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Abstract. Our purpose is to study the geometry of linear Weingarten spacelike
hypersurfaces immersed in a locally symmetric Einstein spacetime, whose sectional
curvature is supposed to obey some standard restrictions. In this setting, by using
as main analytical tool a generalized maximum principle for complete non-compact
Riemannian manifolds, we establish sufficient conditions to guarantee that such a
hypersurface must be either totally umbilical or an isoparametric hypersurface with
two distinct principal curvatures, one of which is simple. Applications to the de Sitter
space are given.
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1. Introduction. During the last years, the study of spacelike hypersurfaces
immersed in a Lorentzian space (that is, a semi-Riemannian manifold of index 1) has
been of substantial interest from both physical and mathematical points of view. We
recall that a hypersurface Mn immersed in a Lorentz space Ln+1

1 is said to be spacelike
if the metric on Mn induced from that of the ambient space Ln+1

1 is positive definite.
From the physical point of view, that interest became clear when Lichnerowicz [18]
showed that the Cauchy problem of the Einstein equation with initial conditions on a
maximal spacelike hypersurface (that is, with zero mean curvature) has a particularly
nice form, reducing to a linear differential system of first order and to a non-linear
second-order elliptic differential equation.

From a mathematical point of view, spacelike hypersurfaces are also interesting
because of their Bernstein-type properties. As for the case of the de Sitter space
�n+1

1 , which is the standard simply connected Lorentz space form of positive
constant sectional curvature 1, Goddard [14] conjectured that every complete spacelike
hypersurface with constant mean curvature H in �n+1

1 should be totally umbilical.
Although the conjecture turned out to be false in its original statement, it motivated a
great deal of work of several authors trying to find a positive answer to the conjecture
under appropriate additional hypotheses. For instance, in [2] Akutagawa showed
that Goddard’s conjecture is true when 0 ≤ H2 ≤ 1 in the case n = 2, and when
0 ≤ H2 < 4(n − 1)/n2 in the case n ≥ 3. Later on, Montiel [20] solved Goddard’s
problem in the compact case, proving that the only closed spacelike hypersurfaces in
�n+1

1 with constant mean curvature are the totally umbilical hypersurfaces.
Another Goddard-like problem is to characterize spacelike hypersurfaces

immersed in a Lorentz space with constant scalar curvature. An interesting result
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due to Cheng and Ishikawa [11] states that the totally umbilical round spheres are
the only compact spacelike hypersurfaces in �n+1

1 with constant normalized scalar
curvature R < 1. Many other authors, such as Brasil et al. [5], Camargo et al. [7],
Caminha [8], Hu et al. [15] and Li [16] have also worked on related problems.

Proceeding, it is natural to study the geometry of spacelike hypersurfaces immersed
in more general Lorentz spaces since they have important meaning in the relativity
theory and are of substantial interest from the geometric and cosmological points of
view. It is exactly the case of an Einstein spacetime, that is, a Lorentz space whose
metric and Ricci tensors are homotetic. On the other hand, for constants c1 and c2,
Choi et al. [13] and Suh et al. [24] have introduced the class of Lorentz spaces Ln+1

1
which satisfy the following two conditions (here K denotes the sectional curvature of
Ln+1

1 ):

K(u, v) = −c1

n
(1.1)

for any spacelike vector u and timelike vector v; and

K(u, v) ≥ c2 (1.2)

for any spacelike vectors u and v.
We observe that Lorentz space forms Ln+1

1 (c) of constant sectional curvature c
satisfy conditions (1.1) and (1.2) for − c1

n = c2 = c. Moreover, there are several examples
of Lorentz spaces which are not Lorentz space forms and satisfy (1.1) and (1.2). For
instance, semi-Riemannian product manifolds �k

1(−c1/n) × Nn+1−k(c2), where c1 > 0,
and �k

1 × �n+1−k. In particular, �1
1 × �n is the so-called Einstein Static Universe. Also,

the so-called Robertson–Walker Spacetime N(c, f ) = I ×f N3(c) is another general
example of Lorentz space, where I denotes an open interval of �1

1, f is a positive
smooth function defined on the interval I and N3(c) is a three-dimensional Riemannian
manifold of constant curvature c. N(c, f ) also satisfies conditions (1.1) and (1.2) for an
appropriate choice of function f (for more details, see [13, 24].

Our purpose is to study the geometry of linear Weingarten spacelike hypersurfaces
(that is, spacelike hypersurfaces whose mean curvature H and normalized scalar
curvature R satisfy R = aH + b, for some a, b ∈ �) immersed in a locally symmetric
Einstein spacetime En+1

1 satisfying conditions (1.1) and (1.2). We recall that a Lorentz
space is said to be locally symmetric when all the covariant derivative components
R̄ABCD;E of its curvature tensor vanish identically.

In this setting, denoting by R̄AB the components of the Ricci tensor of Ln+1
1

satisfying condition (1.1), the scalar curvature R̄ of Ln+1
1 is given by

R̄ =
n+1∑
A=1

εAR̄AA =
n∑

i,j=1

R̄ijji − 2
n∑

i=1

R̄(n+1)ii(n+1) =
n∑

i,j=1

R̄ijji + 2c1.

Moreover, it is well known that the scalar curvature of a locally symmetric Lorentz
space is constant. Consequently,

∑
i,j R̄ijji is a constant naturally attached to a locally

symmetric Lorentz space satisfying condition (1.1).
Now we are in position to present our results.

THEOREM 1.1. Let En+1
1 be a locally symmetric Einstein spacetime satisfying

conditions (1.1) and (1.2), with c = c1
n + 2c2 > 0. Let Mn be a complete non-compact
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linear Weingarten spacelike hypersurface immersed in En+1
1 such that R = aH + b with

(n − 1)2a2 + 4
∑

i,j R̄ijji − 4n(n − 1)b > 0. If |∇H| is a Lebesgue integrable on Mn and
S ≤ 2

√
n − 1 c, then Mn is either totally umbilical or an isoparametric hypersurface with

two distinct principal curvatures one of which is simple.

Here S stands for the square length of the second fundamental form of the spacelike
hypersurface Mn. Related to the compact case, we get the following.

THEOREM 1.2. Let En+1
1 be a locally symmetric Einstein spacetime satisfying

conditions (1.1) and (1.2), with c = c1
n + 2c2 > 0. Let Mn be a compact linear Weingarten

spacelike hypersurface immersed in En+1
1 such that R = aH + b with (n − 1)2a2 +

4
∑

i,j R̄ijji − 4n(n − 1)b ≥ 0. If S < 2
√

n − 1 c, then Mn is totally umbilical.

In Section 3 we present the proofs of Theorems 1.1 and 1.2, as well as their
applications when the ambient space is the de Sitter space �n+1

1 (cf. Corollaries 3.4
and 3.6). Our approach is based on the use of the well-known Cheng–Yau [12] square
operator (cf. Section 2) jointly with a suitable extension of the maximum principle at
the infinity of Yau [25] due to Caminha in [9] (cf. Lemma 3.3).

We close our Introduction observing that the previous theorems can be regarded as
the extensions of characterization results of the current literature concerning spacelike
hypersurfaces with either constant mean curvature or constant scalar curvature in
locally symmetric Lorentz spaces. In this sense we refer the readers to the works of Ok
Baek et al. [22], Liu and Sun [19] and Zhang and Wu [26]. Moreover, we point out that
Li et al. [17] have obtained rigidity theorems related to linear Weingarten hypersurfaces
immersed in the unit Euclidean sphere �n+1.

2. Preliminaries. From now on, we will consider complete spacelike
hypersurfaces Mn immersed in a Lorentz space Ln+1

1 . We choose a local field of semi-
Riemannian orthonormal frame {eA}1≤A≤n+1 in Ln+1

1 , with dual coframe {ωA}1≤A≤n+1

such that at each point of Mn e1, . . . , en are tangent to Mn and en+1 is normal to Mn.
We will use the following convention for the indices:

1 ≤ A, B, C, . . . ≤ n + 1, 1 ≤ i, j, k, . . . ≤ n.

In this setting, denoting by {ωAB} the connection forms of Ln+1
1 , we have the

structure equations of Ln+1
1 given by

dωA = −
∑

B

εBωAB ∧ ωB, ωAB + ωBA = 0, εi = 1, εn+1 = −1, (2.1)

dωAB = −
∑

C

εCωAC ∧ ωCB − 1
2

∑
C,D

εCεDR̄ABCDωC ∧ ωD. (2.2)

Here R̄ABCD, R̄CD and R̄ denote respectively the Riemannian curvature tensor, the
Ricci tensor and the scalar curvature of the Lorentz space Ln+1

1 . In this setting, we have

R̄CD =
∑

B

εBR̄BCDB, R̄ =
∑

A

εAR̄AA.
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Moreover, the components R̄ABCD;E of the covariant derivative of the Riemannian
curvature tensor of Ln+1

1 are defined by∑
E

εER̄ABCD;EωE = dR̄ABCD −
∑

E

εE(R̄EBCDωEA

+ R̄AECDωEB + R̄ABEDωEC + R̄ABCEωED).

Next, we restrict all the tensors to the spacelike hypersurface Mn in Ln+1
1 . First

of all, ωn+1 = 0 on Mn, so
∑

i ω(n+1)i ∧ ωi = dωn+1 = 0. Consequently, by Cartan’s
Lemma [10], there are hij such that

ω(n+1)i =
∑

j

hijωj and hij = hji. (2.3)

This gives the second fundamental form of Mn, h = ∑
i,j hijωiωjen+1, and its square

length S = ∑
i,j h2

ij. Furthermore, the mean curvature H of Mn is defined by H =
1
n

∑
i hii.
The connection forms {ωij} of Mn are characterized by the structure equations

of Mn:

dωi = −
∑

j

ωij ∧ ωj, ωij + ωji = 0, (2.4)

dωij = −
∑

k

ωik ∧ ωkj − 1
2

∑
k,l

Rijklωk ∧ ωl, (2.5)

where Rijkl are the components of the curvature tensor of Mn.
Using the structure equations, we obtain the Gauss equation

Rijkl = R̄ijkl − (hikhjl − hilhjk). (2.6)

The components Rij of the Ricci tensor and the scalar curvature R of Mn are given,
respectively, by

Rij =
∑

k

R̄kijk − nHhij +
∑

k

hikhkj (2.7)

and

n(n − 1)R =
∑
j,k

R̄kjjk − n2H2 + S. (2.8)

The first covariant derivatives hijk of hij satisfy∑
k

hijkωk = dhij −
∑

k

hikωkj −
∑

k

hjkωki. (2.9)

Then by exterior differentiation of (2.3), we obtain the Codazzi equation

hijk − hikj = R̄(n+1)ijk. (2.10)
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Similarly, the second covariant derivatives hijkl of hij are given by∑
l

hijklωl = dhijk −
∑

l

hljkωli −
∑

l

hilkωlj −
∑

l

hijlωlk. (2.11)

By exterior differentiation of (2.9), we can get the following Ricci formula

hijkl − hijlk = −
∑

m

himRmjkl −
∑

m

hjmRmikl. (2.12)

Restricting the covariant derivative R̄ABCD;E of R̄ABCD on Mn, then R̄(n+1)ijk;l is given
by

R̄(n+1)ijk;l = R̄(n+1)ijkl + R̄(n+1)i(n+1)khjl (2.13)

+ R̄(n+1)ij(n+1)hkl +
∑

m

R̄mijkhml,

where R̄(n+1)ijkl denotes the covariant derivative of R̄(n+1)ijk as a tensor on Mn so that∑
l

R̄(n+1)ijklωl = dR̄(n+1)ijk −
∑

l

R̄(n+1)ljkωli −
∑

l

R̄(n+1)ilkωlj −
∑

l

R̄(n+1)ijlωlk.

The Laplacian �hij of hij is defined by �hij =
∑

k

hijkk. From (2.10), (2.12) and

(2.13), after a straightforward computation, we obtain

�hij = (nH)ij − nH
∑

l

hilhlj + Shij

+
∑

k

(R̄(n+1)ijk;k + R̄(n+1)kik;j)

−
∑

k

(hkkR̄(n+1)ij(n+1) + hijR̄(n+1)k(n+1)k)

−
∑
k,l

(2hklR̄lijk + hjlR̄lkik + hilR̄lkjk). (2.14)

Since �S = 2
(∑

i,j,k h2
ijk + ∑

i,j hij�hij

)
, from (2.14) we get

1
2
�S = S2 +

∑
i,j,k

h2
ijk +

∑
i,j

(nH)ijhij

+
∑
i,j,k

(R̄(n+1)ijk;k + R̄(n+1)kik;j)hij

−
⎛
⎝∑

i,j

nHhijR̄(n+1)ij(n+1) + S
∑

k

R̄(n+1)k(n+1)k

⎞
⎠

− 2
∑
i,j,k,l

(hklhijR̄lijk + hilhijR̄lkjk) − nH
∑
i,j,l

hilhljhij. (2.15)
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Now let φ = ∑
i,j φijωi ⊗ ωj be a symmetric tensor on Mn defined by

φij = nHδij − hij.

Following Cheng–Yau [12], we introduce an operator � associated to φ acting on any
smooth function f by

�f =
∑

i,j

φijfij =
∑

i,j

(nHδij − hij)fij. (2.16)

Setting f = nH in (2.16) and taking a (local) orthonormal frame {e1, . . . , en} on
Mn such that hij = λiδij, from equation (2.8) we obtain the following:

�(nH) = 1
2
�(nH)2 −

∑
i

(nH)2
i −

∑
i

λi(nH)ii

= 1
2
�S − n2|∇H|2 −

∑
i

λi(nH)ii

+ 1
2
�

⎛
⎝∑

i,j

R̄ijji − n(n − 1)R

⎞
⎠ . (2.17)

3. Proofs of Theorems 1.1 and 1.2 and their applications in �n+1
1 . In order to prove

our results, we will need some auxiliary lemmas. The first one is a classic algebraic
lemma due to Okumura in [23], and completed with the equality case proved in [3] by
Alencar and Carmo.

LEMMA 3.1. Let μ1, . . . μn be real numbers such that
∑

i

μi = 0 and
∑

i

μ2
i = β2,

where β is constant and β ≥ 0. Then

− (n − 2)√
n(n − 1)

β3 ≤
∑

i

μ3
i ≤ (n − 2)√

n(n − 1)
β3, (3.1)

and equality holds if, and only if, either at least (n − 1) of the numbers μi are equal to
β/

√
(n − 1)n or at least (n − 1) of the numbers μi are equal to −β/

√
(n − 1)n.

Now we present our second auxiliary lemma. Following the steps of the proof of
Lemma 2.1 in [17], we get the following:

LEMMA 3.2. Let Mn be a linear Weingarten spacelike hypersurface immersed in a
locally symmetric Lorentz space Ln+1

1 satisfying condition (1.1), such that R = aH + b.
Suppose that

(n − 1)2a2 + 4
∑

i,j

R̄ijji − 4n(n − 1)b ≥ 0. (3.2)
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Then, ∑
i,j,k

h2
ijk ≥ n2|∇H|2. (3.3)

Moreover, if the inequality (3.2) is strict and the equality holds in (3.3) on Mn, then H is
constant on Mn.

Proof. Since we are supposing that R = aH + b and the term is
∑

i,j R̄ijji constant,
from equation (2.8) we get

2
∑

i,j

hijhijk = (
2n2H + n(n − 1)a

)
(H)k.

Thus,

4
∑

k

⎛
⎝∑

i,j

hijhijk

⎞
⎠

2

= (2n2H + n(n − 1)a)2|∇H|2.

Consequently, using the Cauchy–Schwartz inequality, we obtain

4S
∑
i,j,k

h2
ijk = 4

⎛
⎝∑

i,j

h2
ij

⎞
⎠

⎛
⎝∑

i,j,k

h2
ijk

⎞
⎠

≥ 4
∑

k

⎛
⎝∑

i,j

hijhijk

⎞
⎠

2

= (2n2H + n(n − 1)a)2|∇H|2. (3.4)

On the other hand, since R = aH + b, using again equation (2.8) we easily verify that

(2n2H + n(n − 1)a)2 = 4n2
∑

i,j

R̄ijji − 4n3(n − 1)b

+ n2(n − 1)2a2 + 4n2S. (3.5)

Consequently, from (3.2), (3.4) and (3.5), we get

S
∑
i,j,k

h2
ijk ≥ n2S|∇H|2.

Therefore, we obtain either S = 0 and
∑

i,j,k h2
ijk = n2|∇H|2 or

∑
i,j,k h2

ijk ≥ n2|∇H|2.
Moreover, if the inequality (3.2) is strict, from (3.5) we get

(
2n2H + n(n − 1)a

)2
> 4n2S.

Consequently, if
∑

i,j,k h2
ijk = n2|∇H|2 holds on Mn, from (3.4) we conclude that ∇H =

0 on Mn, and hence H is constant on Mn. �
Yau in [25] established the following version of Stokes’ Theorem on an n-

dimensional, complete non-compact Riemannian manifold Mn: if ω ∈ 	n−1(M) is
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an (n − 1)-differential form on Mn, then there exists a sequence Bi of domains on Mn

such that Bi ⊂ Bi+1, Mn = ⋃
i≥1 Bi and

lim
i→+∞

∫
Bi

dω = 0.

Now suppose that Mn is oriented by the volume element dM. If ω = ιX dM is the
contraction of dM in the direction of a smooth vector field X on Mn, then Caminha
(cf. [9, Proposition 2.1]) obtained a suitable consequence of Yau’s [25] result, which is
described below. In what follows, L1(M) stands for the space of Lebesgue integrable
functions on Mn.

LEMMA 3.3. Let X be a smooth vector field on the n-dimensional complete non-
compact-oriented Riemannian manifold Mn such that the divergence of X on Mn, divX,
does not change sign. If |X | ∈ L1(M), then divX = 0.

Proof of Theorem 1.1.
From (2.16) we have

�f = trace(P1 ◦ ∇2f ),

where denoting by I the identity in the algebra of smooth vector fields on Mn, P1 =
nHI − h and ∇2f stands for the self-adjoint linear operator metrically equivalent to
the hessian of f . Thus, by using the standard notation 〈 , 〉 for the (induced) metric of
Mn, we get

�f =
∑

i

〈P1(∇ei∇f ), ei〉,

where {e1, . . . , en} is a local orthonormal frame on Mn. Consequently, we have

div(P1(∇f )) =
∑

i

〈(∇ei P1)(∇f ), ei〉 +
∑

i

〈P1(∇ei∇f ), ei〉

= 〈divP1,∇f 〉 + �f, (3.6)

where

divP1 := trace (∇P1) =
∑

i

(∇ei P1) (ei).

On the other hand, since En+1
1 is an Einstein spacetime, there exists a parameter λ such

that Ric = λ〈 , 〉, where Ric denotes the Ricci tensor of En+1
1 . Thus, denoting by R the

curvature tensor of En+1
1 , from Lemma 3.1 of [4] we have

〈divP1,∇f 〉 =
∑

i

〈R(N, ei)ei,∇f 〉 = −Ric(N,∇f ) = −λ〈N,∇f 〉 = 0,

where N stands for the Gauss mapping of Mn. Hence, we conclude from (3.6) that

�f = div(P1(∇f )). (3.7)
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Now we consider the Cheng–Yau’s [12] modified operator

L = � + n − 1
2

a�. (3.8)

From (3.7), we have

L(nH) = div(P(∇H)), (3.9)

where P = nP1 + n(n−1)
2 aI . Moreover, since S is supposed to be bounded, we easily

verify that the operator P is bounded. Consequently, since we are also assuming that
|∇H| ∈ L1(M), we obtain

|P(∇H)| ∈ L1(M). (3.10)

Now we will obtain a suitable lower estimate for L(nH). For this we observe that
the local symmetry of Ln+1

1 implies that

∑
i,j,k

(R̄(n+1)ijk;k + R̄(n+1)kik;j)hij = 0.

Consequently, if we choose a (local) orthonormal frame {e1, . . . , en} on Mn such that
hij = λiδij, taking into account equations (2.15) and (2.17), and the fact that the term∑

i,j R̄ijji is constant, we get from (3.8)

L(nH) =
∑
i,j,k

h2
ijk − n2|∇H|2 + S2 − nH

∑
i

λ3
i

−2
∑
i,k

(λiλkR̄kiik + λ2
i R̄ikik)

−
(∑

i

nHλiR̄(n+1)ii(n+1) + S
∑

k

R̄(n+1)k(n+1)k

)
. (3.11)

Thus, from Lemma 3.2, we have

L(nH) ≥ S2 − nH
∑

i

λ3
i − 2

∑
i,k

(λiλkR̄kiik + λ2
i R̄ikik)

−
(∑

i

nHλiR̄(n+1)ii(n+1) + S
∑

k

R̄(n+1)k(n+1)k

)
. (3.12)

Now set �ij = hij − Hδij. We will consider the following symmetric tensor,

� =
∑

i,j

�ijωi ⊗ ωj.

Let |�|2 =
∑

i,j

�2
ij be the square of the length of �. It is easy to check that � is traceless

and

|�|2 = S − nH2.
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If we take a (local) frame field e1, . . . , en at p ∈ Mn such that

hij = λiδij and �ij = μiδij,

it is straightforward to check that∑
i

μi = 0,
∑

i

μ2
i = |�|2 and

∑
i

μ3
i =

∑
i

λ3
i − 3H|�|2 − nH3.

Consequently, by applying Lemma 3.1 to the real numbers μ1, . . . , μn, we get

S2 − nH
∑

i

λ3
i = (|�|2 + nH2)2 − n2H4

−3nH2|�|2 − nH
∑

i

μ3
i

≥ |�|4 − nH2|�|2 − n(n − 2)√
n(n − 1)

H|�|3. (3.13)

Using curvature conditions (1.1) and (1.2), we get

−
⎛
⎝∑

i,j

nHλiR̄(n+1)ii(n+1) + S
∑

k

R̄(n+1)k(n+1)k

⎞
⎠ = c1(S − nH2) (3.14)

and

−2
∑
i,j,k,l

(λiλkR̄kiik + λ2
i R̄ikik) ≥ c2

∑
i,k

(λi − λk)2

= 2nc2(S − nH2). (3.15)

Hence, setting c = c1
n + 2c2, from (3.12), (3.13), (3.14) and (3.15) we obtain

L(nH) ≥ |�|2
(

nc + S − 2nH2 − n(n − 2)√
n(n − 1)

H|�|
)

. (3.16)

On the other hand, with a straightforward computation we verify that

S − 2nH2 = 1

2
√

n − 1

(
(
√

n − 1 + 1)|�| − (
√

n − 1 − 1)
√

nH
)2

+ n(n − 2)√
n(n − 1)

H|�| − n

2
√

n − 1
S.

Thus, since we are supposing that S ≤ 2
√

n − 1 c, from (3.16) we get

L(nH) ≥ |�|2
(

nc − n

2
√

n − 1
S
)

≥ 0. (3.17)

Hence, taking into account (3.9), (3.10) and (3.17), we can apply Lemma 3.3 to
conclude that L(nH) = 0, and from (3.11) we get∑

i,j,k

h2
ijk = n2|∇H|2.
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Consequently, since we are assuming that (n − 1)2a2 + 4
∑

i,j R̄ijji − 4n(n − 1)b > 0, it
follows from Lemma 3.2 that H is constant. Moreover, from (3.17) we have

|�|2
(

nc − n

2
√

n − 1
S
)

= 0. (3.18)

If S < 2
√

n − 1 c, then |�|2 = 0 and Mn is totally umbilical. If S = 2
√

n − 1 c,
since all the inequalities that we have obtained are in fact equalities, we easily verify
that

|�| = (
√

n − 1 − 1)
√

n√
n − 1 + 1

H. (3.19)

Thus, in the case that n = 2, from (3.19) we obtain that |�|2 = 0. Hence, M2 is totally
umbilical.

Finally, when n ≥ 3, since the equality holds in (3.1) of Lemma 3.1, we conclude
that Mn is either totally umbilical or an isoparametric hypersurface with two distinct
principal curvatures, one of which is simple. �

From Theorem 1.1 and according to the classical congruence theorem due to Abe
et al. (cf. [1, Theorem 5.1]), we obtain the following result in the de Sitter space �n+1

1 .

COROLLARY 3.4. Let Mn be a complete non-compact linear Weingarten spacelike
hypersurface immersed in �n+1

1 such that R = aH + b with (n − 1)a2 + 4n(1 − b) > 0. If
S ≤ 2

√
n − 1 and |∇H| ∈ L1(M), then Mn is either totally umbilical or is isometric to

a hyperbolic cylinder �1(c1) × �n−1(c2), for R > 0, or to �n−1(c1) × �1(c2), for R < 0,
where c1 < 0, c2 > 0 and 1

c1
+ 1

c2
= 1.

REMARK 3.5. Montiel in [21] characterized the hyperbolic cylinders as the only
complete non-compact spacelike hypersurfaces in �n+1

1 with constant mean curvature

H = 2
√

n−1
n and having at least two ends. Later on, Brasil et al. [6] obtained a

sort of extension of Montiel’s result, showing that the hyperbolic cylinders are
the only complete spacelike hypersurfaces in �n+1

1 with constant mean curvature,
non-negative Ricci curvature and having at least two ends. They also characterized
all complete spacelike hypersurfaces of constant mean curvature with two distinct
principal curvatures as rotation hypersurfaces or generalized hyperbolic cylinders
�k(c1) × �n−k(c2), where 1 < k < (n − 1), c1 < 0, c2 > 0 and 1

c1
+ 1

c2
= 1.

Proof of Theorem 1.2.
From (3.9) and (3.17), by applying the divergence theorem we get

0 =
∫

M
L(nH) ≥

∫
M

{
|�|2

(
nc − n

2
√

n − 1
S
)}

dM ≥ 0. (3.20)

Consequently, since we are supposing S < 2
√

n − 1 c, from (3.20) we obtain that |�| =
0 on Mn, and hence Mn is totally umbilical. �

Finally, taking into account the description of the totally umbilical spacelike
hypersurfaces of �n+1

1 given by Montiel in Example 1 of [20], from Theorem 1.2 we get
the following.
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COROLLARY 3.6. Let Mn be a compact linear Weingarten spacelike hypersurface
immersed in �n+1

1 such that R = aH + b with (n − 1)a2 + 4n(1 − b) ≥ 0. If S < 2
√

n − 1,
then Mn is isometric to �n, up to scaling.
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