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Abstract

For a graph G, let f (G) denote the maximum number of edges in a bipartite subgraph of G. Given a
fixed graph H and a positive integer m, let f (m,H) denote the minimum possible cardinality of f (G),
as G ranges over all graphs on m edges that contain no copy of H. Alon et al. [‘Maximum cuts and
judicious partitions in graphs without short cycles’, J. Combin. Theory Ser. B 88 (2003), 329–346]
conjectured that, for any fixed graph H, there exists an ε(H) > 0 such that f (m,H) ≥ m/2 + Ω(m3/4+ε ).
We show that, for any wheel graph W2k of 2k spokes, there exists c(k) > 0 such that f (m,W2k) ≥
m/2 + c(k)m(2k−1)/(3k−1) log m. In particular, we confirm the conjecture asymptotically for W4 and give
general lower bounds for W2k+1.
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1. Introduction
For a graph G, let f (G) denote the maximum number of edges in a cut (or, equivalently,
a bipartite subgraph) of G. For a positive integer m, let f (m) denote the minimum value
of f (G), as G ranges over all graphs with m edges.

The max cut problem asks for the value of f (m) and has been widely studied. It
is quite easy to show that f (m) ≥ m/2 by considering a random partition or a suitable
greedy algorithm of a graph with m edges. This elementary result can be improved
by providing a more accurate estimate for the error term after the main term m/2.
Edwards [7] proved that, for every m,

f (m) ≥
m
2

+

√
m
8

+
1
64
−

1
8
, (1.1)

which is tight for complete graphs on an odd number of vertices. More information
on f (m), including a determination of its precise value for some values of m, can be
found in [1, 3, 5, 6, 17].

The research of the first author is supported by Youth Foundation of Fujian Province (Grant No.
JAT170398) and Foundation of Fujian University of Technology (Grant No. GY-Z15086); the research
of the second author is supported by the Postdoctoral Science Foundation of China (Grant No.
2018M632528) and the Fundamental Research Funds for the Central Universities (Grant No.
WK0010460005); the research of the third author is supported by NSFC (Grant No. 11601001).
c© 2018 Australian Mathematical Publishing Association Inc.

13

https://doi.org/10.1017/S0004972718001259 Published online by Cambridge University Press

https://orcid.org/0000-0001-5395-3532
https://orcid.org/0000-0001-9476-210X
https://doi.org/10.1017/S0004972718001259


14 J. Lin, Q. Zeng and F. Chen [2]

For a given graph H, a graph G is called H-free if G contains no copy of H. Let
f (m,H) denote the minimum possible cardinality of f (G), as G ranges over all H-free
graphs on m edges. In [2], Alon et al. proposed the following conjecture.

Conjecture 1.1 (Alon et al. [2]). For any fixed graph H, there exists a positive constant
ε = ε(H) such that

f (m,H) ≥
m
2

+ Ω(m3/4+ε).

This conjecture remains open and it obviously suffices to prove it for complete
graphs H. Zeng and Hou [20] proved that, for any fixed integer k ≥ 2 and all m > 1,
there is a positive constant c(k) such that

f (m,Kk+1) ≥
m
2

+ c(k)mk/(2k−1)
( log2 m
log log m

)(k−1)/(2k−1)
.

However, the problem of estimating the error term more precisely is not easy, even
for relatively simple graphs H. The case H = K3 has attracted most of the attention so
far. After a series of papers by various researchers [8, 16, 18], Alon [1] proved that
f (m,K3) = m/2 + Θ(m4/5) for all m. Alon et al. [4] found the following extension.

Theorem 1.2 (Alon et al. [4]). Let H be a graph obtained by connecting a single vertex
to all vertices of a fixed nontrivial forest. Then there is a c = c(H) > 0 such that

f (m,H) ≥
m
2

+ cm4/5

for all m. This is tight, up to the value of c, for each such H.

Since forests are acyclic, it is natural to study the function f (m, H) for any H
obtained by connecting a single vertex to all vertices of a fixed graph with cycles.
We consider Conjecture 1.1 for wheel graphs, the first interesting case. Throughout,
graphs are finite, undirected and have no loops or parallel edges. All logarithms are
with the natural base e, unless otherwise indicated. Our main result is the following
theorem.

Theorem 1.3. Let Wr denote the wheel graph obtained by connecting a single vertex
to all vertices of a cycle of length r.

(i) For r = 4 and all m, there is a constant c > 0 such that

f (m,W4) ≥
m
2

+ cm3/4.

(ii) For every odd integer r > 3 and all m, there is a constant c(r) > 0 such that

f (m,Wr+1) ≥
m
2

+ c(r)m2r/(3r+1) log m.

(iii) For every odd integer r > 3 and all m, there is a constant c′(r) > 0 such that

f (m,Wr) ≥
m
2

+ c′(r)m2r/(3r+1)(log m)2/(3r+1).

Remark 1.4. The ideas in (ii) can be further used to improve the bound in (iii) by
logarithmic factors.
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2. W4-free graphs

In this section, we consider the maximum cuts of W4-free graphs. We use the
arguments from [1, 2, 4] with some additional ideas. We need a lemma proved in [1]
(see also [2, 8, 14]).

Lemma 2.1 [1]. If G is a graph with m edges and chromatic number at most χ, then

f (G) ≥
χ + 1

2χ
m.

A graph is q-degenerate if every one of its subgraphs contains a vertex of degree at
most q. We require the following well-known fact (see [1, 2, 4] for a proof).

Lemma 2.2 [1]. Let G be a q-degenerate graph on n vertices. Then there is a labelling
v1, . . . , vn of the vertices of G so that, for each i with 1 ≤ i ≤ n, the vertex vi has at most
q neighbours v j with j < i.

Next, we employ the following three lemmas, which establish the lower bounds of
f (G) for graphs G in terms of different parameters.

Lemma 2.3 (Alon [1]). Let G = (V, E) be a graph with m edges. Suppose U ⊂ V and
let G′ be the induced subgraph of G on U. If G′ has m′ edges, then

f (G) ≥ f (G′) +
m − m′

2
.

Lemma 2.4 (Alon et al. [4]). There exist two absolute constants ε, δ ∈ (0, 1) such that
the following holds. Let G be a graph on n vertices with m edges and degree sequence
d1, d2, . . . , dn. Suppose, further, that, for each i, the induced subgraph on all the di

neighbours of vertex number i contains at most εd3/2
i edges. Then

f (G) ≥
m
2

+ δ

n∑
i=1

√
di.

Lemma 2.5 (Erdős et al. [10]). Let G be a graph on n vertices with m edges and positive
minimum degree. Then

f (G) ≥
m
2

+
n
6
.

Finally, we use the following result proved in [20] (see also [4]), which gives the
existence of a randomised induced subgraph in a graph with relatively large minimum
degree and sparse neighbourhood.

Theorem 2.6 (Zeng and Hou [20]). Let G = (V, E) be a graph on n vertices with m
edges and minimum degree at least mθ for some fixed real θ ∈ (0, 1). Suppose that m is
sufficiently large and the induced subgraph on the neighbourhood of any vertex v ∈ V
of degree d contains fewer than sd3/2 edges for some positive constant s. Then, for
every constant η ∈ (0, 1), there exists an induced subgraph G′ = (V ′, E′) of G with the
following properties.
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(i) G′ contains at least η2m/2 edges.
(ii) Every vertex v of degree d in G that lies in V ′ has degree at least ηd/2 in G′.
(iii) Every neighbourhood of the vertex v in V ′ contains at most 2η2sd3/2 edges in G′.

Proof of Theorem 1.3(i). Let G = (V, E) be a W4-free graph with n vertices and m
edges. In view of (1.1), we will assume throughout the proof that m is sufficiently large.
Define q = m1/2. The proof proceeds by considering two possible cases depending on
the existence of dense subgraphs in G.

Case 1. Suppose that there is a subset W of N vertices of G such that the induced
subgraph G′ = G[W] has minimum degree greater than q. Clearly, e(G′) > qN/2. We
first prove that there exists a subset W ′ ⊆W such that G′ contains an induced subgraph
G′′ = G[W ′] with at least qN/4 edges, which is 2r-colourable for r = d2N2/q2e.
Choose uniformly at random, r pairs of vertices {x1, y1}, . . . , {xr, yr} from W, with
repetitions allowed. Let T be the set of these pairs and note that |T | ≤ r. Let W ′

be the set of all vertices w of W such that there exists a pair {xi, yi} of T satisfying
wxi,wyi ∈ E(G′). Let G′′ = G[W ′].

Claim 2.7. G′′ spans at least qN/4 edges.

Let w be a fixed vertex of W and let {xi, yi} be a randomised pair of T . The
probability that both wxi and wyi are in E(G′) is given by

(
dG′ (w)

2

)
/
(

N
2

)
, where dG′(w)

denotes the degree of w in G′. This, together with the definition of r, implies that the
probability that there does not exist a pair {xi, yi} of T satisfying wxi,wyi ∈ E(G′) is at
most (

1 −

(
dG′ (w)

2

)(
N
2

) )r
≤ exp

{
−

dG′(w)(dG′(w) − 1)
N(N − 1)

·
2N2

q2

}
≤ e−2 <

1
4
.

It follows that P(w ∈ W ′) ≥ 3/4. Hence, for every fixed edge vw of G′,

P(vw ∈ E(G′′)) = P(v ∈ W ′) + P(w ∈ W ′) − P(v ∈ W ′ or w ∈ W ′) > 3
4 + 3

4 − 1 = 1
2 .

By linearity of expectation and using the fact that e(G′) > qN/2, we obtain

E(e(G′′)) =
∑

vw∈E(G′)

P(vw ∈ E(G′′)) ≥
1
2

e(G′) ≥
1
4

qN.

This implies that there exists a particular set T of at most r pairs of vertices such that
the corresponding graph G′′ spans at least qN/4 edges, which proves Claim 2.7.

Claim 2.8. G′′ is 2r-colourable.

Fix such a T and, for each pair {xi, yi} of T , let Gi denote the subgraph induced by
the common neighbours of xi and yi in G′. Since G is W4-free, we conclude that every
Gi cannot contain a path of length two. Thus every Gi is 2-colourable. Because there
are at most r pairs of vertices in T , the induced subgraph G′′ is 2r-colourable, which
proves Claim 2.8.
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Next, note that if N ≥ m3/4, then it follows from Lemma 2.5 that

f (G) ≥
m
2

+
n
6
≥

m
2

+
N
6
≥

m
2

+
1
6

m3/4.

Assume that N < m3/4. Combining Lemma 2.1 and Claims 2.7 and 2.8,

f (G′′) ≥
e(G′′)

2
+

e(G′′)
4r

≥
e(G′′)

2
+

qN
16
·

⌈2N2

q2

⌉−1
≥

e(G′′)
2

+
q3

32N
.

The above inequality, together with Lemma 2.3, implies that

f (G) ≥ f (G′′) +
m − e(G′′)

2
≥

m
2

+
q3

32N
≥

m
2

+
1
32

m3/4.

Case 2. Suppose that G is q-degenerate, that is, it contains no subgraph with minimum
degree greater than q. If n ≥ 1

2 m3/4, the desired result follows immediately from
Lemma 2.5. Thus, we assume that n < 1

2 m3/4 and aim to employ Lemma 2.4 to get the
desired result. We first show that there exists an induced subgraph G′ of G satisfying
the assumptions of that lemma.

Claim 2.9. There exists an induced subgraph G′ of G with at least 1
4η

2m edges such that
the induced subgraph on all the neighbours of any vertex of degree d′ in G′ contains
at most ε(d′)3/2 edges in G′, where η ∈ (0, 1) is a fixed constant and ε is the constant
from Lemma 2.4.

As long as there is a vertex of degree smaller than m1/4 in G, we delete it. Since
n < 1

2 m3/4, this process terminates after deleting fewer than m1/4n < 1
2 m edges. It

then terminates with an induced subgraph G∗ = (V∗, E∗) of G with at least 1
2 m edges

and minimum degree at least m1/4. Clearly, G∗ is also W4-free. It follows that the
induced subgraph (of G∗) on the neighbourhood of any vertex v of degree d in G∗

is C4-free. As is well known, there exists a constant c1 > 1 such that this induced
subgraph spans at most c1d3/2 edges. Then we apply Theorem 2.6 on G∗ by choosing
η < ε2/32c2

1, and hence we obtain an induced subgraph G′ = (V ′, E′) of G∗ (and hence
of G) satisfying the required properties. (Indeed, consider a random subset V ′ of V∗

obtained by picking each vertex of V∗ randomly and independently, with probability
η. Let G′ be the induced subgraph on V ′. One can see that G′ satisfies the properties
of Claim 2.9.) This completes the proof of Claim 2.9.

By Claim 2.9, the assumptions of Lemma 2.4 hold for G′. By Lemma 2.2, there
exists a labelling v1, v2, . . . , vn′ of the vertices of G′ such that d+

i ≤ q for every i, where
d+

i denotes the number of neighbours v j of vi with j < i in G′. Clearly,
∑n′

i=1 d+
i = e(G′).

Let di be the degree of vi in G′ for each 1 ≤ i ≤ n′. From Lemma 2.4,

f (G′) ≥
e(G′)

2
+ δ

n′∑
i=1

√
di ≥

e(G′)
2

+ δ

n′∑
i=1

√
d+

i

≥
e(G′)

2
+

δ
√

q

n′∑
i=1

d+
i ≥

e(G′)
2

+
δη2

4
m3/4,
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where δ = δ(G′) is a constant, as needed. The above inequality together with
Lemma 2.3 yields

f (G) ≥ f (G′) +
m − e(G′)

2
≥

m
2

+
δη2

4
m3/4.

The desired result follows from Cases 1 and 2 by setting c = min{ 1
32 ,

1
4δη

2}. This
completes the proof of Theorem 1.3(i). �

3. W2k-free graphs

In this section, we prove Theorem 1.3(ii). By Lemma 2.1, graphs with small
chromatic number must have large cuts. Thus, our goal is to show that the chromatic
number of a W2k-free graph is relatively small.

Let G be a graph. We use χ(G) and α(G) to denote the chromatic number and the
independence number of G, respectively. A graph property is called monotone if it
holds for all subgraphs of a graph which has this property, that is, it is preserved under
deletion of edges and vertices. We require a general lemma on monotone properties,
which appears in [11, 12].

Lemma 3.1 (Jensen and Toft [11, Section 7.3]). For s ≥ 1, let ψ : [s,∞)→ (0,∞) be
a positive continuous nondecreasing function. Suppose that P is a monotone class of
graphs such that α(G) ≥ ψ(|V(G)|) for every G ∈ P with |V(G)| ≥ s. Then, for every
such G with |V(G)| ≥ s,

χ(G) ≤ s +

∫ |V(G)|

s

1
ψ(x)

dx.

In order to bound χ(G) by Lemma 3.1, we find a lower bound for α(G) on a W2k-
free graph G in terms of |V(G)|. We need the following well-known lower bound of
Turán from [19] and a lemma proved in [13].

Lemma 3.2 (Turán’s lower bound, [19]). Let G be a graph on n vertices with average
degree at most d. Then

α(G) ≥
n

1 + d
.

Lemma 3.3 (Li et al. [13]). Let G be a graph on n vertices with average degree at most
d. If the average degree of the subgraph induced by the neighbourhood of any vertex
is at most a, then

α(G) ≥ nFa+1(d),

where

Fa(x) =

∫ 1

0

(1 − t)1/a

a + (x − a)t
dt >

log(x/a) − 1
x

for all x > 0.

Next, we shall use the following upper bound, which was proved by Erdős and
Gallai [9], on the maximum number of edges in Pt-free graphs, where Pt stands for a
simple path with t vertices.
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Lemma 3.4 (Erdős and Gallai [9]). Let t ≥ 2 be an integer and let G be a graph on n
vertices. If G is Pt-free, then e(G) ≤ (t − 2)n/2.

We also need the following result, proved by Pikhurko [15], on the maximum
number of edges in graphs without cycles of a given even length.

Lemma 3.5 (Pikhurko [15]). Let k ≥ 2 be an integer and let G be a graph on n vertices.
If G is C2k-free, then

e(G) ≤ (k − 1)n1+1/k + 16(k − 1)n.

Finally, we prove a lemma that gives a lower bound for the independence number
of a C2k-free graph.

Lemma 3.6. Let k ≥ 2 be a fixed integer and let G be a C2k-free graph on n vertices.
Then

α(G) ≥
1

40k2 n(k−1)/k log n.

Proof. Since G is C2k-free, it follows from Lemma 3.5 that e(G) ≤ 20kn1+1/k and hence
the average degree of G is at most 40kn1/k. Since the neighbourhood of any vertex of
G contains no copy of P2k, Lemma 3.4 implies that the average degree of the subgraph
induced by the neighbourhood of any vertex is at most 2k − 2. Hence, by Lemma 3.3,

α(G) ≥ nF2k−1(40kn1/k) ≥ n ·
log(40kn1/k) − log(2k − 1) − 1

40kn1/k ≥
1

40k2 n(k−1)/k log n.

This completes the proof of Lemma 3.6. �

We now give a lower bound for the independence number of a W2k-free graph.

Lemma 3.7. Let k ≥ 2 be a fixed integer and let G be a W2k-free graph on n vertices.
Then

α(G) ≥
1

80k2 n(k−1)/(2k−1) log n.

Proof. Let G be a graph with maximum degree ∆. Let G′ be the subgraph of G induced
by the neighbourhood of any vertex of G with maximum degree ∆, and let G′′ be the
subgraph of G′ induced by the neighbourhood of any vertex of G′ with maximum
degree ∆′ in G′.

If ∆ > nk/(2k−1), then the fact that G is W2k-free means that G′ is C2k-free. From
Lemma 3.6,

α(G) ≥ α(G′) ≥
1

40k2 ∆(k−1)/k log ∆ ≥
1

80k2 n(k−1)/(2k−1) log n.

Suppose now that ∆ ≤ nk/(2k−1). Clearly, the average degree of G is at most nk/(2k−1).

Claim 3.8.

∆′ ≤
1
3k

n(k−1)/(2k−1) log n.
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Otherwise, ∆′ > (1/3k)n(k−1)/(2k−1) log n. Note that G′′ is P2k−1-free. By Lemma 3.4,
e(G′′) ≤ (2k − 3)∆′/2 and hence the average degree of G′′ is at most 2k − 3. From
Lemma 3.2,

α(G) ≥ α(G′′) ≥
∆′

2k − 3 + 1
>

1
6k2 n(k−1)/(2k−1) log n.

This gives the desired result and completes the proof of Claim 3.8.

Claim 3.9.
k

2k − 1
log n − log(∆′ + 1) − 1 ≥

1
4k2 log n.

It is trivial when ∆′ ≤ 1. So assume that ∆′ ≥ 2. It follows that ∆′ + 1 ≤ 3∆′/2.
Therefore, it suffices to show that

log nk/(2k−1) − log n1/(4k2) ≥ log(3e∆′/2).

For any real number x > 0, we have x ≥ e log x. It follows that n1/(2k) ≥ (e/2k) log n.
This, together with Claim 3.8, yields

nk/(2k−1)−1/(4k2) = n(k−1)/(2k−1) · n1/(2k−1)−1/(4k2) ≥ n(k−1)/(2k−1) · n1/(2k)

≥ n(k−1)/(2k−1) ·
e

2k
log n ≥

3
2

e∆′,

giving the desired result. This proves Claim 3.9.
Now, combining Lemma 3.3 and Claim 3.9,

α(G) ≥ nF∆′+1(nk/(2k−1)) ≥ n ·
(k/(2k − 1)) log n − log(∆′ + 1) − 1

nk/(2k−1)

≥
1

4k2 n(k−1)/(2k−1) log n.

This completes the proof of Lemma 3.7. �

With the help of Lemmas 3.1 and 3.7, we immediately have the following result.

Lemma 3.10. Let k ≥ 2 be a fixed integer and let G be a W2k-free graph with n vertices.
Then

χ(G) ≤ 240k2 ·
nk/(2k−1)

log n
.

Proof. This is trivial for n < e6 as χ(G) ≤ n < e6. Assume that n ≥ e6. For x ≥ e6,
define

γ(x) =
k

2k − 1
−

1
log x

and ψ(x) =
1

80k2 x(k−1)/(2k−1) log x.

Obviously, γ(x), ψ(x) are positive continuous and nondecreasing, and γ(x) ≥ 1/3 for
x ≥ e6. It follows from Lemma 3.7 that α(G) ≥ ψ(n). Then, by Lemma 3.1,

χ(G) ≤ e6 +

∫ n

e6

1
ψ(x)

dx ≤ e6 +
80k2

γ(e6)

∫ n

e6

γ(x)
x(k−1)/(2k−1) log x

dx

= e6 + 240k2
( xk/(2k−1)

log x

) ∣∣∣∣∣n
e6
≤ 240k2 ·

nk/(2k−1)

log n
.

This completes the proof of Lemma 3.10. �
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We wish to bound the chromatic number χ(G) of a W2k-free graph G in terms of its
number of edges. Thus we also need the following lemma.

Lemma 3.11. Let k ≥ 3 be a fixed integer. There exists a constant b > 0 such that if G
is a W2k-free graph with n vertices and average degree d > 0, then

α(G) ≥
n log d
bk2d

.

Proof. Let G be a W2k-free graph with n vertices and average degree d. If d >
e2(bk2 + 1), then k < d1/2/(

√
be). At most half of the vertices of G have degree greater

than 2d. Let G′ be G with these vertices deleted. Then G′ has at least n/2 vertices and
maximum degree at most 2d. Clearly, G′ is W2k-free. Thus the neighbourhood of any
vertex of G′ cannot contain a cycle of length 2k. Hence, by Lemma 3.5, the average
degree of the subgraph induced by the neighbourhood of any vertex of G′ is at most
40k(2d)1/k < 60kd1/k. From Lemma 3.3 and the fact that k < d1/2/(

√
be),

α(G) ≥ α(G′) ≥
n
2

F60kd1/k+1(2d) ≥
n(log 2d − log(61kd1/k) − 1)

4d

≥
n

4d

(
log(2

√
b) − log 61 +

k − 2
2k

log d
)
≥

n log d
k2d

,

where the last inequality holds by choosing b > 930, since k ≥ 3.
So we assume that d ≤ e2(bk2 + 1). It is easy to see that x ≥ log(x + 3) + 1/2 for

any real number x ≥ 2 and that the function g(x) = log x/x is monotonically increasing
over the interval (0, e] and decreasing over the interval [e,+∞). Hence,

bk2 ≥ log(bk2 + 1) +
5
2
≥ log d +

1
2
> log d +

1
e
≥ log d +

log d
d

=
(1 + d) log d

d
.

This, together with Lemma 3.2, implies that

α(G) ≥
n

1 + d
≥

n log d
bk2d

,

which completes the proof of Lemma 3.11. �

Now, we establish the following theorem, which plays a key role in the proof of
Theorem 1.3(ii). The approach we take is an extension of that by Poljak and Tuza [16].

Theorem 3.12. Let k ≥ 3 be a fixed integer and let b be an integer given by Lemma 3.11.
Suppose that G is a W2k-free graph with m > 1 edges. Then

χ(G) ≤ 97bk2 ·
mk/(3k−1)

log m
.

Proof. Let G be a W2k-free graph on n vertices with m > 1 edges. If n < 8, then
m < 28 and the desired result follows from χ(G) ≤ n < 8. Suppose that n ≥ 8.
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Define n∗ = m(2k−1)/(3k−1). The function g(x) = xk/(2k−1)/log x is monotonically
increasing over the interval (e(2k−1)/k,+∞). If n ≤ n∗, then Lemma 3.10 implies that

χ(G) ≤ 240k2 ·
nk/(2k−1)

log n
≤ 240k2 ·

(n∗)k/(2k−1)

log n∗
≤ 720k2 ·

mk/(3k−1)

log m
,

giving the desired result. Hence assume that n > n∗. We can delete all the vertices
with degree zero or one in G, that is, we can assume that m ≥ n. Now we construct a
graph sequence {Gi}i≥0 on G. Start with i = 0, G0 = G and n0 = |V(G0)|. If ni > n∗, we
carry out the following iterative procedure; otherwise, we stop. Choose Si to be the
maximum independent set of Gi. Then set Gi+1 = Gi\Si, ni = |V(Gi)|, and increment i.

Let G` be the graph at the end of the process. Clearly, n` ≤ n∗ and G` is W2k-free.
By Lemma 3.10,

χ(G`) ≤ 240k2 ·
(n∗)k/(2k−1)

log n∗
≤ 720k2 ·

mk/(3k−1)

log m
. (3.1)

Note that χ(G) ≤ χ(G`) + `. In the following, it is sufficient to bound the value of `.
We first bound the value of |Si|. Let t = dn/n∗e and note that t ≥ 2 because n > n∗.

Let I = {0, 1, . . . , ` − 1}. For each i ∈ I, we have ni > n∗ ≥ n/t, by the definition of t.
Let v1, . . . , vn0 be a labelling of the vertices of G0 such that Si = {vp : ni+1 < p ≤ ni} for
each i ∈ I. Let S be the union of Si for all i ∈ I and let J = {2, 3, . . . , t}. For each j ∈ J,
define

V j =

{
vp ∈ S :

n
j
< p ≤

n
j − 1

}
and I j =

{
i ∈ I : ni >

n
j

}
.

Observe that S \S`−1 ⊆
⋃

j∈J V j ⊆ S and I2 ⊆ I3 ⊆ · · · ⊆ It. Hence, for each v ∈ V j, there
exists an i ∈ I j such that v ∈ Si. In addition,

|V j| ≤

⌈ n
j − 1

−
n
j

⌉
≤

4n
j2
. (3.2)

Claim 3.13. For each i ∈ I j , ∅,

|Si| ≥
n2 log(2 jm/n)

2bk2 j2m
.

For each i ∈ I, we let di denote the average degree of Gi. For each i ∈ I j, observe
that di ≤ 2m/ni ≤ 2 jm/n. If di > e, the function g(x) = log x/x is decreasing over the
interval (e,+∞). From Lemma 3.11 and the fact that di ≤ 2 jm/n,

|Si| ≥
ni log di

bk2di
≥

n2 log(2 jm/n)
2bk2 j2m

.

If di ≤ e, then, by Lemma 3.2, |Si| ≥ ni/(1 + e) ≥ ni/(bk2) ≥ n/(bk2 j). Since x ≥ log x,
this gives the required lower bound and completes the proof of Claim 3.13.

Then, for each v ∈ Si and i ∈ I, let w(v) = |Si|
−1. Hence, for each v ∈ Si ⊂ V j,

Claim 3.13 gives

w(v) = |S i|
−1 ≤

2bk2 j2m
n2 log(2 jm/n)

≤
2bk2 j2mn−2

log j + log(m/n)
.
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Combining the above inequality, the definition of w(v) and (3.2),

` − 1 =
∑

i∈I\{`−1}

∑
v∈Si

w(v) ≤
∑
j∈J

∑
v∈V j

w(v) ≤
t∑

j=2

|V j|w(v) ≤
t∑

j=2

8bk2mn−1

log j + log(m/n)
. (3.3)

If t < m/n, then delete the first term of the denominator of (3.3). Since t − 1 < n/n∗

by the definition of t,

` − 1 ≤
t∑

j=2

8bk2mn−1

log(m/n)
=

(t − 1)8bk2mn−1

log(m/n)
≤

8bk2m
n∗ log(m/n)

. (3.4)

Because t − 1 < n/n∗ ≤ t and by the definition of n∗,

t ·
m
n
≥

n
n∗
·

m
n

=
m
n∗

= mk/(3k−1). (3.5)

It follows that max{t,m/n} ≥ mk/(2(3k−1)) and thus

max
{
log t, log

m
n

}
≥

k
2(3k − 1)

log m. (3.6)

Combining (3.4)–(3.6), we conclude that ` − 1 ≤ 48bk2mk/(3k−1)/log m.
If t ≥ m/n, noting that

t∑
j=2

1
log j

≤

∫ t

2

1
log x

dx ≤
2(t − 1)

log t
<

2n
n∗ log t

,

we delete the second term of the denominator in (3.3) and obtain

` − 1 ≤
8bk2m

n

t∑
j=2

1
log j

≤
16bk2m
n∗ log t

≤ 96bk2 ·
mk/(3k−1)

log m
,

where the last inequality follows from (3.5) and (3.6).
Hence we can conclude that ` − 1 ≤ 96bk2mk/(3k−1)/log m. This, together with (3.1),

implies that

χ(G) ≤ χ(G`) + ` ≤ (720 + 96b)k2 ·
mk/(3k−1)

log m
+ 1 ≤ 97bk2 ·

mk/(3k−1)

log m
.

This completes the proof of Theorem 3.12. �

Proof of Theorem 1.3(ii). Let r + 1 = 2k ≥ 6 be a fixed even integer and let G be a
W2k-free graph with m edges. The desired result follows immediately for m = 1. For
m > 1, we set c(r) = 2(r + 1)−2/(97b). Then the desired result follows from Lemma 2.1
and Theorem 3.12. �
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4. W2k+1-free graphs

In this section, we present a proof of Theorem 1.3(iii). The proof is similar to that of
Theorem 1.3(ii). The following result bounds the independence number of a C2k+1-free
graph for every k ≥ 2.

Lemma 4.1 (Zeng and Hou [21]). Let k ≥ 2 be a fixed integer and let G be a C2k+1-free
graph on n vertices. Then

α(G) ≥
1

5k2 (nk log n)1/(k+1).

Proof of Theorem 1.3(iii). Let r = 2k + 1 ≥ 5 be a fixed integer and let G be a W2k+1-
free graph with m edges and maximum degree ∆. Let G′ be the graph induced by the
neighbourhood of any vertex of G with maximum degree ∆. Clearly, G′ is C2k+1-free.
We first give a lower bound of α(G). If ∆ ≥ (nk+1/log n)1/(2k+1), then, by Lemma 4.1,

α(G) ≥ α(G′) ≥
1

5k2 (∆k log ∆)1/(k+1) ≥
1

5k4 (nk log n)1/(2k+1).

Otherwise, ∆ < (nk+1/log n)1/(2k+1), and from Lemma 3.2,

α(G) ≥
n

1 + ∆
≥

n
2n(k+1)/(2k+1) · (log n)1/(2k+1) ≥

1
5k4 (nk log n)1/(2k+1).

Next, we bound χ(G). Let

ψ(x) =
1

5k4 (xk log x)1/(2k+1) and γ(x) =
k + 1
2k + 1

(
1 −

1
(k + 1) log x

)
.

Note that ψ(x), γ(x) are positive continuous and nondecreasing and γ(x) ≥ 1/3 for
x ≥ e. Moreover, α(G) ≥ ψ(n). From Lemma 3.1,

χ(G) ≤ e +
5k4

γ(e)

∫ n

e

γ(x)
(xk log x)1/(2k+1) dx ≤ 15k4

( nk+1

log n

)1/(2k+1)
, (4.1)

where the last inequality holds because an antiderivative for the integrand is exactly
(xk+1 log−1 x)1/(2k+1).

Finally, if n ≥ (m2k+1 log m)1/(3k+2), then Lemma 2.5 implies that

f (G) ≥
m
2

+
n
6
≥

m
2

+
1
6

(m2k+1 log m)1/(3k+2).

If n < (m2k+1 log m)1/(3k+2), then, by Lemma 2.1 and (4.1), we conclude that

f (G) ≥
m
2

+
m

30k4 ·

( log n
nk+1

)1/(2k+1)
≥

m
2

+
1

60k4 (m2k+1 log m)1/(3k+2),

where the last inequality holds because the function g(x) = ((log x)/xk+1)1/(2k+1) is
monotonically decreasing over the interval (e1/(k+1),+∞). We get the desired result
by noting that r = 2k + 1 and by setting c′(r) = 4/(15(r − 1)4). This completes the
proof of Theorem 1.3(iii). �
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