sy(G) is dense
in A.

Proof. 1t is enough to prove that D(G) is dense in (C,, |||l,) because
A.(G) is dense in Sy(G), A.(G) and D(G) are homeomorphically
isomorphic as spaces of functions on G [6, Theorem 3.1] and C.(G) is
dense in A [2, Section 7, e) .

Let ¢ € C.(G) with supp ¢ = E, and let {e,} be an a.i. in L'(G) such
that {e,} C C,(G) for some fixed K C G. Hence {¢ * ¢,} C D(G) and, by
Proposition 1.8,

llm||¢ * en - ¢”A = O
Proposition 2.5 together with Theorem 1.4 gives a necessary and
sufficient condition for an element of Sy(G)* to be in an amalgam or M,
space.
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PROPOSITION 2.6. Let 6 € Sy(G)*. Then o belongs to (LF,19) (1 <p = oo,
1 =g =o00) (M, 1 =5 = o0)ifand only if there exists a constant C such
that for all h € Sy(G)

2.1) [(hyoy| = CllAll,y, (1<h o) = Cllihllgy)-
Moreover, if (2.1) holds then
lloll,, = C (lloll; = 2°C).

pqg =

Remark 2.7. From Proposition 2.6 we easily recover what is already

known about the Fourier transform of functions in (I*, [9) (1 = p, q = 2)

and measures in M, (1 = s = 2), namely, the Hausdorff-Young theorem

for amalgams ( [1, Theorem II], [16, Theorem 8], [21, Theorem 4.2] ). That
is,

(LF, 19 < (LY, 1P, My < (L, 1)
and there exists a constant C depending on G, p and ¢q such that
22 I fllyy =CAlfll,, 0 =pg=2)
2.3) iy = Cllull, (1 =s=2),

Now, since (L7, 1Y) C (L%, 19 for 1 = g =2 < p = oo, we have
that (If, 19)" c (LY, I?). So, by (2.2) and (1.7), for f € (I”, 1) and
l=g=2<p=oo
@4 N /1l = CUfl,

By property P.5) we can define o * f for 0 € Sy(G)* and f € L'(G) to be
an element of Sy(G)* given by

2.5) (hoxfy = (hxfo) (hE SYG)).

Moreover, if g € L‘(CA}) and h € S)(G), then hg belongs to Sy(G) because
for any ¢, (as in Definition 2.1)

hgballe = W * g * $olly = llgll gyl -
So we have that

“hé”SO = ”g”]”hllgo

and we can define og for o € So(G)*, g € L'(é) to be an element of
So(G)* given by

(2.6) (h,0g) = (hg, o) (h € Sy(G)).
PROPOSITION 2.8. Let 6 € Sy(G)*, f € LN(G), g € L'(G). Then

) (oxf) =6f
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Proof. Let h € SO((/;'). By (2.6) and Definition 2.3 we have that
(h6fy = (hf. oy = ((h))". o) = ((h *f). o) = (b * [ o)
= (i a5 f) = (h (o /).
Therefore 1) holds. Now, by Remark 2.4 and part i),
(6 *g) = og,
SO
G *g = (08"
3. The main theorem.

Definition 3.1. Let A be a Banach algebra and B be a Banach 4-module
[7]. A continuous linear operator 7:4 — B is a c-multiplier from A to Bif T
commutes with convolution. That is, for all f, g in A4,

Tfxg = T(f * g).
The space of c-multipliers from 4 to B will be denoted by c-M (4, B).

THEOREM 3.2. Let 1 = p, g = oo. If B is any of the spaces (I, 17),
(Co, 1), (I, ¢), M, S is any of the algebras (L, m, (Co» 1), and T:S — B
is a linear operator, then the following are equivalent:

i) T € -M(S, B). )
ii) There exists a unique 6 € SO((A7)* such that (Tf)" = o f forall [ € S.

iii) There exists a unique p € Sy(G)* such that Tf = p.* f forallf € S.

Proof. First observe that S ¢ L' (see (1.3)) and B is an L'-module,
hence an S-module. By Proposition 2.8 it is clear that ii) is equivalent to
iii) with 6 = fi. We will show that i) is equivalent to ii).

Suppose i). If B is any of the spaces (I, I7), (I*, ¢;) (1 = p, g < o0)
or (Cy, I°) (1 = s = o0), then B* is either an amalgam space or M. If B
is any of the spaces (L*°, I9) (1 = g = o0), (I7, I®) (1 < p = ©0), or
M (1 = s = co), then B is the dual of an amalgam space C. Hence by the
Holder inequality for amalgams (Theorem 1.4)

| (/. &) | = Ifllgllgllg« (f € B, g € B¥), and

I<fogyl = flldliglls (f € C g € B).
If B is either (L™, ¢,) or (L', I°°), then B can be considered as a subspace
of M, (see (1.9)), so again by Theorem 1.4 and (1.7)

<L) = 1flloaliglhe (f € (Cp, 1), g € (L, 17))

<L)l = 1 leolllgllee (f € (Con 1. g8 € (L7 ¢p))

In either case we conclude by (1.6) and (1.7) that
G 18] = fllelllglly (8 € B f € (Co 1)
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(Remember that (C, l[) is included in all amalgam spaces.) For f, g € S,
we have that

If xg = T(f*g) = Tg*f
So
(Tf)'§ = (Te)'f
by Propg\sition 2.8 and this implies by (2.6) that for all f, g € S and
h € Sy6),
(3.2) (hg, (TFY) = (b (TFY'8) = (b, (Te)' [y = (hf, (Tg)).

Let {4,}; C AC((A;') be as in Definition 2.1 and W = supp . To each
a € I we associate a function A, in (Cy, [')(G) as follows. Take A, in
(Cy, I')(G) such that

Ay=lonW and A, € C.(G)

[21, Theorem 3.1]. Then A, = [, a]A,. It is clear that each A, has the
following properties:

DA, € (G 1))
2) A %) = f\w(fc — @), hence A, = 1 on supp Vg
3) A, € C.(G), hence A, = (A,)’
4 Nolloor = A lloor-
We define o on So(é) by
(hyo) = 2 (e (TA)")  (h € Sy(G)).
First of all, if h € SO(CA?) then by, € A(.((A;) because
o € CAG), () = h %y and b * € (Cp. 1')(G)
(Theorem 1.6). Also
b = hy Ay
by P.2) and this implies that
1) loor = 1 * o * Aalloot = allacrlli * 4l
= I loor 1l 4-
Therefore by (3.1) and (1.7)
| (g (TAD | = 1)y (TAD) Y | = ITAgll ) oo,
= 171 NN oo gl
= TN gl -
Hence o is well-defined and for all & So(é)
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| <hy o) | = TN A,
If £, is another function in (C,, / '(G) with the same properties as A, and
¢, = [, aléy, then by (3.2) we have that for all 1 € Sy(G)

(Moo (TAY"Y = (M 5 (TAY"
= (Mahg (TE)"Y = (Mg (TE)".

Hence o is independent of the choice of the function A .
Now, if h € AE(G) then

{h‘[/a}l - AC(G)7 hlpa =0

for all but finitely many «’s and h = X hy, pointwise by P.3). Then, for
fes,

Chy (T = 2 (g, (T
this together with (3.2) and (2.6) implies that for f € S and h € A(,((/;‘)
(hoofy = (hf, o) = Z (o [, (TA)"Y = Z (i Aoe (T))
= 2 (Mg, (T)") = (b, (TF)").
Since 4 (G) is dense in SO(G) we conclude that (7f)" = ¢ f for all f e S.
On the other hand, if h AE(G) and A is a function in (C, /! ) (G)
such that A g = 1 on E then we have that
(3.3) (h, o) = (hAp o) = (h oAy = (b, (TA)).
Finally if o’ is another element of So(é)* such that
(If) = o’ f forallf € S,
then by (3.3) for all h € A,(G)
(h, 0y = (b (TAR)Y = (h, o' Ap) = (g, o'y = (h, o).

Again by P.6), 6 = ¢’ and therefore i) implies ii).
Conversely if ii) holds, then by Proposition 2.8, for f, g € S, we have
that

(T(f*g)) = o(f xg)" = (6./)& = (Tf)'& = (Tf * &)

Therefore T commutes with convolution by Remark 2.4. Finally an
application of the Closed Graph theorem implies that T is continuous and
the proof is complete.

COROLLARY 3.3. Let S be as in Theorem 3.2 and B be any of the spaces
(L2, 1), (Co, 19, M, (1 = p = 00,1 = q =2). If T:S — B is a linear
operator, then the following are equivalent: ‘

i) T € c-M(S, B).

ii) There exists a unique ¢ € (L9, I1°°)(G) such that

(THY = (pf forall f € S.
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Proof. Let y € G and Yy, be a function in S such that 1/A/V( y) = 1. De-
fine ' '

o(y) = (T4)'(») (¥ € 6.

If T € c-M(S, B) then ¢ is iAndependent of the choice of ¢,. Indeed if £ is
another function such that § (y) = 1 then ' '

(TY,)'(y) = (Tth)A(y)éy(y) = (T, * £)'(»)
= (T%, * $,)°() = (T5,Y (N, (0) = (TE)(»).
Also forf € Sandy € G
of () = (T, f () = TN = (T ().
Let o be the element in So(é)* associated to T by Theorem 3.2. Then
by (3.3) for h € A,(G)

(hoay = (b (TN = fy hOXTALY (i

= fﬁhumy)ﬁ,;(y)dy = f (el y)dy.

Therefore

(h, 6 = f h(y)e(y)dy forall h € A.(G).

Now take f € C, (G) such that f = 1 on L andf € S [21, Theorem
3.1]. Then for B € I, the function f; belongs to C, (), Jfg = 1on L
fﬁ = [, B]f belongs to S, and

1/ glls = 1/ 1ls
(see Remark 1.3). By the definition of the norm ||| ar l =r = o0, itis
clear that

loxa Iy = llofglly, (1= r = co).
So by (2.2), (2.3) and (2.4) of Remark 2.7 we have that
lloxa I, = CITIF s
To see this note that
lefall,, = llo / glly, = 1T N, (1= r = o).
Since this holds for all 8 € I, we conclude that
¢ € (L9, 1°)G).

Hence 1) implies ii).
Conversely if ii) holds, then we define ¢ on A4 (G) by

https://doi.org/10.4153/CJM-1987-007-7 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1987-007-7

MULTIPLIERS FOR AMALGAMS 135

(h o) = féh(y»p(y)dy (h € 4.(G)).
Then as above
(h, o) = (h, (TA,)") forh € A.(G).

Slnce A (G) is dense in SO(G) this implies that o is the element in
SO(G)* given by Theorem 3.2 (see the proof of Theorem 3.2) and therefore
i1) implies 1).

Let B be a linear space of functions on G. If f, € B for all f € B and
for all s € G then B is said to be translation invariant. If B is translation
invariant the linear operator ' — f, (s € G) is called a translation operator.
It is easy to see that all amalgams and all M, spaces are translation
ivariant.

Definition 3.4. Let A, B be two translation invariant spaces. A multiplier
from A4 to B is a bounded linear operator T:4 — B such that T commutes
with translations. That is, Tf, = (Tf), for all s € G and f € A. The space
of multipliers from 4 to B will be denoted by M(A4, B).

Let (L*, I} be the amalgam (L™, [ 1) endowed with the weak*-
topology induced by (L ¢o) (see Theorem 1.4). Hence

(L% 1) = (L', ¢))
via the formula
(f.8) = f f(=ngdr (f € (L=, 1, g € (L', ¢))
[17, 5.17.6]. The space M} is defined similarly and therefore

A relation between multipliers and c-multipliers is given in the next
result.

PROPOSITION 3.5. Let S be any algebra (I, 1') (1 = p < o0), (Cy 1),
(L, 1" or M¥, and B be as in Theorem 3.2. Then

M(S, B) C ¢-M(S, B).

Proof. An easy calculation shows that for f, g € S and ¢ € S*,

(B4 (frg¥) = fg(5)<fs, ¥)ds (= f(fs» Yydg(s) if § = W)

If B is any of the spaces (I, 1), (I, ¢;) (1 = p, g < o0), (Cy, I")
(1 = s = o0), then B* is an amalgam space or M. Sofor h € S, k € B,
and F € B*

(3.5) (k*h F) = /h(s)(ks, F}a’s(= /(ks, Fdh(s) ifS=M‘f').
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If B is any of the spaces (I, [*°) (1 < p = o0), (L™, I') or M (1 = 5 = 00),
then B = C* for some amalgam space C. Then (3.5) holds with & € S,
k € Band F € C.If B = (L', I®°) then (3.5) holds with h € S, k € B
and F € C, C = (C,, I") (think of (L', I°°) as a subspace of M_ ). Hence
for F € B* (F € C) the map

(3.6) (fLAp) =(TF) (f€YS)
belongs to $*. So, (3.4), (3.5) and (3.6) imply that for f, g € S, F € B*
(F € C)

(Tf * g, F)

— [ sxan. Fras (= J <, pase it s - M'"')
- /g(s)(Tfs, Fds (= f(fo, F>dg(S))

= fg(s)(fp Ap)ds (: / (fs AF>dg(S))
= (f*8 Ap) = (T(f*g), F).
Therefore T commutes with convolution.

THEOREM 3.6. Let A be any of the spaces (I?, 1), (Cy, 17) (1 = p < oo,
1 = g = 2) and let B be any of the spaces (L', I’), (Cy, I') (1 = r < oo,
1 = s = 2). If T:A — B is a linear operator, then i) implies ii).
i) T € M(4, B). , )
i) There exists a unique ¢ € (L°, I°°)G) such that
(Tf) = of forallf e A.
Proof. We will prove the theorem for
A= (I 1 and B = (L', ') (1=rs=2).

The remaining cases are similar.

Suppose T € M(A, B). Then T| (L”, I') belongs to c-M( (L*, I'), B) by
Proposi[iqn 3.5. So by Corollary 3.3 there exists a unique ¢ in
(L*, I°°)(G) such that

(Tf)* = of forallfe (7,1
Now by (2.2) for f € (I, I') we have that
||(PfA‘H,,J,/ = (T lly, = QITfNl,s = CUTIS N,

Therefore the map f — ¢f is continuous on ( (I, 1), “'“qu)~ Since
(L7, 1') is dense in (L7, 19) ([2, Section 7 e)] and (1.1)) this map has a
unique continuous extension on (L7, [9) and this implies that
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(Tf)" = ¢f forallfe (I, 19,

4. Equivalent norms. We need to introduce now, several equivalent
norms in order to characterize the space of c-multipliers from L' to
amalgams and M, spaces.

Since (L7, 17) (1 = p, ¢ = o) is an L'-module there exists an equivalent
norm “'Hf,w such that

@1 |If*pllp, = flLIel, (f€ L' pe @, 19).
and
g = 1], = 270,
[7, (4.14) ]. The amalgam (L7, /) endowed with the norm ||~||I’,q will be

denoted by (L7, 17Y.
Let {e,} be an a.. in L' such that

lle ly = 1 for all a.
Forp € (I7, 17 (1 = p, g = o0) we define
@2) Illl,y = sup lla * el
a

It is clear from (4.1) that |||-|||pq is well defined and that
L, = 1H1D,-
Now by Theorem 1.4 if p € (I, 19 (1 < p = oo, 1 = g = o0) then
lellpy = sup{ 1 <o, m) I: ¢ € (L7, 1), ligll,ry = 1)
if g # 1, and
llll,, = sup{ | (o, py|; & € (I, co), Il e = 1}.
Let ¢ € (I¥, 1) ((I”, ¢;) if ¢ = 1) such that
ol = 1.
By Proposition 1.8 and Theorem 1.4 we have that
| (¢, wy | = liml (b * e py | = lim | (9, p % €, |
= 119ll tim lln * el
= (Il -

Therefore

<<
],y = Nl

and this means that |||-|||pq is an equivalent norm in (L7, [9) (1 < p = oo,
1 = g = o0). We will denote by (I, /7)™ the amalgam (L7, /9) endowed
with the norm l||-|||pq.
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Finally we introduce in the next theorem an equivalent norm originally
defined in [2, Proposition VIII] (see also [18] ). For a complete proof see
{22, Theorem 1.21].

THEOREM 4.1. 1) Let 1 = p, g = oo. A function [ belongs to (I, 19)
((I7, ¢o)) if and only if the function f* on G defined by
ffo = W s ry
belongs to LY(Cy). If
# e
A = 11,
then

27N g = W13 = 29111

11) Let 1 = q = oo. A measure p belongs to M, if and only if the Sfunction
u® defined by

B0 =l + L)
belongs to LI, If ||pll) = In*ll,, then

27l = 1l = 291wl

The amalgam (1”7, 19) endowed with the norm ||| # will be denoted by

lpg
(IF, 197 Similarly for Mf.
The next result is a direct consequence of the definition of ||-||;t.

PROPOSITION 4.2. [22, Corollary 4.6]. If f € L'(G) and p € M, (G)
(1 = q = 00), then

frwe @1y and ||If* plly = 11FIL I

5. c-multipliers from L' to amalgams and M, spaces. Because of
Theorem 3.2 in each one of the following theorems it will be enough to
show that the “p” given by Theorem 5.1 belongs to the corresponding
space, and estabhsh the isometric isomorphism.

In this section {e,} will be an a.i. in Sy(G) (hence in L'(G) ) such that
lle,ll, = 1 for all n.

THEOREM 5.1. Let 1 < p, g << 00,1 = s = oo and let B be any of the
spaces (L7, 19), (L7, I®°), (L*°, I*). If T:-L' — B is a linear operator, then
the following are equivalent:

i) T € -M(L", B).
ii) There exists a unique p. € B such that Tf =pxfforalfe L.
1) There exists a unique 6 € SO(G)* (6 = ) such that

(T = of forall f e L.
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The correspondence between T and p establishes an isometric isomorphism
from oM(L', (I?, 19Y) onto (I, 19Y; cM(L', (I?, I®)) onto
(L2, 1%V~ e-M(L', (L™, I°Y) onto (L™, I*)~.

Proof. We will prove the first part of the theorem for B = (I, 19),
the remaining cases are proved similarly (remember that (L', c)* =
(L, 1 ‘) ). Let u be the element in Sy(G)* given by Theorem 3.2, then for i
in Sy(G)

[ (hyopy

lim| (h * e, p) |
lim| (A, p * e, | = lim| (A, Te,) |
= [l g liml|Te, |y = N7 -
Hence p € (I, 19) by Proposition 2.6, and if
T € -M(L', (I7, 19)),

I

then
171l = il

by (4.1).
On the other hand, by Proposition 1.8,

lim|lp * e, — pll,, = 0.
So given € > 0 there exists N such that
llw * ey — ull,, <e
So
I Telly, = lli = exllyy > llully, — €
and this implies that
lellpy = 0TI
If T € c-M(L', (I, I°®)) then
llulll,co = supliTe,ll oo = IITI| suplle,ll, = IIT]].
Now, for f € L!
ITf oo = GmllTf * el = imllf * u * e/l
= 1I/1, limllu * /e
= 1/ el
Hence
Tl = Miplllpoo-

The proof for B = (L™, I°) is similar to the previous case.
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THEOREM 5.2. Let 1 = g = oo and let B either (L', 19) or M, If
T:L' — B is a linear operator then the following are equivalent:
i) T € e-M(L', B).
i) There exists a unique p € M, such that Tf = p * f for all f € L'
ii1) There exists a unique 6 € S (G)* (o6 = [i) such that

(Tf) = of forallfe L

The corres, lpona’ence between T and p establishes an isometric isomorphism
from ¢-M (L', Mf) onto Mf and

eM(L', (L', 19%) = e-M(L', M)).

Proof. The first part is the same as the first part of Theorem 5.1.

For B = Mfo the second part is [9, Theorem 1.3]. It should be
mentioned here that the definition of a multiplier used throughout
[9] corresponds to what we call a c-multiplier and not the one given
in [9, p. 342].

Ifpe M(l=g=oco)and Tf = p = fforallf € L', then

[ lR= "k

by Proposition 4.2. Since ,u.# € L7 and q s finite, given € > 0 there exists a
neighborhood U of 0 such that

I 0™ = ¥l < e
forallh € L', ||h|l, = 1, h = 0 and

f~Uh=O

[15, Theorem 20.15]. Clearly the function
f=1Vm) - xy
satisfies all the above conditions and an easy calculation shows that
(f*w”™ = f*p”.
So we have that
NTANT = ) = 1 * wll, = 1 * w1, > el — e
Therefore
17l = il
Finally,
1 1
L'sM,c (L1 =q=o0)
by Theorem 1.6, hence
eM(L', M) C e-M(L', (L', 19)),
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this together with (1.9) implies the rest of the theorem.

Remark 5.3. Theorem 5.2 for B = (L', 19) is already known [18,
Corollary 6.3] and it can also be deduced from [9, Theorem 1.5].

The next theorem was proved for ¢ = 1 by Burnham and Goldberg
[4, Theorem 4.6] using a different method. Its proof is the same as that of
Theorem 5.1.

THEOREM 5.4. Let 1| = g < oco. If

T:L' — (C,, 19)
is a linear operator, then the following are equivalent:

)T e c-M(L', (Cy 19)).

ii) There exists a unique p € (L*°, 19) such that
Tf = pu*f forallfe L.

iii) There exists a unique o € S(G)* (6 = f) such that
(T = cyfA forallf € L.

The corres‘pondence between T and p establishes an isometric isomorphism
Jrom c-M (L', (Cy, 17)) onto (Cy, 19)~.

To characterize the space c-M(Ll, (If, ¢p)) (1 = p < o0) we use
Feichtinger’s results in [9]. First we see that (L?, ¢;) (1 = p < co) is a
homogeneous Banach space (as in [9, p. 342]).

1) Since (L, ¢;) C (L', ¢o) we have that

1
?, cy) © L.

2) (I?, ¢y) is translation invariant and by Theorem 1.5 the map s > f is
continuous on G for all /' € (L7, ¢).
3) For s € G and f € (I, ¢;) we have that

1A = 1D lleo = 1) loo = 11/ Flleo = /1160

4) Convergence in (L, ¢;) implies convergence in measure. Indeed, let
£, {/,,}, be in (L, ¢,) such that

timllf, ~ S0 = 0.
Since (f, — f)¥ belongs to C,, given € > 0 there exists a compact set
E C G such that

W — fllpgery <€ forallx & E.
Let
E, () = {x||f,(x) =f(x)| = ¢}
and suppose that
(G~E)N(E\ () — L) # 0.
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So for x in this intersection
x + L C E,(e),

hence

1/
e>(f, —NH¥x) = (,/;+L /(0 _f(,)lp) ’
= em(x + L) = e

This contradiction implies that E,(¢) € E + L and therefore the
cardinality of the set

F = {alE,(¢) N L, # 0}
is finite [22, p. 35]. So

W = oo = W = fllr n ) = em(Le N E,(€) )77,
Then,

0 = limllf, = fllyeo = €lim m(L, N E,())""”

for all « € J. Since

m(E,(€)) = § m(E,(€) N Ly)

we conclude that
m(E,(e)) = 0.

Moreover (I, ¢)) (1 = p < o0) is an essential Cy(G)-module [2,
Section 7, e) ] and [9, Lemma 2.6]. This implies the following theorem
where, in the notation of [9],

(I’, cp)y = {n € V(G)|{e, * p} is bounded in (L7, ¢;) }
endowed with the norm
llulll = suplle, * ull e,
{e,} being an a.i. in L.
THEOREM 5.5. Let 1 = p < oco. If
T:L' — (I?, ¢,)

is a linear operator, then the following are equivalent:
)T € e-M(L', (I, ¢) ).
ii) There exists a unique p € (L?, ¢;) such that

Tf =uxf forallf € L.
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iil) There exists a unique ¢ € SOGA)* (o = [i) such that
(T = ofA forallfe L
The correslpondence ﬁetween T and r establishes an isometric isomorphism
SJrom e-M(L', (I?, ¢;)¥) onto (L, cy); -
We should note that
(L7, ¢p)y € (P, 1)
since
(I, ¢p) < (I, 1),

and by Theorem 5.1 this inclusion is proper because clearly constant
functions belong to (17, [°°) but they do not determine c-multipliers from
L' to (I7, ).

For p € (17, I®°) we write ”0 to be the function on G defined by

W) = LL wode (x € G).
If {e,} is the a.i. in Ll(G) formed by suitable multipliers of characteristic
functions of compact neighborhoods of the identity, then the space (I*, ¢;)
is equal to

(pe WP €W, )} ={ne W I®)*xy €W ¢
for all (arbitrarily small) compact sets U C G}.
6. Multipliers from amalgams and M 4 Saces to L and C,. We will start

this section with the characterization of the space of c-multipliers from the
algebras (I, I') (1 < p = o0), (Cy, I') to L™,

THEOREM 6.1. Let S be any of the algebras (I, 1') (1 < p = p), (Cy, 1Y)
and T:S — L™ be a linear operator. The following are equivalent:
i) T € c-M(S, L™).
i) There exists a unique p € S* (if S = (17, M, 1 <p<oo),pE My
(otherwise) such that

Tf =u=*f foralfeS.

1ii) There exists a unique 6 € SO((A])* (6 = W) such that

(Tf) = of forallf e S.

The correspondence between T and p. establishes a continuous isomorphism
Jfrom c-M(S, L) onto L™. The isomorphism is an isometry if

S=,1"N (1<p<oo).

Proof. Let {e,} be as in Section 5 and let p be the element in Sy (G)*
given by Theorem 3.2. As in the proof of Theorem 5.1, for h € Sy(G)
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| (hy )| = lim| (e,, p * h) | = lim| (e,, Th) | = lim|Th * e,(0) |
= liml|Th * e,/loo = [IThll, limlle,ll, = 71| 1Alls.
We conclude that p € S* if
S=U"1Y(1 <p< o)
and p € M, if S is either (Cy, /') or (L, I'); and
llwll,y 0o = NITI

by Proposition 2.6. The conclusion of the theorem follows from the Holder
inequality (Theorem 1.4).

The next theorem is an extension of Edwards’ result for L? spaces
[8, Theorem 3].

THEOREM 6.2. Let B be any of the spaces (I, 19), (Cy, 1), (I7, ¢;)
(1 = p, q < oo). If T:B — L™ is a linear operator, then the following are
equivalent:

i) T € M(B, L).

11) There exists a unique p € B* such that

Tf = uxf forall f € B.

The correspondence between T and p establishes a continuous isomorphism
from M(B - L°) onto B*. The isomorphism is an isometry if

B = (I”, 1) or (I?, c).

Proof. We will prove the theorem for B = (I”, /9). The remaining cases
are similar (again remember that (L], co)* = (L1 ') and note that (Cy, ! h
is dense in (Cy, /7) and (L7, c;) ).

If

T € M((F, 19), L%),

then T| (L*, I') belongs to ¢-M( (I, 1)', LOO) by Proposition 3.5. So by
Theorem 6.1 there exists a unique p € (I, [®) such that

Tf = p+f forall fe (I7,1".

Since the map f — p * f from ( (7, 1‘), H'“,,q) into L™ is continuous and
(I, 1"y is dense in (I”, 19) ([2, Section 7, )] and (1.1)) we conclude
that

Tf = p*f forall fe (I7,19).
Similarly to the proof of Theorem 6.1, for & € Sy(G) we have that

| <hy py | = NIT 1AL,
Again
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pe 1% and |, = T
by Proposition 2.6. The rest of the proof follows from Theorem 1.4.
Definition 6.4. For 1 < p < oo, let (I, 17°)]” be the space
(e . I1®){nxe) c C)

where {e,} is an a.i. in (I, I') (17, I")* (1 < p < o0) is a Segal algebra
[22, Theorem 4.16] ).

THEOREM 6.5. Let 1 < p < oo. If
T:(17, 1"y - C,

is a linear operator, then the following are equivalent:
)T € e-M((IF, 1"), Cp).
il) There exists a unique p. € (L7, I°)] such that

Tf = pxf forallfe (7, 1Y.

The correspondence between T and p establishes a continuous isomorphism
from e-M((I, 1), Cy) onto (L7, 107, Il],00)-

Proof. By Theorem 6.1 if i) holds then there exists a unique p € ¥, 1)
such that

Tf = pxf forallf e (I7, 1.
In particular
{Te, = n*e} c G,
hence
pe d?, ™.
On the other hand if
pe I, I and fe IF,1Y
then
{pre,xf}c G
because
Co* (P, 1" c ¢,
(Theorem 1.6, 1), see also (1.9) ) and
o * e, xf = p*flloo = llpllyoolle, *f = fllp-

Since {e,} is an a.i. in (I¥, /') we conclude that p * f € C,. Therefore p
determines a c-multiplier from (17, ll) to C,. By the Holder inequality
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1T = oo
and as in Theorem 6.1,
el oo = 1171l
Remark 6.6. Theorems 1.5, 6.1 and 6.2 imply that
i) c-M((Cy, I'), L®) = c¢-M((C,. 1Y), Cy).

i) M((LF,19), L) = M((I*, 1), Cy) ifl =p<oo, 1 <g<oo.
iii) M((Cy, 19), L) = M((Cy, 19), Cp) ifl <g<oo.
iv) M((I, cg), L) = M((I*, c), Co) if 1 <p <oo

v) M((L', ¢), L) = M((L', ¢p), (L, ¢)).

7. Inclusion results and the algebra M,(G).

PROPOSITION 7.1. Let S be any of the algebras (17, 1) (1 = p = c0) or
(o) ‘) and B be as in Proposition 3.5. Then

c-M(S, B) ¢ M(S, B).
Proof . If T € c-M(S, B) then for all f € S,
Tf = p = f for some p € Sy(G)*
(Theorem 3.2). Hence for f € S, h € Sy(G), and s € G,
Ty = (s fy = (hxfumy = Chy* fop)
= (hopxf) = (ho T ) = (b (Tf)y).
Since B € Sy(G)* we conclude that 7 commutes with translations.

COROLLARY 7.2. Let S be any of the algebras (I, I') (1 = p < o)
(L™, 1YY or (Cy, I') and B be as in Theorem 3.2. Then

c-M(S, B) = M(S, B).
We do not know if
M((L?, 1", A) © e-M((L™ 1), 4)

for some amalgam space or some M , space A.
Let B be as in Theorem 3.2. If

T:M, —> B

is a linear operator and 7 has the form Tp = ¢ * u for some ¢ € B then by
the properties of convolution and M,-module [7] T is a c-multiplier.

Conversely if T is a c-multiplier from M, to B and § is the identity in
M,, then for p € M, we have that

Tp =T *p) =Té*p =9=*p with g = T6.
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So we conclude that a linear operator 7:M| — B is a c-multiplier if and
only if there exists a unique ¢ € B such that
Tu =@xp forallu € M,.
By the properties of convolution this implies that
c-M(M,, By C M(M,, B).
But we know that there exists a multiplier T € M(M,, M) such that T is
not defined by the convolution with an element of M, [14, p. 94]. So
MM, M) # M(M), M) (1 = q = o0).
Indeed if
MM, M) = M(Ml,, M,)and T € M(M,, M))
then 7€ M(M,, M,) since M; C M, therefore
T € MM, M) and
Tp = T8+ p forallp € M,.
This contradiction proves our claim.
We do not know if M(M,, A) C c-M(M,, A) for some amalgam space
A. However when we consider M} the situation is different. Since
0*p, = (0=*p), forallp e M,
and s € G we have by Proposition 3.5 and our previous discussion that
MM}, B) = c-M(MY, B)
for B as in Theorem 3.2.

Added in proof. The author learned recently that Theorems 5.1 and 6.2
were known to Professor H. Feichtinger some time ago although they were
not published.
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