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EXACT DISTRIBUTION OF WORD COUNTS
IN SHUFFLED SEQUENCES
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Abstract

In DNA sequences, specific words may take on biological functions as marker or
signalling sequences. These may often be identified by frequent-word analyses as being
particularly abundant. Accurate statistics is needed to assess the statistical significance
of these word frequencies. The set of shuffled sequences – letter sequences having the
same k-word composition, for some choice of k, as the sequence being analysed – is
considered the most appropriate sample space for analysing word counts. However, little
is known about these word counts. Here we present exact formulae for word counts in
shuffled sequences.
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1. Introduction

Analyses of DNA sequence composition, in particular the identification of frequent words,
require statistical models against which actual findings may be compared. The model generally
applied to this kind of analysis is the Markov chain, in which the DNA sequence is modelled as
a sequence over the letters A, C, G, and T corresponding respectively to the four bases adenine,
cytosine, guanine, and thymine.

Markov models have been extensively studied both in the statistical literature and, more
recently, in bioinformatics. One problem with using a Markov model is that the transition
probabilities are unknown. An alternative point of view is that the Markov chain of order k − 1
produces sequences with a k-word composition that is representative of, though not exactly the
same as, the sequence being analysed. This shortcoming may be overcome by restricting the
model to sequences which have exactly the same k-word composition, a method introduced
in [4]: these are the shuffled sequences, also referred to as the permutation model or constrained
(or conditional) Markov chain.

There seems to be a general acceptance that shuffled sequences are more appropriate to
analyses of word frequencies than are the representative sequences produced by Markov chains;
the importance of this was pointed out in [1]. However, less is known about word counts in
shuffled sequences. Expressions for both the expected number of words in shuffled sequences
and the variance are known [2], [7]. Theoretical results on exact distributions, however, as
presented in [8], refer to Markov chains rather than shuffled sequences, and assessing these
is computationally demanding even for lower-order models. Since Bonferroni corrections of
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Word counts in shuffled sequences 117

large-scale searches for over-represented words may require the correction of P -values by
several powers of 10, accurate P -values are required even in the extreme tails: even if the
central part of the distribution looks Gaussian, the tails may deviate significantly.

Previous analyses based on Markov chains have indicated that normal approximations are
applicable only for words that are quite frequent (e.g. occurring more than 500 times; see [9]).
For less frequent words, the Poisson distribution is recommended. This recommendation seems
appropriate for Markov chains or when k is small compared to the length of the words being
analysed. However, if k is greater than this, the variance of word counts in shuffled sequences
is lower than that of a Poisson distribution [7]. For example, if k is maximal (one less than
the word length), a hypergeometric distribution, the variance of which is substantially less than
that of a Poisson distribution with the same expectancy, would be more appropriate.

Here we present (in Theorem 2) exact formulae for word counts in shuffled sequences: the
distributions, upper tail probabilities, and the momentum generating functions. These distri-
butions generalise the hypergeometric distributions and are expressed in terms of generalised
hypergeometric series. We present worked examples to illustrate the computational approach
and suggest approximations that may be used in large-scale analyses.

2. The space of thoroughly shuffled sequences

Only cyclic sequences are analysed. Linear sequences and sets of linear sequences may be
encoded as cyclic sequences, e.g. using a special character to separate them, so this provides a
sufficiently general model.

Definition 1. A cyclic sequence of length n over an alphabet A is an element x ∈ Sn = AZn ,
where Zn denotes integers modulo n, i.e. x = (xi)i∈Zn

. The set of all cyclic sequences is
S = ⋃∞

n=1 Sn. A linear sequence is an element of An, for some n.

For DNA sequences, Anucl = {A, C, G, T} may be used; for proteins, the set of amino acids;
for protein coding sequences, ACDS = Anucl × Z3; or the alphabet may have separate subsets
of letters for different regions such as introns and exons.

Definition 2. A word is an element of A∗ = ⋃∞
p=0 Ap. For a sequence x ∈ Sn = AZn , the

subword of length p starting at position i ∈ Zn is the word

x[i,i+p−1] := xixi+1 · · · xi+p−1 ∈ Ap.

The word count is a map N : S × A∗ → N0 defined for x ∈ Sn and w ∈ Ap by

Nx(w) := |{i ∈ Zn : x[i,i+p−1] = w}|,
where the modulus of a set denotes its cardinality. The p-word count N(p) : S × Ap → N0 is
the restriction of N to p-words. For a sequence x ∈ Sn, we use N

(p)
x : Ap → N0 to describe

the p-word composition of x. Similarly, Nw denotes word counts in w ∈ Ap.

Here let us clarify some of the notation to be used below. For any set U , e.g. U = Ap,
the set of maps U → N0 is denoted N

U
0 . This may equivalently be thought of as the set of

lists or vectors a = (au)u∈U , au ∈ N0. In some cases, the elements u ∈ U will be used
to represent a vector basis of N

U
0 , and a thus written as

∑
u∈U auu. For a, b ∈ N

U
0 we let

a + b = (au + bu)u∈U , and for real numbers r and s we let r + sa = (r + sau)u∈U . Finally, we
write a! = ∏

u∈U au!, ab = ∏
u∈U a

bu
u (with 00 = 1), and a〈b〉 = a!/(a − b)! (the last of which

is referred to as the falling factorial).
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118 E. A. RØDLAND

It may be noted that a (k − 1)th-order Markov process over A corresponds to an order-1
Markov process over Ak−1; hence, results for order-1 processes generally apply also to higher-
order processes. The same applies to sequence shuffling; hence, results on letter permutations
preserving transition counts, such as those presented in [2], generalise to shufflings preserving
k-word counts, as was pointed out in [11].

Definition 3. For a k-word composition N
(k)
x ∈ N

Ak

0 for some x ∈ S, the set of thoroughly
shuffled sequences with this composition is Sx ≡ S(N

(k)
x ) = {y ∈ S : N

(k)
y = N

(k)
x }.As a prob-

ability space, the uniform probability distribution is used. We refer to this as shuffling of order
k − 1, though it is also commonly referred to as the permutation model or constrained Markov
chain, as it is equivalent to a Markov chain of order k − 1 constrained to this specific k-word
count.

The uniform probability distribution is the natural choice; it may be derived either as the
restriction of the Markov chain probabilities, or as the probability produced by the shuffling
procedure described in [6].

For a randomly shuffled sequence X ∈ Sx , the word count NX(w) of a word w in X is a
stochastic variable with values in N0.

3. Graph formulation of sequence shuffling

Two different languages and sets of theories have been used in analysing shuffled sequences:
that of sequences and Markov chains, and that of Euler paths on directed graphs (digraphs).
The k-word composition is represented by a directed graph whose edges represent k-words and
whose vertices represent (k −1)-words. The number of edges corresponding to a given k-word
will equal the number of occurrences of that k-word (see Figure 1). For our purposes, graph
theory is the most convenient language in which to discuss problems of sequence shuffling;
although most results could be translated into a purely sequence-based language, this would
require some technical tricks and reformulations that we would rather avoid.

The use of Euler paths on directed graphs to analyse Markov chains goes back to Dawson
and Good [3] and Goodman [5], who also related Whittle’s formula [14] for counting shuffled
sequences to the BEST (de Bruijn–van Aardenne-Ehrenfest–Smith–Tutte) theorem [13] for
counting Euler paths; they provided conditional probabilities P[N(p)

X | N
(k)
X ], but these are not

very helpful in analysing individual words. The connection to Euler paths was also made by
Fitch [4] and further elaborated upon, with respect to sampling random shufflings, in [1] and [6].

Since graph terminology is not fixed, we briefly review the relevant terms and definitions
and refer to the main results used. For a more thorough explanation of Euler paths and the
BEST theorem in relation to random sequences, we refer the reader to [15].

Definition 4. A digraph G has a set V of vertices, a set E of edges, and a map

ε ≡ (ε−, ε+) : E → V × V

indicating that e ∈ E is an edge from vertex ε−(e) to vertex ε+(e). A word digraph also has
maps α : V → A∗ and α : E → A∗, indicating that vertices and edges represent words, such
that if e is an edge from v to v′ then the word α(e) begins with α(v) and ends with α(v′).

We will focus on balanced digraphs, in which, for each vertex v ∈ V , the number of edges
ending at v equals the number of edges beginning at v. This number is the degree, NV

G(v), of v.
The edge count, NE

G(w), of a word w is the number of edges e with α(e) = w.
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Figure 1: All 4-words of x are counted. The digraph G is constructed with vertices representing the
3-words and such that the number of edges from one 3-word to another represents the number of 4-words
in x starting and ending with the respective 3-words. A path λ in G, corresponding to the word bbabaaa,

has been picked. This path is replaced by an edge λ̄ to form Gλ.

A path is a series of distinct edges γ = (γ1, . . . , γr ), γi ∈ E, such that ε+(γi) = ε−(γi+1).
Let ε−(γ ) = ε−(γ1) and ε+(γ ) = ε+(γr) denote the initial and final vertices of the path
The word, α(γ ), formed by the path is made by combining the words α(γ1), . . . , α(γr) with
overlaps α(ε+(γi)) = α(ε−(γi+1)).

There is a digraph, unique up to isomorphism, representing each particular k-word composi-
tion. In the following, x ∈ S will be a fixed sequence and N

(k)
x ∈ N

Ak

0 its k-word composition.

Definition 5. The word digraph representing the k-word composition N
(k)
x of x, denoted

Gx ≡ G(N
(k)
x ), has V = {w ∈ A(k−1) : Nx(w) > 0} ⊂ A(k−1) and α : E → Ak with edge

count NE
G(w) = Nx(w) for w ∈ Ak . For example, we may use

E = {(w, i) ∈ Ak × N : i ≤ Nx(w)}, α(w, i) = w.

This digraph is balanced and connected in the sense that there is a path between any pair of
vertices. The connectedness follows from x being a cyclic sequence. Figure 1 illustrates this
construction for the 4-word count of a given sequence.

If we have a set of linear sequences instead of a cyclic sequence, we can add an extra vertex to
the set V defined above, and let this special vertex indicate sequence start and end. In addition
to the edges defined by the k-word counts, we must then add edges from this special vertex to
all the sequence starts, and to it from all sequence ends.

Definition 6. An Euler path is a closed path, i.e. a path γ = (γi)i∈Zn
with ε−(γ ) = ε+(γ ),

containing all the edges of E exactly once. The map α then maps γ to a cyclic sequence
α(γ ) ∈ Sn = AZn . Let EG denote the set of Euler paths in G, and EG,e the set of Euler paths
γ with γ0 = e.

An Euler cycle is the equivalence class of Euler paths modulo the choice of starting point,
i.e. γ ∼ γ ′ if γi = γ ′

i+j for some j ∈ Zn. The set of Euler cycles in G is denoted ẼG, and γ̃

denotes the equivalence class of γ .

There are exactly n Euler paths for each Euler cycle, one for each choice of starting edge; thus,
ẼG

∼= EG,e. Using Euler cycles, however, avoids some technicalities related to the enumeration
of edges. Note that this use of the term cycle is not standard: closed path and cycle are often
used interchangeably.
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120 E. A. RØDLAND

The correspondence between Euler paths, EG, and shuffled sequences, Sx , allows us to
translate questions concerning random shufflings into questions about random Euler cycles. In
particular, the uniform distribution on Sx is consistent with using the uniform distribution on
EG, which gives the uniform distribution on ẼG.

The number of Euler cycles is given by the BEST theorem [13], which in turn relies on the
matrix-tree theorem [12]. Let A ∈ N

V ×V
0 be the matrix whose component Auv , for each u and

v, is the number of edges from u to v (the adjacency matrix), let D be the diagonal matrix with
the vertex degrees on the diagonal, and let L = D − A be the Laplacian matrix. The cofactors
of L, i.e. the determinants of the matrices obtained after removing one row and one column
from L, are all the same (as 1 · L = 0 and L · 1� = 0, where 1 here denotes a row vector with
unit components and ‘�’ denotes transpose) and are jointly denoted by cof(L). We can thus
write

|ẼG| = τGNV
G ! := τG

∏
v∈V

NV
G(v)!, where τG = cof(L)

det(D)
= cof(L)∏

v∈V NV
G(v)

. (1)

This is true for any balanced digraph.
When G = Gx , the map α : EG → Sx is surjective and NE

G !-to-one, where

NE
G ! :=

∏
w

NE
G(w)! =

∏
w

N(k)
x (w)!.

Here the factor NE
G(w)! is the number of permutations of the edges corresponding to the word

w. Thus,

|Sx | = |EG|
NE

G ! = n
|ẼG|
NE

G ! = nτG

NV
G !

NE
G ! = nτG

∏
w∈Ak N

(k)
x (w)!∏

w∈Ak−1 N
(k−1)
x (w)!

,

which is the equivalent of Whittle’s formula [14] for cyclic sequences.
A naive form of shuffling is to randomly pair incoming edges with outgoing edges at each

vertex v ∈ V . This can be done in NV
G ! different ways, of which only τGNV

G ! are Euler cycles;
the others are unions of disjoint cycles. Removing τG from the formula thus represents a
generalised form of shuffling. Whittle also commented on this in [14], saying that this form of
shuffling would give a set of sequences rather than just one sequence.

4. Counting sets of words in shuffled sequences

In [2], the expected number of occurrences of a word w ∈ Ap in random shufflings of a
sequence was analysed. This exploited the fact that the number of ways to replace an occurrence
of w with w1wp in any sequence equals the number of occurrences of w in the sequence.
Whittle’s formula [14] was then used to calculate the number of shuffled sequences and the
number of shuffled sequences with one w replaced. This approach was extended in [7] to find
the variance. Theorem 1, below, may be seen as a direct extension of this.

The equivalent operation in the digraph representation is to remove a path λ representing the
word w, i.e. remove the edges of λ, and insert a new edge λ̄ from ε−(λ) to ε+(λ), representing
the corresponding word α(λ̄) = α(λ) (see Figure 1). Euler cycles containing the path λ will
then correspond to Euler cycles in the modified digraph. Counting Euler paths containing
specific subpaths thus corresponds to counting shuffled sequences containing specific words.

Definition 7. For a word digraph G and a set of edge-disjoint paths � = {λ1, . . . , λp}, define
the graph G� by removing the paths of � from G and adding new edges λ̄i with ε(λ̄i) = ε(λi)
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and α(λ̄i) = α(λi). The word count, α(�) = ∑
i α(λi) ∈ N

A∗
0 , of � counts the words to which

the paths λi correspond. For α(�) = W , we will often write G − W instead of G�, e.g. in
τG−W and NE

G−W , since the G� associated with such � are isomorphic.

Lemma 1. For a digraph G and a set of edge-disjoint paths � in G, there is an injection
ẼG� → ẼG obtained by replacing occurrences of the edge λ̄ of G�, λ ∈ �, by the path λ in G.
Moreover, this gives a canonical bijection such that ẼG�

∼= {γ̃ ∈ ẼG : � ⊂ γ̃ }, where � ⊂ γ̃

means that the paths of � are subpaths of γ̃ .

Thus, |ẼG� | = τG−WNV
G−W !, with W = α(�), is the number of Euler paths of ẼG that

contain � as subpaths, and can be calculated using the BEST theorem (1).

Lemma 2. Let G = Gx be the word digraph representing the k-word composition N
(k)
x , for

some x ∈ S, let � be a set of edge-disjoint paths in G, and let α(�) = W = ∑
i riwi be its

word count, with ri the number of paths in � corresponding to the word wi . The edge and
vertex counts of G� are respectively

NE
G−W = N(k)

x − N
(k)
W + W and NV

G−W = N(k−1)
x − N

(k−1)
�W ,

where N
(k)
W (u) = ∑q

i=1 riN
(k)
wi

(u) counts words u ∈ Ak as subwords in W , the term W ensures
that NE

G−W(wi) = ri for the new edges, and N
(k−1)
�W (v) = ∑q

i=1 riN
(k−1)
�wi

(v) counts words v ∈
Ak−1 as internal subwords of W , with �w′ = w′

2 · · · w′
p−1 for any word w′ = w′

1 · · · w′
p ∈ Ap.

Calculating the factorial moments of the distribution requires counting sets of words in
the sequence, i.e. sets of subpaths of the Euler cycle that correspond to a specific set of
words. Counting words, pairs of words, or sets of words simply amounts to summing over
all corresponding choices of �.

Definition 8. For a digraph G, let PG denote the set of paths in G, and let

P ∗
G := {� ⊂ PG : � contains edge-disjoint paths}.

If γ is a path in G, let Pγ and P ∗
γ denote the corresponding restrictions to subpaths of γ . The

restrictions of P ∗
G and P ∗

γ to sets of type W = ∑q
i=1 riwi ∈ N

A∗
0 are respectively denoted by

P W
G := {� ∈ P ∗

G : α(�) = W } and P W
γ := {� ∈ P ∗

γ : α(�) = W },
and the edge-disjoint word set count is written Nγ (W) := |P W

γ |.
If G = Gx represents the k-word count of a cyclic sequence x and γ ∈ EG is an Euler

sequence, then y = α(x) is a shuffling of x. If W = ∑
i riwi then Nγ (W) counts the number

of ways of picking a set of ri occurrences of wi in y, for all i, such that no two words overlap
by k or more letters, i.e. such that they are k-disjoint. Denoting this k-disjoint word set count
in y by Ny(W), the above means that Ny(W) = Nγ (W).

Combining the above results gives the following theorem.

Theorem 1. The expected number of k-disjoint word sets of type W = ∑q
i=1 riwi , where

wi 
= wj for i 
= j , in random shufflings X of a sequence x ∈ S is

E[NX(W)] = τG−WNE
G !/NE

G−W !
τGNV

G !/NV
G−W ! = τG−W(N

(k)
x )〈N

(k)
W 〉

τG

∏q
i=1 ri !(N(k−1)

x )〈N
(k−1)
�W 〉

,
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122 E. A. RØDLAND

where the falling factorial s〈r〉 = s!/(s − r)! is applied elementwise, i.e.

(N(k−1)
x )〈N

(k−1)
�W 〉 =

∏
v∈Ak−1

(N(k−1)
x (v))〈N

(k−1)
�W (v)〉.

The term
∏

i ri ! = W ! comes from NE
G−W ! = (N

(k)
x − N

(k)
W )! W !, and corresponds to the new

edges.

Proof. Since Ny(W) = Nγ (W) for y = α(γ ) and EG → Sx is NE
G !-to-one, we have

E[NX(W)] = 1

|EG|
∑

γ∈EG

Nγ (W) = |P W
G ||EG−W |

|EG| = |P W
G |τG−W

τG

NV
G−W !
NV

G ! ,

as ∑
γ∈EG

Nγ (W) = |{(γ, �), γ ∈ EG, � ∈ P W
γ }| =

∑
�∈P W

G

|EG� |.

Picking edge-disjoint paths λi,j , i = 1, . . . , q, j = 1, . . . , ri , with α(λi,j ) = wi is
equivalent to picking an ordered list of NW(u) edges corresponding to u, for all u ∈ Ak .
This can be done in (NE

G)〈N
(k)
W 〉 ways: (NE

G(u))〈N
(k)
W (u)〉 ways for each u. As the λi,j for each i

may be ordered in ri ! different ways and P W
G is unordered, we have

|P W
G | = (NE

G)〈N
(k)
W 〉/

∏
i

ri !.

5. Distribution of NX(w)

Theorem 1 counts only sets of k-disjoint words. When counting copies of a word w in a
sequence, this becomes a problem if the word can form clumps of overlapping occurrences.
The effect of clumping in Markov chains was dealt with in [7] and, more extensively, in [10].
Our main attention here is restricted to words that do not clump; we present additional results
on clumped words in Appendix A.

Definition 9. Let w ∈ Ap, p > k, where k − 1 is the order of the shuffling. We say that
w is clumpable (or k-clumpable) if w[1,l] = w[p+1−l,p] for some l ≥ k; otherwise, it is

nonclumpable. The order of w in x (or relative to N
(k)
x ) is the largest integer R such that

RN
(k)
w ≤ N

(k)
x .

Given a word w and a composition N
(k)
x , by piecing together k-words (or edges of the

corresponding word digraph) to form longer words without exceeding the available number,
N

(k)
x , we can form at most R simultaneous copies of w, where R is the order of w. However, if

τG−Rw = 0 then there is no way of making a shuffled sequence (an Euler cycle) containing all
of these, in which case the largest possible number of occurrences of w in a shuffled sequence
is R − 1.

The keys to describing the distribution for a word w are the generating functions

Ǧ(u) =
∞∑

r=0

E[NX(rw)]ur and G(u) =
∞∑

r=0

E

[(
NX(w)

r

)]
ur,
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which respectively count the sets of r k-disjoint copies of w and the sets of r different, but
possibly overlapping, copies of w, and the probability generating function

P(t) = E[tNX(w)] =
∞∑

m=0

P[NX(w) = m]tm = G(t − 1).

If w is nonclumpable and of order R, these are all polynomials of degree R (or R − 1 if
τG−Rw = 0), andG(u) = Ǧ(u). They may be expressed in terms of generalised hypergeometric
functions (GHFs).

Definition 10. For p, q ∈ N0, a = (a1, . . . , ap) ∈ R
p, A ∈ R

q , �a ∈ N
p
0 , �A ∈ N

q
0 , and a

function h : N0 → R, define

F
(R)
h

(
�a × (−a)

�A × (−A)

∣∣∣∣ (−1)|�a|+|�A|u
)

:=
R∑

r=0

h(r)

∏p
i=1 ai

〈r�ai 〉∏q
i=1 Ai

〈r�Ai 〉
ur

r! , (2)

where

|�a| + |�A| =
p∑

i=1

�ai +
q∑

i=1

�Ai

(i.e. modulus has a different meaning for vectors than it does for sets). We will generally have
|�a| = |�A| + 1, in which case the sign in front of u will always be a minus. If no h is
specified then implicitly h = 1 (thus, F (R) ≡ F

(R)
1 ), and if no R is specified then implicitly

R = ∞. The notation has been chosen so as to make this a generalisation of the generalised
hypergeometric function

F

(
a

A

∣∣∣∣ u

)
= F

(
a1, . . . , ap

A1, . . . , Aq

∣∣∣∣ u

)
=

∞∑
r=0

∏p
i=1 ai

〉r〈∏p
i=1 Ai

〉r〈
ur

r! ,

where s〉r〈 = (s + r − 1)!/(s − 1)! is the rising factorial and (−s)〉r〈 = (−1)r s〈r〉.

We use the notation �a ×a merely to represent the list of pairs (�ai, ai) of parameters, and
will write the parameter pair 1 × r simply as r . Thus, in �a × (−a), r the negative parameters,
−ai , correspond to falling factorial terms and the positive parameter, r , corresponds to a rising
factorial term. In the classical generalised hypergeometric function, all the �ai equal 1.

If w is a word of order R and f (r) = τG−rw/τG, Theorem 1 implies that

Ǧ(u) =
R∑

r=0

E[NX(rw)] = F
(R)
f

(
N

(k)
w × (−N

(k)
x )

N
(k−1)
w × (−N

(k−1)
x )

∣∣∣∣ −u

)
.

Since GHFs are well studied and implemented in various computer programs, e.g. MAPLE®

and MATHEMATICA®, we may express the modified GHFs defined in (2) in terms of ordinary
GHFs.

The terms of the form �a × (−a) may be rewritten in more common form, using x〈rm〉 =
mrm(x/m)〈r〉 · · · ((x − m + 1)/m)〈r〉, as follows:

F
(R)
h

(
�a × (−a)

�A × (−A)

∣∣∣∣ u

)
= F

(R)
h

⎛
⎜⎜⎝

. . . , − ai

�ai

, . . . , −ai − �ai + 1

�ai

, . . .

. . . , − ai

�ai

, . . . , −ai − �ai + 1

�ai

, . . .

∣∣∣∣∣∣∣∣
�a�au

⎞
⎟⎟⎠ . (3)

In addition, we may express F
(R)
h in terms of F (R).
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Lemma 3. With definitions as in Definition 10, by using the difference operator �h(r) =
h(r + 1) − h(r), such that (−�)kh(r) = ∑k

i=0(−1)i
(
k
i

)
h(r + i), and letting ±u denote

(−1)|�a|+|�A|u, we have

F
(R)
h

(
�a × (−a)

�A × (−A)

∣∣∣∣ ±u

)
=

R∑
j=0

(−�)jh(0)uj

j !
a〈j�a〉

A〈j�A〉

× F (R−j)

(
�a × (j�a − a)

�A × (j�A − A)

∣∣∣∣ ±u

)
.

Proof. Using h(r) = ∑∞
j=0(−�)jh(0)

(
r
j

)
, the sum

∑
r h(r)cru

r/r! can be rewritten

∑
j

(−�)jh(0)

(
uj

j !
)

dj

duj
C(u),

where C(u) = ∑∞
r=0 cru

r/r!. Setting cj = a〈j�a〉/b〈j�b〉, j ≤ R, gives the desired inequality.

In the common definition of GHFs, parameters ai = Aj (for any i and j ) are eliminated
even if this produces ‘0/0’ terms in the coefficients. This is the reason why the order R must
be used as upper limit in the sum. However, in most cases this need not be done explicitly.

Lemma 4. For a word w of order R in x ∈ S, let

U− = {u ∈ Ak : (R + 1)Nw(u) > Nx(u)},
V − = {v ∈ Ak−1 : (R + 1)N�w(v) > Nx(v)}.

Then |U−| > 0 and |U−| ≥ |V −|. If |U−| > |V −|, we have

F
(R)
h

(
N

(k)
w × (−N

(k)
x )

N
(k−1)
�w × (−N

(k−1)
x )

∣∣∣∣ −u

)
= Fh

(
N

(k)
w × (−N

(k)
x )

N
(k−1)
�w × (−N

(k−1)
x )

∣∣∣∣ −u

)
. (4)

Proof. As w is of order R, there is no integer parameter greater than −R in the expansion
of (4) defined in (3): there is one −R for each word in U− and V −. If |U−| > |V −| then
removing |V −| of the −R parameters from both the upper and lower rows leaves at least one
remaining in the upper row, causing the series to terminate with degree R.

By the definition of the order R, U− is nonempty. For each v ∈ V −, there must be at
least one word u ∈ U− with v = u[1,k−1] and one with v = u[2,k]. When the degree of the
(k − 1)-word v becomes negative after subtracting R + 1 copies of w, the in-degree to v for at
least one k-word must be negative and the out-degree from v for some k-word must be negative.
Hence, |U−| ≥ |V −|.

Having |U−| = |V −| is unlikely unless the numbers of N
(k)
x are very small or w is very long

and repetitive; more often, V − will be empty. Hence, in most cases, the truncated series F
(R)
f

can be replaced by Ff ≡ F
(∞)
f .

The factor f (r) = τG−rw/τG for a word w of order R is generally expressible as a rational
function except in a special case in which τG−Rw becomes 0/0 and the limit does not give the
appropriate value.
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Lemma 5. For a word w of order R in x ∈ S, with f (r) = τG−rw/τG for integers r ≤ R, we
have

f (r) = g(r)∏
w∈Ak−1(1 − rN

(k−1)
�w /N

(k−1)
w )

for r < R, with g(r) = cof(L − r�L)

cof(L)
,

where L− r�L is the Laplacian matrix of G− rw. The function g(r) is a polynomial of degree
at most |w| − k.

Using this expression for f (r) for real r < R, let �fR = f (R) − limr→R f (r) be the jump
at r = R. If �fR 
= 0, there must be a cycle u0, . . . , up = u0 ∈ Ak , with vi = (ui)[1,k−1] =
(ui+1)[2,k], such that RNw(ui) = Nx(ui) > 0 and RN�w(vi) = Nx(vi) > 0 for all i.

Proof. This result follows from (1) and results in Appendix B, in which an expression for
�fR is given.

As with Lemma 4, the criterion for �fR 
= 0 is very strong and is rarely satisfied: more
often, there will be no v ∈ Ak−1 with RN�w(v) = Nx(v) > 0 unless k-word counts are low
or w is long and repetitive.

The modifying function f (r) will often be close to 1. However, g(r) will be a polynomial
of degree at most p − k for w ∈ Ap; thus, �jg(r) = 0 for j > p − k. In Lemma 3, using
f (r) ≈ 1 ensures that the higher-order differences have little effect. However, if f (r) =
g(r)/

∏
(1 − r�Ai/Ai) for r ≤ R and �fR = 0, then

F
(R)
f

(
�a × (−a)

�A × (−A)

∣∣∣∣ ±u

)
= F (R)

g

(
�a × (−a)

�A × (1 − A)

∣∣∣∣ ±u

)
,

where the latter gives a sum over j = 0, . . . , p − k in Lemma 3; if �fR 
= 0, then the
corresponding term must be added to the right-hand side.

Corollary 1. If w is a word whose (k − 1)-words are all distinct, then Lemmas 4 and 5 both
apply; i.e. F

(R)
h = Fh for any h, as in (4), and �fR = 0.

In the nonclumpable case, G(u) = Ǧ(u) and the probability generating function is P(t) =
G(t − 1). We may use this to obtain the probabilities and tail probabilities.

Theorem 2. Let w ∈ A∗ be a nonclumpable word of order R (with respect to order-(k − 1)

shufflings of x). With f (r) = τG/τG−rw, g(r) and �fR as in Lemma 5, and f (r + · ) denoting
the function s �→ f (r + s), we have

P[NX(w) = r] = (N
(k)
x )〈rN

(k)
w 〉

r! (N(k−1)
x )〈rN

(k)
�w〉

F
(R−r)
f (r+ · )

(
N

(k)
w × (rN

(k)
w − N

(k)
x )

N
(k−1)
�w × (rN

(k−1)
�w − N

(k−1)
x )

∣∣∣∣ 1

)

= (N
(k)
x )〈rN

(k)
w 〉

r! (N(k−1)
x − 1)〈rN

(k)
�w〉

F
(R−r)
g(r+ · )

(
N

(k)
w × (rN

(k)
w − N

(k)
x )

N
(k−1)
�w × (rN

(k−1)
�w − N

(k−1)
x + 1)

∣∣∣∣ 1

)

+ �fR

(−1)R−r

r! (R − r)!
(N

(k)
x )〈RN

(k)
w 〉

(N
(k−1)
x )〈RN

(k−1)
�w 〉

(5)
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and

P[NX(w) ≥ r]

= (N
(k)
x )〈rN

(k)
w 〉

r! (N(k−1)
x )〈rN

(k)
�w〉

F
(R−r)
f (r+ · )

(
N

(k)
w × (rN

(k)
w − N

(k)
x ), r

N
(k−1)
�w × (rN

(k−1)
�w − N

(k−1)
x ), r + 1

∣∣∣∣ 1

)

= (N
(k)
x )〈rN

(k)
w 〉

r! (N(k−1)
x − 1)〈rN

(k)
�w〉

F
(R−r)
g(r+ · )

(
N

(k)
w × (rN

(k)
w − N

(k)
x ), r

N
(k−1)
�w × (rN

(k−1)
�w − N

(k−1)
x + 1), r + 1

∣∣∣∣ 1

)

+ �fR

(−1)R−r

(r − 1)! (R − r)! R
(N

(k)
x )〈RN

(k)
w 〉

(N
(k−1)
x )〈RN

(k−1)
�w 〉

(6)

If Lemma 4 applies then F
(R−r)
f (r+ · ) and F

(R−r)
g(r+ · ) may be replaced by Ff (r+ · ) and Fg(r+ · ),

respectively, and if Lemma 5 applies then �fR = 0, causing that term to disappear.

Proof. The probability that NX(w) = r is the rth term in the Taylor expansion of P(t) =
G(t − 1), given by

P(t) = F
(R)
f

(
N

(k)
w × (−N

(k)
x )

N
(k−1)
�x × (−N

(k−1)
x )

∣∣∣∣ 1 − t

)

= F (R)
g

(
N

(k)
w × (−N

(k)
x )

N
(k−1)
�x × (1 − N

(k−1)
x )

∣∣∣∣ 1 − t

)
+ �fR

(N
(k)
x )〈RN

(k)
w 〉

(N
(k−1)
x )〈RN

(k−1)
�x 〉

(t − 1)R

R! .

The upper tail probabilities P[Nw(w) > r] are the terms of the series (P (t) − 1)/(t − 1). In
terms of u = t − 1, we have

G(u) − 1

u
= (N

(k)
x )〈N

(k)
w 〉

(N
(k−1)
x )〈N

(k−1)
�w 〉

F
(R−1)
f (1+ · )

(
N

(k)
w × (N

(k)
w − N

(k)
x ), 1

N
(k−1)
�w × (N

(k−1)
�w − N

(k−1)
x ), 2

∣∣∣∣ −u

)
,

where the effect of the added parameters 1 and 2 is to replace ur/r! in the series by ur/(r +1)!.
The coefficients may be read off from the Taylor expansion in t .

Setting f (r) = 1 corresponds to the generalised shuffling described at the end of Section 3.
For a word w ∈ Ap with all (k−1)-words distinct, NX(w) may then be expressed as NX(w) =
Up−k , where

U0 = a0 and Uj ∼ Hyp[Uj−1, aj ; Aj ], j > 0,

with aj = Nx(w[j+1,j+k]), Aj = Nx(w[j+1,j+k−1]), and Hyp[u, v; n] denoting the hypergeo-
metric distribution with parameters u, v, and n.

6. Computational examples

Computations of upper tail probabilities rely on Theorem 2 combined with Lemmas 3 and
4. As examples, we use the circular sequence of length 100 in Figure 1, and the 1461 intergenic
regions of Haemophilus influenzae (GenBank® sequence NC000907) with a total length of
221 046, both using k = 4. The computations were performed on a laptop with a 1.4 GHz
Pentium® M processor and 768 MB of RAM. The SAS® program was used for sequence parsing,
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word counting, and large matrix calculations, and the hypergeom() function of MAPLE 9 was
used to calculate GHFs.

The approach to analysing a sequence is as follows.

(i) Count the k-words of the sequence.

(ii) Construct the Laplacian matrix.

(iii) Calculate the generalised inverse L† (or Ľ = (L + kE)−1, as in Appendix B).

(iv) For each wordw to be analysed, construct the matrix�Lbased on the k-word composition
of w, and calculate g(s) = det(I − sL†�L).

(v) Taking r to be the number of occurrences of w in the sequence, expand either F
(R−r)
f (r+ · ) or

F
(R−r)
g(r+ · ) (of (5) or (6)) using Lemma 3, and calculate the values of the GHFs. Use the

latter for exact calculations, as the expansion gives a finite sum, and the former for
approximations, as f tends to be almost constant. If Lemma 4 applies then the bounds
R − r can be ignored.

Example 1. For the cyclic sequence of Figure 1, with the 3-words ordered alphabetically, the
Laplacian matrix and its generalised inverse are

L =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

5 −5 0 0 0 0 0 0
0 11 −6 −5 0 0 0 0
0 0 11 0 −3 −8 0 0
0 0 0 12 0 0 −4 −8

−5 −6 0 0 11 0 0 0
0 0 −5 −7 0 12 0 0
0 0 0 0 −8 −4 12 0
0 0 0 0 0 0 −8 8

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

L† = 10−3

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

135 28 −9 −16 −40 −29 −36 −31
−40 53 16 9 −16 −4 −12 −6
−32 −30 79 −3 −7 34 −24 −18
−26 −23 −35 49 −1 −25 28 33

28 30 −7 −13 53 −27 −34 −29
−39 −36 2 17 −14 73 −4 1
−5 −3 −14 −14 20 −4 49 −29

−20 −18 −30 −29 5 −20 33 80

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The word w = bbabaaa occurs twice in the sequence. In terms of the (bba, bab, aba, baa,

aaa)-submatrices of L† and �L (i.e. the matrices of components whose indices are restricted
to the given list),

g(r)

= det

⎛
⎜⎜⎜⎜⎝I − r

1000

⎡
⎢⎢⎢⎢⎣

49 −4 −14 20 −5
−4 73 2 −14 −39

−24 34 79 −7 −32
−34 −27 −7 53 28
−36 −29 −9 −40 135

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

0 −1 0 0 1
0 1 −1 0 0
0 0 1 −1 0
0 0 0 1 −1
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎠

= 1 − 0.185r + 0.0148r2 − 0.000 571r3.
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The corresponding 4- and 3-word counts areN
(4)
w × N

(4)
x ∼ a = (4, 5, 3, 5) andN

(3)
�w × N

(3)
x ∼

A = (12, 11, 11), respectively. Theorem 2 with simplifications due to Corollary 1 then gives

P[NX(w) = r] =
R−r∑
k=0

�kg(r)a〈r+k〉

r! k! (A − 1)〈r+k〉 F
(

r + k − a

r + k + 1 − A

∣∣∣∣ 1

)
,

which, with r = 2 and R = 3, equals

0.685 × 28 800

2 × 1 × 891 000
F

(−2, −3, −1, −3

−9, −8, −8

∣∣∣∣ 1

)

+ 0.1217 × 518 400

2 × 1 × 513 216 000
F

(−1, −2, −0, −2

−8, −7, −7

∣∣∣∣ 1

)
= 0.010 78.

Using MAPLE, e.g. the function hypergeom([−2, −3, −1, −3], [−9, −8, −8], 1.), gives the
values 0.969 and 1 for the two GHFs above. The corresponding upper tail probability is

P[NX(w) ≥ 2] = 0.685 × 28 800

2 × 1 × 891 000
F

(−2, −3, −1, −3, 2

−9, −8, −8, 3

∣∣∣∣ 1

)

+ 0.1217 × 518 400

2 × 1 × 513 216 000
F

(−1, −2, −0, −2, 3

−8, −7, −7, 4

∣∣∣∣ 1

)
= 0.010 87.

In the above, Corollary 1 ensured that R and �fR could be ignored. However, even in
the more general case, explicit testing is not needed. Whether R or �fR need to be taken
into account will be apparent when writing down the expression. When expanding F

(R)
f , this

happens if either f (R) = 0/0 or if the parameter r − R, which terminates the series, occurs
as many times in the lower set of parameters as it does in the upper set. When expanding
F

(R)
g there will then be a parameter 1 + r − R in the lower set of parameters that makes the

unterminated series invalid.
The GHFs used here are alternating series with terms that at first increase exponentially.

Thus, direct evaluation of the sum is normally not feasible. However, the GHFs used to express
the point probabilities P[NX(w) = r] are polynomials F(u) with roots u ∈ [1, ∞): there is a
root at 1 of order ∑

u∈Ak

N(k)
w (u)N(k)

x (u) −
∑

v∈Ak−1

N
(k−1)
�w (v)N(k−1)

x (v)

(if this is positive) that corresponds to the minimal number of occurrences of w in any shuffling;
the other roots are simple. When there is no root at 1, the Taylor series of log F(u) will converge
for u = 1, often relatively fast. This is not generally true of the GHFs used for the upper tail
probabilities; however, for values of r well above the expected number of occurrences of w,
this approach still tends to work, as these GHFs may be seen as perturbations of those used in
the corresponding point probabilities, thus having roots on or close to the line (1, ∞) in the
complex plane.

Example 2. The word w = AAGTGCGGT is a strongly preserved part of the DNA uptake
signalling sequence of H. influenzae. Counting w in intergenic regions reveals its occurrence
232 times on one of the DNA strands. The word counts corresponding to 4-words of w and
3-words of �w are

a = (1333, 823, 650, 691, 608, 644) and A = (3115, 2209, 2464, 1705, 1448),
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respectively. Using the alphabet {A, C, G, T, ?, –}, where ‘?’ represents an unknown letter and
‘–’ is used to replace each gene, the Laplacian is a 155 × 155 matrix. The generalised inverse
L† is computed and the submatrix corresponding to the 3-words of w used to compute

g(1000s) = 1 − 2.46s + 2.37s2 − 1.106s3 + 0.244s4 − 0.0201s5.

The point probability is P[NX(w) = 232] = 1.922 × 10−374 and the upper tail probability is
P[NX(w) ≥ 232] = 1.929 × 10−374.

Parsing the files of GenBank (the genetic sequence database of the National Institutes of
Health) to count intergenic 4-words and generate the Laplacian matrix took approximately
2 seconds. Calculating the generalised inverse took approximately 0.1 seconds. Computing
the point probability and upper tail probability, including the GHFs, took approximately
0.9 seconds.

In the above example, the GHFs take values close to 0.43, and a second-degree Taylor series
approximation of log F(u) for each of them would give sufficient accuracy; the modifying
function f takes the value f (232) = 0.9987, thus having only a very minor effect. Hence, a
good approximation is

P[NX(w) ≥ r] ≈ a〈r〉

r! A〈r〉 exp(νr + νrνr+1 − ν2
r ), where νk = k

∏
i (ai − k)

(k + 1)
∏

i (Ai − k)
,

giving 1.927 × 10−374 for r = 232.
An alternative approximation relies on deviance residuals, which are normally used with

exponential families and generalised linear models. The deviance residual Rr for Nx(w) = r is
calculated from the cumulant generating function C(s) = log E[exp(sNX(w))] = log G(es−1)

as
Rr = sgn(r − µ)

√
Dr where Dr = 2[rθ̂r − C(θ̂r )], µ = C′(0), (7)

and θ̂r is the unique solution to C′(θ̂r ) = r . The assumption is that Rr will be approximately
normally distributed. The computational advantage of this approach is that θ̂r will usually be
close to 0, and Taylor series approximations of both ln G(u) and C(s) converge quickly for u

and s close to 0. If we also assume that f (r) ≈ 1, then G(u) is a GHF. This approximation is
shown in Figure 2, together with the exact upper tail probabilities.

DNA consists of two complementary strands. There are 222 occurrences of w on the other
strand, each corresponding to the word w′ = ACCGCACTT on the first. Counting w on either
strand is thus equivalent to counting w and w′ on the first strand. A more general problem is
that of counting several different words. This is a difficult problem, as it involves a multiple
sum that is not easily evaluated. When the words have no common (k − 1)-words, as is the
case for w and w′, this sum may be separated into GHFs for each word.

Example 3. Here the word counts are b = [641, 627, 687, 685, 837, 1339] for the 4-words
of w′ and B = [1450, 1714, 2441, 2292, 3085] for the 3-words of �w′. The probability that
NX(w) = r and NX(w′) = s is

∑
k,l

�k
r�

l
sg(r, s)a〈r+k〉b〈s+l〉

k! l! r! s! A〈r+k〉B〈s+l〉 F

(
r + k − a

r + k + 1 − A

∣∣∣∣ 1

)
F

(
s + l − b

s + l + 1 − B

∣∣∣∣ 1

)

with g(r, s) = det(I − L†(r�Lw − s�Lw′)), where �Lw and �Lw′ are matrices such that
L − r�Lw − s�Lw′ is the Laplacian matrix of G − rw − sw′ (see Lemma 5).
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Figure 2: Upper tail probabilities for the DNA uptake signalling sequence AAGTGCGGT on one strand
(left) and on both strands (right), the latter corresponding to counting both the uptake sequence and its
reverse complement ACCGCACTT. Exact probabilities are shown as stepwise curves, approximations
based on deviance residuals as smooth curves, and the normal distribution approximations as dashed
curves. The effect of using the true modifying function f , rather than the approximation f ≈ 1, is too

small to see.

The above computation, though feasible in this and similar cases, is both impractical and hard
to generalise. However, the approximation (7) is still computable with relative ease: setting
f (r, s) ≈ 1 gives the approximation

CNX(w)+NX(w′)(s) ≈ log F

(−a

−A

∣∣∣∣ 1 − es

)
+ log F

(−b

−B

∣∣∣∣ 1 − es

)

in the above example, giving the approximate upper tail probabilities shown in Figure 2. If a
Taylor series approximation of C(s) is used, this relies only on E[(N

k

)], for k up to the desired
order; these expectations may be evaluated even in the presence of clumping or when counting
several words, using Theorem 3, below.

Appendix A. Clumping

If all occurrences of a word w ∈ A∗ in a sequence y are k-disjoint, then the number of ways
of picking r of these is Ny(rw) = (

Ny(w)
r

)
. If, on the other hand, w can overlap by k or more

letters, Ny(rw) will not count all sets of r occurrences of w, but only those in which the words
do not overlap. This problem of clumping was dealt with in [7], in determining var[Ny(w)],
and further in [10], with respect to clumping in Markov chains.

Definition 11. A segment of a sequence is specified by a pair (i, l), where i is the starting
position and l is the length; thus, if x is a sequence, the segment (i, l) points to the word
xi · · · xi+l−1.

A clump is either a linear sequence v ∈ Ap or a cyclic sequence v ∈ S together with a set
{(ij , lj )} of segments of v which is such that every segment of length k + 1 in v is contained in
at least one of the segments (ij , lj ), i.e. the segments cover all of v, overlapping by at least k

letters. Let C denote the set of clumps in which two circular clumps are considered equivalent
if one is a rotation of the other.

For a clump c defined as above, let α(c) = v denote the corresponding sequence and let
Nc = ∑

j v[ij ,ij +lj −1] ∈ N
A∗
0 , where the words v[ij ,ij +lj −1] represent unit basis vectors in N

A∗
0 ,

count the words forming the clump.
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The simplest clump is that corresponding to a single word: c = (w, {(1, p)}) for w ∈
Ap. Thus, the set of words is naturally embedded in the set of clumps. If w ∈ Ap has
w[1,q] = w[p−q+1,p], it can form clumps c, of r copies, with α(c) = w

◦(r−1)
[1,q] w (where ‘◦(r−1)’

denotes concatenation r − 1 times), for which Nc = rw. Note that some words may overlap
in several different ways.

When picking an arbitrary set of words in a sequence x, those overlapping by k or more
letters may be combined into clumps. This will result in k-disjoint clumps. Theorem 1 may
be used to count k-disjoint words and, hence, also k-disjoint clumps. Since different clumps
may produce the same sequence, there is a difference between counting the number of ways of
picking sets of clumps and the number of ways of picking sets of words. In fact,

Nx(ρ) = α(ρ)!
ρ! Nx(α(ρ)),

where ρ = ∑
sici ∈ N

C
0 is the clump count and α(ρ) = ∑

siα(ci) = ∑
rjwj ∈ N

A∗ the cor-
responding word count, such that ρ! = ∏

si ! and α(ρ)! = ∏
rj !.

Theorem 3. For any circular sequence x ∈ S, distinct words w1, . . . , ws , and W = ∑
i riwi

with ri ∈ N0, we have

∏
i

(
Nx(wi)

ri

)
=

∑
ρ∈N

C
0

Nρ=W

Ny(ρ) =
∑

ρ∈N
C
0

Nρ=W

α(ρ)!
ρ! Nx(α(ρ)),

where Nρ = ∑
c∈C ρcNc counts the words that make up the clumps. The expectation for

shuffled sequences X ∈ Sx is then given by

E

[∏
i

(
NX(wi)

ri

)]
=

∑
ρ∈N

C
0

Nρ=W

E[Ny(ρ)] =
∑

ρ∈N
C
0

Nρ=W

τG−α(ρ)

τG

(N
(k)
x )

〈N(k)
α(ρ)

〉

ρ! (N(k−1)
x )

〈N(k−1)
�α(ρ)

〉
,

where N
(k)
α(ρ) counts the k-words in the words formed by the clumps and N

(k−1)
�α(ρ) counts the

number of (k − 1)-words in their interiors.

Appendix B. Calculating τ

The expectations and probabilities found in Theorem 1 are primarily determined by the
factorial and falling factorial terms, but with τG−W/τG as a correction factor encoding the
effect of the global composition of the sequence. In many cases, this factor will be close to 1
and will hence have little effect.

Recall that τG is expressed in terms of a cofactor of the Laplacian matrix, given in (1). If
W = ∑

riwi , where wi are distinct words, and L is the Laplacian of G ≡ Gx , then the modified
word digraph G−W has Laplacian L−∑

ri�Li and diagonal matrix D −∑
ri�Di counting

vertex degrees, i.e. �Di has N
(k−1)
�wi

on the diagonal, counting the internal (k − 1)-words of
wi , and �Li = �Ai − �Di , where �Ai is the adjacency matrix, counting the edges of a path
corresponding to the word wi minus the new edge corresponding to wi . From this we find that

τG−W = cof(L − ∑
ri�Li)

det(D − ∑
ri�Di)

= cof(L) det(I − L̂
∑

ri�Li)

det(D)
∏

v∈Ak−1(1 − ∑
riN�wi

(v)/Nx(v))
,
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where either L̂ is the Moore–Penrose generalised inverse L† or L̂ = (L+ kE)−1 = L† +E/k,
with E = 1�1/m, m = |V | being the size of the matrices. This follows from Jacobi’s rule,
which gives d[det(L + tE)]/ dt |t=0 = m cof(L), and

det(L − �L + tE) = det(L + tE) det(I − L†�L)

as E�L = 0.
Computational advantages of this formula are that L̂ may be computed once per sequence

and then used in analysing different word frequencies, and that τG−W depends only on the
submatrix of L̂ corresponding to the (k − 1)-subwords used in W . Thus, for W = rw,

f (r) = τG−W

τG

= det(I − rL̂�L)

det(I − rD−1�D)
,

given that D − r�D has positive elements on the diagonal.
For r = R, where R is the order of w, the above expression for f (r) may become

0/0 in the case in which all edges to and from some vertices V ′ ⊂ V have been used up,
i.e. RN

(k−1)
w (v) = N

(k−1)
x (v) for v ∈ V ′. When this happens, τG−Rw is defined by removing

from L − R�L and D − R�D the rows and columns corresponding to V ′ before calculating
the cofactor and the determinant. If V ′′ = V \ V ′ are the remaining vertices, then

lim
r→R

cof(L − r�L)

det(D − r�D)
= det(�L)V ′

det(�D)V ′
cof(L − R�L)V ′′

det(D − R�D)V ′′
,

where the subscripts indicate the corresponding submatrices. This may be seen by expressing
τG−rw in terms of cofactors of Qr = (D−r�D)−1(L−r�L), for which the limit QR becomes
well defined, with the components of the V ′×V ′′ and V ′′×V ′ submatrices all vanishing. Thus,

f (R) = det(�D)V ′

det(�L)V ′
lim
r→R

f (r),

where the correction factor differs from 1 only if (�A)V ′ contains a cycle, in the sense that
there exist vertices v0, . . . , vp = v0 ∈ V ′ such that �Avivi+1 
= 0.
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