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Abstract

Organisms adapt to fluctuating environments by regulating their dynamics, and by
adjusting their phenotypes to environmental changes. We model population growth using
multitype branching processes in random environments, where the offspring distribution
of some organism having trait t ∈ T in environment e ∈ E is given by some (fixed)
distribution ϒt,e on N. Then, the phenotypes are attributed using a distribution (strategy)
πt,e on the trait space T . We look for the optimal strategy πt,e, t ∈ T , e ∈ E ,
maximizing the net growth rate or Lyapounov exponent, and characterize the set of optimal
strategies. This is considered for various models of interest in biology: hereditary versus
nonhereditary strategies and strategies involving or not involving a sensing mechanism.
Our main results are obtained in the setting of nonhereditary strategies: thanks to a
reduction to simple branching processes in a random environment, we derive an exact
expression for the net growth rate and a characterization of optimal strategies. We also
focus on typical genealogies, that is, we consider the problem of finding the typical
lineage of a randomly chosen organism.
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exponent; optimal strategy; extinction; typical genealogy
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1. Introduction

Organisms adapt to fluctuating environments by regulating their intrinsic dynamics, and
adjust their phenotypes or traits to the random environment. Observations reveal that most cell
populations are heterogeneous, that is, are composed of various phenotypes. Recently, several
authors proposed models to explain this heterogeneity; see [9], [10], and [13]. In these papers,
continuous-time stochastic processes representing the evolution of the different populations are
constructed. They can be seen as birth processes coupled by migration in between them, where
the birth and migration rates depend on a fluctuating environment.

We present more precisely the models considered by Kussel and Leibler [10]: the trait space
T is finite and the environment space E is such that E = T , the idea being that trait i has the
fastest growth rate in environment e = i. The migration rate matrix H(k) = (H

(k)
ij )i,j∈T gives
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the switching rates H
(k)
ij from phenotype i to j in environment e = k. The changing environment

is modeled as an alternating renewal process. The migration rates H
(k)
ij define possible strategies

to overcome the uncertain future. The authors considered two basic strategies: stochastic
switching and responsive switching. In the first case, organisms switch their phenotypes
independently of the running environment, they do not use sensors, so the migration rates
do not depend on the environment and can be written as H

(k)
ij = Hij. Responsive switching

assumes strong use of sensors, at a certain cost; if the environment evolves slowly, a good
way to overcome the environmental changes is when organisms always opt for the fittest
phenotype in the running environment, that is, for the trait having the largest growth rate;
in this case, the migration rates are given by H

(k)
ij = Hm when j = k and H

(k)
ij = 0 when

j �= k. In both cases, denoting by Xi(t) the mean number of organisms having phenotype
i at time t , the vector X(t) = (Xi(t))i∈T is a solution of the random differential equation
dX(t)/dt = AE(t)X(t), where AE(t) denotes the rate matrix composed of the various growth
and migration rates in environment E(t) at time t . The authors then estimated the related
Lyapounov exponent ln(N(t))/t as t → ∞, where N(t) = ∑

i∈E Xi(t) is the average total
population size. The computations were performed under the assumption that the environment
changes slowly, so equilibrium is reached during each phase; see [10] for more details.

A similar model was also considered by Thattai [13] for two phenotypes and two envi-
ronments. Monte Carlo simulations indicate that responsive switching is sometimes not the
optimal strategy. The average proportion of cells having the fastest growth rate is maximized for
strategies using a sensing mechanism and allowing migration to the unfavorable state. This leads
to heterogeneous populations and provides a rational explanation for population diversification.
These models were then studied analytically by Gander et al. [6]. Modifications of these models
were also considered more recently by Visco et al. [14], who modeled catastrophic events.

In the present work, we treat similar problems using discrete-time multitype branching
processes in random environments, which offer alternatives to the above birth with migration
processes. The advantage of multitype branching processes is that we can separate more clearly
the birth and migration phases. We can, for example, treat in this way populations composed of
organisms where birth occurs in a very precise period. When this is not the case, discrete-time
modeling still provides relevant information for population growth. We consider the problem of
finding optimal strategies that maximize the random Lyapounov exponent. Our mathematical
approach allows us to deal with continuous trait and environment spaces T and E , illustrated on
an explicitly solvable model originally developed by Haccou and Iwasa [9]. For the attention of
scientists not familiar with advanced mathematics, we first illustrate some results and provide
examples of when both T and E are finite.

1.1. Results

Assume that T = {t1, . . . , tq} and that E = {e1, . . . , er}. The process of interest (Zn)n≥0 is
written as a random vector Zn = (Zt

n)t∈T , where Zt
n denotes the number of organisms having

trait t ∈ T at generation n. The transition between generations n and n + 1 is modeled as a
two-step procedure. First, for given t ∈ T , each of the i = 1, . . . , Zt

n organisms having trait
t gives birth to a random number of descendants given by a random variable ξ

t,ωn

i,n , where the
index ωn ∈ E models the environmental state at generation n. In the second phase, each of
the j = 1, . . . , ξ

t,ωn

i,n new individuals is assigned to a random trait τ
t,ωn

i,j,n ∈ T . As usual in such
processes, we assume that all of these random variables are independent, with independent
and identically distributed (i.i.d.) ξ

t,ωn

i,n and τ
t,ωn

i,j,n. We further assume that the environmental
process (ωn)n≥0 is fixed, and suppose it to be the realization of a stationary (i.e. for all i ∈ N,
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(w0, w1, . . .) is distributed as (wi, wi+1, . . .)) and ergodic process (i.e. for all bounded Borel
functions f , P(f (w0, w1, . . .) = f (w1, w2, . . .)) = 1 implies that f (w0, w1, . . .) is constant)
taking values in E . Let ϒt,e and πt,e be distributions of the ξ

t,e
i,n and τ

t,e
i,j,n for a trait t ∈ T in

environment e ∈ E . We will often use the first moment mt,e of ϒt,e, giving the average number
of descendants for an organism having trait t in environment e. Optimal strategies will be
considered for fixed distributions ϒt,e, that is, we will maximize the population growth rate as
a function of the distributions πt,e. In Sections 3, 4, and 5 we consider extinction and optimal
growth questions. Section 6 deals with typical genealogies, that is, we consider the question of
finding the typical lineage of an individual chosen randomly at generation n. We also illustrate
these notions both for finite spaces T and E and for continuous spaces.

As stated in the previous section, Kussel and Leibler [10] distinguished between stochastic
and responsive switching. In the first case, the distributions πt,e on T depend on t but not on
e, so we can write πt,e ≡ πt . Concerning the second family of strategies, πt,e depends on
e but not on t . We will also distinguish between several natural situations, namely between
strategies involving or not involving a sensing mechanism, and strategies πt,e depending or not
depending on t , called hereditary and nonhereditary in what follows. We illustrate some results
when both T and E are finite, and for

1. nonhereditary strategies with no-sensing mechanism, where πt,e ≡ p, for some proba-
bility measure on T ,

2. nonhereditary strategies using a sensing mechanism, of the form πt,e = pe, where
p̄ = (pe)e∈E is a family of probability measures on T . This second family contains
responsive switching strategies.

We will describe the optimal set for nonhereditary strategies, that is, we will characterize
the set of distributions (πt,e) yielding the fastest growth rate. We assume that the random
environment (ωn)n≥0 is a stationary process taking values in E .

1.1.1. The nonhereditary with no-sensing mechanism case. We first prove in Proposition 1
below that

lim
n→∞

1

n
log Eω[|Zn|] = γ (p),

where the Lyapounov exponent γ (p) is given by

γ (p) = E[log mp,ω0 ]
and mp,e is the first moment or average value of the mean distribution

ϒp,e =
∫

T
ϒt,ep(dt).

Let P (T ) be the set of probability measures on T , and let γ ∗ = sup{γ (p); p ∈ P (T )}
be the maximal Lyapounov exponent. We denote by P ∗ the subset of P (T ) containing the
distributions p maximizing the Lyapounov exponent. We show in Proposition 3 below that
p ∈ P ∗ if and only if ∫

E

mt,e

mp,e

ν1(de) ≤ 1 for all t ∈ T ,

where ν1 is the law of the stationary random environment. A strategy is called pure if it is
concentrated on a single t ∈ T , that is, takes the form p = δt . It then follows that a pure
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strategy p = δt is optimal if and only if∫
E

mt ′,e
mt,e

ν1(de) ≤ 1 for all t ′ ∈ T .

When T = {t1, . . . , tq} and E = {e1, . . . , er}, with q ≥ r , we also prove that there is a unique
maximizer in P ∗ which is supported by a set containing at most p elements.

As a further illustration, we consider the simplest case when p = q = 2.

1. p∗ = δt2 and γ ∗ = ν1(e1) log(mt2,e1) + ν1(e2) log(mt2,e2) when ν1(e1)mt1,e1/mt2,e1 +
ν1(e2)mt1,e2/mt2,e2 ≤ 1.

2. p∗ = δt1 and γ ∗ = ν1(e1) log(mt1,e1) + ν1(e2) log(mt1,e2) when ν1(e1)mt2,e1/mt1,e1 +
ν1(e2)mt2,e2/mt1,e2 ≤ 1.

3. Otherwise p∗ is given by

p∗ =
(

ν1(e1)mt2,e2

mt2,e2 − mt1,e2

+ ν1(e2)mt2,e1

mt2,e1 − mt1,e1

)
δt1 +

(
ν1(e1)mt1,e2

mt1,e2 − mt2,e2

+ ν1(e2)mt1,e1

mt1,e1 − mt2,e1

)
δt2

with
γ ∗ = log |mt1,e1mt2,e2 − mt1,e2mt2,e1 | − ν1(e1) log |mt2,e2 − mt1,e2 |

− ν1(e2) log |mt2,e1 − mt1,e1 | + ν1(e1) log(ν1(e1)) + ν1(e2) log(ν1(e2)).

As a numerical example, consider the case in which ν1(e1) = ν1(e2) = 1
2 and

mt1,e1 = 1.5, mt2,e1 = 0.6, mt1,e2 = 0.6, mt2,e2 = 1.5. (1)

The two environments are equiprobable, with type t1 better fitted to environment e1, and a
symmetry in the model. In this case, the Lyapounov exponent for the population following a
pure strategy is given by

γ (δt1) = γ (δt2) = 0.5(log(1.5) + log(0.6)) ≈ −0.053.

This implies that both types are subcritical and that the corresponding homogeneous populations
go extinct almost surely. The optimal strategy is then p∗ = (0.5, 0.5) and the corresponding
Lyapounov exponent is

γ ∗ = log(0.5(1.5 + 0.6)) ≈ 0.049.

With this optimal strategy, γ ∗ > 0 and the population explodes with positive probability almost
surely. This is one of the simplest examples when polymorphism is a necessary condition for
survival (see Section 3.3).

1.1.2. The nonhereditary with sensing mechanism case. Assume that πt,e = pe for some
strategy p̄ = (pe)e∈E . It turns out that the relevant piece of environment is given by the
pair process ω(2) = ((ωn−1, ωn))n≥1 ∈ E2, of stationary measure ν2(de1, de2). Consider the
average distribution

ϒp̄,(e1,e2) =
∫

T
ϒt,e2pe1(dt),

of expected value

mpe1 ,e2 =
∫

T
mt,e2pe1(dt).
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When

γ (p̄) =
∫

E2
log(mpe1 ,e2)ν2(de1, de2)

exists, we prove in Proposition 7 below that

lim
n→∞ n−1 log Eω[|Zn|] = γ (p̄) almost surely (a.s.).

Let γ ∗∗ be the optimal growth rate, that is, the supremum of γ (p̄) among all possible families
p̄, and denote by P ∗∗ the related set of optimal strategies. Let νe1(de2) be the conditional
distribution of ω2 given that ω1 = e1. We prove in Proposition 9 below that p̄ is optimal if and
only if ∫

E

mt,e2

mpe1
, e2

νe1(de2) ≤ 1 for all t ∈ T ,

ν1(de1)-a.s. An interesting consequence is that there is no gain to be expected using a sensing
mechanism when the random environment has some independence property: if ω1 and ω2 are
independent, then γ ∗ = γ ∗∗. The information we can gather on the present environmental state
using sensors does not help when dealing with future events.

Next, we develop further the simplest case when E = {e1, e2} and T = {t1, t2}. We suppose
that the distribution for the environment ν is a Markov chain with transitions

ν(ωn+1 = e1 | ωn = e1) = 1 − q1, ν(ωn+1 = e2 | ωn = e1) = q1,

ν(ωn+1 = e1 | ωn = e2) = q2, ν(ωn+1 = e2 | ωn = e2) = 1 − q2,

where qi ∈ (0, 1) denotes the probability that the environment switches in the next step when
it is currently in state ei . The sequence ω is then ergodic and its stationary distribution is

ν1 = q2

q1 + q2
δe1 + q1

q1 + q2
δe2 .

We suppose further that the Markov chain is started from the steady state, i.e. ω0 has distri-
bution ν1, so the sequence ω is stationary. Then, the conditional distributions of ω1 given ω0
is precisely given by the transition of the Markov chain. The optimal strategy with sensing is
then such that

1. p∗∗
e1

= δt2 when (1 − q1)mt1,e1/mt2,e1 + q1mt1,e2/mt2,e2 ≤ 1,

2. p∗∗
e1

= δt1 when (1 − q1)mt2,e1/mt1,e1 + q1mt2,e2/mt1,e2 ≤ 1,

3. and otherwise

p∗∗
e1

=
(

(1 − q1)mt2,e2

mt2,e2 − mt1,e2

+ q1mt2,e1

mt2,e1 − mt1,e1

)
δt1 +

(
(1 − q1)mt1,e2

mt1,e2 − mt2,e2

+ q1mt1,e1

mt1,e1 − mt2,e1

)
δt2 .

Similar equations hold for p∗∗
e2

. Rather than giving a general formula, we consider the numerical
case when q1 = q2 = q so that the stationary distribution is given by ν1(e1) = ν1(e2) = 1

2 ,
and we use the same values for the number of offspring as in (1). Using the above results, the
optimal strategy p∗∗ is given by

p∗∗
e1

= δt1 and p∗∗
e2

= δt2 if q ≤ 2
7 ,

p∗∗
e1

= δt2 and p∗∗
e2

= δt1 if q ≥ 5
7 ,

p∗∗
e1

= 5 − 7q

3
δt1 + 7q − 2

3
δt2 and p∗∗

e2
= 7q − 2

3
δt1 + 5 − 7q

3
δt2 if

2

7
≤ q ≤ 5

7
.
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We see three different environmental regimes, corresponding to low, intermediate, and high
frequency switching rates. When the environment fluctuates slowly, with q ≤ 2

7 , the optimal
strategy is pure and corresponds to what Kussel and Leibler [10] called responsive switching.
In the intermediate regime, the optimal strategy is a mixture of pure strategies. In the high
frequency regime where the environment fluctuates quickly (q ≥ 5

7 ), the optimal strategy is a
pure strategy, where organisms being in the favorable state are pushed to the unfavorable state.

We deduce the optimal growth rate

γ ∗∗ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
log 3

2 − q log 5
2 if q ≤ 2

7 ,

q log q + (1 − q) log(1 − q) + log 21
10 if 2

7 ≤ q ≤ 5
7 ,

log 3
5 − q log 5

2 if q ≥ 5
7 .

When q = 1
2 , the sequence ω is an independent sequence, so γ ∗∗( 1

2 ) = γ ∗( 1
2 ) ≈ 0.049, the

optimal strategy is a strategy without sensing. When q ≈ 1 or q ≈ 0, the environment in the
next step is very likely to stay the same or, respectively, to switch, so we can determine with
high probability which type will be fitted in the next generation. Indeed, we observe that

lim
q→0

γ ∗∗(q) = lim
q→1

γ ∗∗(q) = log 3
2 ≈ 0.176.

2. Definitions of the multitype branching process in a random environment and of
optimal strategies

First, we recall that ωn represents the environment at time n, Zn represents the trait-structured
population, Zt

n denotes the number of individuals with trait t , and |Zn| denotes the total number
of individuals at time n. Moreover, ξ

t,ωn

i,n gives the size of the offspring of the ith individual
with trait t at time n in environment ωn, and τ

t,ωn

i,j,n gives the trait of the j th descendant of this
individual.

Let us now give the formal definition of the process. Let (	, F , P) be a probability space,
let T be a metric space, and let E be a Polish space. For each pair (t, e) ∈ T × E , let ϒt,e and
πt,e be distributions on N and T , respectively, and suppose that ϒt,e has a finite first moment
denoted by mt,e. Let ω = (ωn)n≥0 be an E -valued stationary ergodic random process with
distribution ν on EN.

Denoting by N
T the set of almost null N-valued functions on T and by (1t )t∈T the canonical

basis, the stochastic process Zn = (Zt
n : t ∈ T ) with values in N

T can be defined as

Z0 = N0, Zn+1 =
∑
t∈T

Zt
n∑

i=1

ξ
t,ωn
i,n∑
j=1

1
τ

t,ωn
i,j,n

, n ≥ 0, (2)

where

• N0 is an N
T -valued random variable giving the population at time 0,

• {ξi,n; i ≥ 1, n ≥ 0} and {τi,j,n; i ≥ 1, j ≥ 1, n ≥ 0} are infinite arrays of i.i.d. random
variables with values in N

T ×E and T T ×E , respectively, and common distributions

ϒ =
⊗

(t,e)∈T ×E

ϒt,e and π =
⊗

(t,e)∈T ×E

πt,e,

respectively,
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• N0, {ξi,n; i ≥ 1, n ≥ 0}, {τi,j,n; i ≥ 1, j ≥ 1, n ≥ 0}, and ω = (ωn)n≥0 are
independent.

Thus, ϒ corresponds to the offspring distribution and π corresponds to the trait distribution of
the offspring. Both distributions a priori depend on the trait of the parent and on the environment.
We set |Zn| = ∑

t∈T Zt
n, n ≥ 0 (an empty sum is equal to 0).

Our attention will be focused on the role of the trait distribution π and how it affects the
evolution of the population. The offspring distribution ϒ will hence be considered as given
and fixed, whereas the trait distribution π will be considered as a parameter. The intuitive idea
is that (i) the local fitness of an individual is determined by its trait and its environment, and
corresponds to its mean number of descendants; and (ii) the intergenerational variability of the
traits has to be tuned so as to maximize the global fitness of the whole population.

The trait distribution π can be seen as the strategy used by the population to maximize
its growth. We measure the performance of the strategy π by the long-term growth of the
corresponding population (Zn)n≥0: let

γ (π) = lim
n→∞ n−1 log Eω,N0 [|Zn|].

Here Eω,N0 denotes the conditional expectation given the environment and the initial population.
As will be discussed in the sequel, fairly general assumptions ensure that this limit exists and does
not depend on the environment and initial population. Note that it is important here to consider
the quenched model (i.e. conditionally on the environment) and not the averaged model (i.e.
averaged over all possible environments): the criterion γ (π) measures the population growth
rate in a typical environment. An averaged criterion would be biased by unlikely environments
where the population grows unusually fast.

Several mechanisms can induce the intergenerational variability of the traits and leads to
different assumptions on the trait distribution π .

3. The nonhereditary case with no-sensing mechanism

According to the approach set out in the previous paragraph, we begin by studying the
simplest case of nonhereditary traits in the absence of a sensing mechanism, meaning that the
trait distribution of the offspring depends neither on the trait of the parent nor on the environment.
We thus suppose that Zn evolves according to model (2) with πt,e ≡ p for some distribution p

on T , and let π = π(p) be the corresponding trait distribution.

3.1. Reduction to a simple branching process in a random environment

In some sense, the nonhereditary assumption makes the structure of the population trivial:
the trait distribution is given by p whatever the past evolution of the process. In mathematical
terms, we take advantage of some stochastic independence.

Lemma 1. For any n ≥ 1, the population structure is conditionally independent of the past
population process given the size of the population, i.e.

Zn

∣∣∣|Zn|
∐

(Z0, . . . , Zn−1)

∣∣∣|Zn|.
Proof. It is easily seen from the assumptions on model (2) and from the nonhereditary

assumption π = π(p) that the distribution of Zn given (Z0, . . . , Zn−1) and |Zn| is equal to the
distribution of

∑
1≤i≤|Zn| 1τi

, where τi is an i.i.d. sequence with distribution p. This distribution
does not depend on (Z0, . . . , Zn−1), proving the conditional independence.
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It is worth noting that the result also holds for the quenched model (i.e. conditionally on
the environment ω). Lemma 1 implies that the distribution of the population process (Zn)n≥1
is easily recovered from the size process (|Zn|)n≥1. This latter process turns out to be a
simple branching process in a random environment (BPRE) and this allows us to compute the
performance γ (p) of the strategy p.

Proposition 1. The size process (|Zn|)n≥1 is a simple BPRE with offspring distribution in
environment e given by

ϒp,e =
∫

T
ϒt,ep(dt), e ∈ E .

Conditionally on ω, the expected population size at time n is

Eω[|Zn|] = Eω0 [|Z1|]
n−1∏
k=1

mp,ωk
,

where mp,e is the first moment of ϒp,e. If γ (p) = E[log mp,ω0 ] exists then

lim
n→∞ n−1 log Eω[|Zn|] = γ (p) a.s.

Proof. According to Lemma 1, given (|Z1|, . . . , |Zn|), the population Zn has the same
distribution as

∑
1≤i≤|Zn| 1τi

, where τi is an i.i.d. sequence with distribution p. Intuitively,
the ith individual has type τi chosen randomly on T with distribution p. The size of the next
generation |Zn+1| is then

∑
1≤i≤|Zn| ξ

τi ,ωn

n,i , where ξ
τi ,ωn

n,i is the offspring of the ith individual
of type τi in environment en. From this two-step procedure, that is, the random choice of the
type t and the reproduction with random offspring in environment e, we obtain the effective
offspring distribution ϒp,e in environment e: it is the mixture of the offspring distributions
ϒt,e, with mixing distribution p. This proves the branching property for (|Zn|)n≥1. The other
properties follow: the branching property implies the recursive formula

Eω[|Zn+1|] = E(ω0,...,ωn−1)[|Zn|]mp,ωn,

and the formula for Eω[|Zn|] follows. Taking the logarithm, we have

n−1 log Eω[|Zn|] = n−1 log Eω0 [|Z1|] + n−1
n−1∑
k=1

log mp,ωk
,

which converges to γ (p) a.s. according to the ergodic theorem and the integrability assumptions.
This completes the proof.

For the sake of simplicity, we suppose in what follows that the initial population consists of
a single individual of random trait with distribution p. The whole process (|Zn|)n≥0 is then a
simple BPRE with offspring distribution ϒp and initial condition |Zn| = 1. Simple branching
processes in a random environment have been introduced by Smith and Wilkinson [11] and
Athreya and Karlin [2], [3], and have been studied rather intensively since then [1], [7], [12].
We recall here some important results concerning the asymptotic behavior of such processes
(see, e.g. the classification theorem in [12], which states conditions under which either the
population becomes extinct or explodes at a geometric rate).

To avoid the trivial case of a constant population, we suppose that ϒp,ω0 is not a.s. equal
to δ1. We suppose also that γ (p) = E[log mp,ω0 ] exists and is finite. We say that extinction
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occurs if Zn → 0 as n → ∞ (in which case the sequence vanishes eventually), and that the
population survives otherwise. Let q(ω) = Pω(Zn → 0) be the probability of extinction given
the environment.

Theorem 1. (Classification theorem.) 1. In both the subcritical case, γ (p) < 0, and the
critical case, γ (p) = 0, the population becomes extinct a.s., i.e. P(q(ω) = 1) = 1.

2. In the supercritical case, γ (p) > 0, if, furthermore, E[−log(1 − ϒp,ω0({0}))] < ∞ then the
population can survive with positive probability in almost every environment, i.e. P(q(ω) <

1) = 1. Furthermore, conditionally on nonextinction, the population explodes at a geometric
rate:

lim
n→∞ n−1 log Zn = γ (p) a.s. on {Zn > 0 for all n ≥ 0}.

3.2. Optimal strategies

We now focus on optimal strategies, i.e. what choice of the distribution p allows for the
fastest growth of the population? As discussed in Section 2, the performance of the strategy
π = π(p) is measured by the Lyapounov exponent γ (p). In the nonhereditary case with no
sensing, an explicit formula for γ (p) has been derived in Proposition 1. The questions which
naturally arise are those of how to determine the supremum of γ (p) for p varying in P (T ),
the space of probability measures on T , and the set of optimal strategies p∗ in the case when
this supremum is reached. Let γ ∗ = sup{γ (p); p ∈ P (T )} be the optimal growth rate, and
let P ∗ = {p∗ ∈ P (T ); γ (p∗) = γ ∗} be the set of optimal strategies. A strategy p is called
pure if p = δt for some t ∈ T (i.e. all individuals in the population have the same trait t) or
mixed otherwise. We further ask whether the optimal strategies are pure or mixed.

We now give conditions under which the existence of optimal strategies are ensured. We
suppose that

(C1) there is some M > 0 such that mt,e ≤ M for all (t, e) ∈ T × E ,

(C2) for all e ∈ E , the mapping t �→ mt,e is continuous on T ,

(C3) for all e ∈ E and ε > 0, there is a compact set K ⊂ T such that mt,e ≤ ε for all
t ∈ T \ K .

Condition (C1) is rather relevant from the biological point of view since an individual could
hardly have an arbitrarily high number of offspring in a fixed amount of time. Conditions (C2)
and (C3) are related with the topology of T : individuals with close traits are supposed to have
approximately the same behavior, and traits close to infinity are supposed to have a poor fitness.

Proposition 2. Under conditions (C1)–(C3), optimal strategies exist and form a closed convex
set, that is, the set P ∗ is nonempty, closed, and convex in P (T ) endowed with the topology of
weak convergence.

If, furthermore, the family M = {e �→ mt,e; t ∈ T } ⊂ L∞(E , ν1) is linearly independent
then the optimal strategy is unique.

Proof. First, we prove that the map γ : P (T ) → R defined by

γ (p) =
∫

E
log(mp,e)ν1(de) with mp,e =

∫
T

mt,ep(dt) (3)

is concave and upper semicontinuous on P (T ) with respect to the topology of weak con-
vergence. Let pn converge weakly to p in P (T ). Using conditions (C1) and (C2), we see
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that mpn,e → mp,e for all e ∈ E . Defining fn(e) = log(M) − log(mpn,e) to be nonnegative
measurable functions on E and applying Fatou’s lemma, we obtain∫

E
lim inf fn(e)ν1(de) ≤ lim inf

∫
E

fn(e)ν1(de),

or, equivalently,

lim sup
∫

E
log(mpn,e)ν1(de) ≤

∫
E

log(mp,e)ν1(de).

Hence, lim sup γ (pn) ≤ γ (p), and this gives the upper semicontinuity of the application γ .
The concavity of the application γ on P (T ) is a direct consequence of the concavity of the
logarithm and the linearity of integration: first, for p1, p2 ∈ P (T ), λ ∈ [0, 1], and e ∈ E ,
we have

log(mλp1+(1−λ)p2,e) = log(λmp1,e + (1 − λ)mp2,e) ≥ λ log(mp1,e) + (1 − λ) log(mp2,e).

This implies that γ (λp1 + (1 − λ)p2) ≥ λγ (p1) + (1 − λ)γ (p2).
Secondly, we prove that P ∗ is nonempty, closed, and convex. The closeness and convexity

properties are straightforward since P ∗ can be seen as the level set {p ∈ P (T ); γ (p) ≥ p∗}
of the concave upper semicontinuous application γ . It remains to check nonemptiness, for
which we use compactness arguments. In the case when T is a compact space, P (T ) is also
compact with respect to the weak topology and the upper semicontinuous map γ reaches its
maximum on P (T ) so that P ∗ is nonempty. In the case when T is noncompact, we consider
its compactification T̂ = T ∪ {∞}. We extend the definition of m by m∞,e = 0 for all e ∈ E .
Condition (C3) ensures that this extension is continuous on T̂ . Then the map γ extends on
the compact space P (T̂ ), is upper semicontinuous, and, hence, reaches its maximum at some
point p∗ ∈ P (T̂ ). It remains to check that p∗({∞}) = 0 so that p∗ can be seen as an element
of P (T ). It is straightforward since p∗({∞}) > 0 would imply that γ (p∗) = −∞.

Lastly, we prove the uniqueness in the case when the family M is linearly independent.
Let p∗

1 and p∗
2 be two points where γ reaches its maximum. Using the strict concavity of the

logarithm, we see that necessarily mp∗
1 ,e = mp∗

2 ,eν1(de)-almost everywhere. Using the linear
independence, this in turn implies that p∗

1 = p∗
2 .

The following characterization of optimal strategies can be useful.

Proposition 3. A strategy p is optimal if and only if∫
E

mt,e

mp,e

ν1(de) ≤ 1 for all t ∈ T .

Proof. The strategy p is optimal if and only if

γ ((1 − ε)p + εp′) − γ (p) ≤ 0 for all p′ and 0 < ε < 1.

Using concavity and differentiability, this is equivalent to

d

dε
[γ (p + ε(p′ − p))]

∣∣∣∣
ε=0

≤ 0,

which can be rewritten as

d

dε

[∫
E

log(mp,e + ε(mp′,e − mp,e))ν1(de)

]∣∣∣∣
ε=0

=
∫

E

mp′,e − mp,e

mp,e

ν1(de) ≤ 0.
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Thus, a necessary and sufficient condition is∫
E

mp′,e
mp,e

ν1(de) ≤ 1 for all p′ ∈ P (T ).

It is easily seen that this is equivalent to testing the condition for p′ = δt , t ∈ T , and this
completes the proof.

As a direct application of Proposition 3, we can now answer the question of whether there
is a pure optimal strategy.

Corollary 1. The pure strategy p = δt is optimal if and only if∫
E

mt ′,e
mt,e

ν1(de) ≤ 1 for all t ′ ∈ T .

This gives us a simple criterion for the existence of optimal pure strategies.

3.3. Extinction

According to Theorem 1, on the one hand, the population becomes extinct in the case when
γ (p) ≤ 0 and, on the other hand (under additional technical conditions), the population survives
and explodes with positive probability when γ (p) > 0. For the population’s survival, strategies
p with γ (p) > 0 are of the highest importance. This leads to the definition of the set S of
strategies that allow the population to survive:

S = {p ∈ P (T ); γ (p) > 0}.

The following property holds.

Proposition 4. If γ ∗ ≤ 0, the set S is empty. If γ ∗ > 0, S is a nonempty convex set
containing P ∗.

Proof. From the definition of γ ∗, γ (p) ≤ γ ∗ for all strategies p. Hence, S is empty if
γ ∗ ≤ 0. If γ ∗ > 0 then every optimal strategy p∗ ∈ P ∗ satisfies γ (p∗) = γ ∗ > 0 and, hence,
P ∗ ⊂ S. The map p �→ γ (p) is a concave function, so the level set S = {p ∈ P (T ); γ (p) >

0} is convex. This completes the proof.

In some cases, a striking phenomenon may happen: no pure strategy can allow for survival,
i.e. every homogeneous population with a single trait t suffers from extinction; however,
some mixed strategies may prevent extinction, i.e. some polymorphic populations may survive
forever. In this case, we should say that polymorphism is a necessary condition for survival.
This phenomenon occurs when γ (δt ) ≤ 0 for all t ∈ T whereas γ ∗ > 0.

The intuitive idea is the following: extinction occurs when the environment is bad for almost
all the individuals in the population and, hence, a diversification of the traits in the population
should imply a smaller number of environments that are bad for almost all individuals. This
can be seen as a consequence of the concavity property: suppose that, for all traits t , γ (δt ) ≡ γ ,
i.e. homogeneous populations have the same growth rate no matter the trait t . Then, for any
strategy p, γ (p) ≥ ∫

T γ (t)p(dt) = γ , i.e. any polymorphic population has a better growth
rate than any homogeneous population. See the examples below for further illustration of this
phenomenon.
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3.4. Example: finite-dimensional case

We consider the case when the vectorial space spanned by the family M = {e �→ mt,e;
t ∈ T } in L∞(E , ν1) has finite dimension denoted by d. This occurs in particular as soon as
one of the following occurs.

• The environment space is finite: E = {e1, . . . , er} and ν1 is a discrete measure such that
ν1(ei) > 0 for all i ∈ {1, . . . , p}. In this case L∞(E , ν1) is of dimension p and d ≤ p.

• The trait is finite: T = {t1, . . . , tq}. Then d ≤ q and conditions (C1)–(C3) are
automatically satisfied.

For convenience, we further require that the following condition holds.

(H) For any pairwise distinct t1, . . . , td ∈ T , the family of functions {e �→ mti,e; 1 ≤ i ≤ d}
is linearly independent in L∞(E , ν1).

This condition will be convenient because it ensures the uniqueness of the optimal strategy.

Proposition 5. Suppose that spanM has dimension d, and that conditions (C1)–(C3) and (H)
hold. Then

• there exists a unique optimal strategy p∗ ∈ P (T ),

• p∗ is a discrete probability on T supported by at most d different types.

Proof. Existence of an optimal strategy is a consequence of Proposition 2. However, it
is worth noting that in this finite-dimensional case, it is a consequence of standard analysis.
We denote by Conv(M) the closed convex hull of M in L∞(E , ν1) which can be seen as a
closed convex set in a d-dimensional vector space. Note that Conv(M) is equal to the set of
functions {mp : e �→ mp,e; p ∈ P (T )}, where mp,e is defined in (3). Introduce the application
� : Conv(M) → [−∞, ∞) defined by �(m) = ∫

E log(m(e))ν1(de) (with the convention that
log(u) = −∞ if u ≤ 0). With this notation, we easily see that γ (p) = �(mp) and maximizing
γ on P (T ) is equivalent to maximizing � on Conv(M). Next we observe that the function �

is upper semicontinuous and strictly concave, so it reaches its maximum at a unique point m∗
on the compact set Conv(M). Furthermore, the gradient of � never vanishes, so the extremum
must be reached on a boundary point of Conv(M) and m∗ ∈ ∂Conv(M). The boundary of
Conv(M) consists of extremal types (type t such that mt : e �→ mt,e is an extremal point of
the convex set Conv(M)) and of k-dimensional faces determined by the convex hull of k + 1
extremal types, with 0 ≤ k ≤ n. If m∗ belongs to such a k-dimensional face then m∗ = mp∗ ,
where p∗ is a discrete probability on T supported by the k + 1 corresponding extremal types,
with k + 1 ≤ d . The uniqueness property then follows from assumption (H). Indeed, under
this assumption, a k-dimensional face determined by k + 1 extremal types does not contain any
other point of M, so the decomposition in barycentric coordinates is unique. This completes
the proof.

It is worth noting that the application � always has a unique minimizer m∗ in the above
proof. Condition (H) ensures that there is a unique strategy p∗ such that mp∗ = m∗. In the
absence of this condition, there might be several mixing distributions p such that mp = m∗
and then several optimal strategies.

An appealing particular case is the case when both E = {e1, . . . , er} and T = {t1, . . . , tq}
are finite with q ≥ p. In this case L∞(E , ν1) is of dimension d = p, and a generic configuration
will always satisfy assumption (H) (in the sense that an exact linear relation between the types
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is very unlikely from a biological point of view). Then, according to Proposition 5, there exists
a unique optimal strategy mixing at most p different types. This shows that the number of
types involved in the optimal strategy is less than the number of different environments. This
is reminiscent of a rule in ecology which states that the number of species in an ecosystem is
bounded above by the numbers of different niche in the sense that two species cannot occupy
the same niche for a long time (competitive exclusion principle). From a practical point of view,
in this finite settings, the optimal strategy can be computed using standard numerical convex
optimization (see [5] for instance). For more illustrations in this setting, see Section 1.1.1.

3.5. Example: Gaussian distributions

This example is due to Haccou and Iwasa [9]. The environment space is the set of real
numbers E = R and the environment ω is assumed to be a Gaussian stationary ergodic sequence
with stationary distribution ν1 = N (µ, σ 2

2 ), the Gaussian distribution with mean µ ∈ R and
variance σ 2

2 > 0. The dynamic for the environment is irrelevant in the no-sensing case. The
trait space is the set of real numbers T = R, and the mean offspring number of an individual
of trait t in environment e has the Gaussian form

mt,e = C√
2πσ 2

1

exp

(
− (t − e)2

2σ 2
1

)

for some parameters C > 0 and σ 2
1 > 0. In environment e, individuals with trait value t = e

have the largest mean offspring number. Note that conditions (C1)–(C3) are fulfilled so that
Proposition 2 holds: optimal strategies exist. Furthermore, the family M = {e �→ mt,e; t ∈ T }
is linearly independent so that unicity holds: there is a unique optimal strategy p∗ depending
a priori on µ, σ1, σ2, and C.

First we easily compute the fitness of a pure strategy:

γ (δt ) =
∫

E
log(mt,e)ν1(de) = log C − 1

2
log(2πσ 2

1 ) − (µ − t)2 + σ 2
2

2σ 2
1

.

The optimal pure strategy is equal to δµ. Then, according to Corollary 1, we determine whether
this pure strategy is optimal in the set of all mixed strategies. For this we compute∫

E

mt,e

mµ,e

ν1(de) =
∫

E
exp

(
µ2 − t2 + 2e(t − µ)

2σ 2
1

)
ν1(de) = exp

(
(t − µ)2(σ 2

2 − σ 2
1 )

2σ 4
1

)
and check that it is less than 1 when σ2 ≤ σ1. Hence, if the fluctuations of the environment are
small (σ2 ≤ σ1) then the pure strategy δµ is optimal.

Gaussian strategies p = N (µp, σ 2
p) yield easy computations: recalling that a Gaussian

mixture of Gaussian distributions is again Gaussian, we compute

mp,e =
∫

T
mt,ep(dt) = C√

2π(σ 2
1 + σ 2

p)

exp

(
− (µp − e)2

2(σ 2
1 + σ 2

p)

)
,

and then

γ (p) =
∫

E
log(mt,e)ν1(de) = log C − 1

2
log(2π(σ 2

1 + σ 2
p)) − (µ − µp)2 + σ 2

2

2(σ 2
1 + σ 2

p)
.

https://doi.org/10.1239/aap/1308662484 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1308662484


388 C. DOMBRY ET AL.

We find that γ (p) is maximal (among Gaussian strategies) for µp = µ and

σ 2
p =

{
0 if σ 2

2 ≤ σ 2
1 ,

σ 2
2 − σ 2

1 if σ 2
2 > σ 2

1 .

We have seen that this is the optimal strategy in the case when σ 2
2 ≤ σ 2

1 . This is still the case
when σ 2

2 > σ 2
1 : indeed, we compute, for t ∈ T and p∗ = N (µ, σ 2

2 − σ 2
1 ),∫

E

mt,e

mp∗,e
ν1(de) =

∫
E

1

C
mt,e de = 1,

and this characterizes the optimal strategy according to Proposition 3.
We have so far proved the following result.

Proposition 6. The optimal strategy is

p∗ =
{

δµ if σ 2
2 ≤ σ 2

1 ,

N (µ, σ 2
2 − σ 2

1 ) if σ 2
2 ≥ σ 2

1 ,
(4)

and the optimal growth rate is

γ ∗ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
log C − 1

2
log(2πσ 2

1 ) − σ 2
2

2σ 2
1

if σ 2
2 ≤ σ 2

1 ,

log C − 1

2
log(2πσ 2

2 ) − 1

2
if σ 2

2 ≥ σ 2
1 .

(5)

An interesting quantity is the relative gain of the best mixed strategy over the best pure
strategy: it gives an indication of the strength of the selection pressure on mixed as opposed to
pure strategies. From the above computation, defining χ = σ 2

2 /σ 2
1 , we obtain

γ (p∗) − γ (δµ) =
{

0 if χ ≤ 1,
1
2 (χ − 1 − log χ) if χ ≥ 1.

This is the log-ratio of the expected long-term growth rates of individuals playing the different
types of strategy. It is nondecreasing with respect to χ : when the environmental variance σ 2

2
is large compared to σ 2

1 , there is a strong advantage in playing a mixed strategy.
Next we illustrate the phenomenon discussed in Section 3.3 when polymorphism is a

necessary condition for survival. This happens when the optimal pure strategy δµ leads to
almost-sure extinction of the population (γ (δµ) ≤ 0), whereas the optimal mixed strategy p∗
allows the population to survive (γ ∗ > 0). This phenomenon occurs when σ2 > σ1 for every
C belonging to the following nonempty interval:

1

2
log(2πσ 2

2 ) + 1

2
< log C ≤ 1

2
log(2πσ 2

1 ) + σ 2
2

2σ 2
1

.

4. The nonhereditary case with sensing mechanism

We now study the case of nonhereditary traits when some sensing mechanism is available,
that is, the trait distribution of the offspring does not depend on the trait of the parent, but does
depend on the environment because the individuals get some information about the environment
they evolve in and are able to suitably adapt the trait distribution of their offspring. We thus
suppose in this section that Zn evolves according to model (2) with πt,e ≡ pe for some family
p̄ = (pe)e∈E of distributions on T , and let π = π(p̄) be the corresponding product distribution.
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4.1. Reduction to a simple BPRE

In a similar way as in the nonhereditary case with no sensing, the nonhereditary assumption
makes the structure of the population very simple: the trait distribution at time n is given by
the strategy the parents followed at time n − 1 in environment ωn−1, that is, pωn−1 . This is
expressed in the following lemma.

Lemma 2. For any n ≥ 1, the population structure is conditionally independent of the past
population process given the size of the population and the environment, i.e.

Zn

∣∣∣(|Zn|, ωn−1)
∐

(Z0, . . . , Zn−1)

∣∣∣(|Zn|, ωn−1).

Proof. It is easily seen from the assumptions on the model (2) and from the nonhereditary
assumption π = π(p̄) that the distribution of Zn given (Z0, . . . , Zn−1), |Zn|, and ωn−1 is
equal to the distribution of

∑|Zn|
i=1 1τi

, where τi is an i.i.d. sequence with distribution pωn−1 .
This distribution does not depend on (Z0, . . . , Zn−1), proving the conditional independence.

Lemma 2 implies that, given the environmental sequence ω, the distribution of the population
process (Zn)n≥1 is easily recovered from the size process (|Zn|)n≥1. Once again, this latter
process turns out to be a simple BPRE and this allows us to compute the performance γ (p̄)

of the strategy p̄. Let ω(2) = ((ωn−1, ωn))n≥1 denote the pair environment with values in E2.
It is also stationary and ergodic, and we denote by ν2 its stationary distribution, which is the
distribution of the pair (ω1, ω2).

Proposition 7. The size process (|Zn|)n≥1 is a simple branching process in environment ω(2)

with offspring distribution

ϒp̄,(e1,e2) =
∫

T
ϒt,e2pe1(dt).

Conditionally on ω, the expected population size at time n is

Eω[|Zn|] = Eω0 [|Z1|]
n−1∏
k=1

mpωk−1,ωk
,

where mpe1 ,e2 = ∫
T mt,e2pe1(dt) is the first moment of ϒp̄,(e1,e2). Suppose that

γ (p̄) =
∫

E2
log(mpe1 ,e2)ν2(de1, de2)

exists. Then
lim

n→∞ n−1 log Eω[|Zn|] = γ (p̄) a.s.

Proof. According to Lemma 2, given (|Z1|, . . . , |Zn|) and ωn−1, the population Zn has the
same distribution as

∑|Zn|
i=1 1τi

, where τi is an i.i.d. sequence with distribution pωn−1 . Intuitively,
the ith individual has type τi chosen randomly on T with distribution pωn−1 . The size of the
next generation |Zn+1| is then

∑|Zn|
i=1 ξ

τi ,ωn

n,i , where ξ
τi ,ωn

n,i is the offspring of the ith individual
of type τi in environment ωn. From this two-step procedure, that is, the random choice of the
traits t according to pωn−1 and the reproduction with random offspring in environment ωn, we
obtain the effective offspring distribution ϒpωn−1 ,ωn in environment ω(2)

n = (ωn−1, ωn): it is the
mixture of the offspring distributions ϒt,ωn , with mixing distribution pωn−1 . Other properties
are proved as in Proposition 1.

Note that the classification theorem, Theorem 1, applies in this case as well and gives criteria
for the extinction or explosion of the population.
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4.2. Optimal strategies

We now describe the set of optimal strategies when sensing is allowed. It is also interesting
to evaluate the gain between the optimal strategies with and without sensing mechanisms.
Optimality when sensing mechanisms are allowed will be denoted with a double asterix, whereas
we keep a single asterix for optimality without sensing. Let γ ∗∗ = sup{γ (p̄); p̄ ∈ P (T )E } be
the optimal growth rate when sensing is allowed, and let P ∗∗ = {p̄ ∈ P (T )E ; γ (p̄) = γ ∗∗} be
the set of optimal strategies. Let νe1(de2) be the conditional distribution of ω2 given ω1 = e1,
so ν2(de1, de2) = ν1(de1)νe1(de2). Note that conditional distributions are well defined since
E is assumed to be a Polish space. From the previous section, the set of optimal strategies
without sensing is denoted by P ∗. It depends implicitly on the environment distribution ν1 and
we write P ∗(ν1) to emphasize this dependence. Suppose that the assumptions of Proposition 2
hold. Then optimal strategies with sensing are related to optimal strategies without sensing in
the following way.

Proposition 8. A strategy p̄ is optimal if and only if

pe1 ∈ P ∗(νe1) ν1(de1)-almost everywhere.

If conditions (C1)–(C2) hold then optimal strategies exist and form a closed convex set, i.e.
P ∗∗ is nonempty, closed, and convex.

If the family M = {e �→ mt,e; t ∈ T } is linearly independent, there is a unique optimal
strategy p̄∗∗.

Proof. Using the explicit formula for γ (p̄) given in Proposition 7 and conditional probabil-
ities, we compute

γ (p̄) =
∫

E2
log(mpe1 ,e2)ν2(de1, de2)

=
∫

E
ν1(de1)

∫
E

log(mpe1 ,e2)νe1(de2)

=
∫

E
γ (pe1 , νe1)ν1(de1),

where γ (pe1 , νe1) = ∫
E log(mpe1 ,e2)νe1(de2) is the growth rate associated with strategy pe1 in

environment νe1 . Hence, γ (p̄) is optimal if we choose pe1 so that γ (pe1 , νe1) is maximal, i.e.
pe1 ∈ P ∗(νe1) a.s. The properties of P ∗∗ and the uniqueness follow similarly as in the P ∗
case (cf. Proposition 2).

Then, the characterization of optimal strategies in the no-sensing case given in Proposition 3
directly extends to strategies with sensing as follows.

Proposition 9. A strategy with sensing p̄ ∈ P (T )E is optimal if and only if∫
E

mt,e2

mpe1 ,e2

νe1(de2) ≤ 1 for all t ∈ T and ν1(de1)-almost everywhere.

Proof. The characterization follows directly from Proposition 3 and Proposition 8.

The corollary below is interesting because it states that no gain has to be expected from
sensing mechanisms if the environment has some independence property.

Corollary 2. Suppose that ω1 and ω2 are independent (i.e. ν2 = ν1 ⊗ ν1). Then the optimal
growth rates with and without sensing are equal, i.e. γ ∗ = γ ∗∗.
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Proof. In this product case, the conditional distributions are trivial, i.e. νe1 ≡ ν1 a.s. Hence,
an optimal strategy is such that p∗∗

e1
∈ P ∗(ν1) and, hence, γ (p∗∗

e1
, ν1) = γ ∗. Integrating with

respect to ν1(de1), we obtain

γ ∗∗ =
∫

E
γ (p∗∗

e1
, ν1)ν1(de1) = γ ∗.

This proves the result.

Note that this result is rather intuitive: the sensing mechanism provides some information
to the individual about the current environment state, but, from the independence property, this
is not useful for inference to the future environment state; hence, the information is useless for
deciding which traits will be well suited to the next environment.

4.3. Example: finite-dimensional case continued

The results for optimal strategies without sensing developed in Section 3.4 together with
Proposition 8 allow us to easily deduce the following properties for optimal strategies with
sensing in the finite-dimensional case.

Proposition 10. Suppose that spanM has dimension d and that conditions (C1)–(C3) and (H)
hold. Then there exists a unique optimal strategy with sensing p̄∗∗ ∈ P (T )E such that

p∗∗(e) = p∗(νe),

where p∗(νe) is the optimal strategy without sensing when the environment has marginal
distribution νe.

Recall further from Proposition 5 that p∗(νe) is a discrete probability measure on T with at
most d extremal types (which may depend on e). See Section 1.1.2 for more examples.

4.4. Example: Haccou and Iwasa’s example continued

Here we continue the example by Haccau and Iwasa given in Section 3.5. Recall that the
environment is given by a Gaussian stationary ergodic sequence ω = (ωn)n≥0 with stationary
distribution ν1 = N (µ, σ 2

2 ). Let ρ ∈ (−1, 1) be the pair correlation ρ = corr(ω0, ω1). The
case in which ρ = 0 corresponds to independent environments, i.e. ν2 = ν1 ⊗ ν1. Otherwise
dependence holds and standard Gaussian computations give the conditional distribution νe1 =
N (µ + ρ(e1 − µ), (1 − ρ2)σ 2

2 ). A particular realization of such a sequence is the Ornstein–
Uhlenbeck sequence defined by

ω0 = µ + σ2η0, ωn = µ + ρ(ωn−1 − µ) +
√

1 − ρ2σ2ηn, n ≥ 1,

for i.i.d. standard normal innovations (ηn)n≥0 (Gaussian white noise).
We showed in Section 3.5 that the optimal strategy without sensing is Gaussian (possibly

degenerate) and we gave explicit formulae for the parameters (4) and for the corresponding
growth rate (5). Using Proposition 8, we now deduce the optimal strategy when sensing is
allowed.

Proposition 11. There exists a unique optimal strategy with sensing, which is denoted by p̄∗∗
and satisfies ν1(de)-almost everywhere:

p∗∗
e =

⎧⎨⎩δµ+ρ(e−µ) if (1 − ρ2)σ 2
2 ≤ σ 2

1 ,

N (µ + ρ(e − µ), (1 − ρ2)σ 2
2 − σ 2

1 ) if (1 − ρ2)σ 2
2 ≥ σ 2

1 .
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The corresponding optimal growth rate is given by

γ ∗∗ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
log C − 1

2
log(2πσ 2

1 ) − (1 − ρ2)σ 2
2

2σ 2
1

if (1 − ρ2)σ 2
2 ≤ σ 2

1 ,

log C − 1

2
log(2π(1 − ρ2)σ 2

2 ) − 1

2
if (1 − ρ2)σ 2

2 ≥ σ 2
1 .

Finally, we can evaluate the relative gain of strategies with sensing over strategies without
sensing: it gives an indication of the benefit that can be expected from sensing mechanisms.
Let χ = σ 2

2 /σ 2
1 . Then

γ ∗∗ − γ ∗ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
2ρ2χ if χ ≤ 1,

1
2 log χ − 1

2 (1 − ρ2)χ + 1
2 if 1 ≤ χ ≤ (1 − ρ2)−1,

− 1
2 log(1 − ρ2) if χ ≥ (1 − ρ2)−1.

It is worth noting that this is an increasing function of the square correlation ρ2: this indicates
that the more correlated the random environment, the more useful the sensing mechanisms.
The intuitive idea is that higher correlations allow for more accurate prevision for the next
environment and, hence, for a better-fitted offspring trait distribution in the environment to
come.

5. The hereditary case

In the hereditary case, the trait distribution πt,e ∈ P (T ) may depend on the trait of the
parents. This dependency makes the study of the Lyapounov exponent γ = γ (π) much
more difficult because no reduction to a simple branching process in a random environment
is available. We have no explicit formula for γ (π) in this case and determining the optimal
strategy π∗ and the optimal growth rate γ (π∗) might be very challenging.

Nevertheless, we propose an interesting representation of the ‘finite time’ growth rate

γn(ω, π0) = n−1 log Eω,π0 [|Zn|]
in environment ω with the initial population consisting of a single individual of random trait
with distribution π0. The representation is in terms of a functional of the T -valued Markov
chain T = (Tn)n≥0 in environment ω such that

Pπ0,ω(T0 ∈ ·) = π0(·),
Pπ0,ω(Tk ∈ · | T0 = t0, . . . , Tk−1 = tk−1) = πtk−1,ωk−1(·), 1 ≤ k ≤ n.

(6)

The Markov chain Tn in random environment ω is time heterogeneous because the transitions
depend on time n through the value of the environment ωn. However, in the no-sensing case
when the transitions πt,e ≡ πt do not depend on e, the Markov chain T is time homogeneous.
The result is given as follows.

Proposition 12. The finite time growth rate in environment ω with the initial population
consisting of a single individual whose trait is distributed according to π0 is given by

γn(ω, π0) = n−1 log Eω,π0 [Mn(T , ω)],
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where

Mn(T , ω) =
n−1∏
k=0

mTk,ωk
.

For the sake of clarity and conciseness, this proposition will be proved together with
Theorem 2 below. To the best of the authors’ knowledge, there is no simple way to deal with
the asymptotic behavior of γn and this issue might be challenging. We provide a lower bound
for the growth rate γn(ω, π0) that might be more tractable. The lower bound for γn(ω, π0) is
obtained using Jensen’s inequality (with the concave function log):

γn(ω, π0) = n−1 log Eω,π0 [Mn(T , ω)] ≥ n−1 Eω,π0 [log Mn(T , ω)].
The advantage here is that the lower bound

n−1 Eω,π0 [log Mn(T , ω)] = n−1
n−1∑
k=0

Eω,π0 [log mTk,ωk
]

can be written as an additive functional of the environment ω and we can then use the ergodic
theorem to control the convergence. Note that this technique can be refined using changes
of measure. Let π̃t,e be any kernel family, and denote by T̃ the T -valued Markov chain
in environment ω starting from distribution π0 and with transitions given by π̃t,e (given by
equations similar to (6)). We suppose that πt,e is absolutely continuous with respect to π̃t,e,
i.e. πt,e(dt ′) = ft,e(t

′)π̃t,e(dt ′), where ft,e stands for the density of πt,e with respect to π̃t,e.
Then, using changes of measure, we have

Eω,π0 [Mn(T , ω)] = Eω,π0 [M̃n(T̃ , ω)],
where

M̃n(T̃ , e) =
n−1∏
k=0

m
T̃k,ωk

f
T̃k,ωk

(T̃k+1).

Using this, the lower bound becomes

γn(ω, π0) = n−1 Eω,π0 [log M̃n(T̃ , ω)] ≥ n−1
n−1∑
k=0

Eω,π0 [log(m
T̃k,ωk

f
T̃k,ωk

(T̃k+1))].

6. Typical genealogies: a mean field approach

6.1. Convergence of the typical genealogy in the infinite population limit

As explained by Baake and Georgii in [4] and [8], the evolution of a branching population
can be studied from two possible perspectives: either forward or backward in time. So far, we
have focused on the first point of view and mainly studied the growth rate of the population
after a large number of generations. By way of contrast, the backward or retrospective aspect
of the population concerns the lineages extending back into the past from the presently living
individuals and asks for the characteristics of the ancestors along such lineages. We now turn
to this second perspective and wonder what is the typical lineage or genealogy (backward in
time) of an individual chosen at random in the nth generation.

Some definitions are needed here. The correct formalism to keep track of the genealogy is the
formalism of labeled rooted trees and forests, where the trees stand for the descendence of each
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ancestor represented by a root, and labels keep track of the traits of the individuals. However,
we keep this formalism to its minimum. Let Gn denote the population at the nth generation. To
each individual g ∈ Gn, we associate its lineage or genealogy �(g) = (t0, . . . , tn) ∈ T n+1 with
the interpretation that tn is the trait of g and tk is the trait of his ancestor in the kth generation
Gk, 0 ≤ k ≤ n − 1. The typical genealogy is defined as the genealogy of an individual chosen
at random in the nth generation. This obviously requires the nth generation to be nonempty,
in which case we adopt the convention that the typical genealogy is ∅. The distribution of the
typical genealogy is given by

πn =

⎧⎪⎨⎪⎩
1

cardGn

∑
g∈Gn

δ�(g) if Gn �= ∅,

δ∅ if Gn = ∅.

This is a random measure on T n+1 ∪ {∅}. We denote by PN,π0,ω the probability measure
corresponding to a population evolving in environment ω, starting a time 0 from N individuals
with i.i.d. traits with distribution π0. In the following, we focus on the typical genealogy in
the infinite population limit N → ∞. Recall the definition of the Markov chain T = (Tn)n≥0
given in (6). We have the following mean field result.

Theorem 2. Under the probability PN,π0,ω, the typical genealogy distribution πn a.s. weakly
converges as N → ∞ to the distribution π̂n,π0,ω, defined by

π̂n,π0,ω(A) = Eω,π0 [Mn(T , ω)1(T0,...,Tn)∈A]
Eω,π0 [Mn(T , ω)] , A ⊂ T n+1.

Recall from Proposition 12 that Eω,π0 [Mn(T , ω)] = exp(nγn(π0, ω)) is the mean number
of individuals in the nth generation of a population evolving in environment ω and starting from
a single individual of random trait with distribution π0.

Proofs of Theorem 2 and Proposition 12. Let A = A0 × · · · × An be a product subset of
T n+1. The number of individuals in the nth generation with genealogy in A is

Nn(A) =
∑
g∈Gn

δ�(g)(A),

and Nn(T
n+1) denotes the total number of individuals in Gn. We can view Nn as a nonnor-

malized measure and πn as the probability measure associated with Nn through the relation

πn = 1

Nn(T n+1)
1{Nn(T n+1)>0} Nn + 1{Nn(T n+1)=0} δ∅.

From the branching property, the distribution of Nn(A) under PN,π0,ω is equal to the sum of N

independent copies
∑N

i=1 N (i)
n (A) under P⊗N

1,π0,ω
. As a consequence of the weak law of large

numbers, the distribution of (1/N)Nn(A) under PN,π0,ω weakly converges to E1,π0,ω[Nn(A)].
The results also hold for A = T n+1, and taking the quotient, we see that, under PN,π0,ω, πn(A)

weakly converges to

π̂n,π0,ω(A) = E1,π0,ω[Nn(A)]
E1,π0,ω[Nn(T n+1)] ,

provided that the denominator is nonzero. Note that

γn(ω, π0) = n−1 log E1,π0,ω[Nn(T
n+1)].

https://doi.org/10.1239/aap/1308662484 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1308662484


Phenotypic diversity and population growth 395

Theorem 2 and Proposition 12 (letting A = T n) are then a consequence of

E1,π0,ω(Nn(A)) =
∫

A

π0(dt0)

n−1∏
k=0

mtk,ωk
πtk,ωk

(dtk+1)

= Eω,π0 [Mn(T , ω) 1(T0,...,Tn)∈A].
This last relation is proved by induction. Individuals in the nth generation with genealogy in
A are the offspring with traits in An of individuals in the (n − 1)th generation with genealogy
in A0 × · · · × An−1. This yields

E1,π0,ω[Nn(A)] =
∫

An−1×An

E1,π0,ω[Nn−1(A0 × · · · × An−2 × dtn−1)]
× mtn−1,ωn−1πtn−1,ωn−1(dtn).

For n = 0, E1,π0,ω[N0(A0)] = π0(A). It remains to note that E1,π0,ω[Nn(T
n+1)] �= 0, and

this implies that the mass of ∅ vanishes in the limit.

6.2. The typical genealogy in the nonhereditary case

When the traits are nonhereditary, the trait distributions πt,e do not depend on t and the mean
field typical genealogy distribution π̂n,ω,π0 has a very simple form. The following proposition is
given in the context of a population with a sensing mechanism π = π((pe)e∈E ). The no-sensing
case corresponds to the particular case when pe ≡ p.

Proposition 13. In the nonhereditary case, the typical genealogy distribution π̂n,ω,π0 is the
product measure on T n+1 defined by

π̂n,ω,π0(dt0, . . . , dtn) =
n⊗

i=0

π̂i,ωi
(dti ),

where

π̂0,ω0(dt0) = mt0,ω0

mπ0,ω0

π0(dt0),

π̂i,ωi
(dti ) = mti,ωi

mpωi−1 ,ωi

pωi−1(dti ), 1 ≤ i ≤ n − 1,

π̂n,ωn(dtn) = pωn−1(dtn).

Proof. In the nonhereditary case, the Markov chain in a random environment ω defined
by (6) is simple because, conditionally on the environment ω, the random variables T0, . . . , Tn

are independent with T0 distributed as π0 and, for 1 ≤ i ≤ n, Ti distributed according to pωi−1 .
Let A = A0 × · · · × An ⊂ T n+1. Using independence and Theorem 2, we compute

π̂n,π0,ω(A) = Eω,π0 [Mn(T , ω) 1(T0,...,Tn)∈A]
Eω,π0 [Mn(T , ω)]

= Eω,π0 [mT0,ω0 1{T0∈A0}] × · · · × Eω,π0 [mTn−1,ωn−1 1{Tn−1∈An−1}] Eω,π0 [1{Tn∈An}]
Eω,π0 [mT0,ω0 ] × · · · × Eω,π0 [mTn−1,ωn−1 ]

.

This proves the independence property and gives the marginal distributions

π̂i(Ai) = Eω,π0 [mTi,ωi
1{Ti∈Ai }]

Eω,π0 [mTi,ωi
] , 1 ≤ i ≤ n − 1.
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The interpretation of the above proposition is the following. The mean field typical genealogy
in environment ω consists of independent traits T̂0, . . . , T̂n, where

• the distribution of T̂0 is a biased version of π0(dt0) with bias function equal to mt0,ω0 ,
the mean number of offspring of an individual of type t0,

• the distribution of T̂i is a biased version of pωi
(dti ) with bias function equal to mti,ωi

,

• the distribution of T̂n is pωi
(dti ) (there is no bias because the offspring of the last

generation Gn is not involved, since we only consider the population until time n).

6.3. The typical genealogy in a hereditary case: Haccou and Isawa’s example continued

Recall that T = E = R, ω is a Gaussian stationary ergodic sequence with stationary
distribution N (µ, σ 2

2 ), and mt,e is given by

mt,e = C√
2πσ 2

1

exp

(
− (t − e)2

2σ 2
1

)
.

It remains to give the trait distributions πt,e and π0. To make the model explicitly solvable,
we require the Markov chain T = (T0, . . . , Tn) in environment ω to be multivariate Gaussian.
This means that the transitions πt,e are of the form πt,e = N (αet + βe, θe) with

E[T1 | ω0 = e, T0 = t] = αe + βet and var[T1 | ω0 = e, T0 = t] = θ2
e .

Let π0 = N (µ0, s
2
0 ) be the initial distribution. Alternatively, in environment ω we have the

representation

T0 = µ0 + s0N0, Tk+1 = αωk
+ βωk

Tk + θωk
Nk+1, 0 ≤ k ≤ n − 1,

where N0, . . . , Nn are independent standard normal variables. We introduce the (n + 1) × 1
vectors

T =

⎛⎜⎜⎜⎝
T0
T1
...

Tn

⎞⎟⎟⎟⎠ , N =

⎛⎜⎜⎜⎝
N0
N1
...

Nn

⎞⎟⎟⎟⎠ , Aω =

⎛⎜⎜⎜⎝
µ0
αω0
...

αωn−1

⎞⎟⎟⎟⎠ ,

and the (n + 1) × (n + 1) matrices

Cω =

⎛⎜⎜⎜⎜⎜⎝
0 0 · · · 0 0

βω0 0 · · · 0 0
0 βω1 0 0 0

0 0
. . . 0 0

0 0 · · · βωn−1 0

⎞⎟⎟⎟⎟⎟⎠ , Sω =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

s2
0 0 · · · 0 0

0 θ2
ω0

· · · 0 0

0 0 θ2
ω1

0 0

0 0 · · · . . . 0

0 0 · · · 0 θ2
ωn−1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

With such notation, the recursive relation turns into

T = Aω + CωT + SωN,

and this yields
T = (Id − Cω)−1(Aω + SωN).
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We deduce the mean µ and covariance matrix � for the Gaussian vector T :

µ = (Id − Cω)−1Aω and � = (Id − Cω)−1Sω(Id − C�
ω )−1.

Suppose that Sω is invertible. Then T has density

fT (t) = (2π)−(n+1)/2 det(�)−1/2 exp
(− 1

2 (t − µ)��−1(t − µ)
)
.

Denote by T̂ = (T̂0, . . . , T̂n) a random vector with distribution π̂n,ω,π0 . According to Theo-
rem 2, T̂ is a biased version of T and has a density given by

f
T̂
(t) = e−nγn(ω,π0)Mn(t, ω)fT (t)

= e−nγn(ω,π0)Cnσ−n
1 (2π)−n−1/2 det(�)−1/2

× exp

(
−1

2
(t − µ)��−1(t − µ) − 1

2σ 2
1

n−1∑
i=0

(ωi − ti )
2
)

.

Introducing Jn,1 as the diagonal matrix Jn,1 = (δ0≤i=j≤n−1)0≤i,j≤n and Vn,ω as the column
vector Vn,ω = (ω0, . . . , ωn−1, 0)�, the last exponential factor becomes

exp
(− 1

2 t�(�−1 + σ−2
1 Jn,1)t + (�−1µ + σ−2

1 Vn,ω)�t − 1
2µ��−1µ − 1

2σ−2
1 V �

n,ωVn,ω

)
.

We recognize that f
T̂

is a multivariate Gaussian density with mean µ̂ and covariance matrix �̂

of the form

f
T̂
(t) = (2π)−(n+1)/2 det(�̂)−1/2 exp

(− 1
2 (t − µ̂)��̂−1(t − µ̂)

)
.

Comparing both expressions, we obtain after simplification

�̂ = (�−1 + σ−2
1 Jn,1)

−1, (7)

µ̂ = �̂(�−1µ + σ−2
1 Vn,ω) = (�−1 + σ−2

1 Jn,1)
−1(�−1µ + σ−2

1 Vn,ω), (8)

γn(ω, π0) = log
C√

2πσ1
− 1

2n
log det(In+1 + σ−2

1 Jn,1�)

+ 1

2n
(µ̂��̂−1µ̂ − µ��µ − σ−2

1 V �
n,ωVn,ω).

(9)

These computations prove the following result.

Proposition 14. In the Haccou and Isawa model with Markov Gaussian environment, the
typical genealogy distribution π̂n,ω,π0 is the Gaussian distribution on R

n+1 with mean µ̂ given
by (8) and covariance matrix �̂ given by (7). Furthermore, the finite time growth rate γn(ω, π0)

is given by (9).
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