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ESTIMATES OF THE EXIT PROBABILITY FOR
TWO CORRELATED BROWNIAN MOTIONS
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Abstract

Given two correlated Brownian motions (Xt )t≥0 and (Yt )t≥0 with constant correlation
coefficient, we give the upper and lower estimations of the probability P(max0≤s≤t Xs ≥
a, max0≤s≤t Ys ≥ b) for any a, b, t > 0 through explicit formulae. Our strategy is to
establish a new reflection principle for two correlated Brownian motions, which can be
viewed as an extension of the reflection principle for one-dimensional Brownian motion.
Moreover, we also consider the nonexit probability for linear boundaries, i.e. P(Xt ≤
at + c, Yt ≤ bt + d, 0 ≤ t ≤ T ) for any constants a, b ≥ 0 and c, d, T > 0.
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1. Introduction

Boundaries crossing probabilities or exit probabilities of Brownian motion have many
applications in nonparametric statistics, sequential analysis, and change point problems in
econometrics, biology, epidemiology, and mathematical finance. Let (�, P, F ) be a given
probability space with a reference family (Ft )t∈[0,∞). A one-dimensional continuous process
(Xt )t≥0 is called a one-dimensional Brownian motion if it is Ft -adapted with X0 = 0 and
satisfies

E[exp[iλ(Xt −Xs)] | Fs] = exp
[− 1

2 (t − s)λ2], almost surely, for every λ ∈ R, 0 < s < t.

It is well known that the Brownian motion admits the reflection principle, that is, for each given
stopping time τ , define a new process

X̃t = 2Xt∧τ − Xt,

where t ∧ τ = min{t, τ }; then the process (X̃t )t≥0 is a new Brownian motion. This property
plays a very important role in estimating the exit probabilities of Brownian motion and stochastic
processes. Applying this property to the stopping time τ = τa

x := inf{t > 0, Xt ≥ a}, we can
obtain the distribution of X∗(t) = X∗

t := max0≤s≤t Xs , given by

P(X∗(t) ≥ a) = P(τ a
x ≤ t) = P(|Xt | ≥ a) for every a > 0. (1.1)

Received 26 February 2010; revision received 21 April 2012.
∗ Postal address: School of Mathematical Sciences, Beijing Normal University, Beijing 100875, China.
Email address: shaojh@bnu.edu.cn
∗∗ Postal address: Beijing Normal University, Xin Jie Kou Wai Da Jie 19, Beijing 100875, China.
Email address: wangxp@yahoo.com

37

https://doi.org/10.1239/aap/1363354102 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1363354102


38 J. SHAO AND X. WANG

Based on this fundamental fact, there are many results on the estimates of the exit probability for
one-dimensional Brownian motion with respect to a moving boundary, that is, for a nonrandom
positive continuous function f (t), estimate the probability

P(Xt ≤ f (t), 0 ≤ t ≤ T ) for some finite or infinite constant T > 0.

For example, Doob [2] obtained an explicit formula for the following linear boundary crossing
probability:

P(Xt ≤ at + b, t ≥ 0) = 1 − e−2ab for every a, b > 0.

However, explicit formulae have been obtained only for linear and a few special boundaries
f (t); for instance, Anderson [1] dealt with linear upper and lower boundaries. For more
general boundaries and a higher-dimensional Brownian motion, most methods seek to give
approximations or estimates of the corresponding probability. We will not mention too much
on this intensively studied topic, but refer the reader to [3], [9]–[11], and the references therein
for various methods (including solving differential or integral equations, Monte Carlo path
simulation, and series expansion) to deal with different boundaries.

In this paper we focus on the joint distribution of the exit probability of two correlated
Brownian motions. Specifically, let (Xt )t≥0 and (Yt )t≥0 be two one-dimensional Ft -Brownian
motions, which are not necessary mutually independent, but their joint distribution is normal. Let

X∗(t) = X∗
t = max

0≤s≤t
Xs, Y ∗(t) = Y ∗

t = max
0≤s≤t

Ys .

For any positive constants a and b, consider the probability

P(X∗(t) ≥ a, Y ∗(t) ≥ b). (1.2)

This probability depends strongly on the dependence between the processes (Xt )t≥0 and (Yt )t≥0.
For instance, assume that P(X∗(t) ≥ a) = P(Y ∗(t) ≥ a) = 0.1. If the two processes are
independent then

P(X∗(t) ≥ a, Y ∗(t) ≥ a) = P(X∗(t) ≥ a)2 = 0.01.

But, if Xt = Yt for every t ≥ 0 then

P(X∗(t) ≥ a, Y ∗(t) ≥ a) = P(X∗(t) ≥ a) = 0.1.

Therefore, the mutual dependence of two stochastic processes plays a very important role in the
calculation of the exit probability. In applications, neglecting the dependence of two stochastic
processes may cause serious errors in the estimation of the exit probability, which may represent
the risk of bankruptcy for a company or the risk of breakdown for a system.

We now introduce the basic assumptions used in this paper. Noting that X0 = Y0 = 0, set
r(t) to be the correlation coefficient between Xt and Yt :

r(t) := E[XtYt ]√
EX2

t EY 2
t

, t > 0.

Throughout this paper, we assume that the following hypotheses hold.

(H1) For every t > 0, the correlation coefficient r(t) is equal to a constant r .

(H2) For any t > s ≥ 0, (Xt − Xs, Yt − Ys) admits a normal distribution as well.
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Before introducing our results, let us review some known results on this kind of problem.
Assume that hypotheses (H1) and (H2) hold, and that r2 �= 1. For any given positive constants
a and b, according to the works [6] and [7], it holds that

P(X∗(t) < a, Y ∗(t) < b)

= 2r0√
2πt

e−r2
0 /4t

∑
n odd

1

n
sin

(
nπθ0

α

)[
I(νn−1)/2

(
r2

0

4t

)
+ I(νn+1)/2

(
r2

0

4t

)]
, (1.3)

where (r0, θ0) denotes the radial coordinate and angular coordinate of the point ((a −
rb)/

√
1 − r2, b), νn = nπ/α,

α =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
π + tan−1

(
−

√
1 − r2

r

)
, r > 0,

1
2π, r = 0,

tan−1
(

−
√

1 − r2

r

)
, r < 0,

(1.4)

and Iν denotes the modified Bessel function of the first kind of order ν, which can be expressed by

Iν(x) =
∞∑

m=0

1

m! �(m + ν + 1)

(
x

2

)2m+ν

with �(z) the gamma function. This explicit formula is not as explicit as one might desire for
practical applications and numerical computations, and its use makes it difficult to progress
further theoretically. For instance, as pointed out in [7], using (1.3) to approximate the exit
probability of a time-dependent boundary is computationally expensive to the point of being
prohibitive. Moreover, the method of obtaining the above result depends on the explicit solution
of the heat equation in a wedge. Therefore, it is difficult to extend to the higher-dimensional
case.

The following results will provide an easily computed estimate of the desired exit probability.
Our strategy to estimate (1.2) is to establish a new type of reflection principle for two correlated
Brownian motions (stated in Section 2), which is an extension of the reflection principle for a
one-dimensional Brownian motion.

The following theorem is our first main result.

Theorem 1.1. Let (Xt )t≥0 and (Yt )t≥0 be two Ft -Brownian motions having normal joint
distribution. Assume that hypotheses (H1) and (H2) hold, and that r2 �= 1. Then, for any
positive constants a and b,

P(X∗(t) ≥ a, Y ∗(t) ≥ b) ≤ min{U1(a, b), U2(a, b)} (1.5)

and

P(X∗(t) ≥ a, Y ∗(t) ≥ b) ≥ max{U1(a, b) − T1(a, b), U2(a, b) − T2(a, b)}, (1.6)

where

	(z) =
∫ z

−∞
1√
2π

e−x2/2 dx, ϕ(x, y) = 1

2π
√

1 − r2
exp

[
−x2 − 2rxy + y2

2(1 − r2)

]
,
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and

U1(a, b) = 	

(−b√
t

)
+

∫ −a/
√

t

−∞

(∫ ∞

(b−2ra)/
√

t

ϕ(x, y) dy

)
dx

+
∫ ∞

a/
√

t

(∫ ∞

b/
√

t

ϕ(x, y) dy

)
dx,

U2(a, b) = 	

(−a√
t

)
+

∫ ∞

(a−2rb)/
√

t

(∫ −b/
√

t

−∞
ϕ(x, y) dy

)
dx

+
∫ ∞

a/
√

t

(∫ ∞

b/
√

t

ϕ(x, y) dy

)
dx,

T1(a, b) =
∫ t

0

{∫ a

−∞

[∫ (a−x)/
√

t−u

−∞

(∫ 0

−∞
ϕ(z, w) dw

)
dz

−
∫ (x−a)/

√
t−u

−∞

(∫ 2r(x−a)/
√

t−u

−∞
ϕ(z, w) dw

)
dz

]
× e−(x−rb)2/2u(1−r2)√

2πu(1 − r2)
dx

}
b√

2πu3
e−b2/2u du,

T2(a, b) =
∫ t

0

{∫ b

−∞

[∫ (b−x)/
√

t−u

−∞

(∫ 0

−∞
ϕ(z, w) dz

)
dw

−
∫ (x−b)/

√
t−u

−∞

(∫ 2r(x−b)/
√

t−u

−∞
ϕ(z, w) dz

)
dw

]
× e−(x−ra)2/2u(1−r2)√

2πu(1 − r2)
dx

}
a√

2πu3
e−a2/2u du.

Remark 1.1. Theorem 1.1 provides lower and upper estimates of the exit probability for two
correlated Brownian motions with constant correlation coefficient r varying in the interval
(−1, 1). For the case in which r = 1, which means that Xt = Yt almost surely, the problem in
two-dimensional space is reduced to that in one-dimensional space and the exit probability is
known. For the case in which r = −1, which means that Yt = −Xt almost surely, it is known
that

P(|Xs | ≤ a, 0 ≤ s ≤ t) = 4

π

∞∑
n=0

(−1)n

2n + 1
exp

[
− (2n + 1)2π2t

8a2

]
(see, for example, [4, Chapter X, Equation (5.9)]).

Remark 1.2. To see the usefulness of our estimates, it is easy to check that

T1(a, b) = O(t−1/2), T2(a, b) = O(t−1/2), as t → ∞,

and, for all p > 0,

lim
b→∞ bpT1(a, b) = 0, lim

a→∞ apT2(a, b) = 0.

So the difference between the upper and lower bounds given in Theorem 1.1 is as small as t , a,
or b is large.
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As an application of Theorem 1.1, let us return to the study of the following quantity again:

H(t, b; r) := P(X∗
t ≥ b, Y ∗

t ≥ b)

P(Y ∗
t ≥ b)

.

As mentioned above, for each t > 0, if r = 0 then limb→∞ H(t, b; r) = 0 and if r = 1 then
limb→∞ H(t, b; r) = 1. For r ∈ (−1, 1), we will show that lim supb→∞ H(t, b; r) ≤ 1

2 for
each t > 0. This is an interesting phenomenon, since it means that, when b is large enough,
the quantity

P(X∗
t ≥ b, Y ∗

t ≥ b)

P(Y ∗
t ≥ b)

is not a continuous function of the correlation coefficient r and is bounded above by a constant 1
2 .

Corollary 1.1. It holds for r ∈ (−1, 1) and each t > 0 that

lim sup
b→∞

P(X∗
t ≥ b, Y ∗

t ≥ b)

P(Y ∗
t ≥ b)

≤ 1

2
.

The calculation of the exit probability for a stochastic process relative to a general boundary
is also very important in applications. However, usually, it is even more difficult to obtain an
explicit formula. As pointed out in [11] and [12], the exit probability of a general boundary
for one-dimensional Brownian motion can be approximated by the exit probability of a linear
boundary. Therefore, it is of great importance to calculate the exit probability of a linear
boundary. Here, based on Theorem 1.1, and using Girsanov’s theorem, we can obtain lower
and upper estimates of the crossing probability of the process (Xt , Yt )t≥0 for linear moving
boundaries.

Theorem 1.2. Let (Xt )t≥0 and (Yt )t≥0 be two Ft -Brownian motions having normal joint
distribution. Assume that hypotheses (H1) and (H2) hold, and that |r| < 1. Let a, b ≥ 0
and c, d > 0. Then, for T > 0 and p > 1,

P(Xt ≤ at + c, Yt ≤ bt + d, 0 ≤ t ≤ T ) ≤ ApP(X∗(T ) ≤ c, Y ∗(T ) ≤ d)1/p

and

P(Xt ≤ at + c, Yt ≤ bt + d, 0 ≤ t ≤ T ) ≥ BpP(X∗(T ) ≤ c, Y ∗(T ) ≤ d)p,

where the constants

Ap = (EM̃
p/(p−1)
T )(p−1)/p < +∞, Bp = (EM

p/(p−1)
T )1−p > 0.

Here the random variables M̃T and MT are defined by

M̃T = exp

[ −1

2(1 − r2)
{2(a − rb)X(T ) + 2(b − ra)Y (T ) + (a2 + b2 − 2rab)T }

]
,

MT = exp

[
1

2(1 − r2)
{2(a − rb)X(T ) + 2(b − ra)Y (T ) − (a2 + b2 − 2rab)T }

]
.

Remark 1.3. 1. Since the random variables X∗(T ) and Y ∗(T ) have the same distribution
as |X(T )| and |Y (T )|, respectively, combining this fact with Theorem 1.1, we know that
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the probability P(X∗(T ) ≤ c, Y ∗(T ) ≤ d) can be estimated through an explicit formula.
Therefore, Theorem 1.2 gives explicit lower and upper bounds for the crossing probability of
linear boundaries.

2. In Theorem 1.2, we assume that |r| < 1. For r = 1 or −1, this yields Yt = Xt or Yt = −Xt

a.s. for every t > 0. Then the problem reduces to the case of one-dimensional Brownian
motion; see [11] and [12] for results in this case.

In Section 2 we provide the proofs of Theorem 1.1 and Corollary 1.1, and also give the
reflection principle for two correlated Brownian motions. In Section 3 we provide the proof of
Theorem 1.2.

2. Proofs of Theorem 1.1 and Corollary 1.1

The idea of the proof of Theorem 1.1 is to study the reflection property of the two-dimensional
process (Xt , Yt )t≥0, which is stated in Lemma 2.2 below. This will be a natural extension of
the reflection principle for one-dimensional Brownian motion.

Lemma 2.1. Let (Xt )t≥0 and (Yt )t≥0 be two Ft -Brownian motions with normal joint distribu-
tion. Assume that hypotheses (H1) and (H2) hold. Then the process (Xt , Yt )t≥0 has the same
distribution as that of the process (Xt − 2rY t , −Yt )t≥0.

Proof. It is easy to see that t 
→ Xt − 2rY t is an Ft -martingale. For 0 < s < t ,

E[(Xt − 2rY t )
2 | Fs] − (Xs − 2rY s)

2

= E[(Xt − Xs)
2 − 4r(XtYt − XsYs) + 4r2(Yt − Ys)

2 | Fs]
= t − s.

Then t 
→ (Xt − 2rY t )
2 − t is also an Ft -martingale. By the Lévy characterization theorem

of Brownian motion, the process (Xt − 2rY t )t≥0 is a new Brownian motion. Furthermore, for
every t > 0,

E(Xt − 2rYt )(−Yt )√
E(Xt − 2rY t )2E(−Yt )2

= r.

Therefore, the process (Xt − 2rY t , −Yt )t≥0 has the same distribution as that of the process
(Xt , Yt )t≥0.

Lemma 2.2. (Reflection principle: first type.) Let τ be a stopping time with respect to (Ft )t≥0.
Let

X̃t = Xt∧τ + (Xt − Xt∧τ − 2r(Yt − Yt∧τ ))1{t>τ },
Ỹt = Yt∧τ + (Yt∧τ − Yt )1{t>τ },

where t ∧ τ = min{t, τ }. Then the processes (X̃t , Ỹt , τ )t≥0 and (Xt , Yt , τ )t≥0 admit the same
distribution.

Proof. Let Ȳs = Ys+τ − Yτ and X̄s = Xs+τ − Xτ for every s ≥ 0. Then we have

Xt = Xt∧τ + X̄t−τ 1{t>τ }, Yt = Yt∧τ + Ȳt−τ 1{t>τ },

and
Ỹt = Yt∧τ − Ȳt−τ 1{t>τ }, X̃t = Xt∧τ + (X̄t−τ − 2rȲt−τ )1{t>τ }.
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By the strong Markov property of Brownian motion, X̄s and Ȳs are independent of the σ -algebra
Fτ . Furthermore, it follows from Lemma 2.1 that (X̄t−τ , Ȳt−τ ) has the same distribution as the
process (X̄t−τ − 2rȲt−τ , −Ȳt−τ ). Then the process (Xt , Yt , τ )t≥0 has the same distribution as
the process (X̃t , Ỹt , τ )t≥0.

The idea of Lemma 2.2 is that when making a reflection for the process (Yt )t≥0 at the
stopping time τ , we make a necessary modification in the process (Xt )t≥0 to guarantee that
the new generated process admits the same distribution as the process (Xt , Yt )t≥0 after the
stopping time τ . Of course, we can interchange (Xt )t≥0 and (Yt )t≥0 to make a reflection for
the process (Xt )t≥0 after τ and do an analogous modification for the process (Yt )t≥0. Both of
these kinds of reflection will be used in the following argument of Theorem 1.1, depending on
the choice of stopping time τ .

Now we state another type of reflection principle. We will not use it in this paper, but it is
of independent interest.

Lemma 2.3. (Reflection principle: second type.) Let τ be a stopping time with respect to
(Ft )t≥0. Let

X′
t = 2Xt∧τ − Xt, Y ′

t = 2Yt∧τ − Yt .

Then the process (X′
t , Y

′
t , τ )t>0 admits the same distribution as the process (Xt , Yt , τ )t>0.

Proof. Since

X′
t = Xt∧τ − X̄t−τ 1{t≥τ }, Y ′

t = Yt∧τ − Ȳt−τ 1{t≥τ },

where X̄u and Ȳu are defined in Lemma 2.2, by virtue of arguments similar to those used in the
proof of Lemma 2.2, we can obtain the desired result.

Proof of Theorem 1.1. For a, b > 0, define the two stopping times τa
x = inf{t > 0 : Xt = a}

and τb
y = inf{t > 0 : Yt = b}. Then {ω ∈ � : X∗(t)(ω) ≥ a} = {ω ∈ � : τa

x (ω) ≤ t} and
{ω ∈ � : Y ∗(t)(ω) ≥ b} = {ω ∈ � : τb

y (ω) ≤ t}. We have

P(X∗(t) ≥ a, Y ∗(t) ≥ b)

= P(X∗(t) ≥ a, Xt ≤ a, Y ∗(t) ≥ b, Yt ≤ b) + P(X∗(t) ≥ a, Xt ≤ a, Yt ≥ b)

+ P(Xt ≥ a, Y ∗(t) ≥ b, Yt ≤ b) + P(Xt ≥ a, Yt ≥ b)

= I + II + III + IV .

We first use Lemma 2.2 to calculate II and III. For II, we use Lemma 2.2 with Xt and Yt

interchanged and choose τ to be the stopping time τa
x . Thus,

II = P(τ a
x ≤ t, Xt ≤ a, Yt ≥ b)

= P(τ a
x ≤ t, 2Xτa

x
− Xt ≤ a, Yt − 2r(Xt − Xτa

x
) ≥ b)

= P(τ a
x ≤ t, Xt ≥ a, Yt − 2rXt ≥ b − 2ra)

= P(Xt ≥ a, Yt − 2rXt ≥ b − 2ra)

= P(Xt ≤ −a, Yt ≥ b − 2ra),

where in the last step we used Lemma 2.1, interchanging Xt and Yt . For III, we use Lemma 2.2
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with τ = τb
y , to obtain

III = P(τ b
y ≤ t, Xt ≥ a, Yt ≤ b)

= P(Xt − 2rY t + 2rY τb
y

≥ a, Yt ≥ b)

= P(Xt − 2rY t ≥ a − 2rb, Yt ≥ b)

= P(Xt ≥ a − 2rb, Yt ≤ −b),

where in the last step we used Lemma 2.1.

It now remains to only estimate I:

I = P(τ a
x ≤ t, Xt ≤ a, τb

y ≤ t, Yt ≤ b)

= P(τ b
y ≤ t, Yt ≤ b, Xt ≤ a) − P(τ a

x ≥ t, τ b
y ≤ t, Yt ≤ b)

= P(τ b
y ≤ t, Yt ≤ b, Xt ≤ a) − P(Xs ≤ a, 0 ≤ s ≤ t, τ b

y ≤ t, Yt ≤ b)

= P(Xt − 2rYt ≤ a − 2rb, Yt ≥ b) − P(τ a
x > t, τ b

y ≤ t, Yt ≤ b).

Applying Lemma 2.4 below, we have

0 ≤ P(Xt − 2rY t ≤ a − 2rb, Yt ≥ b) − I

≤
∫ t

0

{∫ a

−∞

[∫ (a−x)/
√

t−u

−∞

(∫ 0

−∞
ϕ(z, w) dw

)
dz

−
∫ (x−a)/

√
t−u

−∞

(∫ 2r(x−a)/
√

t−u

−∞
ϕ(z, w) dw

)
dz

]
× e−(x−rb)2/2u(1−r2)√

2πu(1 − r2)
dx

}
b√

2πu3
e−b2/2u du

= T1(a, b). (2.1)

Since Xt and Yt play the same role in the calculation of I , by an analogous calculation we
obtain

I = P(Xt ≥ a, Yt − 2rXt ≤ b − 2ra) − P(τ a
x ≤ t, Xt ≤ a, τb

y > t)

and

0 ≤ P(Xt − 2rY t ≤ a − 2rb, Yt ≥ b) − I

≤
∫ t

0

{∫ b

−∞

[∫ (b−x)/
√

t−u

−∞

(∫ 0

−∞
ϕ(z, w) dz

)
dw

−
∫ (x−b)/

√
t−u

−∞

(∫ 2r(x−b)/
√

t−u

−∞
ϕ(z, w) dz

)
dw

]
× e−(x−ra)2/2u(1−r2)√

2πu(1 − r2)
dx

}
a√

2πu3
e−a2/2u du

= T2(a, b). (2.2)
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Invoking the calculations for II and III, by inequality (2.1) we obtain

P(X∗(t) ≥ a, Y ∗(t) ≥ b)

≤ P(Xt ≤ a − 2rb, Yt ≤ −b) + P(Xt ≤ −a, Yt ≥ b − 2ra)

+ P(Xt ≥ a − 2rb, Yt ≤ −b) + P(Xt ≥ a, Yt ≥ b)

= P(Yt ≤ −b) + P(Xt ≤ −a, Yt ≥ b − 2ra) + P(Xt ≥ a, Yt ≥ b)

= U1(a, b).

If we use inequality (2.2) in the above calculation, we obtain

P(X∗(t) ≥ a, Y ∗(t) ≥ b)

≤ P(Xt ≤ −a) + P(Xt ≥ a − 2rb, Yt ≤ −b) + P(Xt ≥ a, Yt ≥ b)

= U2(a, b).

Therefore, we can obtain the following upper bound:

P(X∗(t) ≥ a, Y ∗(t) ≥ b) ≤ min{U1(a, b), U2(a, b)}.
Similarly, by (2.1) and (2.2) we obtain the following lower bound:

P(X∗(t) ≥ a, Y ∗(t) ≥ b) ≥ max{U1(a, b) − T1(a, b), U2(a, b) − T2(a, b)}.
Finally, expressing U1(a, b), U2(a, b), T1(a, b), and T2(a, b) in terms of the joint distribution
function of (Xt , Yt ), we can obtain (1.5) and (1.6), completing the proof of Theorem 1.1.

Lemma 2.4. For any positive a, b, τa
x , and τb

y defined as above, we have

P(τ a
x > t, τ b

y ≤ t, Yt ≤ b)

≤
∫ t

0

(∫ a

−∞

[∫ (a−x)/
√

t−u

−∞

(∫ 0

−∞
ϕ(z, w) dw

)
dz

−
∫ (x−a)/

√
t−u

−∞

(∫ 2r(a−x)/
√

t−u

−∞
ϕ(z, w) dw

)
dz

]
× 1√

2πu(1 − r2)
e−(x−rb)2/2u(1−r2) dx

)
b√

2πu3
e−b2/2u du.

Proof. According to the strong Markov property of (Xt , Yt )t>0, we obtain

P(τ a
x > t, τ b

y ≤ t, Yt ≤ b)

= P(Xs < a, 0 ≤ s ≤ t, τ b
y ≤ t, Yt ≤ b)

= P(X̃s < a, 0 ≤ s ≤ t, τ b
y ≤ t, Ỹt ≤ b)

= P(Xs < a, 0 ≤ s ≤ τb
y , Xs − 2rY s ≤ a − 2rb, τ b

y ≤ s ≤ t, Yt ≥ b)

= P(Xs∧τb
y

< a, 0 ≤ s ≤ τb
y , Xs∨τb

y
− 2rY s∨τb

y
≤ a − 2rb, τ b

y ≤ s ≤ t, Yt∨τb
y

≥ b)

= E

[
1{max

s∈[0,τb
y ] Xs<a}E

[
max

s∈[τb
y ,t]

(Xs − 2rY s) ≤ a − 2rb, Yt ≥ b, τb
y ≤ t

∣∣∣ Fτb
y

]]
= E

[
1{max

s∈[0,τb
y ] Xs<a}E

[
max

s∈[τb
y ,t]

(Xs − 2rY s) ≤ a − 2rb, Yt ≥ b, τb
y ≤ t

∣∣∣ (Xτb
y
, Yτb

y
)
]]

.

https://doi.org/10.1239/aap/1363354102 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1363354102


46 J. SHAO AND X. WANG

The conditional expectation in the above integral can be expressed in the form g(Xτb
y
) for some

integrable function since Yτb
y

≡ b. For simplicity of notation, in the following we will use g to
replace the conditional expectation. Then

P(τ a
x > t, τ b

y ≤ t, Yt ≤ b) = E[g(Xτb
y
)1{τb

y ≤t, τ b
y <τa

x }]. (2.3)

In (2.3), replacing 1{τb
y <τa

x } by 1, we obtain

P(τ a
x > t, τ b

y ≤ t, Yt ≤ b) ≤ E[g(Xτb
y
)1{τb

y ≤t}].

Since (Xt )t≥0 and (Yt )t≥0 are Brownian motions with normal joint distribution and constant
correlation coefficient, there exists a Brownian motion (Bt )t≥0 independent of (Yt )t≥0 such
that

Xt =
√

1 − r2Bt + rYt .

In fact, Bt could be defined as (Xt − rYt )/
√

1 − r2. Then we can obtain the joint distribution
of Xτb

y
and τb

y . Therefore,

E[g(Xτb
y
)1{τb

y ≤t}] =
∫ t

0

(∫ +∞

−∞
g(

√
1 − r2x + rb)

1√
2πu

e−x2/2u dx

)
Pτb

y
( du)

=
∫ t

0

(∫ +∞

−∞
g(x)

1√
2πu(1 − r2)

e−(x−rb)2/2u(1−r2) dx

)
× b√

2πu3
e−b2/2u du,

where Pτb
y

stands for the distribution functions of τb
y , which can be calculated via (1.1).

Now we calculate g(Xτb
y
). When τb

y = u and Xτb
y

= x, then, by virtue of Lemma 2.1,

g(x) = E

[
max

s∈[u,t](Xs − 2rYs) ≤ a − 2rb, Yt ≥ b

∣∣∣ (Xu = x, Yu = b)
]

= P

(
max

s∈[0,t−u](Xs − 2rYs) ≤ a − x, Yt−u ≥ 0
)

= P

(
max

s∈[0,t−u] Xs ≤ a − x, Yt−u ≤ 0
)
.

When x ≥ a, we know that P(maxs∈[0,t−u] Xs ≤ a − x) is equal to 0. So, in the following, we
assume that x < a. Set τa−x

x = inf{s ≥ 0; Xs ≥ a − x}. The last term in the above equation
can be calculated using Lemma 2.2. More precisely,

P

(
max

s∈[0,t−u] Xs ≤ a − x, Yt−u ≥ 0
)

= P(τ a−x
x ≥ t − u, Yt−u ≤ 0)

= P(Yt−u ≤ 0) − P(Yt−u ≤ 0, τ a−x
x < t − u, Xt−u ≥ a − x)

− P(Yt−u ≤ 0, τ a−x
x < t − u, Xt−u < a − x)

= P(Yt−u ≤ 0) − P(Yt−u ≤ 0, Xt−u ≥ a − x)

− P(Yt−u − 2rXt−u ≤ −2r(a − x), Xt−u > a − x)

= P(Yt−u ≤ 0, Xt−u < a − x) − P(Yt−u ≤ −2r(a − x), Xt−u < x − a).
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Finally, when τb
y = u ≤ t and Xτb

y
= x, we obtain

g(x) =
{

P(Yt−u ≤ 0, Xt−u < a − x) − P(Yt−u ≤ 2r(x − a), Xt−u < x − a), x < a,

0, x ≥ a.

Altogether, we obtain

P(τ a
x > t, τ b

y ≤ t, Yt ≤ b)

≤
∫ t

0

(∫ a

−∞
[P(Xt−u < a − x, Yt−u ≤ 0) − P(Xt−u < x − a, Yt−u ≤ −2r(a − x))]

× 1√
2πu(1 − r2)

e−(x−rb)2/2u(1−r2) dx

)
b√

2πu3
e−b2/2u du,

which yields the desired result upon applying the joint distribution of Xt−u and Yt−u.

Remark 2.1. In the proof of Lemma 2.4, by making use of a formula given in [6, Equation (15)]
and [7, Equations (1.5) and (1.6)], we can calculate E[g(Xτb

y
)1{τb

y <t,τb
y <τa

x }]. More precisely,
setting τ = τa

x ∧ τb
y ,

P(X(τ) ∈ dx, τ = τb
y ∈ dt) = π

α2t (a − x)
exp

[
− 1

2t

(
(a − x)2

1 − r2 + r2
0

)]
×

∞∑
n=1

n sin

(
nπθ0

α

)
Inπ/α

(
a − x√
1 − r2

r0

t

)
dx dt,

where x varies from −∞ to a, (r0, θ0) denotes the polar coordinates of the point ((a −
rb)/

√
1 − r2, b), and α is defined in (1.4). Therefore,

E[g(Xτb
y
)1{τb

y <t,τb
y <τa

x }] =
∫ t

0

∫ a

−∞
g(x)

π

α2t (a − x)
exp

[
− 1

2t

(
(a − x)2

1 − r2 + r2
0

)]
×

∞∑
n=1

n sin

(
nπθ0

α

)
Inπ/α

(
r0(a − x)

t
√

1 − r2

)
dx dt.

This is an equality for the probability P(τ a
x > t, τ b

y ≤ t, Yt ≤ b). It does not omit any
information. However, we do not make use of this equality, since it is very difficult to deal with
the double integral over the Bessel functions.

Proof of Corollary 1.1. It is enough to prove this corollary for t = 1. Since P(Y ∗
1 ≥ b) =

2	(−b), and, by Theorem 1.1, P(X∗
1 ≥ b, Y ∗

1 ≥ b) ≤ U1(b, b) for t = 1, we have

lim sup
b→∞

P(X∗
1 ≥ b, Y ∗

1 ≥ b)

P(Y ∗
1 ≥ b)

≤ 1

2
+ lim

b→∞
1

2	(−b)

[∫ −b

−∞

(∫ ∞

(1−2r)b

ϕ(x, y) dy

)
dx +

∫ ∞

b

(∫ ∞

b

ϕ(x, y) dy

)
dx

]
.
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Using l’Hôpital’s rule,

lim
b→∞

1

2	(−b)

∫ ∞

b

∫ ∞

b

ϕ(x, y) dy dx

= lim
b→∞

1√
2π(1 − r2)

eb2/2
∫ ∞

b

exp

[
−x2 − 2rbx + b2

2(1 − r2)

]
dx

= lim
b→∞

1√
2π(1 − r2)

∫ ∞

(1−r)b

e−x2/2(1−r2) dx

= 0.

Similarly,

lim
b→∞

1

2	(−b)

∫ −b

−∞

(∫ ∞

(1−2r)b

ϕ(x, y) dy

)
dx

= lim
b→∞

eb2/2

2
√

2π(1 − r2)

×
[∫ ∞

(1−2r)b

e−(b2+2rby+y2)/2(1−r2) dy

+ (1 − 2r)

∫ ∞

b

exp

[
−x2 + 2r(1 − 2r)bx + (1 − 2r)2b2

2(1 − r2)

]
dx

]
=: 1

2
√

2π(1 − r2)

(
lim

b→∞ I + lim
b→∞ II

)
.

For the first part,

lim
b→∞ I = lim

b→∞

∫ ∞

(1−2r)b

e−(y+rb)2/2(1−r2) dy = lim
b→∞

∫ ∞

(1−r)b

e−y2/2(1−r2) dy = 0.

For the second part,

lim
b→∞ II = lim

b→∞(1 − 2r)

∫ ∞

b

exp

[
− (x + r(1 − 2r)b)2

2(1 − r2)

]
exp

[
− (1 − 4r − 4r2)b2 − b2

2

]
dx

= (1 − 2r) lim
b→∞ e2r(1−r)b2

∫ ∞

(1+r−2r2)b

e−x2/2(1−r2) dx.

When r ∈ (−1, 0), e2r(1−r)b2
tends to 0, and∫ ∞

(1+r−2r2)b

e−x2/2(1−r2) dx <

∫ ∞

−∞
e−x2/2(1−r2) dx

is finite, so limb→∞ II = 0 when r ∈ (−1, 0]. When r ∈ (0, 1),

lim
b→∞ e2r(1−r)b2

∫ ∞

(1+r−2r2)b

e−x2/2(1−r2) dx

= lim
b→∞

(1 + r − 2r2)e−(1+r−2r2)2b2/2(1−r2)

4r(1 − r)be−2r(1−r)b2

= lim
b→∞

2r + 1

4rb
exp

[
− (1 − r)(2r2 + 2r + 1)

2(1 + r)
b2

]
= 0 as r ∈ (0, 1).
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Hence,

lim
b→∞

1

2	(−b)

∫ −b

−∞

(∫ ∞

(1−2r)b

ϕ(x, y) dy

)
dx = 0.

Altogether, we obtain

lim sup
b→∞

P(X∗
1 ≥ b, Y ∗

1 ≥ b)

P(Y ∗
1 ≥ b)

≤ 1

2
for r ∈ (−1, 1),

completing the proof.

3. Proof of Theorem 1.2

Let (Xt )t≥0 and (Yt )t≥0 be two Ft -Brownian motions with normal joint distribution. Assume
that hypotheses (H1) and (H2) hold. For any positive constant a, b, c, and d, in order to estimate
the crossing probability

P(Xt ≤ at + b, Yt ≤ ct + d, 0 ≤ t ≤ T ),

where T is a positive constant, we first establish a kind of Girsanov theorem, then use
Theorem 1.1 to deduce its lower and upper estimates. Novikov [8] used this idea to estimate
the exit probability of one-dimensional Brownian motion to a moving boundary.

Proposition 3.1. (Girsanov’s theorem.) Let

W(R2) = {x : [0, T ] → R
2 continuous; X(0) = 0}.

For any constants a and b, let ηa,b : W(R2) → W(R2) be defined as

t 
→ ηa,b(x(·), y(·))(t) = (x(t) + at, y(t) + bt)

for t ∈ [0, T ]. Denote by µη the induced measure of µ0 by the map ηa,b, i.e. µη = µ0 ◦ η−1.
Then µη is absolutely continuous with respect to µ0 and

dµη

dµ0
(x(·), y(·)) = exp

[
1

2(1 − r2)
{2(a − rb)x(T ) + 2(b − ra)y(T ) − (a2 + b2 − 2rab)T }

]
.

Proof. The proof is similar to that of Girsanov’s theorem in the one-dimensional case. We
omit the details, and refer the reader to [5, Chapter 7, Theorem 3.1] for more general results in
this case.

Proof of Theorem 1.2. We first consider the upper bound. By Proposition 3.1 and Hölder’s
inequality, we obtain

P(Xt ≤ at + c, Yt ≤ bt + d, 0 ≤ t ≤ T )

= P(Xt − at ≤ c, Yt − bt ≤ d, 0 ≤ t ≤ T )

= E[1{Xt≤c, Yt≤d, 0≤t≤T }M̃T ]
≤ P(Xt ≤ c, Yt ≤ d, 0 ≤ t ≤ T )1/p(EM̃

p/(p−1)
T )(p−1)/p,

which gives the upper estimate.
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On the other hand,

P(Xt ≤ c, Yt ≤ d, 0 ≤ t ≤ T )

= P(Xt + at ≤ at + c, Yt + bt ≤ bt + d, 0 ≤ t ≤ T )

= E[1{Xt≤at+c, Yt≤bt+d, 0≤t≤T }MT ]
≤ P(Xt ≤ at + c, Yt ≤ bt + d, 0 ≤ t ≤ T )1/p(EM

p/(p−1)
T )(p−1)/p.

This yields
P(Xt ≤ at + c, Yt ≤ bt + d, 0 ≤ t ≤ T )

≥ P(Xt ≤ c, Yt ≤ d, 0 ≤ t ≤ T )p(EM
p/(p−1)
T )1−p,

which gives the lower bound.
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